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Abstract—360◦ video streaming demands higher bandwidth
and lower latency than conventional videos. Some solutions
employ tile-adaptive 360◦ video streaming and edge caching
mechanisms to improve the quality of their content delivery.
However, it is hard to cache large amounts of popular content
with limited cache capacity. Reconstruction technologies, which
have been widely adopted for images and conventional videos,
can potentially reconstruct complete tile-based viewports from
partial observation for 360◦ videos, thus further relieving the
pressure on the caching. However, it is challenging to design
a flexible and efficient caching solution that supports viewport
reconstruction for 360◦ videos. In this paper, we propose a
Viewport Reconstruction-based 360◦ video Caching solution for
Tile-adaptive streaming (VRCT). To enhance viewers’ quality of
experience (QoE), a QoE-driven reconstruction trigger scheme is
designed to determine whether to perform reconstruction or not
based on current cache information and network conditions. To
make efficient use of the cache space and facilitate the viewport
reconstruction, a heuristic-based solution, named aggregation-
based cache replacement scheme, is proposed to improve the
probability of viewport reconstruction by carefully selecting
which tiles to be stored in the given limited space. Through
comprehensive experiments with a real head movement dataset,
we show that the proposed VRCT increases the cache hit ratio
by up to 29%, reduces the backhaul usage by up to 44%
and improves user QoE by up to 32% compared with other
existing methods. In addition, experimental results show that
our proposed cache replacement scheme facilitates viewport
reconstruction and supports different video types.
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I. INTRODUCTION

THE recent evolution of virtual reality (VR), VR devices
and network communication technologies have signifi-

cantly stimulated the production and consumption of 360◦

videos (a.k.a. panoramic videos) [1]. Many leading content
providers, such as Facebook and YouTube, have deployed
support for 360◦ videos and are increasingly promoting im-
mersive user experiences in a wide range of areas, including
education, sports and entertainment [2]. According to a recent
market report [3], this trend will continue and a whopping
number of 112.62 million smartphone-based VR devices and
Head-Mounted Displays (HMDs) is expected by 2026. Unfor-
tunately, due to the ultra-high resolution (up to 8K) and bitrate
(up to 200 Mbps) of 360◦ videos, the bandwidth to deliver such
multimedia content is 4-5 times larger than that required to
deliver conventional videos [4]. Besides, the delivery latency
of the immersive videos must be kept small (e.g., less than
20 ms) to guarantee users’ quality of experience (QoE) [5].
In spite of the effective increase in the available network
bandwidth and reduced network latency enabled by the 5G
communication technology, it is still a challenge to stream
360◦ videos from remote content servers to multiple users.

To alleviate bandwidth consumption and transmission la-
tency, some solutions [6]–[8] propose adaptive 360◦ video
streaming by leveraging information about users’ field of view
(FoV). FoV is a portion of the 360◦ video around the user’s
line of sight. It can be spatially partitioned into non-overlapped
rectangular regions called tiles. In tile-based techniques, each
tile is transcoded into multiple representations with different
bitrates. Both bandwidth consumption and latency can be
significantly decreased by delivering only the tiles within the
user’s FoV at high resolution, while the other tiles are served
at low resolution or not delivered at all.

To avoid the transmission redundancy associated with re-
peated requests and reduce the traffic load on the backhaul
path, some works [9]–[11] bring popular content closer to
users by deploying transcoding-enabled cache servers at the
edge of the Content Delivery Network (CDN). The application
of cache servers effectively reduces the load on the content
servers and improves users’ QoE on the client side. However,
with the volume of the 360◦ videos exploding, it has become
increasingly more challenging to store massive popular content
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in the cache server. Exploiting the multi-access edge com-
puting (MEC) paradigm, [12]–[14] propose more advanced
caching systems to optimize the edge computing capacity.
However, these solutions require that all tiles requested to par-
ticipate in edge computing be cached before the optimization
methods are executed, which is unpractical given the limited
cache capacity.

Reconstruction technologies are widely used in im-
ages [15]–[17] and conventional videos [18]–[20] because they
can infer missing regions from partial observation, which is
helpful to reduce additional requests for uncached content.
However, unlike traditional videos, where the entire frames
can be reconstructed, it is difficult and also unnecessary to
reconstruct the entire frames of 360◦ videos due to two
reasons. First, the volume of 360◦ videos is usually much
larger than that of conventional videos. It will waste excessive
amount of bandwidth to transmit the whole frames. Second, as
will be shown in Section II-C, only the users’ viewports, rather
than the entire frames, need to be reconstructed in 360◦ videos.
As such, it is necessary to design a flexible cache system that
can facilitate viewport reconstruction, to store appropriate tiles
given the limited cache space. To the best of our knowledge,
no work has yet incorporated reconstruction techniques into
tile-based 360◦ video streaming.

In this paper, we propose a Viewport Reconstruction-
based 360◦ video Caching solution for Tile-adaptive streaming
(VRCT). The proposed VRCT addresses the following two key
challenges: (i) how to decide whether to perform the viewport
reconstruction task, and (ii) how to choose which tiles to evict
in the cache server when the cache capacity is exceeded.

To solve the first problem, a QoE-driven Reconstruction
Trigger Scheme (QRTS) is proposed to determine whether to
perform the viewport reconstruction or not based on current
cache information and network conditions. VRCT first esti-
mates the viewport quality and associated delay by introducing
a fitting function and employing queuing theory. Then it calcu-
lates user QoE with/without viewport reconstruction based on
the estimations, and finally makes a decision to enhance user
QoE. Related to the second problem, we propose a heuristic-
based solution, named Aggregation-based Cache Replacement
Scheme (ACRS), to select specific cached tiles to be removed,
aiming to increase the viewport hit ratio of requests and
improve the probability of viewport reconstruction. It can
efficiently improve the spatial aggregation of the cached tiles
and the temporal uniformity of the cache proportion. In other
words, tiles of the same segment are stored centrally in the
spatial dimension, while the number of cached tiles in any
segment remains within a desirable range.

To assess the performance of VRCT, we compare it with
several existing caching policies through comprehensive exper-
iments, using a head-tracking dataset consisting of real traces.
Experimental results show that: (i) VRCT outperforms other
schemes, increasing up to 29% cache hit ratio and 32% user
QoE, and effectively reducing the load on the backhaul path
by up to 44%; (ii) The proposed cache replacement algorithm,
ACRS, makes it easier to reconstruct viewports by improving
the spatial aggregation of the cached tiles and the temporal
uniformity of the cache proportion; (iii) The introduction of

ACRS improves the probability of viewport reconstruction
in different video types by 2% to 7%, which shows great
robustness, and an average of 10% more users can benefit
from the reconstruction mechanism.

The contributions of this paper are as follows:
• We propose VRCT, a 360◦ video caching solution based

on viewport reconstruction for tile-adaptive streaming;
• We design a system model to estimate user QoE and

develop a QoE-driven reconstruction trigger scheme for
the viewport reconstruction task;

• We propose an aggregation-based cache replacement
scheme to change the cache features of the cached content
and improve the probability of viewport reconstruction;

• We conduct comprehensive experiments in a real-world
testbed with a head movement dataset to demonstrate the
superior performance of VRCT.

The rest of the paper is organized as follows. In Section II,
we briefly introduce related works and discuss our motivation.
In Section III, we present the system model and detailed
definitions. Section IV details the design of the proposed
VRCT solution. Section V describes the experimental testing
setup, and Section VI discusses the testing results. Section VII
summarizes the advantages and limitations of VRCT. Finally,
Section VIII concludes the paper.

II. RELATED WORKS AND MOTIVATION

A. Adaptive 360◦ Video Streaming

Over the years, 360◦ video streaming solutions have pro-
gressed from viewport-independent schemes and viewport-
dependent schemes to tile-based schemes. The viewport-
independent schemes [21] treat 360◦ videos similarly as
traditional ones and stream the whole video frame area at
the same quality level, without considering the user’s FoV. In
viewport-dependent schemes [22], not only the bitrate level,
but also the transmission area of the frame can be dynamically
selected, so the streaming is adaptive. Compared with the first
two approaches, tile-based schemes are more flexible. In tile-
based schemes, the 360◦ videos are spatially partitioned into
a number of non-overlapping rectangular regions, called tiles,
which are further split temporally into many fixed-duration
segments according to the dynamic adaptive streaming over
HTTP (DASH) standard [23]. The employment of the DASH-
based approach makes it easier to choose the appropriate
quality of requested videos for users according to different
network situations.

Many efforts are put to reduce bandwidth consumption and
enhance viewport quality in tile-based 360◦ video stream-
ing. Wang et al. [24] design a saliency-driven mobile 360°
video streaming system which takes full advantage of gaze
information to improve the QoE under insufficient wireless
network bandwidth. Zheng et al. [25] present a novel ShiftTile-
Tracking (STC) streaming system, which crops and transmits
video by tracking the FoV movement of users. Wu et al. [26]
propose a dual-queue streaming framework to enable the
Deep Reinforcement Learning (DRL) agent to determine and
change the tile download order without incurring overhead.
Madarasingha et al. [27] present a computational geometric
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Fig. 1. Some examples of heatmaps for 360◦ videos

approach-based adaptive tiling mechanism, which can take
visual attention information as the input and provide a suit-
able non-overlapping variable size tile cover on the frame.
Yaqoob et al. [28] introduce CFOV, a combined FoV tile-based
adaptive streaming solution, which introduces a practical-
oriented tile selection method and actively allocates the video
bitrate budget to different video frame areas to enhance the
VR perception quality. The same authors have gone a step
further and have proposed DVS, a prioritised bitrate adaptation
approach based on dynamic viewport adjustment [29]. Addi-
tionally, Madarasingha et al. [30] also propose an Inductive
Logic Programming (ILP)-based mechanism to devise optimal
cache tile configuration at MEC server which reduces the data
fetched from the content server.

Although adaptive streaming technologies can reduce band-
width consumption, traditional network architectures based on
centralized storage and computing no longer meet the re-
quirements of high-bitrate content request and delivery. Since
popular content is often requested repeatedly, this approach
drives up the load on the content server and wastes a lot of
bandwidth on the backbone network.

B. Edge Caching and Edge Computing

To reduce duplicate content delivery and alleviate the load
on the backbone network, alternative solutions based on edge
caching and edge computing should be introduced in the 360◦

video streaming process.
Dongbiao et al. [31] present an edge caching scheme for

360◦ video streaming at the video and tile levels to reduce
traffic load and improve user QoE. Yang et al. [31] model the
process of collaborative transcoding and caching as a Markov
decision process, and use a model-free DRL approach to
obtain an efficient caching replacement and computing power
allocation strategy. Furthermore, Fu et al. [32] propose a se-
quential reinforced 360-degree video streaming scheme, which
boosts the performance of long-term viewpoint prediction with
cross-user attentive network. Dai et al. [13] design a view
synthesis-based VR caching system that can synthesize the
user’s current desired FoV by cached nearby FoVs. Dasari
et al. [14] combine traditional video encoding with super-
resolution techniques by training small micro-models, sig-
nificantly increasing video quality while reducing bandwidth
requirements.

However, the above solutions require all the requested tiles
to be cached before their optimization methods can be exe-
cuted. As such, they always have to fetch extra uncached tiles
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Fig. 2. Hit ratio vs. Cached ratio of users’ watching traces

from the remote content servers, causing escalated backhaul
traffic. Fortunately, reconstruction technology can alleviate
this problem, among which the masked autoencoders (MAE)
approach [17] is the most advanced. MAE is an encoder-
decoder architecture. The encoder maps the partial observed
signal to a latent representation, from which the decoder can
reconstruct the original signal. Finally, the masked image
can be reconstructed from partial observations. Intuitively,
by reconstructing complete tile-based viewports from the
cached tiles already available in the MEC-Cache server, the
reconstruction technology can reduce additional requests for
uncached tiles.

C. Motivation

To verify the above-mentioned ideas, we analyze a head-
tracking dataset with real traces [33], and compute the heatmap
with three different types of 360◦ videos. As depicted in
Figure 1, the salient regions that attract users’ attention always
appear in the same tiles, and these areas are defined as regions
of interest (ROI). Additionally, we further investigate the sim-
ilarity of 50 users’ head movement traces, and Figure 2 shows
the experimental result in detail. An important conclusion
is that a 60% hit ratio can be achieved when only 20% of
the watching traces are stored, indicating users share similar
behavioral patterns when watching 360◦ videos. These two
phenomena reveal that users’ demands for tiles are highly
correlated in the spatial dimension, which means that only
a small number of viewports need to be reconstructed to meet
the viewing needs of most users. Besides, highly overlapping
cached tiles can also improve the viewport hit ratio and
guarantee the quality of reconstructed viewports.

However, due to the limited computational resources and
storage space available at the edge, the introduction of re-
construction technology brings new challenges to the design
of tile-based caching and streaming systems. These challenges
include 1) determination of the appropriate timing for viewport
reconstruction instead of executing it whenever cache misses
are encountered; 2) specially designed cache replacement
strategy to facilitate the reconstruction technology. In this
context, we propose VRCT, a viewport reconstruction-based
360◦ video caching solution for tile-adaptive streaming, to
reduce the number of requests for uncached tiles.
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III. SYSTEM OVERVIEW

A. System Model

Figure 3 illustrates the system overview of VRCT. Our
proposed VRCT framework considers a wireless network
scenario involving multiple mobile terminals, and there is a
MEC-Cache server between the remote content server and
these clients. On the server side, the created 360◦ videos
undergo preprocessing such as projection, transcoding and
partitioning before streaming. On the edge side, the MEC-
Cache server is able to store a portion of 360◦ videos, as well
as reconstruct viewports as needed to enhance the 360◦ video
streaming quality.

To address two aforementioned challenges in Section I,
we first develop a QoE-driven reconstruction trigger scheme,
which allows the flexibility to choose whether to reconstruct
the incomplete viewports or fetch the uncached tiles from the
remote content server. Then, we design an aggregation-based
cache replacement scheme to facilitate viewport reconstruction
by storing appropriate tiles in the given limited space. Com-
bining both, the viewport reconstruction-based tile adaptive
streaming can be achieved.

B. 360-Degree Video Model

Assume that there are V 360◦ videos stored on a re-
mote content server, indexed by V = {1, · · · , v, · · · , V },
which can be transmitted and cached in edge servers. Each
video is spatially partitioned into M × N non-overlapped
tiles and a tile is indexed by m and n, where m ∈ M,
M = {1, · · · ,m, · · · ,M}, is the column index and n ∈
N , N = {1, · · · , n, · · · , N} is the row index. Then, each
tile is further split temporally into S consecutive segments,
indexed by S = {1, · · · , s, · · · , S}. To facilitate adaptive
360◦ video streaming, each 360◦ video is transcoded into K
different representations indexed by K = {1, · · · , k, · · · ,K}.
And there are U users in the network, indexed by U =
{1, · · · , u, · · · , U}. Therefore, vks,m,n denotes the tile at the
m-th column and n-th row in the s-th segment of the v-th
video, transcoded at the k-th bitrate level.

In addition, we use D to indicate the set of tiles within the
requested viewport, and D(vs) means the set of tiles within
the specific viewport in the s-th segment of the v-th video.

For tile vks,m,n, x
vk
s,m,n

u,t = 1 indicates that vks,m,n is located in

the FoV of user u at time slot t, and x
vk
s,m,n

u,t = 0 otherwise.

C. Adaptive Bitrate Algorithm

On the client side of the 360◦ video streaming network,
a hybrid adaptive bitrate (ABR) algorithm, which takes both
throughput and buffer size into account, is adopted to decide
for users which representations of 360◦ videos to request based
on historical network conditions.

First, the network throughput B(t) at time slot t is estimated
based on the historic downloading capacity as follows:

B(t) =

∑
vk
s,m,n∈D size(v

k
s,m,n)∑

vk
s,m,n∈DDT (v

k
s,m,n)

, (1)

where size(·) and DT (·) represent the file size and download
time of the input tile, respectively. Then, the estimation of the
throughput at time slot t+1 is defined as the harmonic mean
of the downloading throughput for the last I segments:

B(t+ 1) =
I∑I−1

i=0 1/B(t− i)
, (2)

where the input length I is set to 5 segments to cope with
frequent fluctuations in network bandwidth [34].

When the current buffer size BS is within the preset range
[BSmin, BSmax], the user will request the next viewport based
on the estimated throughput B(t + 1), that is, we first select
a subset of K in which the bitrates of all files are less than
B(t+1), and then choose the representation with the highest
bitrate in the subset as the request quality. Otherwise, if BS
is less than the preset minimum BSmin, the client will fetch
the tiles at the lowest quality to fill the buffer as soon as
possible. And if BS exceeds the preset maximum BSmax, the
requests will be suspended and the buffer will be consumed
continuously.

D. Quality of Experience Model

To evaluate the user’s viewing experience, inspired by [35]–
[37], we build an objective QoE evaluation model by jointly
considering the following metrics.

(1) Perceived Quality: In 360◦ videos, only the tiles in
the user’s FoV can affect the perceived quality. Therefore, the
average perceived quality of the requested tile set D(vs) is
defined as:

Qp(D(vs)) =
1

N(D(vs))
∑

vk
s,m,n∈D(vs)

q(vks,m,n), (3)

where N(D(vs)) represents the number of tiles in D(vs), and
q(·) calculates the perceived quality of the input tile based on
its bitrate. Note that a user can only request one representation
of the tile in a fixed position, as such, the following constraint
is satisfied: ∑

k∈K

x
vk
s,m,n

u,t = 1. (4)

(2) Rebuffering: When a user starts to request a video, the
initial buffer is empty. During video playback, the buffer may
also run out due to network fluctuations. In both cases, the
client player needs to stop playing until the requested viewport
is prepared. So we define the rebuffering duration as the time
spent waiting:

Qr(D(vs)) = [PT (D(vs))−BS]+ , (5)

where PT (·) calculates the preparation time required to ac-
quire the requested viewport consisting of the input tile set,
which will be discussed in subsection IV-A2.

(3) Switching Quality: When the network bandwidth fluc-
tuates greatly, the selected quality version will also fluctuate
accordingly, resulting in frequent switching of video quality
across segments. Therefore, the smoothness of video quality
across the segments is defined as

Qs(D(vs)) = |Qp(D(vs))−Qp(D(vs−1))| . (6)
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Finally, we define the QoE objective by a weighted sum-
mation formulation:

QoE(D(vs)) = α1·Qq(D(vs))−α2·Qr(D(vs))−α3·Qs(D(vs)),
(7)

QoE =
1

s− s+ 1

s∑
s=s

QoE(D(vs)), (8)

where α1, α2 and α3 are weighting factors. Due to the
introduction of reconstruction technology, we are most con-
cerned with the perceived quality of the viewports. Therefore,
the weighting factors (α1, α2, α3) are set to (1, 0.25, 0.25),
which is the setting also used in [35] and [36]. Besides, s
and s denote the start and end segments of user requests,
respectively. As can be seen, QoE is enhanced by higher video
quality, shorter rebuffering duration and fewer bitrate switches.

IV. VRCT FRAMEWORK DESIGN

A. QoE-Driven Reconstruction Trigger Scheme

In this subsection, we first introduce two key metrics for
evaluating the impacts of reconstruction, i.e., the quality of
the reconstructed viewport and the time consumed by the
process. Then, the QoE-driven reconstruction trigger scheme
is detailed.

1) Quality of the Reconstructed Viewport: As for the
improvement in viewport quality, we run a series of tests with
multiple 360◦ videos. In the experiments, we randomly mask
a certain proportion of tiles as black areas and then reconstruct
the viewport. Figure 4 demonstrates how the viewport hit
ratio affects the peak signal-noise ratio (PSNR) and bitrate
of the reconstructed viewport, where the viewport hit ratio
refers to the percentage of unmasked tiles in all requested
tiles. As illustrated in Figure 4(a), the PSNR of the view-
port after/before reconstruction increases with the viewport
hit ratio, and the reconstruction mechanism can effectively
improve the viewport quality. From Figure 4(b) we can observe
that a higher viewport hit ratio brings a higher bitrate of the
reconstructed viewport and finally benefits the quality.
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In the experiments, we find that the bitrate of the re-
constructed viewport can be roughly approximated by linear
regression. We use f(·) to represent the fitting function. The
output of f(·) is the bitrate of the reconstructed viewport,
which is decided by two inputs, i.e., the viewport hit ratio
and the perceived quality of the cached tiles that are used to
reconstruct the viewport.

2) Time to Prepare the Viewport: The time to prepare the
viewport consists of the computation delay for reconstructing
viewports and the transmission delay for streaming viewports.

tcd =
1

µ− p · λ
+

1

µ
=

1

µ− Nvr

Nreq
· λ

+
1

µ
, (9)

where µ is the number of viewports that the cache server can
reconstruct per second, λ is the average rate at which requests
are arriving, and p is the proportion of the reconstruction tasks.
We use Nreq and Nvr to represent the number of requests and
viewport reconstruction tasks, respectively. In order to obtain
more accurate delay estimates, we update p in real-time by
counting Nreq and Nvr within sliding time windows which
are set to 5 minutes. In equation (9), 1/(µ − p · λ) is the
average queuing delay of each task with µ − p · λ > 0, and
1/µ is the average execution delay.

In fact, µ, p and λ are time-varying parameters, so we divide
the time series into successive time windows (usually set to 1
minutes empirically), and update these parameters in real-time
to obtain more accurate delay estimates.
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Algorithm 1: QoE-Driven Reconstruction Trigger Scheme
Input: Requested tile set D; Cached content C;

Historical network conditions H; Current buffer
size BS and its preset range [BSmin, BSmax].

Output: Whether to reconstruct the viewport or not.
1 Function QRTS():
2 Adaptive representation selection:

k ← ABR(H, BS,BSmin, BSmax);
3 Retrieve the hit requested file:

Dhit(v
k
s ) = D(vks ) ∩ C(vks );

4 Calculate the viewport hit ratio:
δ = N(Dhit(v

k
s ))/N(D(vks ));

5 Calculate the quality of the reconstructed viewport:
Qp(D(vs))← f(δ,Qp(Dhit(v

k
s )));

6 Calculate the delays used to prepare the viewport:
tcd, trv, toe, teu, tvr and tfetch;

7 Calculate the user QoE in two different scenarios:
QoEvr(D(vs)) and QoEfetch(D(vs));

8 if QoEvr(D(vs)) > QoEfetch(D(vs)) then
9 Nvr += 1;

10 return True;
11 else
12 return False;

13 Nreq += 1;

The transmission delay in reconstruction tasks is given by:

trv =
size(D̂)
Beu

, (10)

where D̂ represents the reconstructed viewport, while Beu
and Boe are the estimated throughputs of the fronthaul and
backhaul links based on equations (1)-(2), respectively. If the
viewport can not be reconstructed, the uncached tiles should be
fetched from the origin server, and then all requested tiles will
be sent to users. In this case, we use toe and teu to indicate the
transmission delays from the origin server to the edge server
and from the edge server to users, respectively. Their formulas
are given in equation (11):

toe =

∑
vk
s,m,n∈Dmiss

size(vks,m,n)

Boe
, teu =

∑
vk
s,m,n∈D

size(vks,m,n)

Beu
,

(11)
where Dmiss indicates the subset of the uncached tiles in D.

Similarly, we use Dhit to represent the subset of the cached
tiles in D, which will be used later.

Finally, the total delay for reconstructing and delivering the
viewport in viewport reconstruction tasks is defined as tvr:

tvr = tcd + trv, (12)

while the total delay for fetching the uncached tiles and
sending them to users along with the cached ones is tfetch:

tfetch = toe + teu. (13)

They can be used to represent the viewport preparation time
PT (·) in equation (5) when calculating the corresponding user
QoE, namely QoEvr and QoEfetch.
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Fig. 5. Two scenarios for calculating the aggregation degree

3) QoE-Driven Reconstruction Trigger Scheme (QRTS):
Algorithm 1 summarizes the decision-making process for
viewport reconstruction. The algorithm describes the actions
that the MEC-Cache server takes whenever it receives a user
request. We use C to indicate the set of all cached content in
the MEC-Cache server, and C(vks ) indicates the set of cached
tiles in the s-th segment of the v-th video at the k-th level.

First, QRTS performs adaptive representation selection
based on the ABR algorithm mentioned in subsection III-C,
and use the obtained representation level k to retrieve the
subset of the cached tiles in D(vks ), called Dhit(v

k
s ). Then,

it counts the number of tiles in D(vks ) and Dhit(v
k
s ), respec-

tively defined as N(D(vks )) and N(Dhit(v
k
s )), and calculates

the viewport hit ratio δ. After that, it estimates the bitrate
of the reconstructed viewport based on the fitting function
f(·), and computes tvr and tfetch by equations (9)-(13). In
order to maximize QoE, we calculate QoEvr(D(vs)) and
QoEfetch(D(vs)) for two different scenarios, and choose the
one that achieves the higher QoE as our action.

B. Aggregation-Based Cache Replacement Scheme

In this subsection, we first analyze the cache features of
panoramic videos. Then, we propose an aggregation-based
cache replacement scheme that selects appropriate tiles to store
in the limited space and improves the probability of viewport
reconstruction.

1) Cache Feature Analysis: In order to improve the view-
port hit ratio and enhance the quality of the reconstructed
viewport, it is necessary to increase the aggregation degree of
cached tiles in the spatial dimension. It means that the tiles of
a segment should be cached centrally rather than distributively.

To characterize the aggregation degree of cached content,
we first define ξ(vks,m,n) as the aggregation degree of the
cached tile vks,m,n by

ξ(vks,m,n) =
Nc(v

k
s,m,n)

Nview
, (14)

where Nc(v
k
s,m,n) represents the number of cached tiles that

current viewport contains when vks,m,n is located in the center
of user’s FoV, and Nview represents the total number of tiles
in the viewport.

As illustrated in Figure 5, there are two different scenarios
when calculating the aggregation degree. In general, the view-
port is located within the frame, i.e., ξ(vks,m,n) = 7/9 = 0.78
in Figure 5(a). Otherwise, we need to stitch together the
boundary of the frame before calculation, i.e., ξ(vks,m,n) =
5/9 = 0.56 in Figure 5(b). The aggregation degree of segment
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vks is defined as the average aggregation degree of the cached
tiles in C(vks ):

ξ(vks ) = mean{ξ(vks,m,n) | vks,m,n ∈ C(vks )}. (15)

However, if all tiles of a segment are cached, the aggregation
degree of this segment will reach the maximum value of 1.
Unfortunately, this is not what we expect, since we only want
to store the frequently requested tiles in the given limited space
rather than caching all of them. Therefore, in addition to the
aggregation degree in the spatial dimension, the uniformity
degree of cached content in the temporal dimension also needs
to be considered. We define the cache proportion of segment
vks , denoted by ψ(vks ), as the ratio of the cached tiles to all
tiles in the segment:

ψ(vks ) =
N(C(vks ))
M ·N

, (16)

where N(C(vks )) represents the number of cached tiles in vks .
2) Problem Formulation: The results of many experiments

perform that the ROI size in a segment only accounts for
20%∼30% area [38] (approximately equal to the size of one
viewport), which is also intuitive in Figure 1. Therefore, we
assume that only viewport-sized tiles are stored for each
segment. Then, we define ϑ(vks ) as the composite indicator
of segment vks :

ϑ(vks ) = ξ(vks )− β
[
N(C(vks ))−Nview

M ·N

]+
= ξ(vks )− β

[
ψ(vks )− ψview

]+
,

(17)

where β is the penalty for the tiles that exceed the preset
storage range, and ψview represents the cache proportion of a
viewport. Further, ϑ(v) is defined as the average of ϑ(vks ) for
the v-th video overall segments and quality versions:

ϑ(v) =

∑
k∈K

∑
s∈S ϑ(v

k
s )

K · S
. (18)

The goal of our cache policy is to maximize the composite
indicator of the cached content, which can be achieved by
selecting appropriate tiles to be stored in the limited cache
capacity. The optimization problem can be formulated as

max ϑ(C) =
∑
v∈V

wv · ϑ(v) (19)

s.t.
∑
v∈V

∑
s∈S

∑
m∈M

∑
n∈N

∑
k∈K

size(vks,m,n) · y(vks,m,n) ≤CB ,

(19a)∑
v∈V

wv = 1, (19b)

where wv is the request probability of the v-th video.
Constraint (19a) ensures that the size of cached data does

not exceed the cache capacity CB , where y(vks,m,n) = 1 if
vks,m,n is stored in the cache server. Otherwise, y(vks,m,n) = 0.
Constraint (19b) normalizes the popularity of videos.

Problem (19) is an Integer Linear Programming (ILP) prob-
lem. As the problem is NP-hard, it is extremely challenging to
solve the problem optimally within polynomial time. There-
fore, we propose a heuristic-based solution in algorithm 2

Algorithm 2: Aggregation-Based Cache Replacement Scheme

Input: Tile to be cached vks,m,n; Cached content C;
Cache capacity CB .

1 C(vks ).append(vks,m,n) (store vks,m,n on the cache);
2 while cache.size() > CB do
3 if ψ(vks ) > ψview then
4 for vks,x,y ∈ C(vks ) do
5 Assume that vks,x,y is removed from C(vks );
6 Compute ξ(vks ) of the rest tiles in C(vks );
7 Remove the tile with the largest ξ(vks );
8 else
9 Remove the tile with the smallest γ(vks,m,n);

for cache replacement, named the aggregation-based cache
replacement scheme.

3) Aggregation-Based Cache Replacement Scheme (ACR
S): Algorithm 2 shows the process of ACRS, in which a
cache replacement metric, γ(vks,m,n), that takes both age and
frequency into consideration is utilized:

γ(vks,m,n) =

T∑
t=0

[Rt(v
k
s,m,n) · ϕ(T − t)], (20)

Rt(v
k
s,m,n) =

∑
u∈U

x
vk
s,m,n

u,t , ϕ(T − t) = e−σ(T−t), (21)

where Rt(v
k
s,m,n) refers to the number of requests to tile

vks,m,n made by all users at time slot t, T represents the current
time slot, and ϕ(T − t) is a kernel function that decreases the
weights of old tiles. Meanwhile, we use σ to represent a non-
negative empirical constant in the kernel function.

When the MEC-Cache server decides to remove some
cached tiles to make room for a new one, the new tile vks,m,n

will be stored on the cache first, and then one of the following
two cases happens.

If the condition ψ(vks ) > ψview is satisfied, the MEC-
Cache server will remove tiles in C(vks ) to ensure that the
cache proportion does not increase anymore, which avoids the
occurrence of excessive caching. In this situation, we calculate
the aggregation degree ξ(vks ) of the remaining cached tiles
by assuming each tile in C(vks ) is removed. Finally, the tile
with the largest remaining ξ(vks ) will be actually removed
because its removal has minimal effect on the aggregation
degree. Consider an example in Figure 5(a), assuming that
tile vks,1,1 is removed, the aggregation degree of the remaining
cached tiles in C(vks ) is ξ(vks ) = 0.59, while this value would
be ξ(vks ) = 0.65 if tile vks,4,2 were to be removed. Similarly,
we can get the results assuming any one of the tiles is removed
and find the maximum ξ(vks ) among them is 0.65, which
happens when tile vks,4,2 is removed. As a result, tile vks,4,2 is
actually removed. Otherwise, if the condition is not satisfied,
the same process will be performed by removing the tile with
the smallest γ(vks,m,n), which only considers the popularity of
tiles. These operations are repeated until the cache capacity is
sufficient to store the new tile.
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Algorithm 3: Reconstruction-Based Tile Adaptive Streaming
Input: Requested tile set D; Subsets Dhit and Dmiss;

Cached content C; Cache capacity CB .
1 while receive a request for D do
2 if D ∈ C (all requested tiles are hit) then
3 Send D to the user;
4 else
5 if QRTS() then
6 Reconstruct the viewport and send it back;
7 else
8 for vks,m,n ∈ D do
9 if vks,m,n ∈ Dhit then

10 Send vks,m,n to the user;
11 else
12 Fetch vks,m,n from the origin server;
13 Send vks,m,n to the user;
14 if cache.size() < CB then
15 Store vks,m,n on the cache;
16 else
17 Cache replacement using ACRS;

C. Reconstruction-Based Tile Adaptive Streaming

Algorithm 3 shows the overview of the reconstruction-based
tile adaptive streaming in the MEC-Cache server. If all the tiles
within the requested viewport are hit, the requested content
will be sent to the user. Otherwise, the MEC-Cache server
will determine whether to reconstruct the viewport or not by
using the QRTS in algorithm 1. When the outcome of the
algorithm is true, the complete viewport will be reconstructed
and sent back. Otherwise, the cache server will be ordered to
fetch the uncached tiles one by one from the remote content
server, and the ACRS in algorithm 2 will be executed when the
cache capacity is insufficient to accommodate more content.

D. Time Complexity Analysis

Let D(vks ) and r represent the requested tile set and the
number of user requests, respectively. The computational
complexity of QRTS is O(N(D(vks ))), while that of ACRS
is O(N(C(vks ))2). Consequently, the overall time complexity
of the proposed reconstruction-based tile adaptive streaming
algorithm is O(r ·N(D(vks )) ·N(C(vks ))2).

V. EXPERIMENTAL SETUP

A. Experimental Settings

The performance evaluation is based on head movement
data traces of 50 users watching ten 360◦ videos [33], includ-
ing fast-paced and slow-paced videos. The details of the 360◦

videos used in our experiments are presented in Table I. In
addition, the head-tracking dataset contains the information of
users’ FoVs and requested tiles for every frame.

On the server side, each 360◦ video is cut to a fixed dura-
tion of 1 minute, encoded and projected by equirectangular
projection with 4K resolution (3840×1920) and 30 frames

TABLE I
SPECIFICATIONS OF VIDEO DATASET

ID Video Name Category Used Segment
1 Hog Rider NI, slow-paced 0:00 - 1:00
2 Kangaroo Island NI, slow-paced 0:01 - 1:01
3 SFR Sport NI, slow-paced 0:16 - 1:16
4 Shark Shipwreck NI, slow-paced 0:30 - 1:30
5 Roller Coaster NI, fast-paced 0:20 - 1:20
6 Mega Coaster NI, fast-paced 1:30 - 2:30
7 Driving with NI, fast-paced 0:48 - 1:48
8 Perils Panel NI, slow-paced 0:10 - 1:10
9 Pac-Man CG, fast-paced 0:10 - 1:10

10 Chariot Race CG, fast-paced 0:02 - 1:02
1 CG: Computer-Generated; NI: Natural Image; Video Dataset [33].

per second. In order to acquire multiple quality versions, we
use the HEVC encoder kvazaar [39] to transcode 360◦ videos
into 5 different representations at 2 Mbps, 3 Mbps, 5 Mbps,
7 Mbps and 10 Mbps. Then, we spatially partition the 360◦

videos into 4×8 tiles (expressed by rows × columns). Finally,
GPAC MP4Box [40] is used to package the encoded videos in
MP4 containers and generate Media Presentation Description
(MPD) files which split each video temporally into 2-second
long segments.

On the client side, We conduct a total of ten rounds of
experiments and in each round, a total of 5000 requests for
360◦ videos from 50 simulated users were sent to the edge
server, following a Poisson distribution [41] with rate λr = 20
[requests/min]. We assume that the video popularity is decided
by using a Zipf distribution [42] with shape parameter ηv =
1.2. Hence, the probability of the v-th popular 360◦ video to
be selected is given by pv = 1/vηv∑

v∈V 1/vηv .
The experiments are conducted in a real-world testbed with

a prototype especially built to perform the delivery of 360◦

videos with the support of three x86 servers. We utilize one
server as the source server, one server as the edge server,
and one client-server acting as multiple clients. We implement
Nginx [43] to all servers to enable the DASH-based video
delivery and use Django [44] with uWSGI to implement
VRCT at the edge server. In addition, we use the Linux
Traffic Control tool (i.e. tc) [45] to simulate the dynamic
bandwidth, which is generated based on a 4G/LTE dataset [46]
with varying throughput patterns. To support the playback of
360◦ videos, we linearly scale the network throughput, and
the throughput values fall between 2.7 Mbps and 13.1 Mbps,
with an average of 5.4 Mbps. The average number of viewports
that the cache server can reconstruct per second is µ = 1.8
[requests/s].

For viewport reconstruction, we choose the MAE architec-
ture [17], which is a well-known encoder-decoder architecture
implemented by Vision Transformers (ViT) [47], to reconstruct
the viewport frames. To achieve a better reconstruction effect,
ViT-Huge [47] is employed as our pre-training model.

B. Baseline Algorithms

The performance of the proposed VRCT for tile-adaptive
360◦ video streaming is evaluated by choosing among the
following existing caching algorithms.
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Fig. 6. Evaluation of 360◦ video streaming performance with respect to change in cache capacity
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Fig. 7. Evaluation of 360◦ video streaming performance with respect to change in Zipf shape parameter

(1) Random: Random caching policy randomly selects tiles
to remove whenever the cache capacity is exceeded.

(2) LRU (Least Recently Used): In LRU scheme, whenever
the cache capacity is exceeded, the tile with the longest idle
time has the highest rank for being removed.

(3) LFU (Least Frequently Used): In LFU scheme, when-
ever the cache capacity is exceeded, the tile that is least
frequently accessed has the highest rank for being removed.

(4) VR-noACRS: VR-noACRS is a caching policy that
utilizes viewport reconstruction and always removes the tile
with the smallest metric in equation (20), instead of using
ACRS as the cache replacement algorithm. It is designed for
ablation experiments.

(5) Ptiling: Ptiling [35] is a popularity-aware 360◦ video
streaming algorithm, which encodes the popularly viewed
areas as macrotiles to save bandwidth and enhance the QoE.

(6) Optimal: For the optimal solution, we assume that
the prior knowledge about the user requests and the video
popularity is known in advance, and the tiles with the highest
requested probability are cached in the MEC-Cache server.

C. Performance Metrics

In terms of metrics, we use the following metrics to verify
the performance of different schemes.

(1) Cache hit ratio: The fraction of the requested tiles that
are stored in the cache server and obtained by the viewport
reconstruction technology. A higher cache hit ratio indicates
less need to retrieve new data from the remote content server.

(2) User QoE: User QoE is first calculated by equation (3)-
(8), and then the QoE metrics of different schemes are limited
to the range [0, 1] through numerical normalization, where the
largest QoE value under all parameters is set to 1.

(3) Backhaul traffic load: The bandwidth consumed for
streaming 360◦ videos from the content server to the MEC-
Cache server, which reflects the load of the backhaul path.

(4) Reconstruction Ratio: The proportion of reconstructed
viewports in all viewports delivered to users.

VI. PERFORMANCE EVALUATION

A. Effect of Cache Capacity

We first study the impact of cache capacity on 360◦ video
streaming. To this end, we set ηv = 1.2 and vary the cache
capacity in the range [2, 20]% of the video library size to
evaluate the aforementioned performance metrics, and the
results are shown in Figure 6.

As we can see from Figure 6(a), the cache hit ratio in-
creases with the cache capacity for all schemes. Due to the
introduction of the reconstruction mechanism, VRCT and VR-
noACRS can further improve the hit ratio. Meanwhile, VRCT
outperforms other schemes (except the optimal one) in all
ranges of cache size. Specifically, for large cache capacities,
i.e., 20%, VRCT improves the cache hit ratio by 5%, 11%,
18%, 19% and 29% compared with VR-noACRS, Ptiling,
LFU, LRU and Random, respectively.

As illustrated in Figure 6(b), the QoE performance of VRCT
is lower than Ptiling but still higher than the others when the
cache size is small. This is because there are not enough
cached tiles that can be used to reconstruct the complete
viewport, and the missing tiles need to be fetched from
the remote content server. However, as the cache capacity
increases, the QoE of VRCT increases significantly and out-
performs all baselines when the cache capacity is 8% and
above. Specifically, the proposed VRCT improves QoE by at
least 17% when the cache capacity is 20% of the video library.

The results in Figure 6(c) and Figure 6(d) depict that VRCT
can significantly reduce backhaul traffic load by reconstructing
part of the requested viewports regardless of the size of
the cache capacity. For example, it can reduce the backhaul
usage by 12%∼44% compared with other schemes when the
cache capacity is 20% of the video library. Furthermore, we
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Fig. 9. CDFs of two different cache features

can note that VRCT outperforms VR-noACRS, because the
introduction of ACRS optimizes the cache features of the
cached content, which will be discussed in subsection VI-D,
and makes it easier to reconstruct viewports, thus reducing
bandwidth consumption for uncached content.

B. Effect of Video Popularity Distribution

To observe the effect of the video popularity distribution
on different schemes, we set the cache capacity to 10% of
the video library and vary the Zipf shape parameter ηv in the
range [0, 2] for different popularity distributions.

The results in Figure 7(a) show that VRCT outperforms all
baselines (except the optimal one) under all settings. Moreover,
an increase in ηv leads to a smaller performance gap between
the optimal scheme and VRCT, and the gap reduces to less
than 10% when ηv = 2. This is because a larger ηv makes the
video popularity distribution get steeper, which is beneficial
to the viewport hit ratio of the reconstruction tasks.

As shown in Figure 7(b), the QoE of VRCT increases
sharply as ηv increases. VRCT provides over 10% improve-
ment compared with other schemes when ηv is 2. Moreover,
Figure 7(c) and Figure 7(d) show that skewed user request
behavior will increase the reconstruction ratio, thus alleviating
backhaul traffic load.

C. Effect of Video Types

In this experiment, we analyze the effect of the proposed
ACRS with different categories of 360◦ videos. Figure 8(a)
shows the reconstruction ratios in ten different 360◦ videos.
The results demonstrate that no matter what kind of video is
requested, the reconstruction ratio of VRCT is higher than that
of VR-noACRS. This is because the introduction of ACRS
optimizes the cache features, improving the probability of

viewport reconstruction. Figure 8(b) shows the percentage
of users who benefit from reconstruction. Compared with
VR-noACRS, VRCT brings improvements in terms of the
benefited user ratio for most videos due to the use of ACRS,
which is very important, especially in the context of a network
with multiple users who have different video preferences.

In order to assess Algorithm 3, in terms of viewport
hits, reconstruction of the viewport and fetching the missing
content, we explicitly plot the ratio of the three types in
VRCT in Figure 8(c). It can be noted how, VRCT achieves a
reconstruction ratio of around 15% for all types of videos,
which indicates the robustness of the proposed algorithm
across multiple video categories.

D. Effect of Cache Features

In this experiment, we count the distributions of two cache
features obtained from VRCT and baselines, namely cache
proportion and aggregation degree. Their Cumulative Distri-
bution Functions (CDFs) are illustrated in Figure 9.

As shown in Figure 9(a), all baseline algorithms result
in near uniform distribution. On the other hand, the cache
proportion of VRCT is mainly distributed in the interval of
20%∼40%, which is a more desirable distribution than the
uniform distribution. This is because an overly large cache
proportion can lead to a waste of cache capacity, and an
overly small cache proportion can make it difficult to trigger
the reconstruction mechanism, resulting in an increase in the
backhaul traffic load. Thanks to the cache replacement scheme
ACRS, VRCT can maintain an appropriate cache proportion
and increase the number of different segments stored in the
cache by an average of 10%, so that the limited cache capacity
can be effectively utilized. Figure 9(b) shows that VRCT
significantly increases the aggregation degree of the cached
content compared with other schemes, which is important to
improve the viewport hit ratio of the reconstruction tasks.

VII. DISCUSSIONS

The framework design and experimental evaluations pre-
sented in this paper demonstrate that VRCT can intelligently
realize viewport reconstruction-based 360◦ video adaptive
streaming by integrating network conditions, client status
and cache information. The proposed VRCT flexibly selects
between three different approaches to provide viewing tiles to
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360◦ video consumers. It effectively alleviates the transmission
pressure of the backhaul path, significantly enhances the user
QoE, and exhibits great robustness in complex multi-user
caching scenarios. However, there are still some limitations
of the proposed solution.

First, VRCT may degrade the viewing experience of users
in non-mainstream viewing modes. To improve the probabil-
ity of viewport reconstruction, the proposed ACRS aims to
increase the aggregation degree of cached tiles during the
cache replacement process. In other words, ACRS deliberately
removes some cached tiles outside of the ROI to make room
for new tiles located inside it. This means that VRCT sacrifices
the viewing experience of a few users with non-mainstream
watching traces to improve the QoE of the majority of users.

Secondly, the adaptive bitrate streaming of VRCT can be
further enhanced in the tile-based mechanism. Since each tile
in the requested viewport is transmitted independently, deliv-
ering different quality versions of tiles in the same viewport
is feasible. However, it is difficult to reconstruct the viewport
by using tiles with different quality versions, and the decrease
in perceived quality caused by the quality variation among
different tiles in the same viewport also needs to be considered
in QoE modeling.

Thirdly, the proposed system model is scalable to multi-
edge assisted content delivery scenarios. In the experiments,
we only use one edge server to cache tiles and reconstruct
viewports, but in reality, a large number of edges are expected
to be available in 5G network environments. In the multi-edge
assisted network, introducing collaborative caching strategies
helps to adaptively aggregate video content. For instance, by
redirecting user requests and communicating between edge
nodes, contents can be congregated automatically in different
edges by video type. In this way, each edge can provide better
caching and reconstruction services for specific 360◦ videos.

Addressing these challenges involves complex client behav-
ior analysis, adaptive mechanism optimization and cooperative
scheduling models, which is not trivial. Future work will try
to improve the proposed method by focusing on some of these
limitations.

VIII. CONCLUSIONS

In this paper, we propose VRCT, a viewport reconstruction-
based 360◦ video caching solution for tile-adaptive streaming,
which consists of a QoE-driven reconstruction trigger scheme
and an aggregation-based cache replacement scheme that
can support viewport reconstruction. The employment of the
reconstruction mechanism reduces the need for retrieving new
data, decreasing backhaul traffic load. In order to enhance
the user QoE, we design a decision-making process for
viewport reconstruction, and choose the action that leads to
a higher QoE by building models to predict viewport bitrate
and consumed delay. To increase the probability of viewport
reconstruction, we propose an innovative cache replacement
algorithm, which can improve the spatial aggregation of the
cached tiles and store more different segments. Extensive test-
ing results demonstrate that VRCT outperforms other schemes,
as it improves the cache hit ratio by up to 29%, reduces

the backhaul usage by up to 44% and significantly enhances
user QoE. Moreover, VRCT optimizes the cache features to
facilitate viewport reconstruction and supports different video
types in 360◦ video streaming.
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