
VOL. , NO. , 2022 1

Reliability-Aware Flow Distribution Algorithm in
SDN-enabled Fog Computing for Smart Cities

Muhammad Ibrar, Lei Wang, Nadir Shah, Ori Rottenstreich, Gabriel-Miro Muntean, and Aamir Akbar

Abstract—To improve the performance of a smart cities,
integration of two emerging technologies, namely Fog Computing
(FC) and Software-Defined Networking (SDN), has been proposed
and is gaining momentum. This integrated architecture is called
SDN-based FC for Internet-of-Things (IoT) applications and is
expected to meet the requirements of these applications (i.e.,
easy manageability, high scalability, reliability, and low latency).
Existing traffic engineering approaches proposed for SDN-based
FC for IoT compute the route between an IoT device and fog
server subject to some Quality of Service (QoS) constraints.
However, these approaches ignore the link reliability level in the
route computation process. Unlike them, this paper proposes a
Reliability-Aware Flow Distribution Algorithm (RAFDA) and two
associated optimization algorithms called Reactive Reliability-
Aware Heuristic Algorithms (RRAHA-1 and RRAHA-2), which
distribute the flows on the links based on the links’ reliability
levels subject to additional constraints like traffic load on the link,
bandwidth allocation, link utilization, and end-to-end delay. The
proposed algorithms minimize the impact of link failure occur-
rences on the ongoing time-critical flows (applications/services) of
smart cities. The proposed algorithms, evaluated using both real
network traces and simulations, outperform existing approaches
in terms of performance for delay-sensitive services in smart
cities.

Index Terms—Fog computing, IoT, SDN, link failure, reliabil-
ity, smart cities.

I. INTRODUCTION

A smart city consists of a large number of smart things,
also known as Internet-of-Things (IoT) devices (e.g.,

appliances in smart homes, wearable devices, smart vehicles,
laptops, and smart grids) [1]. The IoT devices are embedded
with sensors, allowing them to monitor the environmental
information and transmit it to the concerned objects (i.e.,
users or the remote cloud) in real-time via the Internet for
further analysis. The IoT devices produce large amounts of
data which needs to be retrieved, processed, and eventually
stored in real-time [2]. Although massive computing resources
are available for processing of this data in the cloud and/or
data centers, when many IoT devices transmit large amounts
of data via the Internet, the performance of data access

M. Ibrar and Lei Wang are with the School of Software, Dalian Uni-
versity of Science and Technology, China. (e-mail: mibrar@mail.dlut.edu.cn,
lei.wang@dlut.edu.cn)

N. Shah is with Department of Computer Science, COMSATS University
Islamabad, Wah Campus, Pakistan. (e-mail: nadirshah82@gmail.com)

Ori Rottenstreich is with Department of Computer Science and the Depart-
ment of Electrical Engineering of the Technion. (e-mail: ori.rot@gmail.com)

G.-M. Muntean is with School of Electronic Engineering, Dublin City
University, Ireland (e-mail: gabriel.muntean@dcu.ie)

A. Akbar is with Department of Computer Science, Abdul Wali Khan
University Mardan, Pakistan. (e-mail: amirakbar@awkum.edu.pk)
§ L. Wang is corresponding author (Dalian University of Technology, China).

is affected. For example, this results in congestion in the
core/backbone network, which is in turn causes lower Quality
of Service (QoS) levels to IoT device services (e.g. longer end-
to-end delays, lower throughput). To address this issue, edge
computing was introduced, with a profound positive impact on
smart cities services [3]. In particular, edge computing tech-
nologies such as Fog Computing (FC) [4] and Mobile Edge
Computing (MEC) [5] have emerged as promising solutions
to the resource constraints IoT devices. FC and MEC enable
IoT devices access large amounts of storage and computation
resources, while also reducing the latency.

Ensuring path reliability in smart cities for IoT applications
including in contexts such as tactile internet, healthcare, and
autonomous vehicles is crucial because these applications
demand persistent communications to facilitate uninterrupted
high-quality services. Unfortunately, it is widely noted, in-
cluding in a Cisco report [6], that IoT devices produce large
amounts of data traffic, which may cause network conges-
tion [7]. Congestion in the network is such severe and growing
a problem that it has the potential to paralyze the whole
network activity. Similarly, faults occur frequently in large
networks (i.e., links go down almost every 30 minutes [8]–
[10]), affecting negatively the supported services.

In order to address diverse network challenges, includ-
ing congestion, a centralized networking approach employing
Software-Defined Networking (SDN) was proposed. A SDN-
based architecture is a viable solution to provide enhanced
communication services to IoT devices in a FC smart cities
context. In smart cities, due to the limited operating expenses
(OPEX) and capital expenditure (CAPEX) [13, 38], the num-
ber of fog nodes should be much less than the number of IoT
devices. Therefore, the IoT devices connected to the fog are
served in a multi-hop manner. The applications of resource
constraint IoT devices increase day by day, and IoT devices
offload time-critical tasks to the fog servers in smart cities
and in doing so, they need reliable paths. By reliable path, we
mean a path that has very low chances of link failure. A link
failure can occur due to many factors related to network con-
nection, configuration, power, software, hardware, and incident
events [8, 9]. Studies show that in a communication network,
the incidence of communication link failures is higher than
router/switch failures, and they significantly impact network
performance. Consequently, link failure chances increase as
the network size increases. Therefore, this paper focuses
on communication link failures in SDN-based smart cities
architecture. SDN decouples the control plane from the data
plane. It enables control delegation from all forwarding devices
to a controller, a logically centralized entity [11] and makes

VOL. , NO. , 2022 2

the data plane programmable [12]. This makes easier network
management. Although SDN offers numerous advantages, the
limited Ternary Content Addressable Memory (TCAM) of
SDN switches adversely affects the network performance [13].
Considering the TCAM constraint, proactive installation of
multiple paths for a given flow in each switch is not feasible in
a large network [14]. Additionally, if the path is reliable, then
there is no need to install multiple paths for a given flow [15].
Therefore, when a link gets disconnected, a reactive approach
is most appropriate.

Several existing traffic engineering approaches proposed
for SDN-based FC for IoT improve network performance
given diverse constraints in terms of available bandwidth on
individual links, energy consumption, end-to-end delay, link
utilization, and load balancing [16], [17]. However, these
approaches distribute the number of flows on the links without
considering the links’ reliability levels [9], [15]. Apart from
the reliability level, the IoT applications have also several
QoS requirements. Therefore, the path from source to destina-
tion also needs to satisfy multiple constraints simultaneously,
such as traffic load, bandwidth, link utilization, and delay.
However, in conventional routing, decisions are made based
only on a single or two metrics. In this paper, we used a
SDN architecture to distribute the flows based on the links’
reliability levels (minimizing the impact of link failures on
the services), subject to additional constraints. Therefore, the
proposed approach assigns more flows to a more reliable link
and vice versa, while considering other constraints related to
traffic load, bandwidth, link utilization, and delay. This is the
novelty of our paper and was not covered in any other works.
Additionally, we proposed heuristic algorithms to compute a
reliable path between a source and the destination because
there is no efficient (polynomial) exact solution for the multi-
constrained (MCP) selection problem.

Addressing the limitations of existing works and motivated
by the importance of reliability, this paper proposes a new
Reliability-Aware Flow Distribution Algorithm (RAFDA) for
a SDN-based FC for IoT architecture. RAFDA enables flow
distribution based on link reliability, while also considering
traffic load, bandwidth allocation, link utilization, and end-to-
end delay. Specifically, RAFDA defines the reliability of a link
as the frequency of down-time and failure-time of the link in
a given time interval.

The major contributions of this paper are as follows:
1) A reliable path for task offloading in SDN-based FC

for IoT applications is identified in order to minimize
the impact of a link failure on the services (i.e., delay,
potential loss, congestion, and extra energy consump-
tion); this is especially important for mission-critical and
delay-sensitive IoT applications.

2) RAFDA is introduced to distribute the flows based on
the links’ reliability levels, subject to additional con-
straints (i.e., load balancing, bandwidth allocation, link
utilization, and delay). The proposed approach assigns
more flows to more reliable links and vice versa.

3) Two Reactive Reliability-Aware Heuristic Algorithms
(RRAHA-1 and RRAHA-2) are proposed enabling the
SDN controller to compute a reliable path to maximize

network performance and minimize the computation
time while rerouting the affected flow, end-to-end delay,
and improve link utilisation.

4) Considering TCAM capacity limitations, it employs a
reactive approach with low associated processing to
recover from link failure based on the fact that the SDN
controller calculates the best path for a flow. When the
path/link at a switch gets disconnected, the switch starts
the recovery procedure by asking the SDN controller
to compute and install a new best path for each flow
affected by disconnection.

The rest of the paper is organized as follows. Section
II discusses related works and identifies their benefits and
limitations. Section III explains the problem statement through
an example scenario. The proposed solution, including the
related mathematical modeling is introduced in Section IV.
Section V discusses the experimental results. Finally, Section
VI concludes the paper and describes some potential future
research directions.

II. RELATED WORKS

This section discusses some existing approaches relevant to
the work presented in this paper, as follows.

Managing link failure is more significant in SDN-based FC
to ensure the high reliable and uninterrupted services to the
IoT devices because of the time-critical characteristics of most
applications of IoT devices [18]–[20]. These time-critical IoT
applications need a reliable path for data transmission because
if a link failure occurs, the service will be affected severely.
Additionally, IoT devices generate traffic continuously, which
needs reliable communication links that have a low probability
of failure to achieve QoS. In our previous works [9], [21],
the SDN controller uses the K-nearest neighbor algorithm to
estimate the reliability level of the links. For different types
of IoT applications, the controller computes the best path.
However, to minimize the impact of the link failure with the
rapidly increasing demand of IoT applications, solutions to
enhance the reliability must account for network dynamics.
None of the proposed solutions distribute the flows based
on link reliability levels, increasing the burden on the SDN
controller to react every time there is a failure and enable
flow redistribution. This, in turn, adds extra delay to the flow.

In an SDN-based IoT network, the SDN controller must
handle link failures and restore the communication path for
seamless delivery of IoT applications. Thorat et al. proposed
the Immediate Controller Dependent (ICoD) and Local Imme-
diate (Lim) approaches to minimizes the effect of link failures
in a SDN-IoT network [22]. When a link failure occurs in
the proposed model, the associated switch sends a notification
to the SDN controller. The SDN controller generates a group
message to notify the associated switch. Therefore, a single
message can reroute “n” flows. Additionally, the proposed
model minimizes the use of TCAM memory of OpenFlow
switches using the group entry feature. However, to achieve
low latency and minimize the impact of link failure, the
authors must consider path the reliability factor, number of
flows on the path, utilization ratio, and bandwidth.

VOL. , NO. , 2022 3

TABLE I: Existing Literature: Summary

Existing
Literature SDN Smart

City
Link
Failure

Path
Reliability

Flows
Distribution Delay Traffic Load Bandwidth Link

Utilization FC

[9], [21] ✓ × ✓ ✓ × ✓ × ✓ × ✓
[22] ✓ ✓ ✓ × × ✓ × ✓ × ✓
[11], [14], [23]–[27] ✓ × ✓ × × ✓ ✓ ✓ × ×
[28]–[32] ✓ ✓ ✓ ✓ × ✓ × ✓ × ✓
Proposed Solution (RAFDA) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Unfortunately, the research literature on SDN-based FC for
IoT applications does not address well link failures. Recent
studies which discuss link failure in SDN architectures in-
clude [11], [14], [23]–[27].

Chu et al. proposed a scheme that takes advantage of SDN
and ensures traffic reachability in single link failure scenar-
ios [23]. The proposed scheme installs proactively multiple
backup paths and redirects the traffic through pre-configured IP
tunnels. The proposed solution obtains good results. However,
proactive computation of multiple backup paths is not practical
due to TCAM constraints. Link fault protection is also a crit-
ical aspect. A solution called Hybrid-Hie [11] is proposed for
both computation time and configuration overhead minimiza-
tion, e.g., flow table entries and IP tunnels, in a link fault case.
Hybrid-Hie reroutes fast the traffic on pre-computed backup
paths when the default path is not available. Network layer
failure, e.g., switch or link, leads to packets loss, congestion,
end-to-end delay increase, and network efficiency reduction.
Fast recovery of network layer failure plays a paramount role
in the network [25]. In this context, Carmelo et al. proposed
a scheme called Stateful Programmable faIlure DEtection and
Recovery (SPIDER) [26]. SPIDER uses a stateful data plane
to monitor link status periodically and reroute the traffic in
case of link failure.

With the growing miniaturization of sensors, computers, and
mobile phones, smart city applications are increasingly relying
on communication technologies and many of them require
reliable connectivity [28]. Smart cities applications not only
demand congestion-free routes, high speed, and availability,
but time-critical applications also need a reliable path between
source and destination pair in today’s networks. Generally, a
reliable path in smart cities relies on wired network switch or
link availability [29]–[31]. However, the term reliability is still
subject of many different interpretations, although overlapping
to a large extent. According to the Cambridge dictionary1,
reliability is “the quality of being able to be trusted or believed
because of working or behaving well”. However, in the context
of a smart city communication system, the more technical
definition of the American Society for Quality (ASQ)2 was
prefered: “the probability that a product, system or service will
perform its intended function adequately for a specified period
of time, or will operate in a defined environment without
failure.” Therefore, in this work, the reliability of a link is

1Cambridge Online Dictionary. Available online: https://dictionary.cam-
bridge.org/dictionary/english/reliability (Access: 3 Nov. 2021)

2ASQ Reliability Definition. Available online: https://asq.org/quality-
resources/reliability (Access: 3 Nov. 2021)

defined as the frequency of down-time and failure-time of the
link in a given time interval in a SDN-based smart city.

Link failure problems can significantly impact reliable data
transmission due to internal or external events [29]. In the
presence of link failure, it is challenging to fulfil the QoS
requirements of delay-sensitive smart city applications such
as internet telephony and video streaming. AlZoman et al.
proposed a smart city resilient system to provide QoS to smart
city applications in the presence of link failure [29]. SCRS
consists of the following modules: (a) TopoDiscovery module
enables the SDN controller to obtain the status information
about switches and links, (b) FailureDetection module de-
tects the switch or link failure, (c) FastDivRoute computes
the alternative path for the disturbed flows due to the link
failure, (d) trafficQoS module priorities the disturbed flows
based on the flows requirement (i.e., voice-over-IP (VoIP)
and video conferencing) and available link capacity, and (e)
RulesGenerator installs the flow rules for disturbed flows
based on the status of a smart city. However, the proposed
approach has not considered the link failure status while
computing the alternative path for the disturbed flows and
has not been designed for a large smart network. Harir et
al. [32] proposed a protection-based approach to handle the
link failure problem. In the proposed model, the authors
examined the link status by using three univariate parameters,
packet loss, latency, throughput. To minimize the latency delay,
the proposed protection model installed backup paths if it
realized that the failure probability of a link is high. Probability
density functions are used to distinguish between functional
and non-functional links. Multipath routing schemes have been
proposed to improve the performance of SDN-based smart in
both cities [31] and [33].

Table I summarizes the major aspects focused on existing
work on link failure in SDN-based systems. This analysis
shows that there is an important research gap for reliability-
aware flow distribution in smart cities in the presence of link
failure. The difference between our model and the state of the
art in this area is as follows:

• In case of failure, the SDN-based related works redirect
the data flows on an alternative shortest path using a
reactive or proactive flow installation process. These
approaches do not consider the path reliability level when
computing the alternative path. As our proposed model
assigns data flows based on path reliability levels, this is
a novelty of our approach.

• Current approaches reroute the flows after a failure has
occurred and are applied to the affected flows only. In
contrast, our approach distributes the number of data
flows to a path based on path reliability in advance of

VOL. , NO. , 2022 4

any potential failure. This means that a more reliable path
receives many data flows, and a less reliable path handles
a lower number of flows. This approach minimizes the
potential impact of link failures and involves all flows.

• Table I indicates the parameters considered by the ex-
isting research papers when computing a path for a data
flow. Our proposed approach considers all the parameters
listed, which no other related work does.

• Computing a path based on link reliability, load balanc-
ing, and link utilization is a complex optimization prob-
lem. To solve it, we proposed two Reactive Reliability-
Aware Heuristic Algorithms (RRAHA-1 and RRAHA-
2), enabling the SDN controller to compute a reliable
path to maximize network performance and minimize the
computation time and end-to-end delay, and improve link
utilization, while rerouting the affected flows. RRAHA-1
and RRAHA-2 algorithms are novel and have very good
computational complexity.

Following the discussion of the related works, it is evident
that for identification of efficient routes from source to destina-
tion in a smart environment context, there is a need to consider
the link reliability levels subject to additional constraints,
including load balancing, link capacity, and link utilization.
The significance of this statement is illustrated through an
example scenario in Section III.

III. PROBLEM STATEMENT

This section illustrates the significance of the problem
addressed in this paper (i.e., link reliability consideration in
route computation) via an example. Consider five IoT devices
(s1, s2, s3, s4, and s5) connected with different switches
via Access Points (AP) to communicate with a Fog Server
(FS) located at switch G, as shown in Fig. 1(a). The traffic
generated by each IoT device is shown in Fig. 1(a). There
are seven OpenFlow enabled switches and a fog server at Fog
layer (i.e., A,B,C,D,E, F, and G), which are connected to
the network with links whose costs are expressed in terms of
distance, and each has a bandwidth of 10Mbps. Let us assume
that the SDN controller calculates the shortest path based on
link costs. The path followed by the flows of each IoT device
is shown in Fig. 1(a). This produces congestion on link D-G
because all IoT devices share the common competitive link
D-G. The total traffic flow on the link D-G is 19Mbps, which
is greater than the available 10Mbps, which is the maximum
utilization of the links in the given network.

This scenario leads to network congestion and increases
end-to-end delay for time-critical applications. To minimize
the congestion, some schemes have been proposed in SDN,
like Fibbing [23]. When congestion occurs on any forwarding
path, Fibbing redirects the traffic flow to other links having low
traffic. For each destination, Fibbing uses a Directed Acyclic
Graph (DAG) to compute multiple paths. After computing
multiple paths to a destination, Fibbing places virtual fake
nodes and links by modifying the forwarding path at each
physical router. After applying the Fibbing approach in Fig.
1(a), the congestion can be avoided, as shown in Fig. 1(b).
However, this approach does not consider the link reliability,

which leads to the following problem. In this scenario, seven
flows of 1Mbps share the common competitive link D-G. Thus,
the data rate of seven flows is less than the capacity of the
D-G link. However, if the link D-G has low reliability and
fails, then seven flows are disrupted by running the recovery
procedures [14]. It takes a long time for seven flows to recover.
Additionally, retransmission of flows due to link failure also
determines extra energy consumption of energy-constrained
IoT devices. To address this problem, we should compute the
paths such that the number of flows is assigned to each link
based on the link reliability level, as shown in Fig. 1(b). By
using this technique, if the link D-G fails, then only three flows
are disrupted. This reduces the pressure on the SDN controller
since only three flows are disrupted, as shown in Fig. 1(b).

Finally, this paper focuses on addressing major challenges
related to employing link reliability in the efforts to improve
the performance of SDN-based IoT networks. Here are these
challenges and how they are addressed:

• How to compute the link reliability? We proposed a
new method for measuring link reliability which was
described in Bootstrapping (Section IV-A2).

• How to use link reliability to improve network per-
formance? Our proposed model assigns data flows based
on path reliability levels. This is based on the fact that
more reliable paths will fail less and therefore will have
a positive impact on a higher number of flows.

• When would link reliability be used? Unlike existing
approaches which react to link failures only, our approach
distributes a higher number of data flows to more reliable
paths in advance of any failure. This minimizes the
impact of a link failure on flows when a failure occurs.

• What other parameters are considered along with
link reliability? Our proposed solution employs other
aspects along link reliability, including bandwidth, traffic
load, delay and link utilisation. This increases the overall
performance of the network.

• How to recover in the fastest manner from failure con-
sidering reliability? This paper introduces two Reactive
Reliability-Aware Heuristic Algorithms (RRAHA-1 and
RRAHA-2) which enable the SDN controller to compute
a reliable path while maximizing network performance
and minimizing the computation time.

The proposed approach, the Reliability-Aware Flow Distri-
bution Algorithm is detailed in section IV.

IV. THE PROPOSED RELIABILITY-AWARE FLOW
DISTRIBUTION ALGORITHM (RAFDA)

In this section, we formulate our proposed problem and
algorithm, RAFDA, by describing its details. Next we propose
two optimization algorithms to solve the proposed problem.

A. Problem Formulation

As discussed in Section III, we propose RAFDA to dis-
tribute data flows from IoT devices to the FS over different
links/paths based on the links’ reliability levels subject to
additional constraints like traffic load on the link, bandwidth
allocation, and link utilization. Unlike existing works which

VOL. , NO. , 2022 5

10

15

8

9

10

7

3

5
10

A D G

H

EB

C

F

s1 s2
s3

s4 s5

12
Fog Server

s1.f1=1Mbps
s1.f2=6Mbps

s4.f1=1Mbps
s4.f2=1Mbps

s2.f1=1Mbps
s2.f2=6Mbps

s3.f1=1Mbps
s3.f2=1Mbps

s5.f1=1Mbps

s1 flows

s2 flows

(s2+s3) flows

s4 flows

total flows
congestion

(s4+s5) flows
5 link failure

Link Failure
Detection

Switch
Configuration

Network
Monitoring

Control Layer
D

at
a

pl
an

e
L

ay
er

Io
T D

ev
ice

s

SDN Controller

(a) Congestion and Link Failure Scenario

10

15

8

9

10

7

3

5

10

A D G

H

EB

C

F

s1 s2
s3

s4 s5

12 Fog Server

s1.f1=1Mbps
s1.f2=6Mbps

s4.f1=1Mbps
s4.f2=1Mbps

s2.f1=1Mbps
s2.f2=6Mbps

s3.f1=1Mbps
s3.f2=1Mbps

s5.f1=1Mbps

s1.f1

s2 flows

s2.f1

s1.f2+s4 flows

s5.f1
5

Link Failure
Detection

Switch
Configuration

Network
Monitoring

Control Layer

D
at

a
pl

an
e

L
ay

er

Io
T D

ev
ice

s

s1.f2

s1.f1+ s2.f1+s5.f1

s2.f2+ s3 flows

s2.f2+ s3 flows

s1.f2+s4 flows

link failure

SDN Controller

(b) Avoid Congestion through Flows Distribution and Link Failure Scenario

Fig. 1: Communication of IoT devices with a Fog Server in a smart city scenario

just react to failure, the proposed solution uses an innovative
approach and distributes the flows on paths according to their
reliability levels, trying to prevent failures from affecting flow
activity as much as possible. A SDN-based FC architecture is
considered.

The SDN-based FC infrastructure contains both net-
work devices (i.e., OpenFlow enabled switches/routers) de-
noted as Vo and fog server nodes (i.e., fog enabled
WiFi/switches/routers/servers) denoted as FS. The infrastruc-
ture is modeled as an undirected graph G = (V, L), where
V is the set of nodes, and L represents the set of links/edges
that connect the nodes. Each link lj ∈ L has a reliability
level denoted by 0 ≤ ℜlj ≤ 1 and capacity signified as
φlj > 0 bytes/sec. The associated notations are explained
in subsection IV-A1. The proposed model has the following
four components - the bootstrap process, flow set-up process,
packet forwarding process, and link failure process, as shown
in Fig. 2. The functionality of each component is explained in
the following subsections.

1) Notations: This sub-section defines the notations used
in this paper.

• Sets
– Vo = {s1, ..., sn}, set of OpenFlow enabled

switches.
– FS = {v1, ..., vm}, set of fog servers or destination

node.
∗ v is considered a fog server or a destination node,

v ∈ FS.
– V = {Vo ∪ FS}.
– Ed = {u1, ..., uz}, set of edge/source devices.
∗ u is considered an edge/source device u ∈ Ed.

– L = {l1, ..., ly}, set of links that connect the nodes
to maintain connectivity. The link is defined by a set
of ordered pairs of distinct nodes, i.e., lj = (u, v) |u
and v ∈ V . |L| shows the number of links of set L.
∗ ℜti

lj
, represents the reliability level of a link lj at

time slot ti, ((0 ≤ ℜti
lj
≤ 1), lj ∈ L).

∗ DFti
lj

, represents the number of failures (fre-
quency) that occurred for the link lj during time
slot ti

∗ DTti
lj

, represents the down duration for the link lj
during time slot ti

∗ λti
lj

, is traffic load λ (in terms of bytes) on link
lj ∈ L in time slot ti.

∗ βti
lj

, is the bandwidth allocation of lj ∈ L (in term
of bytes).

∗ µti
lj

, represents the link lj utilization during time
slot ti.

∗ φlj , is the maximum capacity of lj ∈ L.
∗ κti

lj
, is the threshold value of the link lj reliability

level.
∗ T shows the total simulation time.

– F = {f1, ..., fq} set of flows, f ∈ F .
∗ f(d), represents the data rate of f in bytes/s,

((0 < f(d) ≤ N) in bytes)).
∗ f(d)lj , is the data rate of f on link lj .

– P = {p1, ..., pr}, is the set of paths from the edge
device to the fog server pk = (u, v), where pk ∈ P

• Decision Variables
– flj ∈ {0, 1}, if the flow f passing through the link

lj then flj = 1, otherwise flj = 0
– φlj ≥ 1, is an integer value (expressed in bytes)
– κlj > 0, is the threshold value of ℜti

lj
> 0

2) Bootstrap Process: When the network is switched-on,
OpenFlow protocol Hello, Feature-Request and Feature-Reply
[34] messages are exchanged between switches and the con-
troller in order for the controller to get the network view3.
In the proposed work, the Feature-Reply message of every
switch contains along with other information the DTti

lj
and

DFti
lj

(which represents the down duration and number of
failures occurred for the link lj during time slot ti),

∑n
i=1 f

ti
lj

(which represents the number of flows on each link during

3https://opennetworking.org/wp-content /uploads/2014/10/openflow-switch-
v1.5.1.pdf

VOL. , NO. , 2022 6

a specific time slot ti, where f ∈ F), λti
lj

in bytes (this
represents traffic load on each link in time slot ti) , φlj in bytes
(which represents the link capacity), and µti

lj
(which is the link

utilization during the specific time slot ti). We assume that
such information of a link can be obtained by router/switch,
for example, using an approach like the one reported in [35].
The controller stores this information along with the topology
of the network.

In the SDN-based FC, when the SDN controller receives
the Feature-Reply message after the specific time interval ti,
e.g., ti = 10 seconds(s), then the SDN controller computes
the reliability level for the link lj (i.e., ℜti

lj
) based on Eq. (1).

In Eq. (1), from the values of DTlj and DFlj , the controller
defines the reliability level of the link lj in the time slot ti.
When the downtime duration of a link is greater than ti, then
ℜlj = 0. If the number of failures is zero, e.g., DFti

lj
= 0,

then the ℜlj is maximum (i.e., ℜlj = 1). Otherwise, ℜlj is
computed, as shown in Eq. (1).

ℜti
lj
=

1 ⇐⇒ DFlj = 0

(1−DTlj
/ti)∑

ti∈T DFlj
⇐⇒ DFlj > 0 and DTlj ≤ ti

0 otherwise

(1)

3) Flow Set-up Process: In this work, based on a SDN-
based FC-based architecture, when a data packet arrives, the
switch matches it against the flow rules from its flow table. If
a match is found, the packet is forwarded accordingly. Other-
wise, the switch forwards the packet header to the controller
and waits for the flow rules. When the controller receives
the packet header, it performs the process of identification of
a reliable path according to the updated network view and
policies and installs the flow rules in the flow tables of the
switches along the path.

In this paper, the flow f is represented by a triple Ψ =
(u, v, f(d)). In this triple, u and v are the edge device and
destination node respectively, and f(d) : u → R+ represents
flow f ’s data rate of the edge device u (R+ indicates a
positive real number). The SDN controller computes a set
of feasible paths Pf for flow f (where Pf ⊆ P) and
selects a path pfk ∈ Pf for f from all the feasible paths
that satisfy the requirements (described in details in Section
IV-A4). Moreover, we assume that a path pfk ∈ Pf for flow f
from u to v, (s.t., u ̸= v), is represented as a sequence of links
Lpf

k
⊆ L = {l1, l2, ..., ly−1, ly}, where {l1, l2, ...ly−1} ∈ Lpf

k
,

lj = (si, si+1)|si, si+1 ∈ Vo, and i = 1, 2, 3,n.
In the proposed model, we make some assumptions. (a)

the controller has updated network G statistical information
about the links, (b) the proposed algorithm is invoked for every
new flow f arrival event at the controller, (c) active flows are
considered only, and (d) the controller is functional. Next,
in the proposed model, the controller computes the reliable
path based on the objective function subject to the additional
constraints, as follows.

4) Objective Function: As already indicated, the main goal
of the proposed RAFDA is to assign flows to paths based on
their reliability (see Eq. (2)), subject to additional constraints.

objective min(f) : min

(∑q
i=1

∑y
j=1 f

ti
lj
ℜti

lj

|L|

)
, (2)

Fig. 2: Flow-Chart of the Proposed RAFDA Model

Eq. 2 assigns the number of flows to each link based on its
reliability level (ℜlj), where indices q, y, and |L| represent
the total number of flows, total number of links, and number
of links of set L, respectively. As a path consists of links,
we consider that the reliability level of a path is represented
by the reliability level of the bottleneck link along the path.
This is as when a link fails or gets disconnected, the desire
is that a minimum number of flows shall be disturbed. In
order to minimize the impact of link failure, one of the
primary objectives of the proposed RAFDA is to minimize
the maximum utilization of reliable links. Eq. (2) shows the
main objective of the proposed model, subject to additional
constraints:

The additional constraints are as follows:

1) The minimum reliability level of each link in the flow
path should be maximized (see Eq. (3)).

2) The traffic load should be minimum on each link -
expressed in bytes (see Eq. (4), Eq. (5), and Eq. (6)).

3) To avoid the congestion, the bandwidth allocation for
all flows on the links should be less than the maximum
capacity of the links - expressed in bytes (see Eq. (7)).

4) To avoid under-utilization of the link, the link utilization
should be maximized: 0 < µti

lj
≤ 1 (see Eq. (8)).

5) The delay of a reliable path should be minimum (see
Eq. (10)).

The SDN controller updates frequently its status by collect-
ing network statistical information from the switches. Each
link lj in the network G, which can be used to transmit data,
has the reliability level ℜti

lj
and available bandwidth βti

lj
. We

assume that there is a set of flows F and each f ∈ F requires
a reliable path satisfying the capacity demand of the flow for
data delivery.

In the context of this paper, IoT devices in smart cities gen-
erate flows with different data rates, and the communication
links are heterogeneous in terms of bandwidth capacity (φlj).
The bandwidth demand of f in time slot ti is denoted by Υti

f .
In general, due to limited capacity φlj and low-reliability

level ℜlj of the link, not all flows can be forwarded on the
same path. In the proposed model, the established path needs
to satisfy the following constraints:

(a) Path’s reliability (ℜti
lj
) Constraint: The proposed

RAFDA algorithm distributes the numbers of flows on the

VOL. , NO. , 2022 7

Fig. 3: A network (G) showing the reliability value of each
link(ℜti

lj
)

links such as to maximise the minimum link reliability level,
as indicated by Eq. (3):

max(ℜti
lj
) = max

min
∑

pf
k∈Pf

∑
lj∈L

p
f
k

ℜlj

 (3)

∀ Υf ≤ φlj , flj ≤ φlj ,ℜlj > κlj , flj > 0

Eq. (3) refers to the minimum reliability level of each link
lj in the path pfk . This addresses the concern raised by the
report in [23], [36], that any link goes down almost every 30
minutes.

Fig. 3 illustrates the proposed model for a network G with
5 OpenFlow switches and 7 links. The labels on the links
represent the reliability level of each link (i.e., l(s, d) has
a reliability level ℜl(s,d) = 0.2). Suppose for a flow f , the
SDN controller calculates the reliable path from the switch s
towards the fog server, located at switch d. There are five 5
possible paths for flow f distribution in G:

• p1 = {l(s, d)} = {ℜl(s,d) = 0.2}
• p2 = {l(s, v), l(v, d)} = {ℜ(s,v) = 0.6, ℜ(v,d) = 0.3}
• p3 = {l(s, v), l(v, x), l(x, d)} = {ℜ(s,v) = 0.6, ℜ(v,x) =

0.3, ℜ(x,d) = 0.2}
• p4 = {l(s, u), l(u, v), l(v, d)} = {ℜ(s,u) = 0.8, ℜ(u,v) =

0.7, ℜ(v,d) = 0.3}
• p5 = {l(s, u), l(u, v), l(v, x), l(x, d)} = {ℜ(s,u) = 0.8,
ℜ(u,v) = 0.7, ℜ(v,x) = 0.3, ℜ(v,d) = 0.2 }

The goal is to identify the most reliable path, defined by
the fact that the minimum reliability level of all its links is the
highest. In G, paths p2 and p4 are the most reliable because
their minimum reliability levels of their links (i.e., 0.3) is the
highest. Therefore, by using our proposed approach, the SDN
controller would select either path p2 or p4 for flow f because
both paths meet the criteria. However, the SDN controller
checks the other constraints, as described next.

(b) Traffic load (λti
lj
) Constraint:

Our proposed approach also attempts to minimize the traffic
load (expressed in terms of bytes) on the links. The traffic
load λ of the flows passing through the link li is collected
in λti =

{
λti
lj ,fi

, ..., λti
lj ,fq

}
in time slot ti by the controller

in our proposed approach. Therefore, the flow f forwarding
decision on the link is based on traffic load on the link λti

lj
subject to the capacity constraint φlj as shown in Eq. (4).

0 <
∑

pf
k∈Pf

∑
lj∈L

p
f
k

λlj ,fΥf ≤ φlj , ∀ lj ∈ pfk , flj > 0 (4)

In the proposed model, we distribute the traffic load (ex-
pressed in terms of number of bytes) on the links, as shown
in Eq. (5). Eq. (5) was introduced to minimize the impact of
link failure while fulfilling the flows’ bandwidth requirements
and therefore considers both links’ reliability levels and flows’
bandwidth demands. Eq. (5) guarantees that traffic load (ex-
pressed in terms of bytes) distributes equally on the links.
Additionally, the traffic load passing through the link should
follow Eq. (6).

min(λti
lj
) = min

λ

y∑
j=1

1 {lj ∈ pf}
ℜti

lj
Υf

|F |
≤ φlj

 (5)

flj
∑
f

λflj
≤ φlj , ∀f, lj (6)

∀ lj ∈ pfk , ℜlj > κlj , Υf ≤ φlj

(c) Bandwidth Allocation (βti
lj
) Constraint: When a flow

is assigned to the path at time ti, the path’s spare capacity
is reduced. More specifically, when a new flow arrives in
the network and is assigned to a path (which consists of
a sequence of links), the algorithm changes the residual
capacity of all links along the path. This also determines
changes in the reliable path conditions for the new flows.
Therefore, bandwidth allocation to f on path pfk ∈ Pf is
represented as a mapping f(d) : pfk → R′′

, where R′′
is

the non-negative real number set. Bandwidth allocation on
path pk is

∑
lj∈pf

k :p
f
k∈Pf

f(d)(pfk) ≤ φlj . The shared capacity

constraints are satisfied for any link lj ∈ pfk in a path at time
ti, as shown in Eq. (7).

max(βti
lj
) = max

 ∑
ti,p

f
k∈Pf

∑
lj∈pf

k

f(d)lj ≤ φlj ,∀lj ∈ pfk

(7)

∀ Υf < βti
lj
, µlj < 1, (0 < f(d) ≤ N in bytes), pfk ∈ L

Traffic load λti
lj

should be less or equal to bandwidth
allocation βti

lj
(expressed in terms of bytes) in time slot ti

on each link.
(d) Link Utilization (µti

lj
) Constraint: Suppose f(d)lj

indicates the data rate of flow f (expressed in terms of bytes)
carried by the link lj ∈ pfk is f(d)lj =

∑q
i=0 flj (f(d)lj)

at time ti. The link utilization µti
lj

can be calculated from
aggregated flows data rate in specific time slot ti, as shown in
Eq. (8).

min(µti
lj
) = min

 ∑
ti,p

f
k∈Pf

∑
lj∈pf

k

{
f(d)lj
φlj

} (8)

∀ pfk ∈ L, µti
lj
≤ φti

lj
, flj > 0

The desire is to select those links which have a minimum
utilization ratio µti

lj
, indicating the amount of traffic that is

currently (or can be) transported by link lj at the moment ti.
(e) Delay (εtilj) Constraint: To calculate the end-to-end

delay of a path, we employ the ε(.) function in the proposed
work. The delay associated with a link depends on the traffic

VOL. , NO. , 2022 8

load on that link (i.e., λti
lj

), available bandwidth (βti
lj

), and total
link capacity (φti

lj
), and can be expressed as follows.

εtipk
=

∑
ti,lj∈pk

εtilj , (9)

where, εtilj is the end-to-end delay of lj link. In terms of
delay components, we consider the processing Pro delay,
transmission Tx delay, and propagation Pg delay in the
proposed work. The SDN controller obtains the links status
information to compute end-to-end delay of a path for the
time-critical applications, as follows.

min(εt
i

pk
) = min

 ∑
ti,f∈F

εti(Tx+ Pg + Pro)

 . (10)

Algorithm Description: Based on the objective function
presented in Eq. (2) and subject to the additional constraints
described in Eq. (3), Eq. (5), Eq. (7), Eq. (8), and Eq. (10), the
SDN controller computes the reliable path in the given network
G for a flow f . Let suppose u is the IoT device generating
f ∈ F and v ∈ FS. The feasible path set for pfk ∈ Pf where
Pf ⊆ P regarding u and v, indicated by pfk(u,v) is shown in
Eq. (11).

• Reliable and feasible path calculation, where χlj rep-
resents the feasibility of the path which is based on a
min(f) on the path pk, min(λ), min(µ), min(ε), and
max(β) (expressed in terms of number of bytes).

pfk(u,v) =
(ℜlj)(χlj)∑r

pk=1(ℜlj)(χlj)
, ∀lj ∈ pfk (11)

Algorithm 1 describes the steps involved in the computation
of the reliable path based on our objective function and
constraints. Algorithm 1 distributes the flows on the links
based on the links’ reliability levels subject to the additional
constraints in order to achieve the objective. When a data
packet arrives, the switch matches it against the flow rules
present in the flow table. If the flow rule is present in the flow
table, then the packet forwards/drop it according to the flow
rule (lines 1 to 4). Otherwise, the switch forwards the digest
packet to the controller. Based on the network’s global status
(as explained in IV-A2), the SDN controller checks for those
paths that have the lowest number of flows by using Eq. 2. The
controller computes the links’ reliability level and selects those
paths in which the minimum reliability of links is maximum
(Line 7) by using Eq. (3). After completing the reliable paths
P selection, Algorithm 1 uses the Check Const function for
the remaining constraints (lines 18 to 26). Based on IoT flow
demand, Algorithm 1 uses Eq. (5) and computes paths with
minimum traffic, and traffic demand should be less the link
capacity. High link utilization also causes delay; therefore, the
RAFDA targets the paths with low utilisation links (see Eq.
(8)) and low end-to-end delays (see Eq. (10)). Finally, the
controller computes and installs the flow rules for the given
flow on a reliable path subject to the constraints (Line 15) and
updates the network status (Line 16).

Unfortunately, the proposed computation of a reliable path
for f based on the mentioned constraints is NP-hard as is

Algorithm 1: Reliability-Aware Flow Distribution Al-
gorithm (RAFDA)

Input: G(V,L), ℜti
lj

, λti
lj

, βti
lj

, µti
lj

, εtilj
Output: return reliable and feasible path

1 f = flow
2 if (rule-match = True) then
3 forwarded/drop f as per flow table entry
4 return;
5 else
6 for path in paths(src, dst) do

// compute the reliable paths:
7 path = Networkx.reliable paths(G, src, dst)

using Eq. (3)
8 if Check_Const(path, f) then
9 flag = 1

10 rel path = path
11 else
12 rel path = path - 1
13 end
14 end
15 install the flow rules on rel path for f
16 update the network G status
17 end
18 Function Check_Const(path, f):

// check the constraints
19 for (li,lj) in path do
20 compute path using Eq. 11
21 if Const satisfied then
22 return True
23 else
24 return False
25 end
26 end

a multi-path routing with bandwidth and delay constraints
problem, which is NP-hard [37], [38]. Consequently, the
number of possibilities for choosing the path and the time
complexity of Algorithm 1 are increasing exponentially, so
we solve this problem by proposing two heuristic algorithms,
which will be described in subsection IV-B.

After computing the reliable path based on the objective
as mentioned earlier and constraints, the controller installs the
path by setting up the flow rules at the switches along the path.
This is achieved by using Flow-Mod and Packet-Out messages
of the OpenFlow protocol. Moreover, in order to avoid the
inconsistency behavior and packet loss in the network [39],
the controller installs the flow rules in reverse order at the
switches along the path in our proposed approach. Reverse
order means that the controller installs the flow rules on the
traversed path from the last switch to the first switch (.i.e,
{vd−1, ..., v2, vs} ∈ V). After this, the switch forwards the
data packet as will be described in subsection IV-A5.

5) Packet Forwarding Process: When a flow rule is re-
ceived at a switch, then the switch forwards any relevant data
packet according to the rule. The switch also stores the flow
rule so that if subsequent data packets arrive, then the switch

VOL. , NO. , 2022 9

will forward the packets according to the flow rule without
consulting the controller. This reduces the traffic overhead at
the controller. In the packet forwarding process, if a switch
receives the packet and in the meanwhile the forwarding path
goes down, then the switch will initiate the link failure process,
which will be explained in subsection IV-A6.

6) Link Failure Process: In the proposed approach, a re-
active rerouting process is used for any link failure-disrupted
flows. In order to reduce the amount of communication and
processing in the proposed work, the SDN controller stores
information about the flow status. When a link failure occurs,
the affected OpenFlow switch notifies the controller using a
Port-Down message. Upon receiving the Port-Down message,
the SDN controller finds the flows that will be affected due
to the link failure by examining the status of the stored
flow at the controller. Consequently, the affected installed
flows are removed from the switches [40]. When the affected
OpenFlow switch Su ∈ Vo notifies the controller C, the
response time of the controller to disturbed flows is based on
the number/frequency of the disturbed flows. The frequency of
disturbed flows f reported by Su in time slot ti is represented
by DFSu

f . Therefore, the load on controller L(C(ti)) is shown
in Eq. (12).

L(C(ti)) =
⋃

Su∈Vo

DFSu

f (ti) (12)

Eq. (12) shows that a link with high number of failed flows
creates load on the controller. As a result, rerouting a large
number of disrupted flows takes a longer time, and conse-
quently increases the end-to-end delay for packet delivery,
affecting system performance.

B. Reactive Reliability-Aware Heuristic Algorithms (RRAHA)

This section introduces two algorithms as heuristic solutions
to the NP-hard optimisation problem set as an objective in
Section IV-A3. The problem is to identify the most appro-
priate path based on links’ reliability levels given a set of
performance-related constraints.

1) Reactive Reliability-Aware Heuristic Algorithm-1
(RRAHA-1): The goal of RRAHA-1 is to enable data flow
forwarding in case of a link failure on the most reliable path,
while minimizing both the number of disturbed flows and
the computation time. RRAHA-1 is presented in Algorithm 2
and is described as follows.

When the switch receives flow f from the IoT device, it
matches the flow against the installed flow rules. If a flow rule
is present, the switch forwards, or drops the flow (Lines 2-3). If
the flow rule is not present in the associated switch, the switch
forwards the flow to the SDN controller for route computation
(Line 5). Initially, the path set is empty (Line 6). RRAHA-1
algorithm computes all possible paths between the source and
destination pair for a given flow f and associates them with
reliability values (Line 7). Among these paths, the algorithm
RRAHA-1 selects RPP% (reliable path percentage) with the
highest reliability values by using Eq. (1) (Line 8). Starting
from these paths with the highest reliability values, RRAHA-
1 identifies the best path after applying the other constraints

as described in Section IV-A3. This reduces significantly the
computation time, as not all the paths are checked for the other
constraints. Note that if the subset of paths is very small e.g. 1,
then all of the paths identified will be considered in Algorithm
2.

Algorithm 2: Reactive Reliability-Aware Heuristic Al-
gorithm (RRAHA-1)

Input: G(V,L), ℜti
lj

, λti
lj

, βti
lj

, and µti
lj

Output: return reliable and feasible path
1 f = flow
2 if (rule-match = True) then
3 forwarded/drop f as per flow table entry
4 return;
5 else
6 Pf = Ø, where Pf ⊆ P // initially path

set Pf is empty
// run the algorithm to find all
possible paths Pf (loop free paths)
for f

7 Pf ← Networkx.reliable paths(G, src, dst)
// take top 10% of reliable paths
for f, in which min links
reliability is max. (Eq. (3)

8

max(min
∑

pf
k∈Pf

∑
lj∈pf

k

ℜlj)

pfk ← pfk ⊆ {Pf}

// check pfk paths constraints
9

feasible pfk ← pfk ⊆
{
pfk

}
repeat step− 9 until the path is offered by pfk is
feasible for f

10 end
11 install the flow rules on rel path for f
12 update the network G status

2) Reactive Reliability-Aware Heuristic Algorithm-2
(RRAHA-2): The goal of RRAHA-2 is to enable data flow
forwarding in case of a link failure on the most reliable path,
while both minimizing the underutilized links in the network
and computation time. RRAHA-2 forwards the rerouted
flows on the less utilized paths. RRAHA-2 is presented in
Algorithm 3 and is described as follows.

RRAHA-2 computes all possible paths based on utilization
level between the source and destination pair for a given flow
f (Line 6). RRAHA-2 selects UPP (underutilized path percent-
age) with the lowest utilization ratio by using Eq. (8) (Line
7) in Algorithm 3. Using this UPP, the algorithm computes
the best path after applying the other constraints, described
in Section IV-A3. This minimizes the computation time as
not all the paths are checked against the other constraints.
Again, note that if the UPP is very small, then all of the paths
identified will be considered in Algorithm 3. In Algorithm

VOL. , NO. , 2022 10

2 and Algorithm 3, RPP and UPP were both set to 10% to
reduce the computational time, as desired.

Algorithm 3: Reactive Reliability-Aware Heuristic Al-
gorithm (RRAHA-2)

Input: G(V,L), ℜti
lj

, λti
lj

, βti
lj

, and µti
lj

Output: return reliable and feasible path
1 f = flow
2 if (rule-match = True) then
3 forwarded/drop f as per flow table entry
4 return;
5 else

// run the algorithm to find all
underutilized-paths for f

6 Pf ← Networkx.underutilized paths(G, src, dst)
// take top 10% of
underutilized-paths for f

7

pfk ← pfk ⊆ {Pf}

// check pfk paths constraints
8

max(min
∑

pf
k∈Pf

∑
lj∈pf

k

ℜlj)

feasible pfk ← pfk ⊆ {Pf}

repeat step− 4 until the path is offered by pfk is
feasible for f

9 end
10 install the flow rules on for f
11 update the network G status

C. Computational Complexity of Algorithms

This section analyzes the computation complexity of the
proposed heuristic algorithms, detailed in Algorithm 1, Algo-
rithm 2, and Algorithm 3.

Algorithm 1: The SDN controller obtains updated links’
status, including link failure frequency, number of flows, and
traffic load, from the network, as discussed in Section IV-A2.
Based on the obtained information, the SDN controller com-
putes the reliable and feasible path for a given flow f . Suppose
the total number of paths between a pair of source and
destination are P . The computational time for selecting the
reliable paths among all paths is O(P). The reliability level of
all links in the reliable paths should be greater than a threshold
value (i.e., ℜti

lj
> κlj). Consequently, each link in a path can

only be selected k times for flow distribution (until the thresh-
old value is reached). Thus, the Networkx.reliable paths
function takes O(kP × log(kP)) (see Algorithm 1, line 7).
After completing the reliable paths P selection, Algorithm
1 uses the Check Const function for remaining constraints
m for each path of the total number of reliable paths P .
Therefore, the Check Const function takes O(mP), while
m signifies the constraints of the a path (see Algorithm 1,
line 19-24). The time complexity for the other statements
in the algorithm is constant, i.e., O(c). Therefore, for F

number of flows, the worst-case complexity of Algorithm 1 is
O(F×kP×log(kP)+mP+c) ≈ O(F×kP×log(kP)+mP).

Algorithm 2 and 3: The selection process of reliable and
feasible paths of Algorithm 2 and Algorithm 3 is the same as in
Algorithm 1. The major differences are that Algorithm 2 first
computes the top RPP percentage of reliable paths, and Al-
gorithm 3 first selects among the top UPP underutilized paths
between source and destination. Algorithm 2 and Algorithm 3
involve sorting all P paths based on reliability and utilization
ratios, respectively. Therefore, the complexity of Algorithm 2
and Algorithm 3 is the same ≈ O(F × P × log(P) +mP).

V. EXPERIMENTAL RESULTS

In order to validate our proposed algorithms (i.e., RAFDA,
RRAHA-1, and RRAHA-2) for SDN-based FC, simulations
are conducted in two environments based on Mininet (small
network) and real network traces (large network) [41], with a
small and large number of flows, respectively. We compare our
proposed algorithms (RAFDA, RRAHA-1, and RRAHA-2)
with the Un-Reliability Model (U-RM) shortest path (based on
link cost) [13] and Smart City Resilient System (SCRS) [29].
In [13], the authors select the optimal path in terms of
link utilization, delay, and SDN rules-capacity for IoT task
offloading. SCRS [29] utilized SDN architecture to minimize
the impact of a link failure on the time-critical application
of smart cities and computes the alternative path based on
application requirements. Box plots (i.e., box-and-whisker
plots) are used to illustrate comparatively the experimental
results. For each scenario, a box is drawn by connecting
the lower quartile, median, and upper quartile. Finally, the
whiskers from the box show the lower and upper extremes of
the scenario. Additionally, the black line in a box depicts the
mean value of the scenario. All the simulations are performed
10 times, and the duration of each scenario is 1000−seconds,
giving credibility to the analysis of the proposed algorithms.
Additionally, we use UDP flows in both real network traces
and Mininet.

A. Results of Real Network Traces (Large Network)

Real network traces are available at [41] for an anony-
mous topology of the local large-scale campus network. The
topology [41] contains 415 switches, 1062 links, and 1024
source/edge nodes. In the real network traces, we have mod-
ified the capacity of the communication link randomly (i.e.,
[10, 100]Mbps), and each link in the topology annotated with
link’s reliability level using Eq. (1).

We select various numbers of source and destination pairs
(i.e., 200 to 1000) from the topology using the Python random
function. These IoT devices generate flows randomly with
different data rates in the [1, 25]Mbps interval and transmit
these flows continuously (for 1000s). Each flow include be-
tween [5, 15] data packets, each from a different IoT device
to a different fog server [38]. We are not considering the
controller overhead in these scenarios, but we assume the
out-of-band communication model for the switch to controller
communication.

VOL. , NO. , 2022 11

Assessment parameters: In performance evaluation, we
examine three parameters,
(i) Congested links in the network (i.e., when the utilization
ratio of the link is greater than link capacity (µti

lj
> φlj)). More

specifically, if the controller computes a path for a flow using
an algorithm (i.e., either RAFDA, or RRAHA-1, or RRAHA-
2, SCRS or U-RM) and the bandwidth demand of the flow
exceeds the path bandwidth due to some links, we consider
the links in the paths as congested links in the simulation.
(ii) The number of disturbed flows in case of link failure.
More specifically, when a link, say lj fails, the number of
flows the controller needs to recompute alternative paths for
is considered.
(iii) The number of underutilized links in the network. In the
simulation, a link is considered as an underutilized link if its
utilization ratio is less than 50% (µti

lj
< 50%).

Solutions and Scenarios We compare the assessment pa-
rameters (i.e., congested links, number of disturbed flows, and
underutilized links) when the four algorithms are employed
(i.e., RAFDA, RRAHA-1, RRAHA-2, SCRS [29], and U-RM
scheme [13]) in diverse scenarios characterised by various
number of flows and diverse link capacity. Detail explanation
is given in subsection V-A1 and subsection V-A2.

1) Results When Varying the Number of Flows: The pro-
posed RAFDA, RRAHA-1, and RRAHA-2 algorithms and
SCRS and U-RM for SDN-based FC are evaluated using real
network traces [41] with different number flows in order to
show their efficiency.

In Fig. 4, as the number of flows is increasing, the number
of congested links also increases in all approaches: RAFDA,
RRAHA-1, RRAHA-2, SCRS, and U-RM. However, in the
proposed approaches, the number of congested links is smaller
than that recorded in the SCRS and U-RM approaches. It is
mainly because the proposed algorithms distribute the flows
on the links based on the links’ reliability levels subject to
additional constraints. From the results, we observe that there
are more congested links in SCRS than in our approaches
because SCRS computes the delay-aware paths for the flows
and does not consider the flow distribution based on links’
reliability level and link utilization during link failures. U-
RM considers the shortest path based on the number of hops.
Therefore, the number of links congested in this scheme is
higher. The congestion ratio in RAFDA (Algorithm 1) is much
lower than that of RRAHA-1 (Algorithm 2) and RRAHA-2
(Algorithm 3) because RAFDA checks all the reliable paths
subject to the additional constraints, unlike RRAHA-1 and
RRAHA-2 which use a subset of paths only.

Furthermore, the number of congested links in RRAHA-
2 is less than that recorded in RRAHA-1 because RRAHA-2
selects a subset of the underutilized links first by using Eq. (8)
and then checks the remaining constraints. RRAHA-1 selects
some of the paths (e.g., 10%) with the highest reliable values
by using Eq. (1), then the algorithm computes the best path
after applying the other constraints, as described in Section
IV-A3. Although RRAHA-1 finds the most reliable path for
a given flow f , it may select a congested path, which is not
desirable. RRAHA-1 and RRAHA-2 reduce the computation
time in comparison with RAFDA, as unlike RAFDA they

200 400 600 800 1000
No. of Flows

0

10

20

30

40

50

60

%C
ong

est
ed

Lin
ks

RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 4: %Congested Links Vs. No. of Flows

200 400 600 800 1000
No. of Flows

0

10

20

30

40

50

60

%D
ist

urb
ed

 Fl
ow

s

RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 5: %Disturbed Flows Vs. No. of Flows

do not check all the paths for the remaining constraints.
RAFDA reduces the congestion in the network as compared to
RRAHA-1, RRAHA-2, SCRS, and U-RM. In U-RM scheme,
the percentage of congested links in network has reached
about 60%, the percentage of congested links in SCRS is
almost 43%, and in the proposed scheme RAFDA, the number
of congested links is about 37%, in algorithm RRAHA-1
is around 44%, and in algorithm RRAHA-2, the number of
congested links is almost 40% when the number of flows has
increased to 1000.

Next, we analyze the number of disturbed flows, in case a
link gets disconnected, using RAFDA, RRAHA-1, RRAHA-2,
SCRS, and U-RM algorithms. The simulation results presented
in Fig. 5 show that RRAHA-1 performed better than RAFDA,
RRAHA-2, SCRS, and U-RM as the number of flows in-
creases. The number of disturbed flows of IoT/edge devices in
RRAHA-1 is less than those recorded for RAFDA, RRAHA-
2, SCRS, and U-RM. The reason is as follows. RRAHA-1
first selects only a subset of the most reliable paths and then
checks the remaining constraints. The main purpose of the
proposed RRAHA-1 algorithm is to minimize the number of
disturbed flows in case of link failure. The results show that
RRAHA-1 performs better and has less variation in the number
of disturbed flows. In RRAHA-2, the number of disturbed
flows is larger (but not higher than U-RM) because it selects
some of them (e.g., 10%) underutilized links, and then checks
the reliability level and other constraints of the underutilized
links. Therefore in RRAHA-2, the more reliable path might
not be found, which leads to link failure and may disturb
flows. From Fig. 4, we can analyze that congestion ratio
in RRAHA-1 is higher than RAFDM and RRAHA-2. The
reason is RRAHA-1 computes the most reliable path for a
flow, it may select a congested path, which is not desirable.

VOL. , NO. , 2022 12

200 400 600 800 1000
No. of Flows

0
10
20
30
40
50
60
70
80
90

%U
nd

eru
tili

ze
d L

ink
s

RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 6: %Underutilized links Vs. No. of Flows

However, the selection of the most reliable path minimizes
the number of disturbed flows, as shown in Fig. 5. Unlike
U-RM and SCRS, in RAFDA, RRAHA-1, and RRAHA-2
based on reliability level, flows are assigned to links, which
decreases the disturbance of the flow in the network. In the
proposed algorithms, when the controller receives a link down
notification, then it re-routes the flows of the failed link based
on the reliability level of links. Consequently, in RRAHA-1,
the number of disturbed flows is almost 32%, in RAFDA, the
number of disturbed flows is 43%, in RRAHA-2, the number
of disturbed flows is almost to 47%, but in SCRS and U-
RM, the variation of number of disturbed flows is very high,
almost 49% and 58%, when the number of flows has increased
to 1000, respectively.

In Fig. 6, the number of underutilized links is decreasing in
all approaches (i.e., RAFDA, RRAHA-1, RRAHA-2, SCRS,
and U-RM), as the number of flows increases. However, in
the proposed approaches, the number of underutilized links is
less than that of the SCRS and U-RM approaches. The main
reason is that the proposed algorithms also consider the link
utilization constraint (Eq. (8)) along with other constraints in
the flow forwarding process, as described in Section IV-A3. In
RRAHA-2, the number of underutilized links is much lower
than that recorded for RAFDA and RRAHA-2, as its main
goal was to maximize the link utilization ratio in the network.
The number of underutilized links in RAFDA is less than
that of RRAHA-1, as the latter selects some of the most
reliable paths (e.g., 10%), and after that it selects the best path
after applying the other constraints. RRAHA-2 first focuses on
the most reliable paths then checks the utilization constraint.
Therefore, in RRAHA-2, the underutilized links are almost
40%, in RRAHA-1, the underutilized links are about 32%, in
RAFDA - almost 47%, in SCRS, the underutilized links are
almost 47%, and in U-RM model, the percentage of disturbed
flows nears 56%. The SCRS and U-RM algorithms forward
the flows based on the delay and shortest path, respectively,
and overlooks the reliability level and the link utilization of
the path. Therefore, in the alternative schemes, the number of
congested links, number of disturbed flows, and percentage of
underutilized links are high compared to the three proposed
algorithms in all scenarios.

2) Results When Varying Links’ Capacity: In this scenario,
the capacity of communication links is varied (i.e., 20Mbps,
40Mbps, 60Mbps, 80Mbps, and 100Mbps) and the total num-
ber of generated flows in the network is 800.

20 40 60 80 100
Link Capacity (Mbps)

0

10

20

30

40

50

60

70

80

%C
on

ge
ste

d L
ink

s

RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 7: %Congested Links Vs. Link Capacity (Mbps)

20 40 60 80 100
Link Capacity (Mbps)

0

10

20

30

40

50

60

70

%D
ist

urb
ed

 Fl
ow

s
RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 8: %Disturbed Flows Vs. Link Capacity (Mbps)

The goal is to investigate the performance of the five
algorithms, RAFDA, RRAHA-1, RRAHA-2, SCRS, and U-
RM under various communication link capacities. As the
communication links capacity increases in all approaches, the
number of congested links decreases, as shown in Fig. 7.
However, the simulation results show that RAFDA performs
better than RRAHA-2, RRAHA-1, SCRS, and U-RM. In
RAFDA, congested links account for about 22%, in RRAHA-
1, congested links are almost 32%; in RRAHA-2, congested
links are almost 28%; in SCRS, congested links are almost
34%; and in the U-RM algorithm, congested links are almost
40% shown in Fig. 7.

Figure 8 presents the number of distributed flows, in
case link get down, when employing RAFDA, RRAHA-1,
RRAHA-2, SCRS, and U-RM algorithms in turn. In RRAHA-
1, the number of disturbed flows is less than that of SCRS,
U-RM, RRAHA-1, and RAFDA.

The results of real network traces show that RAFDA and
RRAHA-2 decrease the congestion and increase the link
utilization as compared to RRAHA-1. On the other hand,
RRAHA-1 performs better than RAFDA and RRAHA-2 in
case of a link failure scenario and reduces the number of
disturbed flows in the network. The results also show that the
proposed algorithms perform better than SCRS and U-RM and
balance in terms of several flows per link. Furthermore, the
simulation results show that SCRS and U-RM exhibits detri-
mental behavior when the traffic load (flows/link) increases.
The proposed algorithms RAFDA, RRAHA-1, and RRAHA-
2 are largely unaffected when the traffic load (flows/link)
increases, while SCRS and U-RM scales poorly, as shown
in Fig. 7, and Fig. 8.

VOL. , NO. , 2022 13

100 200 300 400 500
No. of Flows

0

10

20

30

40

50
%C

on
ge

ste
d L

ink
s

RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 9: %Congested Links Vs. No. of Flows

B. Mininet Results (Small Network)

A POX controller4 is used in our simulations. We evaluate
the proposed algorithms RAFDA, RRAHA-1, and RRAHA-2
under fixed topology size (10 switches), hosts are 50, and by
varying the number of flows (i.e., 100, 200, 300, 400, 500) to
investigate the efficiency of the proposed algorithms. The flows
are generated randomly with different data rates 10Mbps,
15Mbps, and 20Mbps. The capacity of a communication link
is constant (100Mbps).

In the simulation, we consider the battery capacity of an IoT
device set to 1000 J [42], its transmitting power is 60 mW [43],
and and task size (average) is 450KB [44]. Consequently,
bandwidth of wireless channel is 20 MHz [45] and Noise
Power is -100 dB [45]. When the IoT device (u ∈ Ed)
offloads task (k) to a fog server, the energy required to transmit
the data defines the IoT device’s energy consumption. The
SDN controller uses the southbound API like Provisioning
of Wireless AP (CAPWAP) or Simple Network Management
Protocol (SNMP) [44] to obtain information about data rate
and transmission power. In this proposed work, ETx

u =
PTx
u ξTx

u gives the required energy for task (k) offloading,
where ETx

u represents the energy consumption of IoT device
for transmitting the task, PTx

u is the transmitting power of IoT
device (u) and ξTx

u signifies the time taken to transmit the task
to the associated device.

We examine the following performance metrics:
1) congested links in the network.
2) the number of disturbed flows in case of the links’

failure.
3) normalized throughput of the network in case of the

links’ failure and normalized throughput is defined as
the ratio of received packets over sent packets.

4) the end-to-end delay for data packets.
5) average energy consumption of the IoT devices.
We investigate the performance of the three proposed algo-

rithms RAFDA, RRAHA-1, and RRAHA-2 with respect to a
number of flows and compare them with the SCRS and U-
RM algorithms. In Fig. 9, as the number of flows is increasing,
the number of congested links also increases in all approaches.
However, in the proposed algorithms, the number of congested
links is less than that of the SCRS and U-RM approaches.
It is mainly because the proposed algorithms distribute the
numbers of flows on the links based on the links’ reliability

4POX. http://www.noxrepo.org/pox/about-pox/

100 200 300 400 500
No. of Flows

0

10

20

30

40

50

60

%D
ist

urb
ed

 Fl
ow

s

RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 10: %Disturbed Flows Vs. No. of Flows

100 200 300 400 500
No. of Flows

0.5

0.6

0.7

0.8

0.9

1.0

No
rm

ali
ze

d
Th

ro
ug

hp
ut

RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 11: Normalized Throughput Vs. No. of Flows

levels subject to additional constraints (i.e., the traffic load
on the link, bandwidth allocation, and utilization ratio of the
link) as discussed in Section IV-A3. Additionally, RAFDA per-
forms better than RRAHA-1 and RRAHA-2 because RAFDA
checked all possible paths between the source and destination
for any given flow of f . RRAHA-2 algorithm selects some
of the paths (e.g., 10%) with lower utilization ratio by using
Eq. (8). After that using these 10% paths of lower utilization
ratio then computes a feasible path after applying the other
constraints. In RRAHA-1 algorithm congestion ratio is higher
in comparison with those of RAFDA and RRAHA-2 because
he algorithm finds (e.g., 10%) paths of maximum reliability
then check the remaining constraints. Therefore, it can be
said that the proposed algorithms reduce the congestion in
the network as compared to SCRS and U-RM. In U-RM,
congested links in network reached 50%, and variation in
the results is high because U-RM computed the unreliable
shortest path, unlike the proposed algorithms. In SCRS, there
are fewer congested links than in U-RM and more than in the
proposed approaches because SCRS distributes the flows based
on QoS requirements like bandwidth and delay. In RAFDA
the number of congested links is up to 28%, in RRAHA-1 the
number of the congested links is almost 37%, in RRAHA-2
the number of congested links is almost 31%, in SCRS the
number of congested links is almost 39%, when the number
of flows increases to 500.

In order to analyze the behavior of the proposed algo-
rithms RAFDA, RRAHA-1, and RRAHA-2 in a link failure
scenario, we experimented with observing the number of
flows disturbance by calculating the reliability level to all the
links randomly in the network using Eq. (1). The simulation
results show that our proposed algorithms perform better in
comparison with SCRS and U-RM, as shown in Fig. 10.

VOL. , NO. , 2022 14

100 200 300 400 500
No. of Flows

0

1

2

3

4

5

6

7

8
En

d-t
o-E

nd
 de

lay
 (s

)
RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 12: End-to-End delay (s) Vs. No. of Flows

The number of disturbed flows in the proposed algorithms
is much less than that in the SCRS and U-RM schemes.
Unlike SCRS and U-RM, all proposed algorithms distribute
the flows on the links based on reliability level and other
constraints, as discussed in Section IV-A3. Thus, proposed
algorithms assign a lower number of flows to less reliable
links. In turn, this decreases the number of flows disturbance
when a link gets disconnected. In the proposed algorithms,
when the controller receives a link down notification, then it
re-routes the flows of the failed link based on the reliability
level of links. Additionally, RRAHA-1 performs better than
RAFDA and RRAHA-2 algorithms because RRAHA-1 uses
paths of high level of reliability, then the RRAHA-1 computes
a feasible path after applying the other constraints for the
flow f as discussed in Algorithm 2. Therefore, in RRAHA-
1, the number of disturbed flows is much lower than those
experienced in U-RM, SCRS, RRAHA-2, and RAFDA.

In order to comparatively assess the performance of the pro-
posed algorithms RAFDA, RRAHA-1, RRAHA-2 and existing
solutions (i.e., SCRS and U-RM) in terms of data transport,
we illustrate the normalized throughput (i.e., received packets
divided by the number of sent packets) in Fig. 11. The
results show that the proposed algorithms have the highest
normalized throughput, followed by SCRS and U-RM. When
the number of flows increases in the network, the network
bandwidth is no longer sufficient to accommodate all flows
in the case of link failure, and, as expected, the throughput of
all approaches decreases. However, the normalized throughput
of the proposed approaches is higher than those recorded in
SCRS and U-RMS cases. This is mainly because the proposed
algorithms distribute the flows based on links’ reliability level,
as discussed in Section IV-A3, and therefore, the impact of link
failure is lower than that of the existing solutions. Additionally,
the normalized throughput of RAFDA is much higher than
those of RRAHA-1 and RRAHA-2 because RAFDA also
considers the additional constraints, along with the reliability
of the paths.

The proposed algorithms in this paper are designed to
provide a reliable path between IoT device and fog server pair
in order to minimize the congestion and disturbed flows in the
network rather than provide the shortest path. The number of
congested links and disturbed flows in a network increases the
end-to-end delay.

In the proposed work, we also examine the average energy
consumption per IoT device in the SDN-based FC architecture.

100 200 300 400 500
No. of Flows

5

10

15

20

25

30

Av
era

ge
 En

erg
y C

on
sum

pti
on

 (m
J) RAFDM RRAHA-1 RRAHA-2 SCRS U-RM

Fig. 13: Average Energy Consumption (mJ) Vs. No. of Flows

The average energy consumption increases as the number
of flows increases in the network, as shown in Fig. 13.
However, in the proposed algorithms, energy consumption is
much lower thank that of the SCRS and U-RM model. The
main reason is that the proposed algorithms compute a reliable
path. Therefore, the number of retransmissions is lower and
reducing retransmissions leads to energy saving. The results
show that link failure and congestion increases the average
energy consumption of IoT devices. When using RAFDA,
RRAHA-1, and RRAHA-2, the number of congested links and
disturbed flows is much lower than when SCRS and U-RM are
employed. The number of disturbed flows in the proposed al-
gorithms (RRAHA-1 and RRAHA-2) is lower as compared to
that of U-RM. The SCRS increases the performance of smart
city applications in terms of congestion, end-to-end delay, and
energy consumption by considering link failure compared to
the U-RM approach. The SCRS provides priority to time-
critical applications during link failure. However, unlike the
proposed algorithms, the SCRS does not distribute the time-
critical flows based on the link’s reliability level and additional
path constraints, as discussed in Section IV-A3. Furthermore,
Fig. 12 shows that the performance of the proposed algorithms
is better than that of SCRS and U-RM in terms of end-to-end
delay as the number of flows in the network increases due
to the following two reasons. First, the number of congested
links is lower in the proposed algorithms as compared to
that of SCRS and U-RM, as shown in Fig. 12. Second, the
proposed algorithms assign a flow f to the link based on
the reliability level. Therefore, the chances of link failure are
lower in proposed algorithms as compared to those in U-RM.
However, RAFDA has a smaller number of congested links
(see Fig. 9), but it has a greater average end-to-end delay
(shown in Fig. 12) because the RAFDA algorithm searches for
all alternative links, while the other two algorithms (RRAHA-1
and RRAHA-2) perform search for 10% alternative paths only.
This is because when a link fails, then it takes some time for
the switch to consult the controller, to re-compute the shortest
path, to install the shortest path on the switches along the path,
and redirect the flow on the newly computed shortest path. The
results show that proposed algorithms RAFDA, RRAHA-1,
and RRAHA-2 are consistent in improving the performance
when compared to the SCRS and U-RM model in terms of
number of congested links, number of disturbing flows, and
end-to-end delay performance metrics.

VOL. , NO. , 2022 15

C. Discussion

Time, message, and computation cost are essential com-
ponents the proposed algorithm’s overhead when computing
a link reliability level in the SDN-based smart cities en-
vironment. The overall time complexity of Algorithm-1 is
≈ O (F (kP) +mP) and Algorithm 2 and Algorithm 3 time
complexity is ≈ O (F × P (P) +mP), as discussed in sec-
tion IV-C. Additionally, message complexity is related to the
total number of extra control messages exchanged to compute
the final status of the underlying communication links. To
obtain the current status of the links, the controller already
exchanges control information with OpenFlow switches, so
there is no need to exchange additional messages to obtain the
status of the links. Consequently, the controller can monitor
the traffic in the network, and check the quality of the links, so
again there is no need to exchange any additional control mes-
sages. Computing link reliability, congested links, disturbed
flows, and underutilized links and determining a link’s final
status are carried out in the controller without exchanging
additional control messages. So, the message complexity (MC)
of the intended algorithms is MC ≈ O (1). Finally, the
computation cost is associated with the operations needed
for the link failure management and reliability-aware flows
distribution calculation. The proposed solution’s computation
cost is

∑y
j=1 s×△, where△ is the computation cost of a link’s

status. Consequently, to check the additional constraints (m)
of a link, the computation cost is m ×

∑y
j=1 sj × ϑ, where

ϑ is the unit computation cost. It is worth noticing that the
computation cost of the proposed algorithms can be controlled
(and kept low) easily by employing advanced programming
techniques like multiple threads and parallel processing.

VI. CONCLUSIONS

In large scale SDN-based FCs for smart cities, efficient and
reliable routing is needed to handle the traffic engineering
problems, such as congestion avoidance, fault tolerance, and
load balancing. Data traffic from an IoT device (an edge
user) to the corresponding FS or (FS to FS) needs a reliable
and congestion-free path to minimize the end-to-end delay.
The exiting proposed approaches do not consider the link
reliability level in computing the path from IoT/edge device to
the fog server in SDN-based FC. In the paper, we propose a
new algorithm, called RAFDA and some optimized algorithms
RRAHA-1 and RRAHA-2, that distributes the numbers of
flows on the links based on the links’ reliability levels subject
to additional constraints traffic load on the link, link capacity,
and link utilization. The simulation results of the proposed
algorithms clearly show how they reduce congestion, end-to-
end delay, and number of flows disturbed when a link failure
occurs in comparison to an existing approach. Future work
considers extending the proposed algorithms by employing
machine learning in a multi-controller scenario.

ACKNOWLEDGMENTS

G.M. Muntean would like to acknowledge the Science
Foundation Ireland (SFI) support for the Insight SFI Cen-
tre for Data Analytics (grant number 12/RC/2289 P2). The

work was supported by the “National Natural Science Foun-
dation of China” grant no. 61902052, “National Key Re-
search and Development Plan” grant no. 2017YFC0821003-2,
“Science and Technology Major Industrial Project of Liaon-
ing Province” grant no. 2020JH1/10100013, “Dalian Science
and Technology Innovation Fund” grants no. 2019J11CY004
and 2020JJ26GX037, and “Fundamental Research Funds
for the Central Universities” grants no. DUT20ZD210 and
DUT20TD107.

REFERENCES

[1] C. Tang, X. Wei, C. Zhu, Y. Wang, and W. Jia, “Mobile vehicles as fog
nodes for latency optimization in smart cities,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 9, pp. 9364–9375, 2020.

[2] M. Li, P. Si, and Y. Zhang, “Delay-tolerant data traffic to software-
defined vehicular networks with mobile edge computing in smart city,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9073–
9086, 2018.

[3] C. Lin, G. Han, X. Qi, M. Guizani, and L. Shu, “A distributed
mobile fog computing scheme for mobile delay-sensitive applications
in sdn-enabled vehicular networks,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 5, pp. 5481–5493, 2020.

[4] Y. Liu, H. Zhang, K. Long, H. Zhou, and V. C. M. Leung, “Fog
computing vehicular network resource management based on chemical
reaction optimization,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 2, pp. 1770–1781, 2021.

[5] C. Lin, G. Han, X. Qi, M. Guizani, and L. Shu, “A distributed
mobile fog computing scheme for mobile delay-sensitive applications
in sdn-enabled vehicular networks,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 5, pp. 5481–5493, 2020.

[6] V. N. I. Cisco, “Global mobile data traffic forecast update, 2015–2020
white paper,” Document ID, vol. 958959758, 2016.

[7] P. Zhang, C. Wang, G. S. Aujla, N. Kumar, and M. Guizani, “Iov
scenario: Implementation of a bandwidth aware algorithm in wireless
network communication mode,” IEEE Transactions on Vehicular Tech-
nology, vol. 69, no. 12, pp. 15 774–15 785, 2020.

[8] M. Ibrar, L. Wang, G.-M. Muntean, A. Akbar, N. Shah, and K. R. Malik,
“PrePass-Flow: A machine learning based technique to minimize ACL
policy violation due to links failure in hybrid SDN,” Computer Networks,
vol. 184, p. 107706, 2021.

[9] M. Ibrar, L. Wang, G. M. Muntean, J. Chen, N. Shah, and A. Akbar,
“IHSF: An intelligent solution for improved performance of reliable
and time-sensitive flows in hybrid SDN-based FC IoT systems,” IEEE
Internet of Things Journal, vol. 8, no. 5, pp. 3130–3142, 2021.

[10] A. Akbar, M. Ibrar, M. A. Jan, A. K. Bashir, and L. Wang, “SDN-
enabled adaptive and reliable communication in IoT-Fog environment
using machine learning and multiobjective optimization,” IEEE Internet
of Things Journal, vol. 8, no. 5, pp. 3057–3065, 2021.

[11] X. Jia, Y. Jiang, and J. Zhu, “Link fault protection and traffic engineering
in hybrid SDN networks,” in IEEE INFOCOM WKSHPS, 2018, pp. 853–
858.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[13] S. Misra and N. Saha, “Detour: Dynamic task offloading in software-
defined fog for iot applications,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 5, pp. 1159–1166, 2019.

[14] P. Thorat, S. Jeon, and H. Choo, “Enhanced local detouring mechanisms
for rapid and lightweight failure recovery in OpenFlow networks,”
Computer Communications, vol. 108, pp. 78–93, 2017.

[15] O. Hohlfeld, J. Kempf, M. Reisslein, S. Schmid, and N. Shah, “Guest
editorial scalability issues and solutions for software defined networks,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 12,
pp. 2595–2602, 2018.

[16] V. R. Tadinada, “Software defined networking: Redefining the future of
internet in IoT and cloud era,” in IEEE International Conference on
Future Internet of Things and Cloud, 2014, pp. 296–301.

[17] P. K. Sharma, M.-Y. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for IoT,” IEEE Access,
vol. 6, pp. 115–124, 2017.

VOL. , NO. , 2022 16

[18] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–32,
2014.

[19] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: Towards a cloud definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, pp. 50–55, 2008.

[20] Y. Xiao and M. Krunz, “QoE and power efficiency tradeoff for fog
computing networks with fog node cooperation,” in IEEE INFOCOM,
2017, pp. 1–9.

[21] A. Akbar, M. Ibrar, M. A. Jan, A. K. Bashir, and L. Wang, “Sdn-
enabled adaptive and reliable communication in iot-fog environment
using machine learning and multiobjective optimization,” IEEE Internet
of Things Journal, vol. 8, no. 5, pp. 3057–3065, 2020.

[22] P. Thorat, S. Singh, A. Bhat, V. L. Narasimhan, and G. Jain, “SDN-
enabled IoT: ensuring reliability in IoT networks through software
defined networks,” in Towards Cognitive IoT Networks. Springer, 2020,
pp. 33–53.

[23] C.-Y. Chu, K. Xi, M. Luo, and H. J. Chao, “Congestion-aware single
link failure recovery in hybrid SDN networks,” in IEEE INFOCOM,
2015, pp. 1086–1094.

[24] V. Muthumanikandan and C. Valliyammai, “Link failure recovery using
shortest path fast rerouting technique in SDN,” Wireless Personal
Communications, vol. 97, no. 2, pp. 2475–2495, 2017.

[25] P. Thorat, R. Challa, S. M. Raza, D. S. Kim, and H. Choo, “Proactive
failure recovery scheme for data traffic in software defined networks,” in
IEEE NetSoft Conference and Workshops (NetSoft), 2016, pp. 219–225.

[26] C. Cascone, D. Sanvito, L. Pollini, A. Capone, and B. Sanso, “Fast
failure detection and recovery in SDN with stateful data plane,” In-
ternational Journal of Network Management, vol. 27, no. 2, p. e1957,
2017.

[27] Y.-D. Lin, H.-Y. Teng, C.-R. Hsu, C.-C. Liao, and Y.-C. Lai, “Fast
failover and switchover for link failures and congestion in software de-
fined networks,” in IEEE International Conference on Communications
(ICC), 2016, pp. 1–6.

[28] N. Ahmed, A. Roy, A. Mondal, and S. Misra, “SDN-based link recovery
scheme for large-scale Internet of Things,” in IEEE 22nd Int. Conference
on High Performance Switching and Routing (HPSR), 2021, pp. 1–6.

[29] R. AlZoman and M. J. Alenazi, “Exploiting sdn to improve qos of
smart city networks against link failures,” in 2020 Seventh International
Conference on Software Defined Systems (SDS), 2020, pp. 100–106.

[30] N. Tcholtchev and I. Schieferdecker, “Sustainable and reliable infor-
mation and communication technology for resilient smart cities,” Smart
Cities, vol. 4, no. 1, pp. 156–176, 2021.

[31] S. L. Aljohani and M. J. Alenazi, “MPResiSDN: Multipath resilient rout-
ing scheme for SDN-enabled smart cities networks,” Applied Sciences,
vol. 11, no. 4, p. 1900, 2021.

[32] H. Seddiqi and S. Babaie, “A new protection-based approach for link
failure management of software-defined networks,” IEEE Transactions
on Network Science and Engineering, 2021.

[33] P. K. Singh, S. Sharma, S. K. Nandi, and S. Nandi, “Multipath tcp for
v2i communication in sdn controlled small cell deployment of smart
city,” Vehicular communications, vol. 15, pp. 1–15, 2019.

[34] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
programming platform-independent stateful OpenFlow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 44–51, 2014.

[35] P. Megyesi, A. Botta, G. Aceto, A. Pescapé, and S. Molnár, “Challenges
and solution for measuring available bandwidth in software defined
networks,” Computer Communications, vol. 99, pp. 48–61, 2017.

[36] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards programmable enterprise WLANS with odin,” in workshop
on Hot topics in software defined networks, 2012, pp. 115–120.

[37] S. Misra, G. Xue, and D. Yang, “Polynomial time approximations
for multi-path routing with bandwidth and delay constraints,” in IEEE
INFOCOM, 2009, pp. 558–566.

[38] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog
computing-enabled internet-of-things: A network perspective,” in IEEE
INFOCOM, 2018, pp. 783–791.

[39] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with DIFANE,” ACM SIGCOMM Computer Communication
Review, vol. 40, no. 4, pp. 351–362, 2010.

[40] M. Hussain and N. Shah, “Automatic rule installation in case of policy
change in software defined networks,” Telecommunication Systems,
vol. 68, no. 3, pp. 461–477, 2018.

[41] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental SDN deployment in
enterprise networks,” in Annual Technical Conf., 2014, pp. 333–345.

[42] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[43] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing IoT
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. 5, no. 2, pp. 998–1010, 2018.

[44] M. Ibrar, L. Wang, G.-M. Muntean, N. Shah, A. Akbar, and K. I.
Qureshi, “SOSW: scalable and optimal nearsighted location selection
for fog node deployment and routing in sdn-based wireless networks
for iot systems,” Annals of Telecommunications, pp. 1–11, 2021.

[45] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

