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Han Xiao, Yirong Zhuang, Changqiao Xu, Senior Member, IEEE, Wendong Wang, Honeke Zhang, Fellow, IEEE,

Renjie Ding, Tengfei Cao, Lujie Zhong, and Gabriel-Miro Muntean Fellow, IEEE

Abstract—As a key enabling technology in intelligent Internet
of Thing(IoT), edge caching provides important support for
reducing core network load and improving network service
efficiency, especially for high bandwidth demand services rep-
resented by multimedia applications. However, external time-
varying information is hard to be obtained comprehensively in
complicated IoT environment. Meanwhile, there exists the inter-
changeability between content data (e.g., videos with different bi-
trates), which is difficult to make caching decisions online in real-
time to achieve fast feedback with low latency and avoid useless
deployment. To this end, this paper designs a transcoding-enabled
online cache scheme for IoT video service with cloud-edge-
terminal collaboration. Firstly, we design a variable bitrate video
routing strategy to dynamically retrieve content from cloud/edge
according to user demands. Furthermore, the video caching
problem is considered as an online convex optimization problem
to learn utility gradient and determine the optimal caching
strategy in real-time without any prior information. On this basis,
we extend the problem to elastic networks with dynamic available
resources, and prove the sublinear regret and sublinear constraint
violation. Finally, we summarized 5 video request datasets, and
carried out differentiated multiple verifications based on different
request habits and content requirements. Compared with the
most advanced algorithms in terms of delay, we evaluated the
performance advantages of the proposed scheme.

Index Terms—Video Cache, Online Learning, Cloud-Edge-
Terminal, Internet of Thing

I. INTRODUCTION AND MOTIVATION

Edge caching can significantly reduce the delivery distance
by storing content on edge servers closer to terminals, and
satisfy the request quickly. Benefiting from the advantage,
caching is especially suitable for future expanded IoT ap-
plications with the requirement of high-bandwidth and low
latency represented by video media, and has been considered

H. Xiao, C. Xu, W. Wang, R. Ding are with the State Key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, P.R. China. E-mail: {xiaohan, cqxu,
wdwang, 2021140795}@bupt.edu.cn

Y. Zhuang is with the Research Institute of China Telecom, Ave Zhongshan,
Guangzhou 510630, China. E-mail: 13316094433@chinatelecom.cn.

H. Zhang is with the School of Electronic and Information En-
gineering, Beijing Jiaotong University, Beijing 100044, China. E-mail:
hkzhang@bjtu.edu.cn.

T. Cao is with the School of Computer, Qinghai University, Xining, China.
E-mail: tfcao@qhu.edu.cn.

L. Zhong is with the Information Engineering College, Capital Normal
University, Beijing 100048, China. E-mail: zhonglj@cnu.edu.cn.

G.-M. Muntean is with the Performance Engineering Laboratory, School
of Electronic Engineering, Dublin City University, Dublin 9, Ireland. E-mail:
gabriel.muntean@dcu.ie.

as a promising technology with great potential to improve
network transmission efficiency and quality of experience
(QoE). Recently, Apple Inc. has begun to push the actual
deployment of edge cache (i.e., Apple Edge Cache, AEC [1]),
which becomes a commercial endorsement.

As the most popular IoT services, according to Cisco data
report [2], nearly four-fifths of mobile data traffic will be
generated from multimedia video. Meanwhile, the existing
research in [3] shows that, most of video traffic comes from
repeated requests for the same video, especially popular con-
tent, e.g. video clips, game replay, etc. This provides greater
operation space for caching mechanism. However, with the
development of media technology and user requirement, video
caching strategy has not always presented a universal solution.
The facing challenges mainly include the following aspects.

Interchangeability on requested content. The data in IoT
has duplication and potential substitution, e.g., videos with
various bitrates. Video is coded to multiple versions (e.g.,
multi-rate video) to adaptive accommodate dynamic networks
[4], [5]. Generally, the content with different qualities is
cached independently, although a video with any bitrate can
be scheduled to meet the requests for the same video with
another bitrate. The conflict between adaptive bitrate and cache
technology leads to the waste of resources. For this case, how
to balance delivery latency and storage resources become an
important issue to be considered in IoT multimedia service.

Unknown time-varying information. The video popularity
is dynamic. The requests and network conditions is time-
varying [12], [13]. The relevant information is difficult to
be obtained comprehensively in real-time, while caching is
expected to adapt dynamically to the information mentioned
above. Cache point has to determine what should be cached
and how to be more profitable in the future without any prior
information. It is still a pending issue and has become a
significant barrier to design caching mechanism.

Limited resources on edge. The cache points at the
edge are often resource-poor due to the severe deployment
conditions [6], [7]. On one hand, the missed requests still need
to be satisfied from cloud, and the existence of cache module
makes no sense here. More crucial is that the cache points at
edge often carry multiple types of services (e.g., payment,
navigation, etc.). The resources allocated to video services
may be elastic. How to make efficient caching decisions with
limited resources should be discussed carefully.

The above challenges require that the caching policy should
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be designed to accommodate complex environments, schedule
resources efficiently, and online cache beneficial videos with-
out prior information. This is difficult, as complex environ-
ments naturally affect the efficiency of mechanisms, and time-
varying requests conflict with timeliness. To this end, in this
paper, we expect to be able to leverage computing resources to
bridge substitutable videos, and transcode cached video seg-
ments to another bitrate when the discrepancy between request
and caching occurred [8]–[10]. Meanwhile, based on real-time
terminal requests and cloud state, the edge caching benefit
curve should be learned online to evaluate the future caching
performance in the absence of complete information. Thus, the
caching state is adjusted and updated quickly, and the solution
is expected to achieve long-term caching optimization through
simple and efficient online policy updates. Specifically, the
contributions are summarized as follows:

1) We design a transcode-enabled online caching (ToC)
architecture, embed the computation module into caching
mechanism, and model it as an online convex optimiza-
tion problem. To measure online performance, regret is
introduced to judge the gap between online decisions and
the offline optimal decision.

2) We propose a flexible routing policy to adjust the request
pattern of terminals. By maintaining a dynamic match-
ing pool, routes are skillfully determined to reduce the
overhead of transmission and transcoding.

3) We propose an online caching scheme in a stable IoT net-
work (ToC-S) to learn utility gradient and update cache
status online without any prior information. Through
rigorous mathematical proof, sublinear regret is achieved
when the step size is set as ∆x/J

√
T .

4) We further extend it into an elastic IoT network with
time-varying resources. A partial Lagrangian function is
introduced to design a dual update policy (ToC-E) and
search the saddle points. Strict theoretical proof supports
the sublinearity of constraint violation, i.e., O

(
T

3
4

)
.

5) We summarized 5 various video request datasets, and
carried out differentiated multiple verifications based on
different request habits and content requirements. The
evaluation results show that ToC has superior learning
ability and can achieve better performance than other
state-of-the-art schemes under unknown or even adver-
sarial IoT video requests.

This paper is organized as follows. Section I provides
background information, motivation, and contribution details.
Section II introduces the latest work on IoT video caching.
Section III gives the system model and optimization goal.
Section IV discusses the property of routing and caching
problems. Section V and Section VI design ToC-S and ToC-
E, respectively. Finally, Section VII presents the evaluation
results and Section VIII concludes.

II. RELATED WORK

This section mainly introduces the latest work on caching
and consists of the following three main parts.

A. Video-oriented Caching Policy

IoT video service is the most popular application and
suitable for caching, which has been favored by researchers.
For example, Chiang et al. design a two-layer MEC caching
architecture in literature [14], utilizing social information to
actively cache popular content. Li et al. propose a lifecycle-
aware video caching strategy in [15]. The content is clustered
according to the lifecycle and integrated into a general caching
system, which can significantly reduce cache replacement
frequency while maintaining high cache hit ratio. In addition,
in [16], Ayoub et al. propose a video-on-demand (VoD)
service framework, including edge caching and routing to
reduce the transmission energy consumption by sharing cache
content with each other.

It should be noted that the above research does not dis-
tinguish video quality. In this case, video caching strategy is
close to the traditional content caching mode(e.g., files). To
this end, Zhang et al. [17] consider the video caching problem
with scalable video coding (SVC), and develop an economical
caching strategy. It establishes the correlation between cache
overhead and service performance by efficiently scheduling the
interaction between base layer and enhancement layer. Jedari
et al. [18] consider the caching problem of SVC video as
an auction between network operators and content providers.
The proposal solves the social welfare maximization problem
through the iterative trading strategy of double auction, so as
to improve the delivery efficiency and maintain the economic
utility. In addition, Guo et al. [19] consider adaptive bitrate
video and propose a dynamic caching scheme with multiple
time scales. The video bitrate decision and cache decision are
executed on a large time scale, while the data transmission is
performed on a small time scale. Our previous work in [9]
also discussed the collaborative caching problem of emerging
immersive media, which requires the implementation of media
processing and the acquisition of prior.

B. Online Caching Policy

Online policy means that decision makers should cache
without knowing future information (e.g., popularity), which
is the objective condition under actual environment. Some
research works treat the scene as static, i.e., the popularity does
not change over time, the popularity in the future is consistent
with the present popularity, which is difficult to be applied
in practice [20]. To this end, Mehrizi et al. [21] consider
the spatiotemporal dependence of content popularity online,
and establish a probabilistic dynamic model of popularity
prediction. The model parameters are estimated by variational
Bayes, which reduces the network service costs notably. On
the other hand, Zhang et al. [22] consider the vehicle as the
cache carrier, and take the mobility of requester and cache
vehicle into account. Further, the authors propose an online
Lyapunov-based algorithm to optimize energy consumption
and improve cache hit rate.

Meanwhile, with the development of artificial intelligence
(AI) technology, caching strategies based on AI have also been
studied. Wu et al. [23] design a multi-agent reinforcement
learning-based caching method, utilizing neural network to
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Fig. 1. Scenario and workflow

simulate the real-time cache utility function. The evaluation
shows that the service load of small cell with limited storage
space is reduced dramatically. Qian et al. [24] integrated the
recommendation and cache into a framework and expressed
it as an average-cost Markov decision problem. Hierarchical
reinforcement learning is used to mine the mutual influence
relationship between recommendation and cache, so as to
maximize the utilization of bandwidth and reduce the total
amount of data transmitted. Liu et al. [25] propose a privacy-
preserving caching policy based on deep deterministic policy
gradient algorithm to improve the cache hit rate and meet the
privacy protection constraints, which ensures the reliability
of cache data. In fact, due to the fixed structure of neural
networks, AI-based methods currently face the scalability
problem and need a large amount of data to support the train-
ing, which brings some troubles to the practical application.

C. Difference with existing works

This paper introduces the online caching problem of sub-
stitutable content in dynamic external IoT environment with
unknown information, which addresses three issues that have
not been properly discussed in the past. First, it embeds
a computational transcoding module in caching and bridges
video with various bitrates. Second, it can adapt to external
information dynamically, including differentiated user needs,
time-varying network conditions, and resource status, etc.
Third, it can achieve fast, online and low latency feedback in
a simple and effective manner, and has theoretical guarantees.

III. MODEL AND GOAL

In this section, the involved models and the optimization
goal are introduced as follows. The related scenario and
workflow is shown in Fig. 1.

Note: This paper adopts lowercase italic symbols as scalars.
The uppercase symbols express constants. The bold symbols
are vectors. The calligraphic symbols demonstrate variable
space. The norm | · | denotes the cardinality of set or vector.
The symbols with the subscript t represent the value at that
slot, otherwise it is the general attribute.

A. Network Model

IoT video service is considered as a discrete system with
time slot in this paper. It mainly includes the following
participants.

Cloud is the content provider, which stores processed video
clips. When receiving data requests, it starts the transmission
process and delivers the video content to edge close to
terminals.

Cache point (CP) is the powerful edge node with storage
and computing capacity, which can connect cloud and provide
services to terminals. For convenience, CPs are organized as
M = {1, ...,m, ...,M}. The storage space size and computing
power of any node m are denoted as Cm and Hm, respectively.

Terminal corresponds to a video requester, i.e., viewer,
which can communicate with CP or cloud to obtain content.
The requests are generated according to dynamic interactive
behavior. In addition, it deploys an adaptive bitrate (ABR)
module [27], [28] to generate the bitrate demands. For clarity,
the terminal set is denoted as N = {1, ...n, ..., N}.

The network scenario is designed based on the traditional
bipartite cache network [29]. Two participants have a many-
to-many mapping, i.e. one cache point m serves multiple
terminals and one terminal n can access multiple CPs to obtain
content. Let lmn = 1 be the positive connection relationship
between m and n, otherwise lmn = 0.

B. Content Model

The video library is denoted as K = {1, ..., k, ...,K}, and
each content is encoded to multi-rate for accommodating dy-
namic networks when uploading. The quality set is expressed
as Bk = {1, ..., b, ..., B}. The video with higher bitrate can
provide terminals with higher QoE. The request initiated by
the viewer n is expressed as {uk, ub}, where uk ∈ K is
the requested content and ub ∈ Bk is the required bitrate
level. Therefore, the requested content space is denoted as
U = {uk ∈ K, ub ∈ Bk}. The request sequence of the
system is expressed as {ut}Tt=1. The requests from viewers are
generally related to the popularity, which is highly dynamic
and completely unknown to CPs. Even there exist adversarial
requests, which go against the popularity.

C. Cache Model

Multi-rate video is cached through maximum distance sep-
arable (MDS) codes [31]. The content is split into several
interrelated pieces and organized by random linear combi-
nations. Terminals can decode original video after receiving
enough amount of pieces. For clarity, we denote the cache
state of any CP m as xt. Each element xk,bm ∈ [0, 1] denotes
the amount of random coded pieces, and the feasible region
is denoted as D. sk,b is the unit size of video k with
bitrate b. The cache space of any CP m can be expressed as
X = {xk,bm |

∑K
k=1

∑B
b=1 x

k,b
m sk,b ≤ Cm,∀m, ∀k,∀b}, where

Cm is the storage space of CP m. Thus, the cache policy is
represented as: µ : {U × X}t → xt+1.

It should be noted that when the bitrate level of cached
video is higher than the requested quality ub, CP can achieve
fast transcoding at edge by scheduling computing resources
and providing services. To measure the computational cost,
the required computing resource is denoted as ζ||b − ub||ϵ,
where ||b−ub|| is the difference between the routed version b,
ϵ is the computing density and ζ is considered as the scaling
factor.
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D. Optimization Goal

Considering the transcoding-embedding caching function at
edge, we design the service utility from two parts: (1) the
traffic offloaded from cloud to edge, (2) the transcoding cost
related to terminal requests. The utility is denoted as follows.

ft(xt) =
B∑

b=1

lm,nz
k,b
t,m,ns

k,b
(
wk,b

m,n − ζ||b− ub||ϵ
)

(1)

where zk,bt,m,n ∈ [0, xk,bt,m] is the amount data of routing and lm,n

is the indicator about the connectivity. wk,b
m,n is the delivery

utility, which can be measured based on RTT [30].
For an online algorithm, influenced by dynamic, random,

and even maliciously adversarial user requests, the incoming
requirement is likely to deviate from current cache status,
which makes caching module difficult to work. Thus, the regret
is designed to measure the performance difference between the
online decision and optimal configuration in hindsight.

x∗ = argmax
x

T∑
t=1

ft(x) (2)

Thus, the regret is expressed as follows.

RT = E

[
T∑

t=1

ft(x
∗)− ft(xt)

]
(3)

According to the above description, we expect to gain
performance advantages during the long-term service process
rather than the online caching status being optimal at an
exact slot. It requires CP to capture the potential change trend
without knowing popularity information.

Algorithm 1 Routing Algorithm
1: Input: CPs set M. User request un = {uk, ub}, n ∈ N .

The cache status x.
2: Output: Routing result Ψ.
3: /* Initialization: */
4: Routing result Ψ = {∅}.
5: for CP m ∈ M do
6: CP m order the cached video with various bitrate.
7: Υ add the content kb

(1)

m with fewest computational
transcoding overhead.

8: end for
9: /* Routing: */

10: while
∑|Ψ|

i=1 ψi < 1 do
11: Υ select the routing decision kb

(p)

m with optimal utility
ft(xt).

12: Υ remove the routed content kb
(p)

m and add the content
kb

(p′)

m , p′ > p, xk,b
(p′)

m > 0 with least transcoding overhead.
13: if Ψ is ∅ then
14: Ψ add first element ψ1 : min{1, xk,b(p)m,n |p = 1}
15: else
16: Ψ add ψ2 : zk,b

(p)

m,n = min{xk,b(p)m,n , 1−
∑|Ψ|

i=1 ψi}
17: end if
18: end while

IV. ROUTING AND CACHING PROBLEM

The service capability of edge CP ultimately depends on the
user request. We consider each unit of high bitrate video can
be transcoded to the lower required one in an equal amount
through additional computation. Various CP can provide dif-
ferent utilities for terminal n. How to help terminals route
from the appropriate node is the first problem we consider.

A. Routing with Various Bitrate

CP and terminal are 2 independent sets during the delivery
process. It means that the relationship only exists in the
unidirectional association from one set to another, i.e. the
topology is bipartite cache graph. For CP, the traffic scale and
transcoding overhead is the key. As for terminals, it usually
pays attention to the delivery benefit wmn(e.g., transmission
rate, extra overhead, etc.).

With a given cache configuration xt, terminal n de-
termines the priority according to the delivery utility
wm,n, (m ∈ M, lm,n = 1), while the utility of CP m is re-
flected by Equ. (1). For multi-rate video, CP can provide
flexible services to terminals through transcoding as fol-
lows. First, CP m,m ∈ M order the priorities of cached
video with various bitrates based on transcoding overhead as
{kb(1)m , kb

(2)

m , ...}, where b(1) is the bitrate that demands least
overhead to be transcoded to ub, i.e., minb=b(1) ||b − ub||.
b(2) is the bitrate with the second least transcoding overhead1

similarly. Meanwhile, the scheme maintains a matching pool2

Υ = {kb(p)m }Mm=1 to iteratively determine zk,b
(p)

m,n , where p is
the highest priority cached video (no routed), and a routing
vector Ψ = {ψ1, ..., ψe, ...|∀ψe := zk,bm,n > 0} to keep the
route result. The amount of routing data in the first round is
denoted as zk,b

(1)

m,n = min{1, xk,b(1)m,n }, the subsequent routing
result is zk,b

(p)

m,n = min{xk,b(p)m,n , 1−
∑|Ψ|

i=1 ψi}. For the sake of
notation, let zkm,n =

∑B
b=1 z

k,b
m,n be the amount of routing data

to CP m. The detailed description is listed as Algorithm 1.
Notice that the subscript t is hidden during routing. The

algorithm can execute at any time with cache state xt−1 (cache
is empty at slot 0).

B. Online Caching Optimization

After obtaining the routing result at slot t, CP needs to
update the cache status in time according to requests. We
consider it as a structured, repeated game. Benefiting from
the powerful modeling and online learning ability of online
convex optimization (OCO) [32], it provide a feasible idea to
establish a framework with flexibility and adaptation.

Definition 1. Online Convex Optimization is expected to
minimize utility functions on convex feasible set under dynamic
input sequence.

Proposition 1. Transcoding-enabled Online Caching (ToC) is
an OCO problem.

1The transcode function can only be enabled from higher bitrate to lower
bitrate. The super-resolution technique requires efficient models and a lot of
computational resource, which beyond the scope of this paper.

2Matching pool dynamically maintains the optimal routable information for
accessible CPs.
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First, the feasible region (i.e., D) of ToC is a continuous
closed set, which is a convex set obviously. Then, the requests
{ut}Tt=1 under dynamic preferences are dynamic sequences.
As for the caching utility function, it is designed based on
the typical femtocaching model [29], which is convex. We
especially enable the edge transcoding function for multi-rate
video services. To analyze the convexity, Equ.(1) with specific
m and n (k = uk) can be simplified as follows:

f(x)
∆
= max

zb∈[0,xb]

B∑
b=1

zbh(b)

s.t.
B∑

b=1

zb < 1,

0 ≤ zb ≤ xb

(4)

where h(b) = sb · (wb− ζ||b−ub||ϵ) is determined by request
and matching relation between CP and user.

As shown in (4), the goal is to maximize the utility. We
consider to verify the function is concave, so that the convexity
of −f(x) can be easily obtained.

Proof. For a concave function f(x), the following inequation
should be satisfied for any feasible caching vector x1,x2:

f(λx1+(1−λ)x2) ≥ λf(x1)+(1−λ)f(x2), ∀λ ∈ [0, 1] (5)

Meanwhile, consider z1, z2 as the routing result of x1,x2,
respectively, (i.e., zi =

∑B
b=1 z

b
i ≤

∑B
b=1 x

b
i = xi), f(xi) =∑B

b=1 z
b
ih(b). Let x3 = λx1+(1−λ)x2 and z3 = λz1+(1−

λ)z2, the following relation can be presented.

z3 = λ

B∑
b=1

zb1+(1−λ)
B∑

b=1

zb2 ≤ λ

B∑
b=1

xb1+(1−λ)
B∑

b=1

xb2 = x3

(6)
Meanwhile, according to the utility definition in Formula (4),

f(x3) = max
zb∗≥0

B∑
b=1

zb∗h(b) ≥ zb3h(b) (7)

Thus,

f(x3) ≥ zb3h(b)

= λ
B∑

b=1

zb1h(b) + (1− λ)
B∑

b=1

zb2h(b)

= λf(x1) + (1− λ)f(x2)

(8)

The Equ.(5) and proposition are proofed.

In fact, through the convexity is proofed, its differentiability
is difficult to be guaranteed, which can be illustrated by the
following simple case. For example, when

∑b′

b=ub
xb > 1, for

any bitrate b, ub ≤ b < b′, increasing the amount of cached
data can improve utility obviously. For the cached video of
higher bitrate b, b ≥ b′, the existing cached video can already
satisfy the request, and the increase of quantity has no effect on
utility. It means that there exists a critical point with various
gradients. To avoid accidents, we discuss supergradient ∂f
instead of gradient ∇f of f(x) below.

Algorithm 2 Transcoding-enabled Online Caching under Sta-
ble Network (ToC-S)

1: Input: User request un = {uk, ub}. The cache status xt
at current slot t. The step size ηt.

2: Output: Caching status xt+1 at next slot.
3: while t ≤ T do
4: Select update step ηt.
5: Generate routing result zk,b according to Algorithm 1.
6: Content index, transcoding, and obtain utility f(x).
7: Generate cache candidate decision x̂t based on super-

gradient ∂ft.
8: if x̂t ∈ D then
9: xt+1 = x̂t.

10: else
11: xt+1 = Π(x̂t).
12: end if
13: end while

V. TRANSCODING-ENABLED ONLINE CACHING UNDER
STABLE IOT NETWORK

Next, we expect to design the OCO-based cache optimiza-
tion scheme to improve online utility during cache service. In
this section, we first discuss the case of a stable IoT network,
in which the utility and constraints are known and stable over
time. The cache update process can be expressed as follows.

xt+1 = Π(xt + ηt∂ft) (9)

where Π(·) is the projection function to map out-of-scope
decisions back into scope and ηt is the step size. The projection
here is considered as Euclidean projection:

Π(x̂t) = argmin
x∗
t

||x̂t − x∗t || (10)

where x̂t = xt + ηt∂ft is the candidate decision. If x̂t ∈ D,
the projection step can be skipped. Otherwise, the projection
should be operated to find the nearest point x∗t within domain.
The detailed process is shown in Algorithm 2 (ToC-S).

Actually, the update step and the supergradient of algorithm
can directly affect the algorithm performance. Next, we first
analyze regret, and determine the step size to minimize it.

A. Regret Performance

The theoretical performance of the algorithm is introduced
as follows.

Theorem 1. The regret of ToC-S is:

RToC,S
T ≤ 3∆xJ

√
T

2
(11)

Proof. According to Pythagorean theorem [33], given x̂ out-
side the domain D and the projection x = Π(x̂), for ∀y ∈ D,
we have:

||y − x|| ≤ ||y − x̂|| (12)

which also is called the non-expansive property of projection.
Let x∗ ∈ argminx∈D

∑T
t=1 ft(x). The difference between the
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6

updated caching xt+1 and the optimal decision x∗ in hindsight
can be expressed as follows.

||Π(x̂)− x∗||2

≤ ||xt + ηt∂ft − x∗||2

= ||xt − x∗||2 + 2ηt∂ft(xt − x∗) + η2t ||∂ft||2
(13)

Rearrange it and obtain,

2∂ft(x
∗ − xt) ≤

||xt − x∗||2 − ||Π(x̂)− x∗||2

ηt
+ ηt||∂ft||2

(14)
Meanwhile, according to the concavity of f(x), the follow-

ing inequation with supergradient holds.

ft(xt)− ft(x
∗) ≤ ∂ft(xt − x∗) (15)

Considering the long-term nature of online caching, summing
equation (15) along time series and combining equation (14),
we have:

2

(
T∑

t=1

(ft(xt)− ft(x
∗))

)
≤ 2

T∑
t=1

∂ft(xt − x∗)

=
T∑

t=1

(
||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηt||∂ft||2

)

=
||x1 − x∗||2 − ||xT+1 − x∗||2

ηt
+

T∑
t=1

ηt||∂ft||2

(16)

It can be observed that the upper bound of regret is related
to the change of the cache state, the supergradient, and the
update step. For ∀x ∈ D, the maximum changed scope of
cache states is expressed as the diameter ∆x of the feasible
set.

∆x =
K∑

k=1

B∑
b=1

√
||xk,b1 sk,b − xk,b2 sk,b||2

(a)
=
√

||C1 − C2||2
(b)

≤
√
2Cm

(17)

where C1 and C2 are different caching configuration for the
derivation (a). In the worst case, where the configurations
are completely deviated from each other, i.e., a configuration
caches something that has been abandoned by another config-
uration. The difference is up to 2Cm for the derivation (b).

As for the supergradient, the calculation of utility at slot t
is directly affected by the routing result zk,b at current slot t,
given the cache state xt−1. zk,b is constrained by the amount
of caching. The lowest bound of ∂f is 0, which occurs in the
cases that the increase of caching cannot improve the utility
as the simple example mentioned above. The upper bound is
determined by delivery utility wk,b and transcoding cost. To be
specific, the upper bound occurred with b∗ = argmaxb{wk,b−
ζ||b−ub||ϵ}. For the sake of convenience, let J = max{wk,b−
ζ||b− ub||ϵ} ≥ ||∂f ||.

Combined with Equation (17), Equation (16) will be con-
verted to the following inequation.

T∑
t=1

(ft(xt)− ft(x
∗)) ≤ ∆2

x

2ηt
+

T∑
t=1

ηtJ
2

2
(18)

The step size should be carefully chosen to minimize the
upper bound of regret, which makes the performance of the
algorithm more stable and more efficient. Taking the first-order
derivative of the right term of Eq. 18 and the optimal step size
is obtained as η∗ = ∆x/J

√
T until slot T . Since we cannot

obtain T in advance, the caching function could stop at any
slot and wait to be enabled again. Thus, for each slot t, the
optimal step size is ∆x/J

√
t. Thus,

T∑
t=1

(ft(xt)− ft(x
∗)) ≤ ∆xJ

√
T

2
+

∆xJ

2
∑T

t=1

√
t

(a)

≤ 3∆xJ
√
T

2

(19)

where the derivation (a) is deduced from 1/
√
t series sum-

mation. The theorem is proofed.

As shown in theorem 1, the growth rate of regret is
sublinear. As the time T goes to infinity(+∞), the regret of
the online algorithm approaches zero, i.e. lim

T→∞
RT /T → 0. It

means the performance of online decision is not weaker than
the optimal solution in hindsight during long-term running.

VI. TRANSCODING-ENABLED ONLINE CACHING WITH
ELASTIC IOT NETWORK

In fact, in practice, under the influence of network operators,
service providers, and terminals, the external conditions of
cache modules are likely to be changed. For example, the
edge server carries various services (e.g. multimedia, games,
shopping, etc.) at the same time. The reserved resources are
usually elastic. For multimedia services, we describe this
dynamic in terms of cache space and computational resources,
and introduce the following constraints:

C1:
T∑

t=1

g1t (x) =
T∑

t=1

K∑
k=1

B∑
b=1

xk,bsk,b − Ct ≤ 0 (20)

C2:
T∑

t=1

g2t (x) =
T∑

t=1

zk,bsk,b||b− utb||ϑ −Ht ≤ 0 (21)

where Ct and Ht are the capacity of storage and computing
resource, respectively. Facing burst requests, resource capacity
limits can be temporarily breached to meet user needs through
the compensation of subsequent feasible decisions. It means
that to balance the requirements of each service, the long-
term resource requirements should be limited. For the sake of
presentation, let the constraint violation of various resources
be denoted as V i

T =
∑T

t=1 g
i
t, i ∈ {1, 2}. The corresponding

regret is denoted as follows.

RToC,E
T = E

[
T∑

t=1

(ft(x
∗
t )− ft(xt))

∣∣git(x) ≤ 0

]
(22)
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Algorithm 3 Transcoding-enabled Online Caching under Elas-
tic Network (ToC-E)

1: Input: User request un = {uf , ub}. The cache status
xt at current slot t. The capacity constraint of storage
and computing resource, Ct and Ht. The step size η. The
control factor δ.

2: Output: Caching status xt+1 at next slot.
3: while t ≤ T do
4: Select update step ηt.
5: Generate routing result zk,b according to Algorithm 1.
6: Content index, transcoding, and obtain utility f(x).
7: Obtain ∇xLt(xt, λ

i
t) = ∇xft(xt) +

∑2
i=1 λ

i
t∇xg

i
t(x)

and ∇λiLt(xt, λ
i
t) = ∇λigt(xt).

8: Update cache xt+1 and weights λi according to Eq.
(24) and Eq. (25).

9: end while

where x∗t is the optimal dynamic decision, corresponding to
the various resources condition.

The necessary and sufficient condition for primal-dual opti-
mality of convex optimization problems is to find Lagrangian
saddle points. Inspired by this, we introduce the partial La-
grangian as follows.

Lt(x, λ) = ft(x) + λ1t g
1
t (x) + λ2t g

2
t (x)−

δη

2
||λ||2 (23)

where λi, i ∈ {1, 2} is the Lagrangian multiplier, δ is the
control factor. The regularizer δη||λi||2/2 is introduced to
reduce the influence from the rapid growth of λi to ∇xLx,
which leads to the fluctuation of the proposal.

The algorithm is expected to ensure the advantages of cache
performance while taking constraint violation into account.
This requires the algorithm to dynamically control cache status
x and multipliers λi based on the environment. Different from
Eq.(9) and Eq. (10), the update process is listed as follows:

xt+1 = Π(xt − η∇xLt(xt, λ
i
t))

= Π

(
xt − η

(
∇xft(xt) +

2∑
i=1

λit∇xg
i
t(x)

))
(24)

Meanwhile, the dual variable λt+1 is updated as follows.

λit+1 = ΠR+
(λit + η∇λiLt(xt, λ

i
t))

= ΠR+

(
λit + η∇λigt(xt)

) (25)

where ΠR+ is the projection to ensure the dual variable is
feasible. The detailed description is shown in Algorithm 3.

At slot t, the algorithm automatically adjusts the weight λi
according to the constraint violation to control the algorithm
performance. Next, the algorithm performance is analyzed.

A. Performance Analyze

In order to verify the regret bound, we first consider the
inequality relation of the Lagrangian function:

Lt(xt, λ)− Lt(x, λt)

≤ 1

2η

(
||x− xt||2 − ||x− xt+1||2 + ||λ− λt||2 − ||λ− λt+1||2

)
+
η

2

(
||∇xLt(xt, λt)||2 + ||∇λLt(xt, λt)||2

)
(26)

Proof. Considering the convexity of Lt(·, λ) of given dual
variable and the concavity of Lt(x, ·) of given primal variable,
the following inequation is obtained.

Lt(x, λt) ≥ Lt(xt, λt) +∇xLt(xt, λt)(x− xt) (27)

Lt(xt, λ) ≤ Lt(xt, λt) +∇xLt(xt, λt)(λ− λt) (28)

Combining these two inequation, we have:

Lt(xt, λ)− Lt(x, λt)

≤ ∇xLt(xt, λt)(xt − x) +∇λLt(xt, λt)(λ− λt)
(29)

According to the nonexpansive property of projection men-
tioned above and Eq. (16), ∇xLt(xt, λt)(xt − x) in the RHS
of Eq. (29) can be deduced.

||x− xt+1||2 ≤ ||x− xt||2 + η2||∇xLt(xt, λt)||2

− 2η∇xLt(xt, λt)(xt − x)
(30)

Similarly, ∇λLt(xt, λt)(λ − λt) can be obtained. Plugging
these two item to Eq. (29), Eq. (26) is obtained.

From a long-term perspective, under the dynamic bench-
mark x∗t , the upper bound can be denoted as follows.

T∑
t=1

Lt(xt, λ)− Lt(x
∗
t , λt)

≤
T∑

t=1

1

2η

(
||x∗t − xt||2 − ||x∗t − xt+1||2

)
+

T∑
t=1

1

2η

(
||λ− λt||2 − ||λ− λt+1||2

)
+

T∑
t=1

η

2

(
||∇xLt(xt, λt)||2 + ||∇λLt(xt, λt)||2

)
(31)

Considering in turn, the first term is expressed as follows:

T∑
t=1

(
||x∗t − xt||2 − ||x∗t − xt+1||2

)
= ||x∗1 − x1||2 − ||x∗T − xT+1||2

+
T∑

t=2

(
||xt − x∗t ||2 − ||xt − x∗t+1||2

)
≤ ||x∗1 − x1||2 + ||x∗T ||2 + 2

T∑
t=2

||xt||||x∗t−1 − xt||

≤ 3 + 2∆x (||x|| ≤ 1, ||x∗ − x|| ≤ ∆x)

(32)
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As for the second term,
∑T

t=1

(
||λ− λt||2 − ||λ− λt+1||

)
= ||λ− λ1||2 − ||λ − λT+1||2 ≤ ||λ||2. For the last term, we
have:

||∇xLt(xt, λt)||2 = ||∇ft(xt) +
2∑

i=1

λit∇git(xt)||2

(a)

≤ 3

(
||∇ft(xt)||2 +

2∑
i=1

(λit)
2||∇git(xt)||2

) (33)

According to Eq. (20) and Eq. (21), the constraint is a linear
function, and the gradient can be obtained as G1 = sk,b and
G2 = sk,b||u − ub||ϑ. Let G = max{G1, G2}.Meanwhile,
the upper bound of constraint violation within a single slot is
limited by the maximum resource number of nodes, which we
simply denote it as M here. Thus, Eq. (33) can be converted
as follows.

||∇xLt(xt, λt)||2 ≤ 3
(
J2 + ||λt||2G2

)
(34)

Similarly,

||∇λLt(xt, λt)||2 = ||gt(xt)− δηλt||2

≤ 2
(
||gt(xt)||2 + δ2η2||λt||2

)
≤ 2

(
M2 + δ2η2||λt||2

) (35)

In summary, the Eq. (31) is deduced to the following
inequation.

T∑
t=1

Lt(xt, λ)− Lt(x
∗
t , λt)

≤ 1

2η

(
3 + 2∆x + ||λ||2

)
+
Tη

2

(
3J2 + 2M2

)
+
η

2

(
3G2 + 2δ2η2

) T∑
t=1

||λt||2

(36)

Next, to obtain the upper bound of regret, we substitute Eq.
(23) into Eq. (36) and obtain:

T∑
t=1

[ft(xt)− ft(x
∗
t )]

+
2∑

i=1

T∑
t=1

[
λigit(xt)− λitg

i
t(x

∗
t )
]
− δηT

2
||λ||2

≤ 1

2η

(
3 + 2∆x + ||λ||2

)
+
Tη

2

(
3J2 + 2M2

)
+
η

2

(
3G2 + 2δ2η2 − δ

) T∑
t=1

||λt||2

(37)

By choosing δ = 5G2 ≥ 3G2 + 2δ2η2 properly, the last
term can be eliminated. Meanwhile, we group the terms with
λ together into the LHS of the inequality:

T∑
t=1

[ft(xt)− ft(x
∗
t )]

+
2∑

i=1

[
λi

T∑
t=1

git(xt)−
(
δηT

2
+

1

2η

)(
λi
)2]

≤
T∑

t=1

λitg
i
t(x

∗
t ) +

1

2η
(3 + 2∆x) +

ηT

2

(
3J2 + 2M2

)
(38)

For the cached benchmark decision x∗, the constraint vi-
olation should be zero or even negative. Thus, the first term
on the RHS with λ ≥ 0 can be eliminated. Meanwhile, note
that the second term on the LHS is a concave function about
lambda. λ can be maximized by the first-order derivative, and
it is easy to obtain:

λit
∗
=

[∑T
t=1 g

i
t(xt)

]+
δηT + 1

η

(39)

And the Eq. (38) can be converted as follows.

T∑
t=1

[ft(xt)− ft(x
∗
t )] +

2∑
i=1

([∑T
t=1 g

i
t(xt)

]+)2

2(δηT + 1
η )

≤ 1

2η
(3 + 2∆x) +

ηT

2

(
3J2 + 2M2

) (40)

Obviously, the second term on the LHS is greater than zero.
By properly choosing the step size η =

√
∆x

T , the regret can
be estimated as follows:

RTOC,E
T ≤ 3

2

√
T

∆x
+
√
T∆x

(
1 +

3J2

2
+M2

)
(41)

Then the long-term constraint violation can also be derived
from Eq. (40) as follows.

T∑
t=1

git(xt) ≤

[
T∑

t=1

git(xt)

]+

≤

√
2

(
Ω+

1

2η
(3 + 2∆x) +

ηT

2
(3J2 + 2M2)

)
(δηT +

1

η
)

≤

√√√√2

(
Ω+

3

2

√
T

∆x
+
√
∆xT

(
1 +

3

2
J2 +M2

))

×

√
δ
√

∆xT +

√
T

∆x

(42)
where Ω =

∑T
t=1 [ft(x

∗
t )− ft(xt)] is the accumulated differ-

ence. In the worst case, the user requests the highest bitrate
video with the complete data (i.e., 100% routing). The optimal
decision in hindsight should be xK,B = 1, while the worst de-
cision generated by the proposed policy is zero(i.e. the utility is
zero). Let ξt = max{ft(x∗t )−ft(xt)} = ft(x

∗
t ) = sK,BwK,B .
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Fig. 2. Open Dataset Property

Thus, we have Ω ≤
∑T

t=1 ξt = ξT and the constraint violation∑T
t=1 g

i
t(xt) ≤ O

(
T

3
4

)
holds.

Therefore, on the one hand, the performance of the algo-
rithm in elastic networks over time is not worse than that of
the dynamic benchmark {x∗t }. On the other hand, the TOC-E
can maintain sublinear constraint violation, which means that
the violation tends to be non-positive over time.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the proposed scheme under
different request patterns to complete the multiple verification.
It is mainly introduced from four aspects: open datasets,
experimental scenario, comparing algorithm and evaluation
results.

A. Open Datasets

First, to simulate the actual user request, we introduced
the following datasets and processed the data to fit the
transcoding-enabled video caching scenario.

• LDOS-CoMoDa3. The LDOS-CoMoDa is a context-rich
movie recommend dataset. It contains ratings for the
movies and some contextual information describing the
situation where the movies were consumed. The con-
cerned items are: userID (15 - 200), itemID (1 - 4138),
and rating (1-5).

• MovieLens4. MovieLens is a real movie rating dataset
that consists of tens of millions of ratings and tag
applications, which was recently updated in 2018.

• Movie Tweet5. Movie Tweet is a dataset consisting of
ratings on movies that were contained in well-structured
tweets on Twitter.

• Yahoo6. It contains movies rating generated on Yahoo
Movies up to Nov. 2003. It provides content and ratings
information on a 1-5 scale and records the ratings which
are collected from 4,000 users on more than 2,000 items.

3https://www.lucami.org/en/research/ldos-comoda-dataset.
4https://grouplens.org/datasets/movielens/
5https://github.com/sidooms/MovieTweetings
6https://github.com/sisinflab/LinkedDatasets/tree/master/yahoo 23MB

It should be noted that some datasets are widely used in
recommendation systems. For suiting our scenario, we take
the rated level (e.g., recommendation degree) as the preference
information of users. Meanwhile, we notice that the number
of requests for part of videos is very scarce (e.g., 0-2 times).
Thus, video without adequate information is screened out in
data pre-processing to reduce video library size. In addition,
for the consideration of differences, various numbers of users
are loaded from datasets as request initiators in the scenario.
The specific attributes of open datasets are shown in Fig. 2.

B. Experimental Scenario
Next, we introduce the experimental scenario. We consider

the scene as a 500 ∗ 500m2 area, which is shown in Fig. 3.
The geographical location of users and cache points follows
2-dimensional random Poisson point distribution with the
density of 8 and 60, respectively. The communication range of
each CP is set as a circular area with a radius of 200 meters.
The storage space of CP follows uniform distribution between
1800 and 3200, which can store about 40 videos with high
bitrate. The computing resource is a random number between
0.5 and 2.5. The video library size is set as 100 in simulation
when the requests follows Zipf distribution, and the video
bitrate set includes four levels from high bitrate to low bitrate.

C. Comparing Algorithm
We introduce several comparisons to verify the performance

of the proposed scheme.
• LFU(Least Frequently Used). By evicting the least re-

cently used video items, LFU ensures that cached video
is likely to be requested again.

• LRU(Least Recently Used). LRU improve the cache hit
probability by maintaining video content with high usage
frequency.

• FIFO(First In First Out). The video item which is stored
first will also be ejected first.

• SB(Static Benchmark). Given the information of request
sequence, SB output a optimal caching policy and keep
it unchanged to improve the utility.

Fig. 3. Experimental Scenario
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Fig. 4. Service Utility (Zipf) Fig. 5. Cache Hit Ratio (Zipf) Fig. 6. Constraint Violation(Zipf) Fig. 7. Direct Hit versus Transcode
Hit (Zipf)

Fig. 8. Service Utility(Yahoo) Fig. 9. Cache Hit Ratio(Yahoo) Fig. 10. Constraint Violation (Yahoo) Fig. 11. Direct Hit versus Transcode
Hit (Yahoo)

Fig. 12. Service Utility (Movie Lens) Fig. 13. Cache Hit Ratio(Movie
Lens)

Fig. 14. Constraint Violation (Movie
Lens)

Fig. 15. Direct Hit versus Transcode
Hit(Movie Lens)

• DB(Dynamic Benchmark). Given the request sequence,
DB generate caching policy based on various requests
and resource conditions at a certain moment t.

D. Evaluation Result

In this section, several schemes are evaluated on different
request modes generated from various datasets. We discussed
the aspects of cache service utility, cache hit rate, constraint
violation under elastic network, and the impact of the number
of available bitrates on edge hit rate in detail, as follows.

1) Zipf: First, we evaluate the cache performance under the
request mode with Zipf distribution by performing caching
decisions at edge CDN nodes. The video library size is set
to 60. Each video is assigned a request probability based on
the subscript. As shown in Fig. 4, without prior knowledge,
online learning algorithms explore the potential benefits of
cache decisions from complex information, and the service
utility is gradually improved with iteration. On the other hand,
due to the fixed mode of the request, LFU, LRU show adaptive
advantages in terms of regularity, and their performance is
better than that of online learning schemes in long-term
process, only slightly worse than that of dynamic benchmark
algorithms and static benchmark algorithms. Finally, SB and
DB achieve greater benefits with the full knowledge of request
information.

Correspondingly, the probability of cache hit is shown in
Fig. 5. 7 strategies listed can be divided into three categories.
FIFO, LFU, and LRU are traditional cache strategies that play
well in most of them. TOC-E and TOC-S show their learning
attributes, while DB and SB have relatively higher hit ratios.

In addition, we also test the constraint violation under elastic
network conditions in Fig. 6. According to the distribution
of cache space and computing resources, the violation status
varies, but eventually converges to a relatively stable state.
This shows that constraint violation does not increase linearly
with algorithm running and validates our previous conclusion
about constraint violation.

Finally, we evaluate whether video cache hits came from
transcoding in Fig. 7. By adjusting the number of bitrates
available, the conclusions vary. For the first case, it does not
need to schedule computing resources, and can directly index
the video content at edge, which is called a direct hit. On
the contrary, it is called transcoding hit when computational
transcoding is required. For example, there is only one avail-
able bitrate, and the video hit must all be direct hits. When
there exist 2 available bitrates, more than 70% of the requests
are directly hit, while transcoding hits less than 1%. As the
number of available bitrates increases, it increases the size
of the content library in effect. The overall video hit ratio
tends to decrease, which can be observed from the sum of the
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Fig. 16. Service Utility (Tweet) Fig. 17. Cache Hit Ratio (Tweet) Fig. 18. Constraint Violation (Tweet) Fig. 19. Direct Hit versus Transcode
Hit (Tweet)

Fig. 20. Service Utility (Comoda) Fig. 21. Cache Hit Ratio (Comoda) Fig. 22. Constraint Violation (Comoda)Fig. 23. Direct Hit versus Transcode
Hit (Comoda)

subsequent direct hit ratio and transcoding hit ratio. On the
other hand, the direct hit rate is significantly reduced, while the
transcoding hit rate is further improved, and when the number
of additional available bit rates reaches 6, the transcoding hit
rate is more than 10%.

2) Movie Yahoo: It should be clear before we discuss the
following results, due to the prophetic information in DB, the
utility, cache hit rate remain at higher level. To improve the
readability, we mainly display the caching service performance
of the other 6 strategies. From Fig. 8 to Fig. 11, we notice that
TOC-E has strong learning properties, and its utility and hit
ratio are often weaker than other superior strategies in the early
stage, but with the progress of iteration, the utility gradually
catches up with and surpasses the latter. However, LFU shows
its performance superiority again. Its utility is close to the
static benchmark algorithm. As for constraint violations in
Fig. 14, the database (Yahoo) contains more content, resulting
in larger storage violations, while the computation is still on
the same level as before. With the increase in the number of
available bitrates as shown in Fig. 15, the transcode hit rate
of the dataset shows a Stationary trend in the later period.

3) Movie Lens: The basic attributes of Movie Lens is
similar to both scenarios mentioned before, which we describe
below. First, in terms of service utility in Fig. 12, the learning
class strategy shows its ability in irregular requests, and its
performance is ahead of LRU and FIFO. LFU still holds good
performance thanks to the maintenance of usage frequency
in space. Through the observation of hit ratio in Fig. 13, it is
found that the actual hit ratio of the proposed scheme is higher
than that of LFU. This is because the LFU mainly provides
services for the request directly, while the learning policy
needs to consume extra overhead in the case of more hits.
The constraint violation increases further with the number of
content libraries, implying that its numerical size may increase
with the content library size, all things being equal. Finally, the
inflection point of transcoding hit and direct hit appears. When

the number of available code rates reach 6, both transcoding
hit and direct hit fall.

4) Movie Tweet: The content library size is significantly
increased in the tweet dataset, and the effects are demon-
strated as follows. The utility and hit rate of each strategy
are decreased obviously. With the same storage space and
computing resource configuration as the previous experiments,
the hit ratio is reduced to about 25%. However, the constraint
violation in this experiment shows it has no direct relationship
with the content library size, and it can still enter the stationary
state after iteration as before. Meanwhile, with the increase in
the number of available bitrates, the direct hit and transcoding
hit probability are lower. It shows that the content library size
and the available bitrate have intrinsic relations to cache hit
ratio. We conclude that when the content library size is more
than 200, the number of available bit rates is 3, which is the
most conducive to the work of transcoding module.

5) Movie Comoda: The number of file libraries is further
increased in the comoda. The storage space configuration is the
same as that in the previous experiments. In this scenario, the
performance of the learning policy is superior. Specifically,
in the case of a similar hit ratio, various transcoding hits
produce differentiated utility. However, since the number of
requests is determined, and the performance is evaluated under
the environment with 3 available bitrates, the computational
resource violation remains the same. Meanwhile, the trend of
transcoding hit and direct hit is consistent as mentioned before,
and the overall hit rate is still maintained at 20%.

VIII. CONCLUSIONS

To satisfy the requirements of low latency and high QoE for
real-time IoT video services, this paper embeds computation
into caching mechanisms, establishes bridging connections
between substitutable multi-rate video, and proposes a cloud-
edge-terminal collaborative online caching framework that
enables transcoding in unknown time-varying environments.
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By maintaining a dynamic matching pool, content routing is
proactively determined to reduce overhead. Furthermore, the
cache online update strategy under stable IoT networks is de-
signed to adapt to unknown prior environmental information.
It is further extended to time-varying IoT networks, where the
resources are limited and the status is difficult to be evaluated.
A partial Lagrangian function is introduced to search the
saddle points. Strict theoretical proof supports the sublinearity
of regret and constraint violation. Finally, we utilized multiple
datasets to form a differentiated environment and completed
multiple verifications, demonstrating the superiority of the
proposed scheme compared to representative schemes.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (NSFC) under grant No. 62225105,
62072047 and by the Postdoctoral Science Foundation of
China under grant No. 2022M720518. G.-M. Muntean wishes
to acknowledge the Science Foundation Ireland (SFI)’s sup-
port via grant nos. 16/SP/3804 (Enable) and 12/RC/2289 P2
(Insight).

REFERENCES

[1] Apple Edge Cache, https://cache.edge.apple/.
[2] Cisco, Cisco Annual Internet Report (2018−2023) White Paper, 2020.

Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[3] G. Li et al., ”Understanding User Generated Content Characteristics:
A Hot-Event Perspective,” 2011 IEEE International Conference on
Communications (ICC), 2011, pp. 1-5.

[4] D. Schroeder, A. Ilangovan, M. Reisslein and E. Steinbach, ”Effi-
cient Multi-Rate Video Encoding for HEVC-Based Adaptive HTTP
Streaming,” in IEEE Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 1, pp. 143-157, Jan. 2018.
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