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MDC2: An Integrated Communication and
Computing Framework to Optimize Edge-assisted

Caching for Improved Multimedia Services in
UAV-based IoT Networks
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Abstract—Multi-access Edge Computing (MEC) has revolu-
tionized the delivery of large-scale mobile multimedia services by
endowing network edge with computing and caching capabilities.
This not only relieves the load on core networks, but also
significantly reduces data access latency. However, deploying edge
data centers with a high density to accommodate the growing
demand for multimedia services is not cost-effective. With the
rapid development of the Internet of Things (IoT) industry,
recent studies have shown that by allowing UAVs with integrated
computing and communication to form a Mobile Device Cloud
(MDC) environment via UAV-to-UAV (U2U) communications in
IoT networks, UAVs can play an important role in assisting cel-
lular networks with multimedia delivery and providing excellent
service for IoT devices on the ground. While a MDC environment
composed of UAVs offers flexibility and cost-effectiveness, the
challenge remains in allocating caching resources in a timely
manner to meet the dynamic content demands. To address
this challenge, we design a novel Mobile Device Cloud-enabled
Caching (MDC2) framework, which makes use of the available
caching and U2U communication capabilities to enable any UAV
to obtain dynamically content from other nearby UAVs via the
IoT network. By modeling the dynamic network status as a
fluid-based system, MDC2 employs a dynamic caching allocation
algorithm to minimize both service latency and caching costs.
Extensive experiments demonstrate that MDC2 outperforms a
state-of-the-art MDC multimedia delivery approach by improv-
ing average cache utilization with over 40% and reducing average
access latency with more than 25%.

Index Terms—UAV, Internet of Things (IoT), Caching, Mobile
Device Cloud, Multimedia Streaming

I. INTRODUCTION

THE latest estimates predict that the virtual reality-related
network traffic will increase more than 20 times and the

Internet video traffic with more than 25% in the next five
years [1]. Multi-access Edge Computing (MEC), also known
as Mobile Edge Computing, is seen as a promising solution
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for delivering large-scale multimedia services as it allows for
network edges to possess and make available for third party
usage significant computational power and caching resources
[2]–[4]. However, the deployment costs of MEC are extremely
high, making it increasingly challenging to meet the growing
demands of rich multimedia services in the future 5G and
beyond networks [5].

Recently, with the rapid development of UAVs with inte-
grated computing and communications support, the deploy-
ment of UAVs to assist ground base stations in content distri-
bution over IoT networks has attracted extensive attention [6],
[7], especially in Mobile Device Cloud (MDC) scenarios [8],
[9]. In such MDC contexts, each UAV caches and distributes
contents via UAV-to-UAV (U2U) transmissions in the IoT
network by utilizing its own caching resources. This enables a
highly flexible enhancement of the capability of the edge cloud
and supports scalability. The MDC environment composed of
UAVs in an IoT network context is becoming increasingly
popular as it provides a cost-effective alternative to MEC,
offering a resource-rich environment and general management
frameworks. At the same time, the low cost of UAVs, conve-
nience of server deployment and flexibility of mobility make
them play an important role in optimizing the performance
of cellular network spectrum efficiency, transmission delay
and throughput of multimedia services. However, there also
exist certain challenges which need to be investigated before
any large-scale deployment. First, different from data centers,
the availability of caching resources for caching multimedia
content at each UAV is highly dynamic. Secondly, UAVs have
their own network status, caching, and energy resources for
caching; these resources may get exhausted when content is
aggressively cached. Moreover, as UAVs move continuously,
the limited range of U2U communications and fluctuations of
the wireless connections result in discontinuous multimedia
content delivery. External non-stationary aspects make reliable
delivery of latency-sensitive multimedia services very chal-
lenging in MDC environments.

This paper primarily focuses on addressing these MDC
challenges by making the following contributions:

• We design a novel Mobile Device Cloud-enabled Caching
framework (MDC2), which uses the available caching and
U2U communication capabilities at any UAV to obtain
content from other nearby UAVs via the IoT network. We
present an online optimization model for caching config-
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uration in MDC environments and the MDC2 algorithm.
• Considering the changing mobility characteristics, we

capture content changes based on video requirements and
design a novel algorithm based on fluid models. The
algorithm contains three components (a) a fluid-based
model for estimating the resource demand for different
contents at different time slots, (b) a caching algorithm
for configuring the caching decisions in the network,
and (c) a smooth playback-ensured fast delivery policy
(SPFDP) for selecting the providers with better delivery
performance to requesters.

• In contrast to the classical caching methods, which al-
locate the caching resources statically, MDC2 evaluates
the number of UAVs in various states during each time
period and aims to minimize the peak number of clients
requesting content and the amount of copies required.
Also, the MDC2 algorithm is such designed to optimize
content request delay and caching configuration. The
results of various experiments show that compared to
existing caching algorithms, MDC2 performs better by
reducing the delay and improving cache utilization.

The rest of the paper is organized as follows. Section II
discusses the recent related works and highlights the novelty
of the proposed framework. Sections III and IV focus on the
system design and problem formulation. Section V introduces
the novel caching configuration algorithm. Section VI assesses
the performance of the proposed approach through extensive
experiments and Section VII draws conclusions.

II. RELATED WORKS

Recently, there has been a lot of research aimed at im-
proving edge caching capabilities through static deployment of
UAVs in IoT networked systems. For example, in the context
of limiting the energy consumption of UAVs, Cheng et al.
proposed a joint optimization problem of content popularity
and cache placement, and obtained the minimum content
acquisition delay by solving two two-dimensional matching
problems [10]. Wang et al. constructed a mathematical model
based on the temporal and spatial distribution characteristics
of UAV network content popularity, residual cache changes
and user download experience effects, and used this math-
ematical model to obtain an optimized content placement
method in an UAV-based network [11]. Zeng et al. proposed
a user association optimization algorithm based on penalty
successive convex approximation and an UAV deployment
and hierarchical cache placement algorithm based on penalty
difference-of-convex programming. The proposal minimizes
the total video access latency for all users through a combi-
nation of layered cache placements and UAV deployments, as
well as user-associated design [12]. Luo et al. formulated a
joint optimization problem for UAV deployments and content
placements by considering heterogeneous user activity levels
and dynamic content libraries. The average request delay is
minimized by solving two subproblems. Specifically, they used
a weighted K-means method for UAV deployment and a Q-
learning algorithm to learn best content placement [13].

Fan et al. proposed a traffic load balancing scheme in
UAV-assisted fog networks to minimize wireless latency for

networked users. In this scheme, the authors divided the
problem into two sub-problems and designed two algorithms
to optimize UAV placement and user association, respectively
[14]. Fazele et al. proposed an iterative algorithm that aims to
jointly optimize the number of UAVs, their 3D placement,
and the cache placement probability of content stored in
UAVs and IMDs by maximizing secure cache throughput [15].
Fan et al. proposed an emergency communication network
framework for UAVs that supports caching, and designed a
content-centric association strategy within a specified cyclic
cache region, in which each UAV is equipped with a cache
unit that adopts a probabilistic cache strategy [16]. Zhuang
et al. provided a popularity-based information mining and
content delivery strategy for blind popularity-distribution in
D2D scenarios. The authors designed a multi-armed bandit
model and proposed single-cache and multi-cache placement
strategies based on online learning to achieve blind popular-
ity in D2D networks [17]. Most of these caching schemes
depend on probability-based estimates of content popularity.
However, content popularity is difficult to predict and can
change frequently, particularly in mobile environments where
demands are highly variable. To address this critical limitation
of existing caching solutions, our approach involves regularly
updating the popularity probability of the content through a
fluid-based state transition model.

Some recent studies also utilize reinforcement learning
algorithms for cache configuration. In [18], Somesula et al.
proposed a deep reinforcement learning based cooperative
caching mechanism to implement efficient caching in D2D en-
abled MEN. Zhang et al. studied cooperative content delivery
from various cache-enabled network edges [19]. By jointly
considering cache and cooperative delivery, the researchers
formulated a finite-time Markov Decision Process (MDP) and
proposed an algorithm to minimize the average delay. In [20],
Zong et al. presented the challenge of cache management
under dynamic content popularity as a forecasting issue and
created a framework, which uses a deep reinforcement learning
ensemble approach, as a solution. In [21], Somesula et al.
modeled the cooperative cache update problem as a partially
observable MDP (POMDP) problem and designed a multi-
agent recurrent cooperative caching algorithm to maximize the
cumulative reward. However, network condition can change
dynamically, complicating much the state space in reinforce-
ment learning (RL) models. Also, the generalization problem
can be hard to solve and RL-based models may not satisfy
diverse and differentiated users’ requests.

Additionally, UAVs and users are not stationary, and their
locations changes much over time. Most of the above so-
lutions deploy UAVs dynamically or statically according to
the characteristics of the environment and the distribution
characteristics of the population, and solutions may not be
universal. Our scheme describes the motion of UAVs as a
random waypoint model. By solving the dynamic distribution
problem of cache under this motion model, our algorithm
has stronger generalization performance and is expected to
show good performance in different scenarios. In addition,
in order to address the dynamic changes in the demand
for multimedia resources generated by the mobility of IoT
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Fig. 1. Illustration of the proposed MDC2 framework

devices on the ground, our approach redefines the state of
each UAV throughout the content distribution process in MDC
environments via an IoT network. In this work, five innovative
state definitions are proposed and all possible state transitions
in MDC environments are covered. The system architecture,
including state definitions and transitions are described next.

III. SYSTEM ARCHITECTURE

A. MDC2 Control Logic

Fig. 1 presents the proposed system architecture. The frame-
work consists mainly of the following modules:

• State Configuration Manager: This module maintains
states based on the locations of the UAVs with respect
to the Access Point (AP)1. The possible states are initial,
offline, pending, transmission and caching state. For each
UAV, states can change over time, which will be further
elaborated in the following sections.

• Caching Coordinator: This module allocates the caching
resources to different video content based on a caching
scheme. There is one caching element in each UAV that
collects the video contents from the corresponding AP.

• Data Delivery Controller: This controller operates at
each AP and receives video requests and selects the
video provider for each IoT device. This module also
manages the main handover of UAVs between APs.
It is based on controller-to-controller communication,
which is perceived as a message exchange such that
the current controller de-registers the UAV and sends a
”Connect To” message to the destination controller. An
< IP,MAC > tuple is stored in the local database and
is carried forward to the destination controller. We divide
the area in clusters such as each cluster has one controller
and all APs that are communicating in this area will have
one aggregated controller location. When an AP outside
of a cluster responds with an ”Accept” message, then the
controller has completed the handover procedure.
If a drop occurs due to an unexpected signal strength
decrease or any other misbehavior, then the handover
fails. This paper does not consider such failure scenarios.

1Note that the AP and BS notions are interchangeably used in a 5G context

TABLE I
NOTIFICATIONS

Symbol Description
K the universe of available videos in the video repository
T time frames set of the system
Ik(t) the proportion of UAVs in Initial state at t
Pk(t) the proportion of UAVs in Pending state at t
Ck(t) the proportion of UAVs in Caching state at t
Tk(t) the proportion of UAVs in Transmission state at t
Ok(t) the proportion of UAVs in Offline state at t
f(r) the probability density function of m located at r
pa the probability of m moving into area a
φk(t) the proportion of UAVs that can cache content k at t
βk the requesting rate of content k
Ek,t the average request delay at t
Dk,t the average delivery delay at t
vk the eviction probability of cached content k
τk the upper bound on the time interval
E(Tk) the average caching lifetime
Fl,a the probability distribution of m moving out area a
Na the set of UAVs
A the set of area a
Cm available caching space of UAV m

In the MDC2 framework, the controller at each AP is mainly
responsible for the following tasks. First, the controlling
module collects the UAV status information and assigns each
UAV a specific state to indicate its current actions related to a
specific content piece, such as caching or pending. Secondly,
the controlling module maintains the client status with the
State Configuration Manager, as client status changes dynami-
cally. Additionally, the Caching Estimator module that focuses
on caching takes note of the changes in supply and demand.
After determining the necessary copies of each content, the
scheduling module in charge of the content distributes the
caching responsibilities to the UAVs in their respective regions
based on the recommended caching distribution method.

On the UAV side, the Caching Coordinator decides the
allocation of cache content based on the request received
by the AP. In order to achieve UAV-assisted video content
distribution, the AP discovers U2U pairs according to the 5G-
U2U profile and performs one-hop media content distribution,
AP discovers U2U pairs based on the 5G-U2U profile for
one-hop media content delivery. To be more precise, the AP
first searches the network information database for a received
request to identify a valid copy of the desired content. If
UAVs containing the desired content are within range of the
requester’s U2U communication, content delivery can be done
by creating a U2U link between the provider and the requester.
Otherwise, the AP will process the request for content by
establishing communication with the requester.

B. State Configuration Manager

This section presents the state space management and the
proposed fluid-based model that characterizes how the popula-
tion of UAVs in different states varies with the request arrivals,
caching allocations, and data delivery. The notations used in
the model are given in Table I.

1) State Space Management: We partition the network area
into multiple non-overlapping areas, i.e., A = {1, 2, . . . , A},
whereby a given area a ∈ A is a circular region that is asso-
ciated with the AP located at the center of the area a. The AP



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XX XX XX 4

Caching

Offline

Pending

Transm
ission

Initial
⑤

①

②

Caching the content k

③
Receiving 
Request k

⑪

⑦

⑨

⑩

Evicting content k

O(t)

T(t)I(t)

P(t)

C(t)
Finishing 
Delivery k⑥②

Fig. 2. State transition for MDC framework with novel Transmission State
which represents UAVs that are delivering data to requesters.

receives data from a remote server and interconnects the UAVs
to the controller in a ∈ A. Let Na denote the set of UAVs
forming the MDC. Let K denote the universe of available
videos in the video repository (remote server). The system
time is divided into time frames, i.e., t ∈ T = {1, 2, . . .}. The
UAV movements are assumed to follow the random waypoint
model [22]. For a given time frame t, each UAV has one of
the following three roles according to the operations related
to distributing the video item k ∈ K: normal node and it does
not participate in the distribution of k; consumer as it is the
requester of the content k; or caching node as it holds the
content k in its caching space.

Based on the role of UAVs at different times, the following
five states are defined:

1) Initial state: when an UAV moves into area a, it becomes
a normal UAV in the initial state. We use Ik(t) to
represent the proportion of UAVs (with respect to the
total number of UAVs in the considered area a) in the
current state in a time frame t.

2) Pending state: when an UAV requests content k, it is
in pending state; we use Pk(t) to represent the overall
proportion of UAVs in pending state.

3) Caching state: UAV enters the caching state when it
has a copy of k and can provide it to other UAVs. The
proportion of UAVs in this state at time t is denoted by
Ck(t).

4) Transmission state: an UAV in this state is delivering
data to requesters. We denote Tk(t) the population
proportion in this state.

5) Offline state: the UAVs in this state have left the area
a in the given time frame t; the proportion of UAVs in
this state is represented by Ok(t).

Note that for video k in a time frame t, the state of an UAV
is unique, and the sum of the proportion of UAVs in each state
is always one.

Transitions between these five states for any video item k
are interpreted as shown in Fig.2. For each k ∈ K, we describe
the transition rates from one state to another as follows.

Transition 1: If an offline UAV moves into the area a,
its state is set to Initial. According to previous analysis for
circular areas in [23], the probability of any UAV m moving
into area a can be given by the curve integral pa =

∮
Ra

f(r)ds,
where Ra is a circular function with centre c (c indicates the
AP coordinates, i.e., c = (xa, ya)) and radius R (communica-
tion range of AP of a). f(r) is the probability density function
of an arbitrary UAV m located at position r in Random Way
Point (RWP) motion model [22]. Thus, the rate of Transition
1 is paOk(t).

Transition 2: If an UAV caches video k ∈ K, its state
is set to Caching. The caching parameter φk(t) determines
the proportion of UAVs that cache content k at time t.
This parameter represents the caching scheme. For example,
φk(t) = 0 indicates that none of UAVs in state Ik(t) will
cache item k.

Transition 3: If an UAV requests content k, its state is set to
Pending. The arrival process of the request is further modeled
as the Poisson process, and λk∆t is used to represent the
probability of content k being requested at time slot ∆t, where
λk is Poisson rate. When ∆t is small enough, ∆t→ dt. Thus,
we use βkI(t) to represent the rate of Transition 3, where βk

=λk∆t.
Transition 4: When an UAV finishes downloading the re-

quested content k, its state changes to Caching. In our system,
when the controller receives the request from UAV m, it first
allocates a provider (i.e., an UAV in Caching state) to m. The
probability of successfully allocating a provider for UAV m
equals Ck(t)/Pk(t). After the provider is selected, an U2U
route between the provider and requester will be set up for
data delivery. The time interval between the instant of the
UAV request for a video item k and the instant of receipt of
all required data depends on two types of delay: (1) Request
delay: the delay between UAV requesting the video and its
reception of the first video data packet. (2) Delivery delay:
the time interval between receiving the first and the last video
data packet. Let the average request delay and delivery delay
in a given time frame t be denoted as Ek,t and Dk,t. Thus, the
rate of Transition 4 can be expressed as Ck(t)/(Ek,t+Dk,t).

Transition 5: When the AP receives a request for video
k from an UAV in Pending state, the AP’s Data Delivery
Controller calculates the best provider for video k. The calcu-
lation is based on finding the UAV provider with the lowest
total transmission delay. An UAV in Pending state may the
provide video k to multiple other UAVs. If an UAV in state
Caching Ck(t) receives a request for content k, it enters the
Transmission state Tk(t). The corresponding probability can
be given by the ratio between the population of pending UAVs
and the population of UAVs holding k, i.e., Pk(t)/Ck(t).
Therefore, we use Pk(t) to represent the rate of Transition
5.

Transition 6: After finishing the video transmission of
content k, the UAVs in the Transmission state will enter state
Caching Ck(t). Similar to the Transition 4 case, the rate of
Transition 6 can be expressed as Tk(t)/(Ek,t +Dk,t).

Transition 7: When the caching space for caching at an
UAV is full, a caching content update is required. The eviction
probability of cached content k is denoted by vk. Based on
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the assumption that LRU is used, vk can be calculated by
[23]. Following [23], vk is given by the inverse of the average
caching lifetime, i.e., 1/E(Tk), which can be derived as:

E(Tk) = E[t]− E[t0]

= β−1
k eβkeτk −

e−βkτk(τk + 1
βk

)

eβkτk
+ τk

(1)

where τk denotes the upper bound on the time interval between
consecutive caching hits. For example, if two consecutive
requests for k are more than τk spaced apart, then item k
will be evicted from the cache.

Transitions 8, 9, 10, and 11: As any UAV can leave the
area, all states can become offline with a certain probability.
Following [23], the probability distribution of any UAV mov-
ing out of the AP’s communication range can be expressed
by:

Fl,a =

∫ k

h

1

b− a

∮
Ra

f(δn|r)f(r)dxdy (2)

where f(δn|r) represents the conditional probability that the
UAV is located in area δn.

2) Fluid-based Modeling: The dynamic transitions of states
can be characterized by the following ordinary differential
equation with initial state (I(t0), P (t0), C(t0), T (t0), O(t0)):

dIk(t)

dt
= f(r)Ok(t)− Ik(t)Tk(t) + vkCk(t) (3)

dPk(t)

dt
= [βk − Fl,a]Ik(t)−Wk(t)Pk(t) (4)

dCk(t)

dt
= Wk(t)Pk(t) + φk(t)Ik(t)− Fl,aCk(t) (5)

dTk(t)

dt
= φk(t)Ik(t)− Lk(t)Tk(t) (6)

dOk(t)

dt
= Fl,a −Ok(t)[f(r) + Fl,a] (7)

with Tk(t) = βk + φk(t) + Fl,a, Wk(t) = Tk(t)/(Ek,T +
Dk,t)−1, and Lk(t) = βk+E−1(Tk)+Fl,a+Ck(t)/(Ek,T +
Dk,t).

To represent the state in a time frame t, each UAV maintains
a one-hot encoding (Ik(t),Pk(t),Ck(t),Tk(t)), whereby I, P,
C, T represent the Initial, Pending, Caching, Transmission
state, respectively. Specifically, by collecting one-hot encoding
from all UAVs, the AP can calculate the number of UAVs in
the Initial, Pending, Caching, Transmission states for different
media at a time frame t. The number of UAVs in the region
shared between APs so that UAVs in the Offline state can be
estimated. Further, the ratio of pending UAVs and the total
number of UAVs can be obtained, denoted as the requesting
rate βk for each content. UAVs also report the moving speed
and current location at each time slot to the controller for
estimating the moving in/out rate.

IV. CACHING CONFIGURATION

In this section, we discuss the function of caching coor-
dinator in MDC2 framework. The caching coordinator model
is composed of the network caching estimator model and the
UAV caching allocator model. In each time frame T , the net-
work caching estimator model determines the optimal caching

parameter φk of content k by collecting the initial state of
the state configuration manager model, and the UAV caching
allocator model describes the process of caching allocation
according to φk. In the following part, we will explain the
detailed working process of network caching estimator model
and UAV caching allocator model by describing the making
of caching decision and the design of caching algorithm.

A. Caching Decision Making

In an UAV-assisted video content distribution scenario, to
determine the optimal caching parameter φk, it is necessary
to consider the limited caching resources of UAVs and the
associated communication latency and cost. On one hand,
excessive video caching can reduce both communication costs
and access latency, but it consumes a lot of caching resources.
On the other hand, although reducing the video cache ratio can
reduce the consumption of caching resources, the number of
video requests increases correspondingly, and the communica-
tion cost and video access delay between UAVs become larger,
reducing the quality of service. Therefore, the optimal caching
allocation strategy should balance the number of requests and
caching consumption. The number of video requests at a time
frame T is positively correlated with the proportion of UAVs
in Pending state, i.e., Pk(t). Assuming that UAVs contribute
with the same amount of caching space when making caching
decisions, then caching consumption is positively correlated
with the proportion of UAVs in Caching state, i.e., Ck(t). So
caching decision’s objective function in each frame T can be
formulated as:

JT (φk) = αPk(T
∗) + βCk(T

∗) (8)

where α+β = 1 and T ∗ = argmax
t∈T

Pk(t). T ∗ is the moment
when the maximum number of requests occurs in time frame
T , which is used to represent the peak load of the system.
JT,a(φk) can be derived by solving equations (3)–(7) via
numerical methods, i.e., the Runge-Kunta method. The goal is
to optimize the overall caching configuration over the entire
time horizon T . Therefore, the caching optimization problem
is defined as follows:

Minimize

N∑
a=1

∑
t∈T

∑
k∈K

Jt,a(φk) (9)

S.t 0 ≤ φk ≤ 1 (10)

In our system, controllers share UAV count information to
estimate the number of offline UAVs. However, even though
this information is shared among controllers, each controller
makes decisions based solely on its initial state, independent of
the states of other controllers. Based on the formulated prob-
lem expressed in equations (9) and (10), the decision making

process of each controller is separable.
N∑

a=1
from equation (9),

means that the optimum of (9) can be solved individually for
each objective

∑
t∈T

∑
k∈K

Jt,a(φk) at each controller a. From the

formulation perspective, the problem can be distributed to each
controller as follows:
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Minimize
∑
t∈T

∑
k∈T

Jt,a(φk) (11)

S.t 0 ≤ φk ≤ 1 (12)

In each time slot t, we first calculate J(φk) for each of
k by introducing all φk ∈ [0, 1] into equations (3)–(7), and
selecting the optimal φk,T by:

φ∗
k,t = arg min

φk∈(12)
Jt,a(φk) (13)

Throughout, we assume that a time frame t is long enough
for caching operations. At the beginning of a time frame,
the controller estimates the caching demand based on the
fluid-based model, and then it makes caching decision for
optimizing the content distribution in the current time frame.

B. Caching Algorithm Design

We propose two different caching algorithms to illustrate
the process of caching allocation: (1) probabilistic caching;
and (2) stable-preferred caching.

Probabilistic Caching: We define Cm as the available
caching space of UAV m. In each T , the AP broadcasts
caching replicas for each content sequentially in time frame T
by the descending order of φ∗

k, the controller sorts the UAVs
in the descending order of Cm. For each UAV in IoT system,
if the UAV has free caching, then it will cache the content
k with probability φ∗

k. If the UAV’s caching is full and it is
determined to cache k, the UAV will free up caching space by
evicting some content according to the LRU replacement rule.
The pseudo-code for the above iteration is shown in Algorithm
1.

Stable-preferred Caching: The content with high caching
probability will be preferably placed at UAVs that have high
probability of staying in the current area a (i.e., are not likely
to leave the area). This is important because the number of
replicas of the content will change when an UAV moves in
and out of an area. When an uav moves out of an area,
the content cached on it cannot be requested, resulting in a
situation where the demand for these contents is higher than
their availability (i.e. a cache shortage). In this case, the request
delay for these contents will increase. Besides, when the UAV
moves out of its area, the number of replicas cached by the
mobile UAVs in the area needs to be increased to deal with
the cache shortage problem. In the case of UAVs entering an
area, multimedia service performance will not be affected, but
content replicas will still need to be redistributed. Therefore, in
order to diminish the influence of UAV’s movement behavior,
we propose the stable-preferred caching algorithm that puts
content into UAVs with high stability. We define S(m) as
the stability of UAV m. To differentiate the stability level of
UAVs, we jointly consider the average moving speed vm and
its distance Dm to the edge along the direction of speed:

S(m) = Dm/vm (14)

A large value of S(m) means that the UAV m has a high
probability of staying in the current area for a period of
time in the future, and thus has a high stability. We also

Algorithm 1: Probabilistic caching algorithm in time
frame T
Input: Cm: available caching space of UAV m,

requesting probability distribution
Output: Caching configuration

1 for k ∈ K do
2 φ∗

k = arg min
φk∈(12)

JT,a(φk);

3 end
4 Sort UAVs in area a in descending order of Cm;
5 Sort videos in K in descending order of φ∗

k;
6 Controller side:
7 while k ∈ K do
8 Broadcast k;
9 end

10 UAV m’s side:
11 while k ∈ K do
12 Determine whether to store k with φk;
13 if k is determined to cache then
14 if Cm > 0 then
15 Cache k;
16 Cm ← Cm − 1;
17 end
18 else
19 Proceed LRU;
20 Cache k;
21 end
22 end
23 end

consider content popularity, where popularity is a network-
level concept independent of area. Unlike (1) in which each
replicas of content is cached in descending order of φ∗

k, in
(2) we consider that content with higher popularity should
be cached preferentially. Content popularity represents the
arrival rate of content requirements in the future period of
time. Caching each content in descending order of popularity
will increase the caching hit rate. In MDC2 framework, we
represent the popularity of the content k by the proportion
of UAVs in caching state at t, i.e., Ck(t). The regular update
of Ck(t) reflects the changing demand for content k in real
time. To sum up, in Stable-preferred Caching algorithm, during
each frame T , the controller sorts the contents and UAVs in
the descending order of Ck(t) and S(m), respectively. Ck(t)
represents the popularity of the content, and its value will be
updated periodically. Let the number of UAVs in the area a
be denoted as Na(T ). For the each k, the first ⌊φ∗

kNa(T )⌋
will be outputted from Na and selected to cache the k. The
pseudo-code for the above iteration is shown in Algorithm 2.

V. MOBILITY-AWARE ENHANCED FAST U2U VIDEO
DELIVERY

In this section, we formulate the U2U video delivery
problem and then solve it by proposing a smooth playback-
ensured fast delivery policy (SPFDP) for selecting the content
providers with the lowest delay while also smoothening the
video playback.
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Algorithm 2: Stable-preferred caching algorithm in
time frame T

Input: Na(T ): the number of UAVs in the area a, Na:
a set of UAVs, S(m): the stability of UAV m,
Cm: available caching space of UAV m, |N |:
the minimum number of UAVs to cache video
k, requesting probability distribution, Ck(t)

Output: Caching configuration
1 for k ∈ K do
2 φ∗

k = arg min
φk∈(12)

JT,a(φk);

3 end
4 Sort UAVs in Na in descending order of S(m);
5 Sort videos in K by the descending order of Ck(t);
6 Controller side:
7 while k ∈ K do
8 if ⌊φ∗

kNa(T )⌋ ≥ |N | then
9 Select the first ⌊φ∗

kNa(T )⌋ UAVs to cache k;
10 end
11 else
12 Select |N | UAVs to cache k;
13 end
14 end
15 UAV m’s side:
16 while k ∈ K do
17 if m is selected to cache k then
18 if Cm ≥ 0 then
19 Cache k;
20 Cm ← Cm − 1;
21 end
22 else
23 Proceed LRU;
24 Cache k;
25 end
26 end
27 end

As described in the fluid-based model described in equations
(3)–(4), the request and delivery delays affect the efficiency
of the requester and the busy nodes. Lower delays not only
improve the QoS, but also the cache utilization. Assume an
IoT device on the ground sends a request for video k, which
is accepted by UAV n and forwarded to the controller of the
corresponding AP. When the controller receives the request for
video k from UAV n, it will select a provider for delivering
data k. Let Pk denote the set of providers of video k. For each
m ∈ Pk, let d(m,n) and B(m,n) represent the current end-
to-end delay and bandwidth between m and n, respectively.
Let Vk and Bk denote the size and bitrate of k, respectively.
We then formulate the problem of selecting provider for n as
follows:

minDm = d(m,n) + Vk/B(m,n) (15)
B(m,n) ≥ Bk (16)
m ∈ Pk (17)

The objective of equation (15) is to minimize the total
delay, and the constraint from equation (16) enforces that the
bandwidth is larger than the bitrate of k, thereby ensuring
smooth playback. The equation (17) constraint ensures that
the candidate provider m holds the cached replica of item k.

By solving the above problem, we design SPFDP. For a
request from an UAV n, the controller rearranges the candidate
providers in Pk in ascending order of their Dm, i.e, for
m, j ∈ Pk, Dm ≥ Dj for m < j. This can be achieved by
using, for instance, the quicksort algorithm with a complexity
of O(N logN). The optimal solution is:

m∗ = arg min
m∈Pk,B(m,n)≥Bk

Dm (18)

As a result, the controller derives m∗ with Algorithm 3.
Based on the SPFDP, we present the overall design of our

U2U-based video delivery scheme:
(1) UAV n receives a request for k from the IoT device

and then issues the request for item k to the AP of its
residential area a. The AP forwards the request to the
controller for processing.

(2) If Pk at the controller of area a is non-empty (Pk denotes
the set of UAVs carrying the content k in area a), then
the controller will execute Algorithm 3 to select UAV m
as provider and establish the U2U route from provider
UAV m to the requesting UAV n.

(3) If Pk is empty, the controller of area a will inquire
with the controllers of its neighbourhood areas about
requesting item k. If there exists a neighbor area b with
non-empty Pk, then the controller of area b executes
Algorithm 3 with the controller of area a as input,
extracts the data from its provider UAV m and forwards
it to the controller of a via the fronthaul link between the
APs in a and b. Then, the controller of area a forwards
item k to the requesting UAV n.

(4) If item k is not stored in either a or its neighbours, then
the request will be directly forwarded to the video server
and the server will return the video content to n via the
AP. The AP acts as a forwarder only.

(5) UAV n forwards k to the IoT device on the ground via
UAV-to-Device (U2D) communications.

VI. PERFORMANCE EVALUATION

A. Set-up

The simulations are performed with Python on a computer
with an Intel i7-12700 CPU and 32 GB RAM. We consider
a network area of 3000 × 3000 m2 with 12 5G-NR APs
deployed at arbitrary locations within the network area. Each
AP has a communication range of 500 m. The number of total
UAVs is set to 300, and each UAV is capable of 5G-U2U
communication. The U2U link has a communication range of
150 meters and a bandwidth of 30 Mbps. 20 media instances
are used in the experiment, each of which has a duration of
200 seconds. The video segments have a length of 2 seconds
and a bitrate of 8 Mbps. The arrival of video requests for each
instance follows a Poisson distribution. The parameter λ of the
Poisson distribution is randomly selected between 2 and 20.
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Algorithm 3: Provider selection for the request for
content k

Input: Requester n, Pk: the set of UAVs carrying the
content k, d(m,n): end-to-end delay between
m and n, B(m,n): bandwidth between m and
n, Vk: the size of content k, Bk: the bitrate of
content k

Output: Provider m∗

1 for m ∈ Pk do
2 Dm = d(m,n) + Vk/B(m,n);
3 end

Sort Pk in ascending order of Dm;
m = 1;
while m ∈ Pk do

if B(m,n) ≥ Bk then
Return m;

end
else

m++;
end

end

The simulation time is 1000s and 95% confidence intervals are
evaluated. We assume that the motion model of UAV is RWP.
Given the moving velocity range, each UAV can independently
change its own position during the simulation.

The following two performance metrics are considered:
• Average access latency (AAL): After sending the request,

the waiting time to receive the first packet can be defined
as access latency. The average of access latency for all
UAVs is defined as AAL.

• Caching hit ratio (CHR): CHR is defined as the ratio at
which video requests from UAVs can be satisfied.

The advanced Random-Cache algorithm introduced in [23]
will be compared with the MDC2 algorithm.

B. Simulation Results

1) Impact of Caching Size: Caching size refers to the
total amount of content an UAV can store. Caching size
determines how many mobile devices an UAV can serve and
how many different kinds of content it can cache. In UAV-
based IoT networks, the size of the caching directly affects
the performance of the edge-assisted caching. Figures 3 plot
the AAL and Figures 4 plot the CHR results for different
caching sizes when Random, MDC2-Sta, and MDC2-Pro are
used in sequence. MDC2-Sta and MDC2-Pro stand for stable-
preferred caching and probabilistic caching, respectively, as
described previously.

Each data point in Fig. 3 indicates the AAL at the end of the
simulation, and the data point in Fig. 4 represents the average
CHR during the simulation, with varying caching space from
1% to 4% of the maximum UAV caching space. According to
Fig. 3, with the increment of caching size, the AAL of each
algorithm has a decreasing trend. This phenomenon can be
easily understood since the likelihood of accessing content
within a single hop is directly proportional to the caching
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capacity. However, MDC2-Sta outperforms MDC2-Pro and the
random strategy [23] with up to 11% and 17% lower AAL. In
Fig. 4, the CHR of three methods increases with the increment
of total caching size. This can be attributed to the fact that a
higher caching hit rate can be achieved with a larger caching
size yield. The CHR of both MDCMDC2 methods is higher
than that of the Random Cache [23]. This can be attributed
to the precise and prompt estimations of content demands.
For example, with 4% of the cache size, MDC2-Pro achieves
a higher CHR than random caching. Compared with MDC2-
Pro, MDC2-Sta achieves higher CHR, i.e., 20% higher than
MDC2-Pro at size 4%. The reason for this improvement is
mainly because content with higher popularity is placed on
more stable devices, which increases the caching hit rate.

2) Evolution over Simulation Time: Simulation time is
the length of time for evaluating the performance of the
caching framework. The longer the simulation time is, the
more behaviors and results of the caching framework can
be collected and observed, and the more reliable the results
analysis is. Simulation time is an important factor in evaluating
the performance of caching frameworks. By increasing the
simulation time, we can accurately evaluate the performance of
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the caching framework over long runs. Figs. 5 and 6 represent
the relationship between AAL/CHR and simulation time. Fig.
5 shows the increasing trend of AAL value in the early stage
of simulation. The increment of curves is due to the increasing
number of requests. All AAL values increase at the start-up
stage and gradually become stable. The overall MDC2 AAL
is lower than that for random caching [23]. Take the caching
capacity of 4% as an example, the AAL curve of MDC2-Pro is
lower than that of random caching, and the AAL of MDC2-Sta
is even lower.

Fig. 6 shows how CHR fluctuates much during the sim-
ulation. In general, the CHR value of MDC2 is higher than
Random Cache due to its dynamic allocation of cache space
for each content based on future demand estimates. Among
the two MDC2 solutions, MDC2-Sta outperforms MDC2-Pro;
for example, for caching size 4%, MDC2-Sta has lower CHR
than MDC2-Pro.

3) Variation of Moving Velocity: UAV Velocity is the speed
at which an UAV travels through the air. Changes in UAV
velocity affect communication between UAVs and the propor-
tion of UAVs in different states, resulting in dynamic changes
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in content requests and caching allocations. Figs. 7 and 8
present the results in terms of AAL and CHR, for different
UAVs’ moving speeds, when the two versions of MDC2 and
Random Caching are used in turn. Five velocity intervals
are considered, which start from 1m/s and up to 25m/s. As
shown in Fig. 7, AAL increases with the increment of UAV
moving speed. With higher velocity, U2U link fluctuations
increase drastically and further increase AAL. MDC2-Sta has
the lowest AAL and the Random Caching scheme has the
highest AAL. As shown in Fig. 8, the decreasing trend of
CHR can be observed with the increment UAV velocity.

Notable is that in general, MDC2-Sta outperforms the other
two solutions in terms of AAL and CHR for each velocity
range. For instance, if the moving speed is between 20 and
25 m/s, MDC2-Pro’s CHR and AAL are 25% higher and 6%
lower than MDC2-Sta, respectively, and more than 100% and
11% higher than those obtained by Random Cache [23].

VII. CONCLUSIONS AND FUTURE WORK

This work proposed a novel MDC2 framework to address
the caching allocation problem for multimedia streaming in
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IoT networks composed of UAVs. In this framework, we for-
mulated a fluid-based model to precisely describe the dynamic
behavior of each UAV and estimate the resource demand for
different video content. Additionally, an online optimization
algorithm for caching allocation problem was designed, based
on the fluid-based model. Extensive experiments were per-
formed and the results showed that MDC2 can significantly
enhance the average Caching Hit Ratio (typically by 40%)
and decrease the Average Access Latency (typically by 25%)
when compared with the current state-of-the-art algorithm:
Random-Cache algorithm. Future work will focus on the
energy consumption of UAV in IoT networks and QoS issues
in time sensitive networks.
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