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FReD-ViQ: Fuzzy Reinforcement Learning
Driven Adaptive Streaming Solution for
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Abstract—Next-generation cellular networks strive to offer
ubiquitous connectivity, enhanced transmission rates with in-
creased capacity, and superior network coverage. However, they
face significant challenges due to the growing demand for
multimedia services across diverse devices. Adaptive multime-
dia streaming services are essential for achieving good viewer
Quality of Experience (QoE) levels amidst these challenges.
Yet, the existing adaptive video streaming solutions do not
consider diverse QoE preferences or are limited to meeting
specific QoE objectives. This paper presents FReD-ViQ, a Fuzzy
Reinforcement Learning-Driven Adaptive Streaming Solution for
Improved Video QoE that combines the strengths of fuzzy logic
and advanced Deep Reinforcement Learning (DRL) mechanisms
to deliver exceptional, individually tailored user experiences.
FReD-ViQ is a sophisticated streaming solution that leverages
efficient membership function modelling to achieve a more finely-
grained representation of both input and output spaces. This
advanced representation is augmented by a set of fuzzy rules
that govern the decision-making process. In addition to its
fuzzy logic capabilities, FReD-ViQ incorporates a novel DRL
algorithm based on Dueling Double Deep Q-Network (Dueling
DDQN), noisy networks, and prioritized experience replay (PER)
techniques. This innovative fusion enables effective modelling of
uncertain network dynamics and high-dimensional state spaces
while optimizing exploration-exploitation trade-offs in adaptive
streaming environments. Extensive performance evaluations in
real-world simulation settings demonstrate that FReD-ViQ effec-
tively surpasses existing solutions across multiple QoE models,
yielding average improvements of 23.10% (Linear QoE), 23.97%
(Log QoE), and 33.42% (HD QoE).

Index terms— Fuzzy logic, Deep reinforcement learning,
MPEG-DASH, Adaptive video streaming, QoE

I. INTRODUCTION

ADAPTIVE video streaming has revolutionized the way
users access multimedia content, delivering an optimal

viewing experience by dynamically adjusting video quality
based on network conditions and device capabilities. This
process involves encoding each video file into multiple repre-
sentations, allowing the MPEG-DASH [1] streaming client to
switch between them, ensuring the most suitable video quality.
The use of multiple representations, coupled with an adaptive
quality switching algorithm, optimizes the user’s Quality of
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Fig. 1: Generalized workflow of heuristic-based, fuzzy-based,
and RL-based adaptive streaming models.

Experience (QoE) for traditional [2] or immersive videos [3]–
[5]. However, challenges persist in representation selection and
achieving high perceived quality, which may hinder a user-
friendly seamless streaming performance.

Recently, several Adaptive BitRate (ABR) solutions have
been proposed to tackle the challenges of dynamic stream-
ing environments, including heuristic-based [6]–[12], fuzzy-
based [13]–[17], and reinforcement learning (RL) [18]–[28]
approaches. The overall streaming process for these models
is illustrated in Fig. 1, utilizing various techniques and de-
cision variables to enhance bitrate selection. Although these
solutions have made progress in improving end-user QoE,
they still face challenges in delivering an optimal user ex-
perience. Heuristic-based methods, for instance, often suffer
from a lack of flexibility due to their reliance on a fixed
set of rules. The non-stationary nature of networks can cause
abrupt changes in network conditions, which may negatively
impact the performance of heuristic-based ABR algorithms
[29]. Conversely, fuzzy-based approaches are characterized
by intricate rule development and decision-making processes
that may struggle to handle unexpected changes in the ABR
environment. This becomes especially problematic in mobile
networks, where users frequently transition between cells,
leading to constant fluctuations in network conditions [30].
Deep Reinforcement Learning (DRL) models, on the other
hand, hold significant promise for addressing the complex and
dynamic nature of communication environments. However,
the high dimensionality of the state space, which includes
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factors such as video quality, segment sizes, buffer levels,
network bandwidth, and delay, among others, complicates
the learning of an optimal policy, potentially leading to a
slow and inefficient learning process [31], [32]. As a result,
these methods exhibit poor training efficiency and heightened
sensitivity to hyperparameters, requiring a larger number of
samples for each gradient step update. Additionally, striking
a balance between exploring the state space and exploiting
existing knowledge presents a complex trade-off in uncertain
and dynamic environments [33], [34].

Achieving high QoE is crucial for ensuring user engagement
and satisfaction in the competitive video streaming market.
Users may have varying reactions to streaming issues, with
some being more sensitive to rebuffering and others more
impacted by low video quality [35]. As a result, enhancing
QoE has become a paramount priority in the adaptive video
streaming domain. Existing solutions perform relatively well
for standard QoE models, such as Linear QoE [9], Log QoE
[12], HD QoE [19], or Video Multimethod Assessment Fusion
(VMAF) QoE [18], under predetermined weights. However,
these solutions can be highly sensitive to changes in QoE
weight coefficients, which determine the relative importance
of factors such as video quality, buffering events, and playback
smoothness [36]. As a result, their effectiveness may be limited
to specific scenarios or QoE objectives. Therefore, by address-
ing challenges in representation selection, balancing trade-offs
between video quality and network conditions, and developing
low-complex and sample-efficient algorithms, it is possible to
meet the ever-evolving challenging user expectations.

In this paper, we present a novel approach called Fuzzy
Reinforcement Learning Driven Adaptive Streaming Solution
for Improved Video QoE (FReD-ViQ), which combines ad-
vantages of both fuzzy logic [37] and advanced DRL mecha-
nisms to address the key challenges associated with adaptive
streaming. First, fuzzy logic effectively models uncertain and
imprecise network dynamics while handling the high dimen-
sionality of the state space, which often hinders learning-based
algorithms. Secondly, our proposed off-policy DRL algorithm
extends the conventional Double Deep Q-Network (DDQN)
[38] by incorporating a Dueling architecture [39], adaptive
noise injection [40], and a prioritized sampling strategy using
prioritized experience replay (PER) [41]. These enhancements
enable a compact representation of acquired experience, effi-
cient knowledge utilization, improved exploration, and faster
convergence. Finally, FReD-ViQ expertly balances exploration
and exploitation by ensuring rapid adaptation to a non-
stationary environment. Its application results in improved
QoE performance measured in terms of the instantaneous
visual quality of each segment, quality variations across video
segments, and frequency of freezing or rebuffering events. The
major contributions of this work are as follows:

1) Enhanced Fuzzy Logic Decision-Making: We intro-
duce an advanced FReD-ViQ fuzzy logic controller
which enables efficient modelling of membership func-
tions for a more granular representation of the input
and output spaces. The proposed controller includes 49
fuzzy rules that govern the decision-making process. By
utilizing fuzzy logic to process past bitrate and band-

width information, the proposed FReD-ViQ solution can
determine the next optimal bitrate with higher accuracy.
This improved decision-making process, augmented by
DRL advanced techniques, helps to overcome the rigid-
ity of existing solutions by seamlessly integrating the
adaptability of fuzzy logic with the advanced learning
capabilities of DRL.

2) Innovative DRL Algorithm for Adaptive Streaming:
We propose an innovative DRL algorithm that utilizes
a Dueling Double Deep Q-Network (Dueling DDQN),
noisy networks, and prioritized experience replay tech-
niques to improve the efficiency and effectiveness of
reinforcement learning models. By separately estimating
state values and state-dependent action advantages, the
Dueling DDQN architecture facilitates faster learning of
the optimal action-value function. The noisy networks
technique injects adaptive noise into the network weights
to encourage exploration and achieve better training
results. Finally, the PER method further optimizes our
algorithm by prioritizing experiences with higher learn-
ing potential, thereby improving learning efficiency.

3) Improved Exploration-Exploitation Trade-off: We
balance the exploration-exploitation trade-off in an un-
certain and dynamic streaming environment by leverag-
ing the adaptive nature of fuzzy logic and the advanced
exploration techniques offered by the advanced DRL
framework. This combination allows for better handling
of abrupt changes in network conditions and helps in
dynamic adaptive streaming environments. The system-
atic fusion of these techniques allows the model to dis-
cover optimal policies while efficiently utilizing existing
knowledge, improving the decision-making process.

This article is organized as follows: Section II provides
an overview of the most recent related works. Section III
presents system modelling and problem formulation, outlining
its key objectives and constraints. Section IV describes the
proposed FReD-ViQ architecture and the proposed solution’s
major algorithms. Section V describes the experimental setup
and performance analysis of the experimental testing results.
Finally, Section VI provides the conclusions and future re-
search directions.

II. RELATED WORKS

Multimedia streaming has seen significant advancements,
with the introduction of various approaches aimed at improv-
ing the end-user QoE. This section covers a comprehensive
overview of the state-of-the-art three major categories of
ABR approaches: (i) Heuristic-based; (ii) Fuzzy-based; and
(iii) Reinforcement Learning-based. The strengths and key
contributions of the closest approaches are highlighted, and
a comparison with our proposed approach is also made to
demonstrate its superiority and unique features.

A. Heuristic-based ABR Approaches

Heuristic-based ABR approaches have gained prominence
as a means to deliver a seamless and uninterrupted video
streaming experience. These solutions utilize mathematical
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models to provide a seamless viewing experience with minimal
disruptions. Huang et al. [8] employed a set of buffer rules to
determine the bitrate for the upcoming segment, with the goal
of maintaining a stable buffer space. The approach, referred
to as BB (buffer-based) adaptation, operates independently of
throughput measurements and switches to the highest available
bitrate when the buffer exceeds 15s.

Spiteri et al. proposed BOLA [9], a cutting-edge buffer-
based adaptation algorithm that leverages Lyapunov opti-
mization to enhance video quality and minimize rebuffer-
ing occurrences. Unlike traditional algorithms that emphasize
bandwidth measurements, BOLA prioritizes video quality and
rebuffering reduction. This algorithm is widely utilized in
Bilibili1 as a streaming solution. The BOLA client adopts a
greedy approach to occupy network bandwidth, resulting in
near-optimal performance and, in many instances, significantly
superior results compared to conventional algorithms. Jiang
et al. [10] aimed to achieve a systematic balance between
fairness, efficiency, and stability in HTTP streaming through
their proposed solution, FESTIVE. Unlike other solutions
that prioritize QoE, FESTIVE utilizes fairness, efficiency,
and stability metrics to guarantee reliable video adaptation
streaming to multiple clients. This approach provides a robust
solution that ensures equitable distribution of resources and
stable streaming performance. Different from BB, BOLA,
and FESTIVE, De Cicco et al. [11] introduced ELASTIC, a
solution that generates sustained TCP flows in DASH through
the implementation of feedback control theory. ELASTIC in-
tegrates both throughput and buffer levels in its control mech-
anism, resulting in the convergence of buffer occupancy to a
specified level. Similarly, Yin et al. [12] introduced a model
predictive controller (MPC) that optimally blends throughput
and buffer occupancy feedback signals to maximize QoE. The
QoE metric takes into account several factors including video
quality, fluctuations in quality, rebuffering events, and startup
delay.

Heuristic-based ABR solutions [8]–[12] have proven to be
successful in delivering an improved multimedia experience
in a controlled testing environment. However, these solutions
have limitations, especially related to sensitivity of controller-
or rule-based approaches to long-term network bandwidth
dynamics. Moreover, historical data and resource-intensive
computations can lead to a lack of adaptability across different
devices and conditions. This can result in subpar QoE levels in
real-world internet conditions, with issues such as low video
quality, frequent rebuffering, and inconsistent quality levels.

B. Fuzzy-based ABR Streaming

Fuzzy-based ABR solutions offer a distinct perspective in
video streaming optimization when compared to traditional
heuristic-based approaches. The integration of fuzzy logic
algorithms enables a more flexible and intelligent adjustment
of video bitrates in response to network variability. Hou et al.
[13] proposed a fuzzy logic solution to overcome the video
streaming challenges in mobile networks. The proposed con-
troller takes into account normalized throughput, buffer level,

1https://www.bilibili.tv/en

and buffer variations to mitigate the impact of limited bitrate
levels and maintain a stable system. The performance of the
controller was rigorously evaluated under a range of scenarios,
including slow, rapid, and sudden changes in throughput, and
under real LTE conditions using recorded traces. Rahman et
al. [14] introduced a buffer- and segment-aware fuzzy logic
approach to dynamically adjust the video quality in real-time
for multiple streaming clients in the MPEG-DASH system.
The algorithm takes into account several key factors, including
segment duration, playback buffer length and buffer difference,
as well as estimated throughput, to make informed decisions
on the selection of video bitrates for the next segments. To
further optimize the selection process, the authors incorporated
a bitrate switching minimization algorithm, to refine the bitrate
selection determined by fuzzy logic. The proposed solution
based on 26 fuzzy rules exhibits significant improvement in
both video bitrate and bandwidth efficiency, although there is
space for further refinement to minimize bitrate switches.

Mowafi et al. [15] proposed an energy-efficient variant of
the fuzzy-based DASH [42] adaptation algorithm which is
based on the same metrics as FDASH and includes power as
an additional metric. The proposed solution aims to extend the
playback time of a video while maintaining a decent quality
level and avoiding abrupt changes in video bitrate. The fuzzy
logic controller considers the buffering time, the differential
buffering time, and the available device power as inputs and
produces an increase/decrease/keep the same bitrate as output.
However, the authors did not consider the throughput measure-
ments in their decision-making process, which could result in
fetching wrong bitrates. Kim et al. [16] proposed a modified
FDASH (mFDASH) algorithm by incorporating history-based
TCP throughput estimation (HBTTE) [43], a segment bitrate
filtering module (SBFM), and a start and sleep mechanism.
The ranges of the input membership functions in mFDASH
were adjusted to more reasonable values to enhance the selec-
tion of the next segment’s bitrate. The evaluation results reveal
that the proposed mFDASH algorithm effectively manages the
buffer, addressing the challenge of overflows and delivering a
superior QoE in a variety of network environments. Li et al.
[17] presented a fuzzy controller chunked transfer-encoding
(FCTE) solution for low-latency live ABR streaming. The
proposed solution begins with the prediction of the mean and
standard deviation of the throughput, followed by the filtering
of the correct chunk transmission duration from the arrival
time of the video chunk. The fuzzy logic controller then
incorporates the buffer occupancy and normalized throughput
metrics to determine an aggressive factor that guides bitrate
selection. The aggressive factor is derived through the pro-
cesses of fuzzification, fuzzy engine, and defuzzification in
the FCTE. This aggressive factor and the mean throughput
measurements are used to further refine the selection of the
next segment bitrate.

Fuzzy logic-based ABR approaches continue to be a popular
choice for adaptive bitrate selection due to their capacity to
handle the complexity and uncertainty of real-world networks.
Most of the existing solutions [13], [15], [42] are effective in
controlled environments. To optimize the performance of these
solutions, it is crucial to properly model the membership func-
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tions and fuzzy rules, and select the most relevant streaming
features. This can help to mitigate some of the limitations
such as sensitivity to input data, challenges in tuning, risk of
overfitting, and limited prediction accuracy.

C. Learning-based ABR Streaming
Reinforcement Learning-based ABR approaches support

real-time, more personalized, and advanced dynamic decision-
making based on both network conditions and user experi-
ences. For instance, Mao et al. [19] introduced an RL-based
adaptive video streaming solution called Pensieve, which
continuously learns through interaction with the streaming
environment. The observation state in Pensieve takes into
account various factors such as past chunk throughput, buffer
size, and download time, among others. The action space of
the solution consists of different bitrate options for the next
video chunk. The action space includes different bitrates for
the next video chunk. Huang et al. [21] presented a joint
solution for video quality prediction and learning-based quality
adaptation called QARC. This solution consists of two parallel
components, Video Quality Prediction Network (VQPN) and
Video Quality Reinforcement Learning (VQRL). The reward
signal used by the algorithm is based on the QoE metric, which
evaluates the performance of the video streaming service in
terms of video quality, bitrate, and delay. In another work [18],
the authors presented the Comyco solution, which leverages
imitation learning to enhance the performance of learning-
based methods. The system consists of a neural network,
which is trained using expert policies provided by an instant
solver. Comyco employs a 1D-CNN and GRU layer architec-
ture and includes an experience replay buffer to store expert
policies and train the neural network using a customized loss
function. However, the implementation of Comyco restricts the
ability of the agent to explore its environment.

Shi et al. [22] proposed a solution for adaptive video
streaming at the edge, called Learning-based Fuzzy Bitrate
Matching (LFBM), which leverages the capacity of both
network and edge servers to intelligently interact with the
ABR environment. LFBM architecture involves interaction
between several components, including the cache manager,
client information collector, network information collector,
and RL agent. The client and network information collectors
provide information on user states and network conditions to
the RL agent, which makes decisions on bitrate selection and
chunk retrieval either from the cache or the original server.
The experimental results showed that the LFBM architecture
achieves higher QoE and cache hit ratios. However, the use
of an on-policy A3C algorithm for training the RL agent in
the LFBM architecture can result in longer training times and
increased computational resources. Gadaleta et al. [23] utilized
a combination of deep learning and reinforcement learning to
optimize the linear reward function in DASH streaming. By
taking the raw system state as input, the proposed approach
uses a learning architecture that includes twin neural networks
and a replay memory to simulate the network environment
with greater realism. The model’s design eliminates arbitrary
choices that could impact performance and effectively handle
very large state spaces.

Ma et al. [24] presented a QoE-aware Adaptive Video Bi-
trate Aggregation (QAVA) scheme for multi-user live stream-
ing, which utilizes edge computing technology. QAVA is
deployed at the central smart edge and is responsible for
aggregating all the traffic requests from clients for the same
live-streaming service. The bitrates of these requests are
adapted using a controlled DRL policy, which takes into
account network conditions, client states, and video charac-
teristics. However, implementing QAVA requires overcoming
the challenges posed by variations in network conditions,
diverse client behaviors and characteristics, and the difficulty
in controlling client QoE. Yuan et al. [25] introduced an
ensemble learning-based ABR framework for DASH clients.
The framework is designed to take advantage of multiple ABR
methods, including a rate-based method [44], a proportion
differentiation (PD) controller-based method [45], and an
online learning-based method [46]. The proposed framework
adaptively selects the method that provides the highest QoE
through the decision support of a method controller. The
method controller decides between instant method switching
and intermittent method switching, providing a simple yet
effective solution for improving QoE in DASH streaming.

On-policy and off-policy learning based ABR solutions
often face sample inefficiency and hyperparameter sensitivity
in highly dynamic adaptive streaming environments. Solutions
like Comyco [18], QAVA [24], and QARC [21] employ
computationally expensive function approximators and require
extensive interaction with the environment to learn effective
policies. These solutions can be successful with a limited set
of fine-tuned weights for specific QoE models. In contrast,
this work presents a novel fuzzy-assisted DRL framework that
achieves a stable and sample-efficient exploration-exploitation
process to discover optimal bitrate strategies in noisy, real-
world streaming scenarios.

III. FRED-VIQ SYSTEM MODELLING AND PROBLEM
FORMULATION

Fig. 2 depicts the end-to-end streaming architecture of
MPEG-DASH-based FReD-ViQ clients, where video content
is temporally segmented into small units of data, known as
segments, denoted by 𝑉 = {𝑉1, 𝑉2, .., 𝑉𝑘 , .., 𝑉𝐾 }. Each
segment is encoded into multiple representations of different
bitrates, i.e., 𝐽 = { 𝑗1

𝑘
, 𝑗2

𝑘
, .., 𝑗

𝑞

𝑘
, .., 𝑗

𝑄

𝑘
}. The FReD-

ViQ clients continuously monitor and capture the environment
states to predict the most appropriate bitrate, i.e., 𝑗𝑞

𝑘
, for the

next segments. The clients request the next segment over an
HTTP persistent cellular or Wi-Fi connection after completely
downloading the previous segment. Upon receiving the new
segment, FReD-ViQ clients decode the compressed data and
pass it to the media player. The integrated media player within
each device, i.e., smartphone, laptop, and monitor, is designed
to render segments proficiently, catering to high-resolution
multimedia streaming requirements. The advanced display
configurations across the entire range of devices guarantee
exceptional display quality.
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Fig. 2: End-to-end streaming architecture featuring a smart MPEG-DASH server and high-resolution FReD-ViQ clients, with
DASH segments transmitted over cellular or Wi-Fi networks.

Fig. 3: FReD-ViQ: Fuzzy logic controller-based next bitrate
prediction model.

A. Problem Formulation

In the DRL paradigm, the agent takes future decisions with
little or no awareness of the environment with a trial-and-
error strategy to achieve a maximum reward. The Markov
Decision Process (MDP) that represents an agent-environment
interaction can be described using a tuple, i.e., (S,A,P,R),
where S and A represent the continuous state and action
space, P is the state transition probability, and R is the
returned reward. To ensure a comprehensive understanding of
the environment, the agent needs to effectively explore the
state space S. In the FReD-ViQ solution, a state 𝑠𝑘 ∈ S to
select the bitrate for 𝑘th segment is represented as a tuple, and
is defined as follows:

𝑠𝑘 = (𝐹𝑘 , 𝐽𝑘 , 𝐶𝑘 , 𝐵𝑘 , 𝐷𝑘 , 𝑁𝑘 , 𝑀𝑘) (1)

where 𝐹𝑘 = { 𝑓𝑘−𝑝 , ..., 𝑓𝑘−1, 𝑓𝑘} is a vector which represents
the fuzzy bitrates (the outputs from FReD-ViQ fuzzy model,
described in Section IV-A) and 𝑝 represents the number of past
samples. 𝐽𝑘 = { 𝑗𝑞𝑘−𝑝−1, ..., 𝑗

𝑞

𝑘−2, 𝑗
𝑞

𝑘−1} is a vector representing
video bitrates of the previously selected segments. 𝐶𝑘 =

{𝑐𝑘−𝑝−1, ..., 𝑐𝑘−2, 𝑐𝑘−1} and 𝐵𝑘 = {𝑏𝑘−𝑝−1, ..., 𝑏𝑘−2, 𝑏𝑘−1}
represent the buffer occupancy and bandwidth vectors after
downloading (𝑘 − 1)th segment. The download time vector
is represented as 𝐷𝑘 = {𝑑𝑘−𝑝−1, ..., 𝑑𝑘−2, 𝑑𝑘−1}, wherease
𝑁𝑘 = {𝑛𝑘−𝑝−1, ..., 𝑛𝑘−2, 𝑛𝑘−1}, signifies the vector of number
of remaining segments. Lastly, 𝑀𝑘 = {𝑚1

𝑘
, ..., 𝑚

𝑄−1
𝑘

, 𝑚
𝑄

𝑘
} cor-

responds to the sizes of the video segments. After processing
the state, the FReD-ViQ client selects an action 𝑎𝑘 ∈ 𝐴 which
corresponds to the selected video bitrate level for the 𝑘th

video segment. The agent acts to transform the environment,
resulting in a state transition probability P(𝑠𝑘+1 |𝑠𝑘 , 𝑎𝑘) from
𝑠𝑘 to 𝑠𝑘+1 under action 𝑎𝑘 . When segment 𝑘 is completely
downloaded, the agent determines the bitrate for (𝑘 + 1)th
segment, based on the observed state 𝑠𝑘+1.

In a client-centric end-to-end HTTP adaptive streaming
architecture, the observed reward function 𝑟𝑘 ∈ R for a given
state-action pair for segment 𝑘 can be expressed in terms of
QoE metric, which considers factors such as visual quality,
playback smoothness, and the video quality stability.

𝑄𝑜𝐸𝑘 = 𝑤1 · Q( 𝑗𝑞𝑘 ) − 𝑤2 · T𝑘 − 𝑤3 · | (Q( 𝑗𝑞𝑘 ) − Q( 𝑗
𝑞

𝑘−1) | (2)

where 𝑤1, 𝑤2, and 𝑤3 parameters are QoE weight coef-
ficients and reflect the relative importance of video quality,
rebuffering, and quality variations. Q( 𝑗𝑞

𝑘
) maps the 𝑞th bitrate

of 𝑘th segment to the quality perceived by the user, T𝑘 is the
amount of time the client waits for the playback to resume,
and the last term reflects the quality variations between two
consecutive segments. We employed classic representations of
perceived video quality Q( 𝑗𝑞

𝑘
) by using: (i) Linear QoE model:

which uses the bitrate as the perceived quality 𝑗
𝑞

𝑘
; (ii) Log

QoE model: which is represented as the log of the ratio of
the selected bitrate to the minimum bitrate 𝑙𝑜𝑔( 𝑗𝑞

𝑘
/ 𝑗1
𝑘
); and

(iii) HD QoE model: which uses the HD quality weights for
requested bitrates.

The ultimate goal of an adaptive client is to continuously
select optimal bitrates during each adaptation interval, thus
maximising the aggregated QoE of all video segments. There-
fore, the optimization problem in our case can be expressed
mathematically as follows:

Problem P1:
𝑚𝑎𝑥

∑︁
𝑘∈𝐾

𝑄𝑜𝐸𝑘 (3)

Concerning problem P1, the goal has been adjusted to dis-
cover an optimal bitrate selection strategy 𝜋∗ : S ·A → [0, 1]
so that to maximize the expected long-term discounted QoE.
Consequently, the client-side optimal bitrate selection problem
can be stated as follows:

Problem P2:

max
𝜋
E

[∑︁
𝑘∈𝐾

𝛾𝑘 · 𝑟𝑘
���𝜋] (4)

where 𝜋 is the policy that maps states to actions, 𝐾 accounts
for the number of segments in the streaming session, and
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(a) Input: Buffer Ocuupancy (b) Input: Bandwidth (c) Output: Bitrate

Fig. 4: FReD-ViQ membership functions modelling buffer occupancy 𝑓𝐶 , bandwidth 𝑓𝐵, and bitrate 𝑓𝐽 .

0 < 𝛾 ≤ 1 is the discount factor for future rewards. In
order to optimize the long-term QoE, we consider an advanced
fuzzy DRL framework in which the proposed FReD-ViQ agent
learns an optimum course of action (i.e., the best-fit bitrate)
by continuously interacting with the environment during each
adaptation interval.

IV. FRED-VIQ PROPOSED ARCHITECTURE AND
ALGORITHMS

This section explores the core components of FReD-ViQ
adaptive streaming solution. Specifically, it examines the fuzzy
logic-based adaptation model, advanced neural network ar-
chitecture, and the active training mechanism designed to
optimize ABR performance efficiently.

A. FReD-ViQ Fuzzy Logic-based Adaptation Model

A fuzzy-based controller is a highly effective control system
that is well-suited to control the adaptive streaming process.
By leveraging the power of fuzzy logic techniques, this con-
troller is capable of incorporating the most important features
and expert experiences into its decision-making process, re-
sulting in improved system performance. Fig. 3 depicts the
integrated design of the FReD-ViQ fuzzy logic controller
based on the Mamdani model. Comprised of four main com-
ponents, i.e., fuzzification, rule base, inference engine, and
bitrate prediction modules, FReD-ViQ leverages network and
buffer input data to dynamically select the video bitrate for
each adaptation interval. The inputs are passed through a
fuzzifier, which maps them to corresponding fuzzy values
using established membership functions determined by expert
knowledge of relevant fuzzy sets. The inference engine then
applies fuzzy rules to map these inputs to a fuzzy output.
Finally, the bitrate prediction module transforms this fuzzy
output into a practical bitrate decision. By employing this
entire process, FReD-ViQ creates a robust control mechanism
that can effectively manage uncertainties that arise in mul-
timedia streaming systems, resulting in high-QoE levels for
users.

1) Fuzzy Membership Functions Modelling: Before making
a bitrate selection decision, it is highly necessary to process
and analyze inputs in a way that can account for the inher-
ent uncertainties in the streaming system. In the FReD-ViQ
solution, the buffer and bandwidth variables are defined as

"Antecedent" variables, which represent the normalized input
values to the system. The bitrate variable is defined as a
"Consequent" variable, which represents the output variable of
the system. Let 𝑓𝐶 , 𝑓𝐵, and 𝑓𝐽 represent the buffer occupancy,
bandwidth, and bitrate variables, respectively. The membership
functions are created for these variables. Let 𝑀𝐶 , 𝑀𝐵, and
𝑀𝐽 represent the lists of linguistic labels for 𝑓𝐶 , 𝑓𝐵, and 𝑓𝐽 ,
respectively. We employed seven linguistic variables: Dismal
(Dis), Poor, Mediocre (Med), Average (Avg), Decent (Dec),
Good, and Excellent (Exc), and are represented as follows:

𝑀𝑖 =["Dis", "Poor", "Med", "Avg", "Dec", "Good", "Exc"]
(5)

∀𝑖 ∈ 𝑀𝐶 , 𝑀𝐵, or 𝑀𝐽 . By using multiple membership functions
with different boundary points as shown in Fig. 4, FReD-ViQ
can better capture the peculiarities and complexities of the
data, leading to more accurate and reliable output results. A
higher level of granularity is especially useful when the input
data is highly variable or uncertain. The buffer membership
functions in Fig. 4a divide the input range of the buffer
variable, which goes from 0.4 to 6.0, into fuzzy subsets
that represent different degrees of membership (DOM). The
membership functions are triangular, with the base of the
triangle representing the range of the fuzzy subset and the peak
representing the maximum degree of membership within that
range. As the buffer level approaches "Poor", the system may
take measures to mitigate the risk of playback interruption,
such as compromising video quality to ensure uninterrupted
playback. Conversely, as the buffer level increases and ap-
proaches beyond the "Dec" level, the system can increase
video quality to enhance the user experience.

Fig. 4a depicts the bandwidth levels normalized between
0.02 and 0.6. The adaptation algorithms attempt to optimize
bandwidth utilization by selecting the highest available video
bitrate, which is less than the available connection speed
[47]. This approach ensures that the available bandwidth is
utilized efficiently, enabling a seamless streaming experience
for the end users. When the available bandwidth is "Good"
or "Exc", FReD-ViQ places more emphasis on increasing
the quality. On the other hand, when the bandwidth drops,
a conservative bitrate adaptation is employed in order to
download the segment quickly. Fig. 4c depicts the seven
membership functions for the bitrate variable 𝑓𝐽 , which is a
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Algorithm 1: FReD-ViQ: Fuzzy Rule Creation Algorithm
Input : 𝑓𝐶 , 𝑓𝐵, 𝑓𝐽 ← Fuzzy variables for buffer occupancy, bandwidth, and bitrate
𝑀𝐶 , 𝑀𝐵, 𝑀𝐽 ← Fuzzy membership functions for buffer occupancy, bandwidth, and bitrate
Result : 𝑓𝑟 ← Fuzzy rules

1 𝑓𝑟 ← [];
2 for 𝑖 in range(𝑙𝑒𝑛(𝑀𝐶 )) do
3 for 𝑗 in range(𝑙𝑒𝑛(𝑀𝐵)) do

4 𝑓𝑟𝑢𝑙𝑒 ←
{
𝑅𝑢𝑙𝑒( 𝑓𝐶 [𝑀𝐶 [𝑖]]& 𝑓𝐵 [𝑀𝐵 [ 𝑗]], 𝑓𝐽 [𝑀𝐽 [0]]) if 𝑖 ≤ 1
𝑅𝑢𝑙𝑒( 𝑓𝐶 [𝑀𝐶 [𝑖]]& 𝑓𝐵 [𝑀𝐵 [ 𝑗]], 𝑓𝐽 [𝑀𝐽 [𝑚𝑖𝑛(𝑖, 2 × 𝑗)]]) else

}
5 𝑓𝑟 .append( 𝑓𝑟𝑢𝑙𝑒);

consequential variable in multimedia streaming systems. The
bitrate is dependent on the action dimension of the system,
which in this case ranges from 0 to 5. The predicted output
of the FReD-ViQ system is rounded to determine the final
bitrate for the next segment, i.e., 𝑓𝑘 . This approach facilitates
the modelling of uncertain relationships between variables and
promotes informed decision-making based on the available
information.

2) Fuzzy Rules Creation: Having mapped the system in-
formation to the linguistic variables, the FReD-ViQ controller
then takes advantage of the advanced fuzzy rules defined in
Algorithm 1 in order to determine the next video bitrate.
Algorithm 1 uses nested for-loops to create a set of rules that
relate the membership functions of the buffer and bandwidth
inputs to the membership functions of the output bitrate. The
Rule method within the SKFuzzy2 library facilitates defining
the fuzzy rules by mapping the degrees of membership for
buffer and bandwidth inputs to the corresponding degree of
membership for the output bitrate. The if-else statement within
the loop checks whether the buffer membership function is
"Dis" or "Poor", and assigns the output bitrate membership
function to "Dis" if so. Otherwise, the output bitrate mem-
bership function is assigned based on the minimum degree of
membership between the buffer and bandwidth membership
functions, i.e., 𝑚𝑖𝑛(𝑖, 2 × 𝑗)3. It could lead to overly sensitive
output bitrates if the output bitrate membership function is
solely determined by the buffer or bandwidth membership
function. By using 𝑚𝑖𝑛(𝑖, 2 × 𝑗), FReD-ViQ strikes a balance
between these two extremes and ensures that the output bitrate
is influenced by both inputs in a proportional and balanced
way. The resulting fuzzy rules are stored in the fuzzy rules
list, i.e., 𝑓𝑟 . This rule creation process is streamlined by the
SKFuzzy library. It facilitates the development of effective
fuzzy-based ABR approaches, offering customizable graded
membership functions and flexible rule definitions that are
readily adaptable to meet the conflicting objectives in ABR
streaming environments. Moreover, SKFuzzy is well-suited to
model complex and nonlinear relationships between different
playback factors.

2https://pypi.org/project/scikit-fuzzy/
3The i and j indices navigating through the fuzzy membership functions

allows to process all combinations of buffer occupancy and bandwidth values.

Fig. 5: FReD-ViQ client’s neural network architecture.

B. FReD-ViQ Neural Network Architecture

The primary goal of FReD-ViQ is to effectively utilize net-
work resources and playback information to optimize bitrate
selection during each adaptation interval. FReD-ViQ features
a unique neural network architecture, as depicted in Fig. 5.
This architecture employs a series of states based on the
feedback received during previous adaptive intervals, enabling
the generation of adaptive bitrate selection rules. The FReD-
ViQ neural network architecture comprises a Dueling DDQN
model, which includes policy and target networks. Each of
these networks receives various inputs such as fuzzy outputs
𝐹𝑘 , past bitrates 𝐽𝑘 , buffer occupancy 𝐶𝑘 , bandwidth vector
𝐵𝑘 , download time 𝐷𝑘 , segments count 𝑁𝑘 , and segment
sizes 𝑀𝑘 . A tailored strategy extracts relevant features for
each type of input, ensuring efficient and robust decision-
making. The feature extraction component within the FReD-
ViQ architecture includes linear layers with 512, 256, and
128 hidden units, followed by ReLU activation functions.
After feature extraction, the processed data is passed through
a dropout layer with a dropout rate of 0.2, which forms
the basis for the value and advantage streams. The value
stream estimates the value of being in a given state, while the
advantage stream estimates the advantage of taking each action
in that state. These streams utilize noisy linear layers, injecting
noise into the weights and biases during training to encourage
exploration. This approach is particularly valuable in time-
sensitive streaming applications, where accurate exploration
is essential for optimizing bitrate selections under various
network conditions. The resulting Q-values are computed by
combining the value 𝑉 (𝑠𝑘) and advantage 𝐴(𝑠𝑘 , 𝑎𝑘) estimates,
with the mean advantage subtracted to stabilize learning. This

https://pypi.org/project/scikit-fuzzy/
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architecture combines the strengths of the Dueling DDQN
and noisy networks learning frameworks, where the Dueling
DDQN framework allows the network to learn which actions
are valuable in each state, while the noisy networks encourage
the network to explore more effectively. This combination
leads to a more robust and effective bitrate selection policy,
ultimately improving the overall video streaming experience.

C. FReD-ViQ Training Mechanism

Algorithm 2 presents the training mechanism of the FReD-
ViQ agent which includes a Dueling DDQN combined with
noisy networks and prioritized experience replay. In the train-
ing procedure, we first initialize the policy network 𝑄 𝜃 (𝑠, 𝑎)
with parameter 𝜃. The policy network is responsible for esti-
mating the Q-values for each state-action pair and is updated
during the training process. We initialize the target network
𝑄𝜙 (𝑠, 𝑎) with parameter 𝜙. Initially, the target network param-
eters 𝜙 are set equal to the policy network parameters 𝜃. The
target network is used to compute target Q-values for updating
the policy network and is updated periodically during training.
Next, we initialize the agent’s buffer B with capacity 𝑁 . The
buffer is used to store the agent’s experiences in the form
of transitions (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1, 𝑑𝑘), which are later sampled
for training. The optimizer O is initialized with a learning
rate 𝜂 along with initializing noise reset countdown for policy
and target networks. The optimizer is responsible for updating
the policy network parameters 𝜃 during the training process,
based on the calculated gradients. For each episode 𝑒𝑝 the
environment state is reset. At each step during an episode,
the agent selects an action based on the current state 𝑠𝑘 . The
action is chosen by sampling from a probability distribution
obtained using a softmax function over the Q-values, with a
temperature parameter 𝜇:

G(𝑎𝑘 |𝑠𝑘) =
exp(𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘)/𝜇)∑
𝑎′ exp(𝑄 𝜃 (𝑠𝑘 , 𝑎′)/𝜇)

(6)

The agent then samples an action from this probability
distribution:

𝑎𝑘 ∼ G(𝑎𝑘 |𝑠𝑘) (7)

The agent interacts with the environment and stores the
transition (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1, 𝑑𝑘) into the replay buffer B with
maximum priority, where 𝑑𝑘 is a binary flag indicating if the
next state is terminal or not. The state is updated with the
next state. For each update step, the agent samples a mini-
batch of transitions (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1, 𝑑𝑘) from the buffer B
with probabilities proportional to the priorities [41]:

𝑝𝑘 =
𝑃𝛼
𝑘∑
𝑖 𝑃

𝛼
𝑖

(8)

where 𝛼 is a hyperparameter that determines the degree of
prioritization, and

∑
𝑖 𝑃

𝛼
𝑖

is the sum of priorities raised to the
power of alpha over all transitions in the buffer. The sampling
weights 𝑤𝑘 for a transition 𝑘 are computed as in [41]:

𝑤𝑘 =
(𝑁 · 𝑝𝑘)−𝛽 (𝑡 )
𝑚𝑎𝑥
𝑖

𝑤𝑖
(9)

where 𝑁 represents the size of the agent’s replay buffer, 𝛽 is
another hyperparameter that controls the degree of importance
sampling. The importance sampling weights are normalized to
ensure the stability of the learning process. For each episode,
the value of 𝛽 is computed as follows:

𝛽𝑘 = 𝛽s + (𝛽e − 𝛽s) ·min
(

ep
𝛽d
, 1
)

(10)

where 𝛽d is the decay duration, and 𝛽s and 𝛽e represent the
starting and ending values of beta, respectively. By using
this time-dependent 𝛽𝑘 value, the prioritization effect will be
reduced over time, making the sampling process less biased
and more uniform as the agent becomes more experienced.

Next, the current Q-values 𝑄cur for a sampled state 𝑠𝑘
and action 𝑎𝑘 are computed using the policy network with
parameter 𝜃 [39].

𝑄cur = 𝑄 𝜃 (𝑠𝑘 , 𝑎𝑘) = 𝑉𝜃 (𝑠𝑘) + 𝐴𝜃 (𝑠𝑘 , 𝑎𝑘) −
1
|𝐴|

∑︁
𝑎′
𝐴𝜃 (𝑠𝑘 , 𝑎′)

(11)
where 𝑉𝜃 (𝑠𝑘) is the state-value function, 𝐴𝜃 (𝑠𝑘 , 𝑎𝑘) is the
advantage function, and |𝐴| is the number of actions available.

The expected Q-values 𝑄exp are computed using the target
network with parameter 𝜙 and the done flag 𝑑𝑘 . For each tran-
sition in the mini-batch, the expected Q-values are calculated
as follows:

𝑄exp = 𝑟𝑘 + 𝛾 ·𝑄𝜙 (𝑠𝑘+1, arg max
𝑎′

𝑄 𝜃 (𝑠𝑘+1, 𝑎′)) · (1− 𝑑𝑘) (12)

where 𝑄𝜙 (𝑠𝑘+1, arg max𝑎′ 𝑄 𝜃 (𝑠𝑘+1, 𝑎′)) is the Q-value from
the target network for the next state 𝑠𝑘+1 and the action 𝑎′ that
maximizes the Q-value in the policy network, 𝛾 is the discount
factor. Next, the temporal difference (TD) errors represented
by 𝛿 for each transition in the mini-batch are computed:

𝛿𝑘 = 𝑄𝑐𝑢𝑟 −𝑄exp (13)

Each transition in the buffer B is assigned a priority 𝑃𝑘
based on the absolute TD error plus a small positive constant
𝜀 to ensure that no transition has zero priority:

𝑃𝑘 = |𝛿𝑘 | + 𝜀 (14)

The agent computes the TD errors for the mini-batch, and
the loss function is defined as the smooth L1 loss, weighted
by the importance sampling weights:

𝐿 (𝜃) = 𝑤𝑘 · 𝜌(𝛿𝑘) (15)

where 𝜌(𝑥) is the smooth L1 loss function, which is similar to
Huber loss. It is a combination of Mean Squared Error (MSE)
and Mean Absolute Error (MAE) and is defined as follows:

𝜌(𝑥) =
{

1
2𝑥

2, for |𝑥 | ≤ 1
|𝑥 | − 1

2 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(16)

The smooth L1 loss function transitions from a quadratic to
a linear function as the absolute value of 𝑥 increases, which
helps to reduce the impact of large errors in the training
process. The agent updates the policy network 𝑄 𝜃 (𝑠, 𝑎) by per-
forming backpropagation and gradient descent. The gradient
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Algorithm 2: FReD-ViQ Training Procedure
Input: State space S, action space A, replay buffer capacity 𝑁 , batch size 𝑏, discount factor 𝛾, learning rate 𝜂, soft

update factor 𝜏, noise reset interval I, 𝛽 decay parameters: 𝛽s, 𝛽e, and 𝛽d, batch size 𝑏
1 Initialize policy network 𝑄 𝜃 with parameter 𝜃
2 Initialize target network 𝑄𝜙 with parameter 𝜙← 𝜃

3 Initialize replay buffer B with capacity 𝑁
4 Initialize optimizer O with learning rate 𝜂
5 Initialize noise reset countdown 𝑇 using eq. (20)
6 for ep ∈ 𝐸 do
7 Reset environment state
8 for 𝑘 ∈ 𝐾 do
9 Compute action probabilities G(𝑎𝑘 |𝑠𝑘)

10 Sample action 𝑎𝑘 ∼ G(𝑎𝑘 |𝑠𝑘)
11 Execute action 𝑎𝑘 , observe reward 𝑟𝑘 next state 𝑠𝑘+1, and video termination flag 𝑑𝑘
12 Store experience tuple (𝑠𝑘 , 𝑎𝑘 , 𝑟𝑘 , 𝑠𝑘+1, 𝑑𝑘) in buffer B with maximal priority
13 Update state 𝑠𝑘 ← 𝑠𝑘+1
14 Compute 𝛽𝑘 using eq. (10)
15 if done then
16 if 𝑙𝑒𝑛(B) ≥ 𝑏 then
17 Sample mini-batch of transitions from B with probabilities proportional to priorities
18 Compute importance sampling weights 𝑤𝑘 using eq. (9)
19 Calculate current Q-values 𝑄cur and expected Q-values 𝑄exp using eq. (11-12)
20 Compute TD errors 𝛿𝑘 using eq. (13)
21 Update priorities 𝑃𝑘 in buffer B using eq. (14)
22 Compute loss function 𝐿 (𝜃) using eq. (15)
23 Update policy network 𝑄 𝜃 using optimizer O and gradient clipping using eq. (17-18)
24 Softly update target network 𝑄𝜙 with mixing factor 𝜏 using eq. (19)
25 𝑇 ← −1
26 if 𝑇 ≤ 0 then
27 Reset noise in policy and target networks
28 Compute 𝑇 using eq. (20)

of the loss function 𝐿 (𝜃) with respect to the model parameter
𝜃 is as follows:

𝒈 ← ∇𝜃𝐿 (𝜃) (17)

The gradient is clipped to prevent it from exploding during
backpropagation. Next, the model parameters are updated
using the computed gradients:

𝜃 ← 𝜃 − 𝜂 · 𝒈𝑐𝑙𝑖 𝑝𝑝𝑒𝑑 (18)

where 𝜂 is the learning rate, and 𝜃 is the updated model
parameters. The target network 𝑄𝜙 (𝑠, 𝑎) is softly updated with
a mixing factor 𝜏:

𝜙← (1 − 𝜏) · 𝜙 + 𝜏 · 𝜃 (19)

The noise in the policy and target networks is reset if the noise
reset countdown variable 𝑇 is less than or equal to zero:

𝑇 ∼ Exp(𝜆) (20)

where 𝜆 = 1
I is the rate parameter, and I is the noise reset

interval. After resetting the noise, a new noise reset countdown
variable 𝑇 is sampled from the same exponential distribution.
The training procedure iterates through these steps for a fixed
number of episodes 𝐸 . During this process, the agent learns

Fig. 6: FReD-ViQ client training mechanism.

an optimal policy for selecting actions in the environment.
Fig. 6 shows the overall workflow of the FReD-ViQ training
mechanism,

V. PERFORMANCE EVALUATION

A. FReD-ViQ Modelling and Implementation Details

1) ABR Streaming Environment: We modelled the FReD-
ViQ solution utilizing scikit-fuzzy [48], a Python-based fuzzy
logic toolbox, in conjunction with PyTorch [49], a widely-used
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Fig. 7: Relationships between video sizes, bitrates, and VMAF for the test clip used (EnvivioDASH3).

TABLE I: Hyperparameters employed in FReD-ViQ

Parameter Notation Value
Batch size 𝑏 32

Replay Buffer capacity 𝑁 500000
Buffer sampling 𝛽𝑠 , 𝛽𝑒 , 𝛽𝑑 0.4, 1.0, 5x104

Discount factor 𝛾 0.99
Learning rate 𝜂 10−3

Mixing factor 𝜏 0.001
Noise reset interval I 1000
Number of episodes 𝐸 100000
Number of segments 𝐾 48 segments

Optimizer O Adam
Past samples 𝑝 8

Positive constant 𝜀 10−6

Probability alpha 𝛼 0.6
Temperature parameter 𝜇 1.0

open-source machine learning library. The experiments were
conducted on a 64-bit Intel Core i7-7500U CPU with a 2.7
GHz quad-core processor and 16 GB of memory. To ensure the
effectiveness of our solution in a realistic streaming scenario,
we employed an ABR streaming simulation environment pro-
vided by the state-of-the-art PENSIEVE [19] solution. This
environment is compatible with the Mahimahi [50] network
emulation tool, which enables the accurate assessment of a
new algorithm’s performance under a wide range of real-world
network conditions. For our experiments, we utilized real-
world network traces from the publicly available 3G/HSDPA-
Norway dataset [51]. This dataset is widely recognized for
its diverse and representative collection of network traces,
providing a suitable benchmark for evaluating the performance
of streaming solutions.

2) Hyperparameters Settings: Table I presents the hyperpa-
rameters, notations, and respective values utilized in the train-
ing process of the FReD-ViQ solution, specifically chosen to
enhance video streaming performance. During each iteration,
we use 32 training samples, with a replay buffer capacity set to
500,000 samples and buffer sampling parameters of 0.4, 1.0,
and 5x104 to dynamically manage sample prioritization within
the buffer. The discount factor and learning rates are set to
0.99 and 10−3, respectively. The mixing factor is set to 0.001,
regulating the soft update of the target network in the learning
process. A noise reset interval of 1000 represents the frequency

at which noise is reset in the model. We conduct 100,000
training episodes and employ the widely-used optimization
algorithm, Adam [52], for FReD-ViQ training. We set the past
samples parameter 𝑝 to 8 based on previous studies [18], [19],
[53], [54], representing the number of previous samples used
for input to the model.

3) Video Data: In our experiments, we used the Enviv-
ioDASH3 [55] video clip, with six different bitrates: 300
(240p), 750 (360p), 1200 (480p), 1850 (720p), 2850 (1080p),
and 4300 (1440p) Kbps. This video clip was divided into 48
segments, each with a duration of approximately 4s, resulting
in a total playback time of 193s. Fig. 7 provides a visual
representation of the relationship between video size (bytes),
bitrates (Kbps), and VMAF scores for the selected testing clip.
The examination of these relationships offers critical insights
into the trade-offs necessary to achieve optimal video quality
while reducing buffering and preserving the lowest quality
fluctuations in adaptive streaming applications. The scatter plot
emphasizes the positive correlation among these three factors,
indicating that higher bitrates and larger video files typically
result in improved perceived quality, as indicated by higher
VMAF scores. Utilizing a video clip with a variety of bitrates
and VMAF levels allows one to correctly model and simulate
solutions in a wide range of video streaming scenarios.

4) Comparative Solutions: We conducted comprehensive
comparisons of FReD-ViQ and its two counterparts, the neural
network part (NNP) and fuzzy vector part (FVP), against seven
widely recognized and highly cited bitrate selection models in
adaptive streaming. To ensure a fair comparison, NNP and
FVP were implemented with the same settings as FReD-ViQ.
The comparative models include the following:

1) BB [8]: A simple yet effective bitrate selection algo-
rithm, which primarily focuses on maintaining the buffer
occupancy within 2s to 4s.

2) BOLA [9]: A buffer-centric Lyapunov optimization
techniques-based model that improves the video quality
irrespective of the bandwidth.

3) ELASTIC [11]: A throughput-based model that adapts
to network fluctuations by adjusting the bitrate of the
video segments according to the anticipated future band-
width.
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(a) Linear Performance Metrics (b) Log Performance Metrics

(c) HD Performance Metrics

Fig. 8: Average performance metrics of FReD-ViQ, NNP, FVP, BB, BOLA, ELASTIC, HYB, MPC, QUETRA, and RB
algorithms across Linear, Log, and HD QoE models.

4) HYBrid (HYB) [56]: A throughput and buffer
occupancy-based adaptation approach which aims to
improve video smoothness.

5) MPC [12]: An algorithm that uses a predictive control
framework to optimize QoE for the next 5 segments by
estimating future network conditions and considering the
impact on the buffer level.

6) QUETRA [57]: A model that leverages queuing theory
to optimally converge buffer occupancy towards ideal
conditions without requiring user-configured weights or
thresholds.

7) Rate-Based (RB) [58]: A rate-based algorithm, which
employs the harmonic mean to forecast throughput and
subsequently selects the highest accessible bitrate.

5) Performance Metrics: To facilitate a comprehensive
comparison between various streaming mechanisms, we se-
lected several evaluation metrics that effectively measure and
demonstrate the performance of each solution. The chosen
evaluation metrics are as follows:

1) QoE Models: Linear, Log, and HD QoE models were
considered to accurately represent the performance im-
provements achieved by each streaming algorithm.

2) Video Bitrate, Rebuffering, and Quality Variations:
For each QoE model, we measured video bitrates, re-
buffering occurrences, and quality fluctuations.

3) Buffer Metrics: The evaluation of average and max-
imum buffer levels was carried out to gain insights
into the buffer management and stability provided by
each streaming mechanism. Additionally, the analysis
of buffer underflow occurrences helped to estimate the
number of times the buffer levels become less than a set
threshold of 4s.

4) Playback Smoothness and Stability: Both the fre-

quency and magnitude of quality variations [59] were
examined to evaluate the consistency of video streaming
quality across different solutions. The number of re-
buffering events was considered to measure the smooth-
ness of video playback and the ability of each solution
to maintain continuous streaming.

5) Perceived Quality Assessment: To evaluate the per-
ceived video quality of the streaming mechanisms, we
measured the VMAF [60], which provides a reliable
estimation of the viewer’s experience.

6) Video Bitrate Choices: The percentage of video bitrate
chosen by each solution was analyzed to compare their
adaptability and efficiency in delivering optimal video
quality under various network conditions.

B. Experimental Results
1) Linear, Log, and HD QoE Metrics: Figure 8 displays

the performance results of our proposed FReD-ViQ, NNP, and
FVP solutions, along with seven other comparative solutions,
across Linear, Log, and HD QoE models. Following Eq. 2 in
[19], we set 𝛾 to 1 for Linear, Log, and HD QoE models. How-
ever, the value of 𝛽 varies for each model. Specifically, for the
Linear, Log, and HD QoE models, we set the value of 𝛽 to 4.3,
2.66, and 8, respectively. The proposed FReD-ViQ and NNP
solutions consistently achieve the highest average QoE scores
for all three models, showcasing their superior performance
in delivering an exceptional video streaming experience. For
Linear QoE model (Fig. 8a), FReD-ViQ outperforms BB
by 41.87%, BOLA by 48.59%, ELASTIC by 25.16%, HYB
by 5.83%, MPC by 4.09%, Quetra by 7.14%, and RB by
28.01%. Likewise, for the Log QoE model (Fig. 8b), FReD-
ViQ surpasses BB, BOLA, ELASTIC, HYB, MPC, QUETRA,
and RB solutions by achieving higher QoE scores of 39.79%,
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Fig. 9: Buffer Metrics: Average and maximum buffer levels,
along with buffer underflow events, for FReD-ViQ, NNP,
FVP, BB, BOLA, ELASTIC, HYB, MPC, QUETRA, and RB
algorithms.

44.21%, 39.05%, 9.43%, 4.03%, 11.25%, and 20.07%, re-
spectively. Although FReD-ViQ’s average bitrate values for
Linear and Log QoE models are slightly lower than those
of BB, BOLA, and MPC, it still achieves better performance
due to reduced rebuffering and quality variations compared to
these solutions (Fig. 8a-Fig. 8b). FReD-ViQ achieves slightly
lower Linear and Log QoE values compared to NNP due to
marginally higher rebuffering values observed in these models.
The results presented in Fig. 8c show that our proposed FReD-
ViQ solution achieves the highest QoE scores for the HD
QoE model, outperforming the other solutions by a significant
margin, i.e., BB by 48.71%, BOLA by 39.90%, ELASTIC by
55%, HYB by 21.21%, MPC by 6.74%, Quetra by 26.01%,
and RB by 36.37%. This is because FReD-ViQ observes the
highest average HD bitrate values and achieves the highest
improvement over the ELASTIC solution (55.66%), followed
by RB (34.49%), Quetra (22.82%), and HYB (12.27%). More-
over, NNP and FReD-ViQ experience quality variations across
all three models, while maintaining optimal video quality. FVP
on the other hand observes the lowest rebuffering penalty
compared to other solutions. Solutions such as ELASTIC,
HYB, and QUETRA exhibit the lowest rebuffering values due
to their tendency to compromise on video quality, whereas
buffer-based solutions like BB and BOLA have the highest
bitrates for Linear and Log QoE models. FVP enables FReD-
ViQ to explore unique streaming patterns to ensure meaningful
trade-offs between different streaming metrics. This results in
an average improvement of 23.10% (Linear QoE), 23.97%
(Log QoE), and 33.42% (HD QoE) over comparative solutions.

2) Buffer Metrics: Figure 9 illustrates the performance of
FReD-ViQ, NNP, and FVP solutions compared to seven other
solutions, focusing on three buffer metrics: average buffer,
maximum buffer, and buffer underflow events. The results
highlight FReD-ViQ’s ability to strike a well-balanced perfor-
mance across these metrics. Among proposed solutions, FVP
maintains a steadier buffer level and attains the highest average
buffer values (22.62s) compared to FReD-ViQ (19.65s) and
NNP (18.42s) solutions. The fuzzy-assisted decision-making
in FReD-ViQ enables it to achieve a higher average buffer
value than BB (9.21s), BOLA (16.75s), HYB (18.64s), and
MPC (13.66s). Although FReD-ViQ’s average buffer is lower
than ELASTIC (33.05s), QUETRA (23.09s), and RB (24.54s),

Fig. 10: Frequency and magnitude of quality variations, as well
as the number of rebuffering events observed by FReD-ViQ,
NNP, FVP, BB, BOLA, ELASTIC, HYB, MPC, QUETRA,
and RB algorithms.

this difference does not adversely affect its overall perfor-
mance. FVP and FReD-ViQ’s maximum buffer value (60s)
is on par with ELASTIC and RB and surpasses those of
BB (16.85s), BOLA (38.07s), HYB (32.44s), MPC (33.90s),
and QUETRA (37.79s). This implies that FReD-ViQ can
effectively manage diverse network conditions and minimize
the likelihood of playback disruptions due to the precise and
balanced selection of membership functions, fuzzy rules, and
enhanced exploration-exploitation trade-offs compared to its
NNP counterpart. The balanced strategy employed by FReD-
ViQ leads to a relatively low number of buffer underflow
events (1.03%), outperforming the results of BB (3.06%),
BOLA (3.43%), MPC (1.81), and RB (2.05%). FVP on the
other hand observes the lowest (0.16%) buffer underflow
events along with ELASTIC, HYB, and QUETRA solutions.

3) Playback Smoothness and Stability: Figure 10 presents
a comparison of various streaming solutions concerning play-
back smoothness and stability. We evaluated the frequency and
magnitude of quality variations as well as the number of re-
buffering events for each solution. Quality variation frequency
refers to the rate at which video quality changes between
two consecutive segments. FReD-ViQ experiences marginally
higher quality variation frequency compared to NNP. This be-
havior is attributed to FVP, which enables switching using an
intermediate bitrate (i.e., 1850 Kbps) for smoother transitions.
FReD-ViQ exhibits a moderate quality variation frequency of
19.55%, which is lower than BB (55.32%), BOLA (37.46%),
HYB (34.36%), MPC (21.41%), and QUETRA (27.03%).
However, it is slightly higher than ELASTIC (18.50%) and
RB (14.25%).

Quality variation magnitude represents the extent of changes
in video bitrate during streaming, measured in Mbps. FReD-
ViQ achieves a quality variation magnitude of 0.70 Mbps,
surpassing the magnitudes attained by BB (0.65 Mbps), ELAS-
TIC (0.64 Mbps), HYB (0.63 Mbps), QUETRA (0.62 Mbps),
and RB (0.55 Mbps). This indicates that FReD-ViQ facilitates
more aggressive quality switches compared to these solutions,
ensuring a high-quality streaming experience. However, FReD-
ViQ’s quality variation magnitude is marginally lower than
those of NNP (0.73 Mbps) and MPC (0.8055 Mbps). Despite
these differences, FReD-ViQ still delivers a more stable and
smooth playback experience, exhibiting a low number of
rebuffering events (0.77%), which outperforms BB (2.3%),
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Fig. 11: VMAF vs. Rebuffering experienced by FReD-ViQ,
NNP, FVP, BB, BOLA, ELASTIC, HYB, MPC, QUETRA,
and RB algorithms.

Fig. 12: Percentage of video bitrate choices made by FReD-
ViQ, NNP, FVP, BB, BOLA, ELASTIC, HYB, MPC, QUE-
TRA, and RB algorithms.

BOLA (2.85%) and MPC (1.54%).
4) VMAF Assessment: We compared FReD-ViQ with other

solutions in terms of VMAF and rebuffering values, as illus-
trated in Fig. 11. The rebuffering values were computed based
on the QoE’s rebuffering metric presented in [18]. FReD-
ViQ achieves a mean VMAF of 59.52, surpassing ELASTIC
(51.15), HYB (58.97), QUETRA (57.84), and RB (56.47).
This result indicates that FReD-ViQ offers superior average
perceived video quality compared to these solutions. However,
FReD-ViQ’s mean VMAF is marginally lower than NNP (60),
BB (61.41), BOLA (61.05), and MPC (60.14). Simultaneously,
FReD-ViQ exhibits a mean rebuffering value of 0.42, which is
lower than NNP (0.52), BB (1.00), BOLA (1.88), MPC (0.91),
and RB (1.09). Among the solutions, the RB solution registers
the second-lowest VMAF and the second-highest rebuffering
values. FVP achieves the lowest rebuffering while maintaining
an acceptable VMAF score. This demonstrates how FVP aids
FReD-ViQ in effectively balancing VMAF and rebuffering,
ultimately delivering a high-quality and stable video streaming
experience.

5) Video Bitrate Choices: Fig. 12 illustrates the streaming
behavior of the proposed and comparative solutions in terms
of selecting bitrate percentages for 300, 750, 1200, 1850,
2850, and 4300 Kbps. It can be observed how each solution
distinctly selects bitrate during the entire playback. FReD-
ViQ primarily allocates its bitrate selection to 750 Kbps

(36.22%) and 1850 Kbps (26.66%), while opting for 1200
Kbps by only 10.61% of the streaming duration.In contrast,
NNP and FVP solutions select 750 Kbps for 41% and 37%
of the time respectively. Interestingly, both NNP and FVP
demonstrate the lowest percentage of selections for the lowest
bitrate, 300 Kbps. Conversely, BB and BOLA solutions are
more conservative in selecting higher bitrates, with a higher
preference for 300 Kbps and 750 Kbps, while maintaining a
moderate distribution across the other bitrate levels. ELASTIC,
on the other hand, is heavily biased towards lower bitrates,
selecting 300 Kbps (42.25%) and 750 Kbps (29.08%) for a
substantial proportion of its streaming decisions. HYB and
MPC solutions exhibit similar bitrate selection patterns, with
a relatively even distribution across the bitrate levels, except
for 2850 Kbps. QUETRA and RB solutions follow a similar
trend, although they are more inclined to choose lower bitrate
levels, with RB having a higher preference for the 300 Kbps
bitrate.

6) Ablation Study: — Impact of QoE Weight Coeffi-
cients: In this section, we investigate and evaluate the in-
fluence of QoE weight coefficients on the playback perfor-
mance of several adaptive streaming solutions. For Linear,
Log, and HD QoE models (Eq. 2), we employed different
values of 𝑤2 in the range of (5-10) and 𝑤3 in the range
of (2-4). The QoE weight coefficients for 200 samples are
shown in Fig. 13a. The results presented in Fig. 13 reveal
that the proposed FReD-ViQ and NNP solutions consistently
outperforms the other methods, achieving the highest QoE
scores across all combinations of QoE weight samples. In
terms of Linear QoE (Fig. 13b), NNP achieves the highest
score of 0.60, with FReD-ViQ closely following at 0.59. FVP
secures the third-best QoE level, while QUETRA and MPC
solutions trail behind. Similarly, for Log QoE values (Fig.
13c), NNP maintains the highest average of 0.57, with FReD-
ViQ following at 0.51. Notably, FReD-ViQ outperforms the
fourth-best solution, MPC, by a significant 30% margin. At
the same time, BB and BOLA obtain negative scores of -0.437
and -0.399, respectively. This is because higher values of 𝑤2
and 𝑤3 coefficients for the Log QoE model result in higher
rebuffering and quality variation penalties. When considering
HD QoE (Fig. 13d), FReD-ViQ excels with a score of 2.43,
significantly outperforming other solutions. Interestingly, the
RB method achieves the third-highest scores. This highlights
the effectiveness of FReD-ViQ in delivering a high-quality
video streaming experience across different QoE models and
weight coefficient combinations.

— Precision Control in Fuzzy-Driven ABR: Our fuzzy-
driven ABR solution, FVP, is carefully designed with opti-
mized membership functions and fuzzy rules to improve bitrate
selection. We compared FVP with its counterpart, FVPM
(Fuzzy Vector Part with updated Membership functions),
which reduces membership functions from seven to five with
linguistic variables ["Poor", "Med", "Avg", "Dec", "Good"].
We also updated the fuzzy rules creation expression from
𝑚𝑖𝑛(𝑖, 2× 𝑗) to 𝑚𝑖𝑛(𝑖, 𝑗), resulting in the FVPR variant (Fuzzy
Vector Part with updated Rules). Fig. 14 depicts the streaming
performance of FVP, FVPM, and FVPR solutions for the un-
derlying video, QoE, and network settings. FVP demonstrates
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(a) QoE Weight Samples (b) Linear QoE

(c) Log QoE (d) HD QoE

Fig. 13: QoE achieved by FReD-ViQ, NNP, FVP, BB, BOLA, ELASTIC, HYB, MPC, QUETRA, and RB algorithms under
various QoE weight coefficients.

Fig. 14: Linear, Log, and HD QoE values achieved by FVP,
FVPM, and FVPR solutions.

the highest average performance in terms of Linear and Log
QoE metrics compared to FVPM and FVPR. This is because
FVP achieves the highest bitrate and lowest rebuffering and
quality variation values compared to its variants. Additionally,
FVP exhibits higher HD QoE values compared to FVPR and
nearly matches FVPM performance. It is also interesting to
note that FVP is highly scalable and adaptable to different
buffer, bandwidth, and bitrate values.

7) Findings and Discussions: The extensive experimental
results demonstrate that the proposed FReD-ViQ solution con-
sistently outperforms other state-of-the-art methods in terms
of different QoE models. The superior QoE performance of
the FReD-ViQ underscores its versatility and effectiveness in
adapting to different network conditions and QoE preferences

and providing a high-quality video streaming experience. Key
findings from our experiments include:

1) FVP always leads to the lowest rebuffering values and
this behavior positively influences FReD-ViQ’s decision-
making to minimize rebuffering events.

2) The performance of learning-based models like NNP
can be degraded severely when testing under different
QoE settings (e.g., HD QoE). However, FReD-ViQ
offers more consistent and reliable performance when
employed across diverse QoE preferences.

3) While quality variations in FVP are slightly higher than
in NNP, this pattern is also seen in FReD-ViQ.

4) FVP is highly scalable, computationally efficient, and
easily deployable in any streaming scenario, regardless
of the number of bitrate representations (e.g., 6, 8,
etc.), QoE models, or network traces. Its counterpart,
NNP may require action-space or dimension adjustments
when bitrate representations change. Therefore, FVP
decreases the training time for FReD-ViQ compared to
using NNP alone.

5) Existing solutions (BB, BOLA, ELASTIC, HYB, MPC,
QUETRA, RB) rely on fixed heuristics or potentially
unreliable assumptions that may not always be accurate
or adaptable to fluctuating network conditions.

6) This can lead to suboptimal decision-making and
compromised streaming quality. These solutions often
demonstrate lower QoE scores, unbalanced rebuffering
penalties, and reduced perceived quality.

7) Buffer-based solutions (BB, BOLA) lack throughput
learning mechanisms, limiting their capacity to adjust
and refine decision-making over time.

8) Solutions dependent on network throughput (RB, ELAS-
TIC) face reliability issues, especially in wireless net-
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works where estimated throughput is not always a true
indicator of network conditions.

9) Solutions like QUETRA and MPC struggle to balance
bitrate exploration, leading to overly conservative or
aggressive streaming behavior that negatively impacts
viewer experience.

In summary, FReD-ViQ demonstrates exceptional adaptabil-
ity and effectiveness across a wide range of network condi-
tions and QoE preferences. In addition, the lightweight and
integrated design of the FReD-ViQ solution further improves
its performance and reliability, making it an ideal choice for
real-world applications.

VI. CONCLUSIONS AND FUTURE WORKS

This paper introduced FReD-ViQ, an innovative adaptive
video delivery solution capable of handling diverse QoE
preferences and network conditions. FReD-ViQ employs a
combination of fuzzy logic and advanced DRL mechanisms,
which enables a more effective value estimation and en-
courages exploration by introducing stochasticity into the
learning process. Furthermore, the lightweight and integrated
design of the FReD-ViQ allows for quick learning and faster
adaptation over time, improving its decision-making process.
Our comprehensive experimental results confirm FReD-ViQ’s
exceptional performance, achieving important improvements
in Linear QoE (23.10%), Log QoE (23.97%), and HD QoE
(33.42%), when compared against state-of-the-art solutions.

As part of our future work, we plan to extend the FReD-ViQ
framework to incorporate additional content characteristics for
advanced interactive multimedia streaming services, such as
multi-duration VR and 360° videos. FReD-ViQ will be eval-
uated in more complex and dynamic network environments,
including multi-path and network slicing scenarios, to assess
its suitability for 5G cellular networks.
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