
1

An Innovative Adaptive Web-based Solution for
Improved Remote Co-Creation and Delivery of

Artistic Performances
Mohammed Amine Togou, Member, IEEE, Anderson Augusto Simiscuka, Member, IEEE,

Rohit Verma, Member, IEEE, Noel E. O’Connor, Member, IEEE, Iñigo Tamayo, Stefano Masneri, Mikel Zorrilla
and Gabriel-Miro Muntean, Fellow, IEEE

Abstract—Due to the COVID-19 pandemic, most arts and
cultural activities have moved online. This has contributed to the
surge in development of artistic tools that enable professional
artists to produce engaging and immersive shows remotely. This
article introduces TRACTION Co-Creation Stage (TCS), a novel
web-based solution, designed and developed in the context of the
EU Horizon 2020 TRACTION project, which allows for remote
creation and delivery of artistic shows. TCS supports multiple
artists performing simultaneously, either live or pre-recorded, on
multiple stages at different geographical locations. It employs a
client-server approach. The client has two major components:
Control and Display. The former is used by the production
teams to create shows by specifying layouts, scenes, and media
sources to be included. The latter is used by viewers to watch
the various shows. To ensure viewers’ good quality of experience
(QoE) levels, TCS employs adaptive streaming based on a novel
Prioritised Adaptation solution based on the DASH standard for
pre-recorded content delivery (PADA), which is introduced in this
paper. User tests and experiments are carried out to evaluate the
performance of TCS’ Control and Display applications and that
of PADA algorithm when creating and distributing opera shows.

Index Terms—Prioritised adaptive multimedia streaming, live
and on-demand media delivery, quality of experience.

I. INTRODUCTION

CO-CREATION in arts focuses on bringing individuals,
communities, and professional artists together to create

artistic works that capture their personality and political views
as well as their life experiences and struggles. Co-Creation
has been used as a platform to promote health and well-being
for old people [1], including people with dementia [2]. It has
also been used to address societal issues such as inequality
[3], marginalisation [4], poverty [5], migrant integration [6],
urban planning [7], and knowledge mobilisation [8].

TRACTION [9] is an European project that promotes co-
creation to combat the problem of social exclusion in European

M. A. Togou is with the School of Computing, Dublin City University,
Ireland, e-mail: mohammedamine.togou@dcu.ie

A. A. Simiscuka, N. E. O’Connor, G.-M. Muntean are with the Insight SFI
Centre for Data Analytics and School of Electronic Engineering, Dublin City
University, Ireland, e-mail: gabriel.muntean@dcu.ie

R. Verma is with the School of Computing, National College Ireland,
Dublin, Ireland

I. Tamayo and M. Zorrilla are with the Digital Media Department, Vi-
comtech, San Sebastian, Spain

S. Masneri is with Computer Languages and Systems Department, Univer-
sity of the Basque Country UPV/EHU, San Sebastian, Spain

societies. It aims at empowering marginalised communities by
developing an effective, collaborative, and participatory pro-
duction workflow for the creation of art representations, opera
in particular, using new technologies. Three exploratory operas
involving three distinct communities have been agreed on: The
Lost Cat, a community opera in which 300 local residents of
the Raval neighborhood in Barcelona, Spain would participate;
Time (As We Are), a community opera involving professional
artists and a inmates from a youth prison community in Leiria,
Portugal; and Out of the Ordinary, the world’s first opera in
virtual reality to be co-created by Irish National Opera and
rural communities in Ireland.

During the COVID-19 pandemic, art venues were shut down
completely for several months and rehearsals were prohibited
in person [10]. As a result, several art activities, including
TRACTION’s, have moved online. This situation has con-
tributed to the growth of not only art that has been digitised,
but also art that has been created digitally. Subsequently,
several cloud-based tools have been developed or customised
to enable artists to remotely collaborate and produce vibrant
art pieces. These tools deploy various delivery adaptation
techniques [11]–[18] to cope with the intrinsic characteristics
of today’s networks (i.e., limited and highly volatile band-
width), ensuring therefore a satisfactory quality of experience
(QoE) to their users [19]–[22]. Despite their ingenuity, these
tools along with other existing projects experience three major
issues. First, most of them lack the support for very high
quality audio and video. Second, almost all of them do not
jointly support on-demand and live media content. Finally,
they deploy delivery adaptation techniques that adjust the
quality of all media streams uniformly, without considering the
importance of each stream to the overall artistic performance.

The main contributions of this paper are in terms of design
and implementation of the following:

1) TRACTION Co-creation Stage (TCS), an innovative
web-based solution that supports both live and on-
demand media to enable professional artists and indi-
viduals from the TRACTION’s targeted communities to
remotely collaborate to produce engaging and immersive
opera shows, which might involve multiple simultaneous
performances on distinct stages at different geograph-
ical locations. TCS adopts a client-server approach.
The client has two major components, which focus on
Control and Display, respectively. The former is used

2

by the production teams to create the artistic shows
while the latter is used to enable viewers to watch these
shows on different devices (e.g., projectors, computers,
smartphones).

2) Prioritised Adaptation algorithm based on the DASH
standard (PADA) for streaming pre-recorded content
which is fully integrated within the TCS client Display
component. PADA aims at improving the viewers’ QoE
through reducing bitrate switches while averting play-
back interruptions via assigning priorities to the various
on-demand streams considering their significance to the
overall opera show. The most suitable bitrate for each
stream is then selected based on a variety of factors, i.e.,
content’s priority, available bandwidth, playback time,
and quality variation.

The rest of this paper is organised as follows. First, we
outline the approach used to gather the design requirements for
TCS and survey existing commercial tools and projects. Then,
we illustrate the architecture of TCS, describe its components,
and shed light on the implementation part of the various
elements as well as the challenges encountered. Afterwards,
we outline user tests and the experiment study we run to
assess the performance of the Control and Display components
and discuss the results. Finally, we present our conclusions
together with future research directions.

II. RELATED WORK

A. Design Requirements and Existing Commercial Tools

A user-centric approach was deployed to gather require-
ments, with the goal of informing the design of the TRAC-
TION Co-Creation Stage. Initial discussions among the project
partners were held to identify the exploratory operas to use
TCS along with potential users. The Time (As We Are) opera
show was chosen unanimously as the most suitable to use
TCS as it involves inmates who would not be allowed to
travel to the opera house in Lisbon (Portugal) to perform
alongside professional artists. Therefore, three user categories
were determined: 1) professional artists, including production
and co-creation teams; 2) non-professional artists, mainly the
inmates in the youth prison; and 3) the audience, people who
would be watching the opera show either live (on stages in
Lisbon and Leiria) or remotely.

Following these discussions, a focus group and individual
interviews were conducted by the technical team involving
opera producers, professional artists, and people from the
youth prison community. The goal of these activities was to
understand the following: a) the current practices of opera
productions; b) the show’s objectives and its technological
requirements; and c) how TCS is intended to be used during
rehearsal/production phases to achieve these objectives. Data
from the focus group and the individual interviews were
then cleaned, transcribed, and analysed using open coding
procedures. Five main design requirements for TCS were
subsequently identified:

• Orchestration: the ability to manage multiple media
sources simultaneously, supporting different types of me-

Orchestration Synchronisation

Production
Tool

Efficient Delivery

Video Management
System (BVMS)

Jamulus

OBS Ninja

LoLa

Fig. 1. TCS vs. existing commercial tools

dia content, and enabling viewers to watch the show
across a variety of devices.

• Synchronisation: enabling professional artists and the
youth prison community to participate in the performance
from different locations while ensuring synchronisation
between the various sources.

• Production functionalities: providing capabilities such
as timeline management and layout design (i.e., number
of sources, how they will look like) while supporting dif-
ferent source types (live, on-demand) and special effects.

• Efficient delivery: adaptive transmission of audio and
video over the Internet to meet network bandwidth con-
straints while ensuring good QoE.

• Universality: professional artists and individuals from
the youth prison community should be able to use the
solution on any device to participate in a show. The
audience should also be able to watch the show on any
device.

There exist commercial tools that implement one or several
of these requirements. For instance, Jamulus and Jamkazam
enable synchronised online music playing. Parse and Firebase
provide platforms that ensure synchronisation among WebRTC
streams. Abelton Live, OBS Studio and Max MSP 8 are music
production tools. Carbyne and BVMS are cloud-based commu-
nication platforms that support orchestration while OBS Ninja
is a web-based video conferencing tool implementing syn-
chronisation. There are also research projects that focused on
designing multi-screen entertainment solutions. 2-IMMERSE
[23] is an open-source platform for multi-screen entertainment
services with content customisability based on device type,
bandwidth, and viewer preferences. MediaScape [24] is a
framework that enables the creation and distribution of web-
based media services over multiple devices. VConect [25]
is an initiative to enable a theatre performance distributed
over two stages at different locations. Orchestra [26] is an
online platform that allows musicians at different geographical
locations to perform together. Finally, LOLA [27] is a low
latency audio video streaming system that enables real-time
musical performances where musicians are physically located
in remote sites.

While they provide some of the required features, these
tools and projects do not support the full list of requirements
listed above. Hence, the TRACTION Co-Creation Stage has

3

been designed to meet all the specified requirements (i.e., as
illustrated in Fig. 1) while ensuring high quality content to
help professional artists and the targeted communities create
and run collaborative performances.

B. DASH-based Adaptation Solutions

Numerous DASH-based adaptation algorithms have been
proposed in the literature. Spiteri et al. [28] formulated the
video bitrate adaptation as a utility maximization problem
and proposed BOLA, an online algorithm that uses Lyapunov
optimization techniques, to select the bitrate for next segments
based solely on the amount of data in the buffer. The authors
also proposed DYNAMIC [29] that uses bandwidth estima-
tion when the buffer level is low and switches to BOLA
when the buffer level is high to minimise rebuffering and
bitrate oscillations while maximising the average video bitrate.
Yaqoob et al. [16] proposed TBOA, a throughput and buffer
occupancy-based adaptation scheme which downloads the first
few segments with the lowest bitrate and adjusts the bitrates of
the subsequent segments based on bandwidth estimations and
buffer level. Zhou et al. [30] proposed a Markov decision-
based rate adaptation scheme that takes into account video
playback quality, bitrate switching frequency and amplitude,
buffer level and buffer underflow/overflow events.

Sani et al. [31] proposed a supervised machine learning
approach that takes as input the output of nine ABR algorithms
across various streaming scenarios and predicts the optimal
bitrate to be used for the next segment to be downloaded. Kim
et al. [32] proposed a reinforcement learning-based scheme
for multi-client adaptive streaming which uses mobile edge
servers to collect clients’ information and feed them to a
neural network model to select the optimal bitrate for the
segments to be requested. Huang et al. [33] proposed an
ABR algorithm that combines a deep reinforcement learning
approach with a traditional buffer-based method to select the
segments’ optimal bitrate. The reinforcement learning method
takes network status, video features, and QoE metrics as input
and generates a buffer-bound value to control the buffer-based
technique with the goal of maximising QoE. Armijo et al. [34]
combined machine learning techniques with an edge-based
ABR mechanism to improve the QoE by managing trade-off
between bitrate, bitrate oscillations, and stalls according to
network conditions. Finally, Li et al. [35] proposed RAV, a
deep reinforcement learning ABR scheme that selects bitrates
for each chunk’s audio and video to guarantee high playback
quality, avoid frequent stalls, and mitigate bitrate oscillations.

While these schemes demonstrate good performances, they
may not be suitable for multi-stream scenarios since they
might adapt all the streams equally, regardless of their impor-
tance. In addition, they give precedence to video over audio
when performing adaptation, which may impact the viewers’
QoE when watching opera shows. Therefore, we propose
PADA, an adaptation scheme that prioritises media flows and
adjusts their bitrates considering available bandwidth, quality
variation, and buffer level.

 Client

Display Control

OrkestraLib

Representation Engine:
Layout of the user interface

 MPEG-DASH
 Client

 WebRTC
 Client

Time
Synchronisation

Shared Data
Context

 Server

Orkestra Server

Time
Server

Share
Data

Server

Static
Server

MPEG-DASH Server

WebRTC Server

PADA

LSAO

Distribution Engine

Web Components (xmedia):
Live feed, on-demand videos, images, text

Database6

5

2

7

1

4

3

Fig. 2. Co-Creation Stage block architecture

III. TRACTION CO-CREATION STAGE (TCS)

With the feedback from the focus group and the individual
interviews, use cases of the TCS usage were developed. One
of them is illustrated in Fig. 3. The orchestra is playing a
symphony on Stage 1 equipped with three screens, denoted as
displays in this paper. The first two displays show live feeds of
an opera play taking place in Stage 2 and a musician playing
guitar at home. The third display show some pre-recorded
videos. In Stage 2, there is only one display showing the live
feed of the orchestra in Stage 1. The audience of the show is
made of people present in Stages 1 and 2 as well as remote
users watching the show on their devices.

A. Overall Architecture

Taking into account the developed use cases along with the
requirements discussed in Section II, the development team
decided to design TCS as a web-based application having
a client-server architecture, as depicted in Fig. 2. One of
the key modules of the client is OrkestraLib1, a library
that provides support for complex functions for component
management, layout configuration, and distribution efficacy
through techniques such as plugin-based systems, under cou-
pling, and modular injection to enable multi-device and multi-
user applications, e.g., the Control and Display, described in
the next subsections. It abstracts the complexity of synchro-
nising multi-device communications and is compatible with
numerous frameworks such as Angular, React, es6 and vanilla.
It integrates the following modules:

• Web Components: manages the resources to be used in
the show, including live streams through WebRTC and
on-demand videos using MPEG-DASH as well as images
and text.

• Representation Engine: allows structuring the show’s
layout to display the web components to be used. For
instance, a layout can be structured to have multiple
components having the same size or different sizes. The

1https://github.com/tv-vicomtech/orkestraClient

4

Musician at home Remote viewer

Operator

STAGE 2STAGE 1

Pre-recorded
media

component

Live feed
components
from Stage 2 and
remote
participant

Live feed
component from
Stage 1

Control

Display

Components

Display

Displays

Fig. 3. A use case of how TCS can be used to enable a distributed artistic show made of live and pre-recorded media sources from different locations.

(a) Interface 1 (b) Interface 2

Fig. 4. Interfaces of the Control application

layout definition is done for each scene and for each
display.

• Distribution Engine: takes care of the media distribution
for real-time communication in both directions (i.e., case
of remote participants where they will broadcast their
feed and see feeds from other stages) as well as for on-
demand streams.

• Time Synchronisation: gets the time information from
the time server to enable synchronisation across different
displays (flow 7 in Fig. 2). For example, in case an
on-demand video is shown on multiple displays, this
module enables a frame-accurate synchronisation across
all displays.

• DASH and WebRTC Clients: ensures adaptive delivery of
on-demand and live media content. The former deploys
the proposed PADA, while the latter integrates the Live
Stream Adaptation algorithm for Opera (LSAO), which
is not covered in this paper.

• Shared Data Context: keeps track of all the required
data context from all displays involved in the show. As an
example, if the operator moves from one scene to another,
this information should be propagated to all displays
(flow 5 in Fig. 2) so they know how to act (e.g., change
the components to be shown, use a different layout). It
also contains the bitrates selected by PADA and LSAO for
each media stream to enable bandwidth sharing between
pre-recorded and live media (flow 6 in Fig. 2).

The server maintains the environment’s consistency through
the integration of the following modules:

• Orkestra Server: organises and maintains multi-device
sessions and the shared data coherently.

• Time Server: keeps track of timing information of various
components and shares it with the Time Synchronisation
module to enable synchronisation.

• Shared Data Server: enables the propagation of the
Shared Data Context in real-time.

5

• Static Server: stores and loads templates (e.g., HTML
elements, static images, buttons) used to create shows.

• MPEG-DASH and WebRTC Servers: the former stores
pre-recorded media components while the latter allows
publishing and consuming live media feeds. Both can be
deployed in the CTS server side or on the cloud.

Note that all modules in TCS were designed and developed
by the technical team using JavaScript. The server-side was
built on top of Node.js and MongoDB and is deployed
in Amazon AWS server. The WebRTC server is based on
JANUS. Both JANUS and MPEG-DASH server are deployed
in Amazon AWS server.

B. The Control Application

The Control component was instantiated by a Control appli-
cation2, which was developed using the Angular Framework.
It provides the interfaces for the creation of new shows. It is
mainly used by an operator, following the lead of the show’s
director, to define the web components to be used in the show
(flow 1 in Fig. 2), when to use them (flow 2 in Fig. 2), and
on which devices they will be shown. For instance, using
the Control application, the operator in Fig. 3 defines three
displays in Stage 1 and sets what would be depicted in each
one of them: 2 for live streams and 1 for pre-recorded content.

Fig. 4 shows some of the interfaces of the Control ap-
plication. Fig. 4(a) illustrates the interface to create rooms,
define their names, and add input and display devices. In this
example, the rooms are called MOZART, EQUIPMENT, and
HOME. The MOZART room has two displays and one input
device (i.e., camera). Fig. 4(b) depicts the main interface for
the Control application. The Media and Camera areas list all
the on-demand and live components available for the show.
If the live components are not connected, the ”NO SIGNAL”
icon will be shown. The Components area enables the operator
to specify where each component will be displayed. In the
Preview area, the operator can see a preview of what is
happening in all the rooms by browsing the tabs of the different
rooms. The preview windows depict exactly what the displays
will be showing in a specific scene. the Timeline area is where
the scenes are defined. Each column represents a scene where
the operator specifies the components to be used for each one
of them (the green boxes). The operator also sets the layout
for each scene in each display.

C. The Display Application

The Display component was instantiated by Display3, which
is a web application built on top of JS Vanilla. It handles
devices that work as displays during the show, e.g., projectors
in the main stages, cameras, and viewers’ devices (computer
monitors, mobile phones). It uses web components follow-
ing the Web Components standard4 to enable operators to
show/hide specific media (i.e., pre-recorded and live content)

2https://github.com/traction-project/CoCreationStage/tree/master/orkestra-
control

3https://github.com/traction-project/CoCreationStage/tree/master/orkestraApp
4https://www.webcomponents.org/introduction

on display devices based on the show layout (flow 3 in Fig. 2).
A sample of the Display interface is depicted in Fig. 6. The
Display application makes use of the adaptation algorithms
provided by the Distribution Engine (flow 4 in Fig. 2) to
adjust the quality of live and pre-recorded streams considering
network conditions. One of these algorithms is PADA, which
is described next.

D. Prioritised Adaptation Based on DASH (PADA)

PADA is based on the work in [14] and has six modules,
as illustrated in Fig. 5.

1) Layout Monitor (LM): assigns priority to on-demand
components based on their importance to the overall show.
Three priorities are considered: high (H), medium (M), and
low (L). The priority of each component is defined by the
operator following the instructions of the show’s director.
LM then creates a table mapping each priority to a set of
bitrates, e.g., if the list of available video bitrates (Kbps) is
b = {500, 1000, 1500, 2500, 4000}, LM uses b for priority H ,
b− {4000} for priority M , and b− {4000, 2500} for priority
L. Note that in case of high network bandwidth (e.g., >
1500Kbps), LM uses the full list of bitrates (b) for all priorities.

2) Bandwidth Estimator (BE): predicts the network’s band-
width using a smoothed moving average prediction approach
as expressed in Eq. 1, where α1, α2 > 0 are smoothing
coefficients. Note that Eq. (1) takes into consideration the short
spikes and drops in bandwidth that may incur over time and
which may influence the bandwidth estimations, yielding high
bitrate variability.

BW e
i =

{
BWi−1, i = 1

α1BWi−1 + α2BW e
i−1, i > 1

(1)

3) Playback Unit (PU): keeps track of the buffers’ occu-
pancy, governed by the time it takes to download new segments
which is proportionally related to the selected bitrates. Let
Bi ∈ [0, Bmax] be the buffer level after downloading segment
i, with Bmax denoting the maximum buffer size. We can
express the dynamics of the buffer level as follows:

Bi = Bi−1 + 1−
[
di
T

]
(2)

where di and T are the download time and the duration
of segment i, respectively. T is set to be the same for all
the segments. The first term in Eq. (2) represents the buffer
level before downloading segment i while the second term
represents the increment of the buffer level once segment i
is fully downloaded. The third term represents the number of
segments played while downloading segment i. [.] is used for
rounding the third term to the closest integer. By analyzing
Eq. (2), we can observe that it is dominated by the third term.
Indeed, when di is long, the playback buffer may run dry (i.e.,
buffer underflow) before fully downloading segment i, leading
to playback interruptions. In this case, a rebuffering period is
triggered in which the buffer is filled while the streaming is
paused. On the other hand, when di is short, segments will be
continuously downloaded into the buffer, which might induce
buffer overflow. To mitigate these problems, we introduce two

6

Bandwidth
Estimator

Quality
Variation
Monitor

bitrate

bandwidth

buffer

1080p

720p

480p

360p

280p

144p

H
M

L

Scheduler Playback
Unit

1080p

HTTP GET
Requests

Internet

priority

Audio/Video segments

720p

DASH Sever

Bitrate
Adaptive

Unit

Viewer

Co-Creation Stage: client-side

Layout
Monitor

Display

Fig. 5. PADA’s block architecture and its deployment

Algorithm 1: Dynamic adjustment of bmin and bmax

Input: b - List of available bitrates
Result: bmin and bmax

while i ̸= k do
if i = 1 then

bmin ← min(b) and bmax ← min(b)
BWlast ← 0

else
if i > 2 then

BWlast ← BWi−2

end
if BWi−1 −BWlast > 0 then

if bmax ≤ BWi−1 then
bmax ← max {bj ∈ b | bj ≤ BWi−1}
bmin ← min {bj ∈ b | bj > bmin}

end
else

if bmin > BWi−1 then
bmax ← max {bj ∈ b | bj ≤ BWi−1}
bmin ← max {bj ∈ b | max− j = 2}

end
end

end
end

thresholds: Bl and Bh. In case the buffer level is less than
Bl, segments will be downloaded at low bitrates to quickly
fill in the buffer, avoiding therefore streaming interruptions.
In case the buffer level is greater than Bh, segments will be
downloaded with higher bitrates to allow for the buffer level
to be reduced, averting the buffer overflow problem.

4) Bitrate Adaptive Unit (BAU): selects the appropriate
bitrate for each on-demand stream. Let bmin and bmax be
the dynamic bounds of the bitrates list b provided by LM and
let k be the number of segments. Initially, bmin and bmax are
both set to the lowest bitrate in b as no bandwidth estimation
exists (see Algorithm 1). After downloading few segments, the

Algorithm 2: Bitrate Selection
Result: bi, bitrate of segment i
while i ̸= k do

if i = 1 then
bi ← bmin

else
if Bi−1 ≤ Bl then

bi ← max {bj ∈ b s.t. (T ×Bi)− di > 0}
end
if Bl < Bi−1 ≤ Bh then

bi ← max {bj ∈ b s.t. Eq. (3) holds}
end
if Bi−1 > Bh then

wait for τ seconds
end

end
end

bounds are adjusted to reflect the estimated bandwidth. If it
tends to increase, bmax is set to the highest bitrate that is lower
than the estimated bandwidth while bmin is set to the next
highest bitrate in the list (lines 9−13). If it decreases, bmin is
set to the bitrate having an index that is two decrements from
the index of bmax (lines 14− 18). This is to limit the number
of bitrates from which PADA should choose in order to avert
substantial bitrate oscillations when sudden short bandwidth
changes occur.

Algorithm 2 illustrates the bitrate selection process. PADA
adopts a more liberal approach where the first segment is
downloaded at the lowest supported bitrate (i.e., due to missing
bandwidth estimates) while the bitrate of the following seg-
ments is selected based on the estimated download time and
the buffer level, i.e., should not drop to 0. The same bitrate is
used for the following segments till the buffer level exceeds
Bl. In case the buffer level is between Bl and Bh, PADA
selects the bitrate that meets the conditions in Eq. 3. The
first condition indicates that the bitrate of segment i for the

7

stream with highest priority p should not exceed the estimated
bandwidth. The second condition specifies that the bitrate of
segment i for streams with priority M and L should not be
higher than the bitrate of the stream with the highest priority
(biH). The third condition indicates that the selected bitrate
should be the next bitrate in the list with respect to bi−1

in either ascending or descending order. The last condition
implies that the buffer level should be higher than the threshold
Bl after downloading segment i.

bi ≤ BW e
i−1 , if p = H

bi ≤ BW e
i−1 − biH , if p = M,L

|bi − bi−1|
qi

≤ 1

(T ×Bi)− di ≥ T ×Bl

(3)

In case the buffer level exceeds Bh, PADA waits for a period
of time before requesting the next segment. This is to avoid the
buffer overflow problem. Still, chances of the buffer underflow
occurring during this period cannot be ignored particularly in
the case of a sharp drop in bandwidth or a low number of
segments in the buffer once this period expires. As a result,
the waiting period τ is computed as follows:

τ = T

(
Bi−1 −

[
Bl +Bh

2

])
(4)

5) Quality Variation Monitor (QVM): keeps track of the
difference in bitrates among the segments that have already
been downloaded. Studies have shown that high bitrate vari-
ation among segments can significantly decrease the user’s
QoE. Therefore, to reduce the frequent bitrate switches, we
use a moving average approach to keep track of the bitrate
variation, computed as follows:

qi =

{
b1, i = 1

(1− β)(bi − bi−1) + βqi−1, i > 1
(5)

where β ∈ [0, 1] is a smoothing coefficient. Note that Eq. (5)
captures the short-term bitrate variation and gives higher
weight to bitrate changes of recent segments as they are more
likely to influence the users’ perceived QoE.

Finally, the Scheduler sends HTTP GET requests to the
DASH server to download segments with the selected bitrates.

Note that PADA tries to maintain the same bitrate, if
possible, since abrupt variations in quality, particularly when
the bandwidth is low, can negatively affect viewers’ QoE.
Note also that selected bitrates for on-demand streams are
shared using the Shared Data Context module to enable inter-
adaptation among them.

E. Challenges

While implementing the TRACTION Co-creation Stage, we
encountered three main challenges.

First, operators have many tasks at hand and they lack a
clear vision of the overall show as everything is decided by
the show’s director. This can be particularly frustrating in
cases where abrupt or last minute changes are to be made

to the show. As a result, we are examining the possibility of
creating a new role, called director, which will be in charge of
defining a template on the Control app that tells the story of
the show (i.e., the scenes, the components in each scene, and
when and where to show each component). This will facilitate
the operators’ work.

The second challenge is related to the universality require-
ment. We want TRACTION Co-Creation Stage to be used
from any browser on any device. Yet, problems related to
unpredicted network conditions along with users’ capability to
properly utilise the application may arise. In addition, audio
and video quality will greatly depend on devices used, regard-
less of the performance of the media adaptation algorithms,
which might impact the viewers’ QoE.

Last, TRACTION Co-Creation Stage uses the getUserMe-
dia() function provided by the Stream API. While this function
is supported by almost all browsers, it is used mainly for
video calls and is not suited for transmitting music. For
instance, echoCancellation and NoiseSupression is used for
getUserMedia audio streams in Chrome, which deteriorates
music sounds. In addition, the getUserMedia function applies
often audio normalisation, which might remove the nuances
of a melody, making people unable to distinguish between a
pianissimo and a fortissimo. To address this issue, we enabled
TRACTION Co-Creation Stage to use Blackmagic cards and
External Audio interfaces to capture good quality video and
audio and to deliver them without deterioration. However, a
technician is needed in each location.

IV. PERFORMANCE EVALUATION

In this section, we first describe the user tests run to assess
the usability of TCS. Then, we discuss the experiment that
took place to evaluate PADA’s performance.

A. Control App User Tests

Formal user tests were run in collaboration with the Time
(As We Are) opera show team to assess the Control app’s us-
ability. Two operators are responsible for creating the show; as
a result, they were the main participants in our user tests. Since
these tests were run in the prison premise (i.e., as it contains
one of the main stages of the show), we could not invite the
production teams of the two other opera shows involved in
the project to take part in the tests due to restrictions imposed
by the prison authorities. The two participants were asked to
complete 8 tasks, described in Table. I, representing samples
of tasks that an operator should perform before and during the
show.

After completing each task, they were asked to rank the task
difficulty on a seven-point Likert scale anchored by very easy
and very difficult (see Tables II and III). Once all the tasks
were completed, participants were asked to fill in a usability
questionnaire with several single-item constructs, including:

1) The TRACTION Co-Creation Stage is unnecessarily
complex.

2) The TRACTION Co-Creation Stage is easy to use.
3) I would need the support of a technician to use the

TRACTION Co-Creation Stage.

8

TABLE I
TASKS DESCRIPTION

Task Number Description
1 Check cameras and start displays
2 Check connection from remote user
3 Start the show
4 Navigate from one scene to another
5 Browse the scenes till the end of the show
6 Change layout of a display
7 Change layout of a display
8 Load an existing show template

4) The various functions in the TRACTION Co-Creation
Stage are well integrated.

5) I learnt to use the TRACTION Co-Creation Stage very
quickly.

6) I felt very confident when using the TRACTION Co-
Creation Stage.

7) I needed to learn a lot of aspects before using the
TRACTION Co-Creation Stage.

The answers to these constructs were recorded on a five-
point Likert scale anchored by Strongly disagree and Strongly
agree (see Table IV). Finally, individual interviews were con-
ducted to understand the difficulties and problems encountered
by the participants when completing the tasks and get their
suggestions of possible improvements.

Discussion: Participant 1 indicated that overall, the in-
terface is quite easy to use and very intuitive. However, she
mentioned that task 7 was the most difficult (see Table II as it
took her some time to understand how the interface behaves.
She also mentioned that she had difficulties understanding how
to go from one scene to another. Indeed, she did not think that
it was necessary to click on the scene’s name but rather to
click anywhere on the timeline. Moreover, she had problems
finding a component in the media list that was not already used
in the timeline and suggested to improve this functionality.
Finally, she pointed out that when replacing one component
in a specific scene, that component is replaced in all the other
scenes.

Participant 2 also indicated that in general, the interface is
easy to use and friendly, but there is room for improvement. He
found that tasks 7 and 8 are the most complex (see Table III) as
it was not trivial for him to figure out the interface’s behaviour.
He also indicated that when adding a new component to a
scene, this component is added to all the following scenes. In
terms of improvements, he suggested that the vertical bar in
the timeline should show the scene number as well as slowly
moving from left to right to indicate the time passed since the
beginning of a scene. He also recommended that instead of
showing 4 components in the current layout icon (i.e., used to
switch from mosaic to split layout and vice versa), it would
be better to have icons that match the number of components
selected for each display to enable the operator to immediately
know the way the components will be displayed.

Note that the problems raised by both participants have been
investigated and fixed. In addition, the suggested improve-
ments have been analysed and translated into system require-
ments that are being implemented in the new development
branch of the TRACTION Co-Creation Stage.

TRACTION Adaptive Display Application

View 1

View 2 View 3

Fig. 6. The Display App showing the opera show used in our experiment
which is made of 3 pre-recorded clips

B. Display App Performance Evaluation

We run an experiment involving 33 participants, aged be-
tween 20 and 70, to assess the performance of the Display app
with the support of several adaptation algorithms. Connected
from 11 countries across 4 continents, participants (see their
demographics and network setting in Tables V - VII) were
asked to use the Display app to stream and watch an opera
play made of 3 pre-recorded clips, stored in a DASH server
in Dublin (Ireland) and are shown on three different views
(i.e., displays) as illustrated in Fig. 6. The clips were taken
from “Só Zerlina ou Cosi fan Tutte?”, an opera play created
by Sociedade Artistica Muscial de Pousos-Portugal (SAMP),
and have scenes with distinct characteristics (i.e., dim vs.
bright lights, group of people vs. individuals, dialog vs.
singing, movement vs. stillness) to portray spatial and temporal
variations. They are 2 minutes long with a frame rate of 25fps
and are encoded using the H.264 encoder to provide high-
quality transmission of videos in limited network bandwidth
scenarios. Five video bitrates were used: 500Kbps (240p),
1000Kpbs (360p), 1500Kbps (480p), 2500Kbps (720p), and
4000Kbps (1080p). To enable multi-bitrate audio while sup-
porting seamless switching between the various qualities, we
used the xHE-AAC codec with 3 bitrates (192Kbps, 300Kbps
and 600Kbps) with a sample rate of 48KHz. Clip 1 has priority
H and is displayed in View 1, Clip 2 has priority M and is
displayed in View 2, and Clip 3 has priority L and is displayed
in View 3 (see Fig. 6).

After watching the opera show, participants were invited to
fill in a QoE questionnaire with several single-item constructs
for each clip, including:

1) Please rate the audio quality.
2) Please rate the video quality.

9

TABLE II
SUMMARY OF TASK COMPLETION TIME AND TDR OF PARTICIPANT 1

Task 1 2 3 4 5 6 7 8
Start 14:38 14:40 14:42 14:47 14:49 14:52 14:56 15:12
Finish 14:40 14:42 14:46 14:49 14:52 14:55 15:09 15:16
TDR 1 1 3 1 1 1 5 1

TABLE III
SUMMARY OF TASK COMPLETION TIME AND TDR OF PARTICIPANT 2

Task 1 2 3 4 5 6 7 8
Start 15:41 15:44 15:45 15:48 16:00 16:08 16:09 16:21
Finish 15:44 15:45 15:48 15:59 16:08 16:09 16:19 16:25
TDR 1 1 1 1 1 1 2 3

TABLE IV
ANSWERS TO USABILITY QUESTIONNAIRE OF BOTH PARTICIPANTS

Participants Construct 1 Construct 2 Construct 3 Construct 4 Construct 5 Construct 6 Construct 7
1 1 5 4 5 5 5 1
2 1 4 1 4 5 5 1

TABLE V
PARTICIPANTS’ AGE DISTRIBUTION

Age Number of Participants
20 - 29 12
30 - 39 13
40 - 49 4
≥ 50 4

TABLE VI
PARTICIPANTS’ GENDER DISTRIBUTION

Gender Number of Participants
Female 13
Male 20

TABLE VII
PARTICIPANTS’ NETWORK DISTRIBUTION

Network Type Number of Participants
WiFi 22

3G/4G/5g 4
Ethernet 7

3) Have you experienced audio glitches?
4) Have you experienced video stalls?
5) Please rate your overall enjoyment of the experience.

Answers to constructs 1,2, and 5 were recorded on a five-
point Likert scale anchored by poor and excellent. Constructs
3 and 4 have ”Yes/No” answers. Apart from the qualitative
data, we configured the Display app to collect QoS metrics
every second and send them to the server, including selected
audio and video bitrates, bitrate switches, and time to reach
the highest bitrate.

The segment duration, the maximum buffer size, Bl, and
Bh were set to 2, 25, 10, and 20 seconds, respectively. Along
with PADA, two commercially used adaptation algorithms
were deployed: BOLA [28] and DYNAMIC [29]. Note that
participants were not aware of which adaptation algorithm was
used to eliminate any possible bias.

Fig. 7 illustrates the average scores of audio and video
qualities (constructs 1 and 2) perceived by the participants. All
results are reported with 95% confidence interval. We observe

3.86 4

4.63

3.7 3.57 3.67
3.25 3.5 3.78

3.56

4.57 4.88
4 3.86

4.44
3.75

4.25 4.33

0%

10%

20%

30%

40%

0

1

2

3

4

5

BO
LA

DY
N

AM
IC

PA
DA

BO
LA

DY
N

AM
IC

PA
DA

BO
LA

DY
N

AM
IC

PA
DA

Clip 1 Clip 2 Clip 3 Pe
rc

en
ta

ge
 (%

)

Av
er

ag
e

sc
or

e

Video quality Audio quality Video stalls Audio glitches

Fig. 7. Average scores of QoE metrics across all clips

2.75
3

3.44

2.8 2.86
3.22

2.7 2.87
3.22

0

1

2

3

4

5

BO
LA

DY
NA

M
IC

PA
DA

BO
LA

DY
NA

M
IC

PA
DA

BO
LA

DY
NA

M
IC

PA
DA

Clip 1 Clip 2 Clip 3

AV
ER

AG
E

SC
O

RE

Fig. 8. Average score of participants’ enjoyment in each clip

that PADA scored the highest in all clips in terms of audio
quality. As for video quality, PADA got the highest score in
clips 1 and 3, and second highest in clip 2. For instance,
PADA’s scores for clip 1 are higher than those of BOLA and

10

TABLE VIII
QOS MEASUREMENTS ACROSS ALL CLIPS

Clip 1 Clip 2 Clip 3
BOLA DYNAMIC PADA BOLA DYNAMIC PADA BOLA DYNAMIC PADA

Average video bitrate (Kbps) 2782 2654 3829 3384 3371 3289 2863 3702 2938
Average audio bitrate (Kbps) 262 317 596 252 261 305 304 210 293
Average video bitrate switches 8 6 3 6 4 3 4 4 6
Average time to highest video bitrate (s) 13 46 26 0 18 30 30 25 48

DYNAMIC by 31% and 7% in terms of audio quality, and
18% and 15% in terms of video quality.

Fig. 7 also depicts the percentage of participants experienc-
ing audio glitches and video stalls (constructs 3 and 4) across
all clips. Again, all results are reported with 95% confidence
interval. We observe that PADA incurred the lowest percentage
of audio glitches and video stalls across all clips. While the
three schemes did not incur any audio glitches in clip 1, PADA
incurred audio glitches that are 19% and 3% less than those
of BOLA and DYNAMIC for clip 2, and 2% and 27% less for
clip 3. PADA also incurred no video stalls in clip 1 against
14% and 22% for BOLA and DYNAMIC, 8% and 7% less
for clip 2, and 8% and 13% less for clip 3.

Table VIII depicts the collected QoS metrics across all clips.
We observe that:

• PADA provides the highest audio and video average
bitrate for clip 1, reflecting the high scores in Fig. 7, i.e.,
PADA’s average bitrates are higher than those of BOLA
and DYNAMIC by 77% and 61% for audio, and 32%
and 36% for video.

• PADA provides the highest audio average bitrate for clip
2, reflecting the high score of audio quality in Fig. 7,
i.e., PADA’s average bitrate is higher than those of BOLA
and DYNAMIC by 19% and 16%. Note that even though
PADA provides the lowest video bitrate in clip 2, it scores
almost as high as BOLA in Fig. 7 as it incurred the lowest
percentage of video stalls, known to affect the viewers’
QoE.

• PADA incurred the least number of bitrate switches for
clips 1 and 2 for video.

• PADA requires extended time to reach the highest video
bitrate across all clips when compared to BOLA and
DYNAMIC.

Finally, Fig. 8 illustrates the average score of participants’
enjoyment across all clips. We observe that PADA scored
the highest across the three clips. Indeed, the average enjoy-
ment score incurred by PADA exceeded those of BOLA and
DYNAMIC by 22% and 14% in clip 1, 14% and 12% in
clip 2, and 18% and 11% in clip 3. This goes inline with
the results in Fig. 7 as PADA strives to select high audio
and video bitrates to match the network’s bandwidth while
reducing bitrate switches and ensuring low video stalls and
audio glitches.

The reason behind PADA’s performance is threefold. First,
PADA selects the highest sustainable bitrate when download-
ing video segments. Second, PADA reacts more conservatively
to changes in bandwidth to reduce the number of bitrate
oscillations. This implies that PADA would require longer

time to reach high bitrates, but only in case of low/moderate
bandwidth. Third, by considering the quality variation with
respect to previously downloaded segments, PADA averts high
amplitude changes in bitrates. As a result, PADA provides a
smoother streaming experience.

Note that when streaming both live and pre-recorded media,
TCS will give precedence to live components as they have
short buffers (i.e., 3 to 8 seconds) and are of high significance
to the overall performance. Consequently, PADA uses the
information in the Shared Data Context when estimating the
bandwidth to select the bitrate of pre-recorded components,
which might be low in case of moderate bandwidth.

V. CONCLUSIONS AND FUTURE WORKS

This article describes TRACTION Co-Creation Stage
(TCS), a web-based solution that enables the creation and
delivery of collaborative opera shows via Control and Display
apps. The paper introduces a novel prioritised adaptive stream-
ing scheme for pre-recorded content (PADA). Testing with
on-demand opera content shows how when using PADA, the
Display app provides higher enjoyment by ensuring reduced
bitrate fluctuations, very important for achieving high overall
viewer QoE.

We believe that TCS is a fundamental leap forward in the
online entertainment business as it enables content delivery
providers to flexibly adapt to the raise in demand in multi-
source streaming content. We also believe that TCS can be
useful in other business models such as those that rely on
adapting camera feeds for surveillance purposes.

Future research will focus on running more user tests
involving participants with different roles (e.g., operators,
professional and non-professional artists). We also plan to
fully develop and test the live adaptation algorithm to enable
the creation and delivery of live shows using TCS. Moreover,
evaluating inter-stream bitrate adaption between live and on-
demand components to further improve the viewers’ QoE
should be realised. Finally, performance optimization of TCS
in terms of efficiency and scalability can be evaluated through
use cases with varying number of displays and viewers.

ACKNOWLEDGMENTS

This work was supported by the European Union’s Horizon
2020 Research and Innovation programme under grant no.
870610 for the TRACTION project. The support of the Sci-
ence Foundation Ireland grants 12/RC/2289 P2 (Insight) and
21/FFP-P/10244 (FRADIS) is also gratefully acknowledged.

11

REFERENCES

[1] A. Terkelsen, C. Wester, G. Gulis, J. Jespersen, and P. Andersen, “Co-
creation of Activities to Promote Health and Well-Being of Older People
– A Scoping Review,” European Journal of Public Health, vol. 32, Oct.
2022.

[2] H. Zeilig, J. West, and M. van der Byl Williams, “Co-creativity:
Possibilities for Using the Arts with People with a Dementia,” Quality
in Ageing and Older Adults, vol. 19, no. 2, pp. 135–145, 2018.

[3] J. Carpenter, C. Horvath, and B. Spencer, “Co-Creation as an Agonistic
Practice in the Favela of Santa Marta, Rio de Janeiro,” Urban Studies,
vol. 58, no. 9, pp. 1906–1923, 2021.

[4] C. Horvath and J. Carpenter, Co-Creation in Theory and Practice:
Exploring Creativity in the Global North and South. Policy Press,
Sep. 2020. [Online]. Available: https://doi.org/10.1332/policypress/
9781447353959.001.0001

[5] T. Nahi, “Co-creation for Sustainable Development: The Bounds of
NGO Contributions to Inclusive Business,” Business Strategy & De-
velopment, vol. 1, no. 2, pp. 88–102, 2018.

[6] T. C. Turin, N. Chowdhury, S. Haque, N. Rumana, N. Rahman, and
M. A. A. Lasker, “Involving Im/migrant Community Members for
Knowledge Co-creation: The Greater The Desired Involvement, The
Greater The Need for Capacity Building,” BMJ Global Health, vol. 6,
no. 12, 2021.

[7] H. Leino and E. Puumala, “What Can Co-creation Do for The Citizens?
Applying Co-creation for The Promotion of Participation in Cities,”
Environment and Planning C: Politics and Space, vol. 39, no. 4, pp.
781–799, 2021.

[8] S. MacGregor, A. Cooper, M. Searle, and T. Kukkonen, “Co-production
and Arts-informed Inquiry as Creative Power for Knowledge Mobilisa-
tion,” Evidence & Policy, vol. 18, no. 2, pp. 206 – 235, 2022.

[9] TRACTION Project, “Opera Co-Creation for Social Transformation,”
Jan. 2023. [Online]. Available: https://www.traction-project.eu/

[10] N. Spiro, R. Perkins, S. Kaye, U. Tymoszuk, A. Mason-Bertrand,
I. Cossette, S. Glasser, and A. Williamon, “The Effects of COVID-19
Lockdown 1.0 on Working Patterns, Income, and Wellbeing Among
Performing Arts Professionals in the United Kingdom (April–June
2020),” Frontiers in Psychology, vol. 11, p. 4105, 2021.

[11] L. Zhong, M. Wang, C. Xu, S. Yang, and G.-M. Muntean, “Decentralized
Optimization for Multicast Adaptive Video Streaming in Edge Cache-
Assisted Networks,” IEEE Transactions on Broadcasting, vol. 69, no. 3,
pp. 812–822, 2023.

[12] G. Zhou, Z. Luo, M. Hu, and D. Wu, “PreSR: Neural-Enhanced Adaptive
Streaming of VBR-Encoded Videos With Selective Prefetching,” IEEE
Transactions on Broadcasting, vol. 69, no. 1, pp. 49–61, 2023.

[13] J. Fu, Z. Chen, X. Chen, and W. Li, “Sequential Reinforced 360-Degree
Video Adaptive Streaming With Cross-User Attentive Network,” IEEE
Transactions on Broadcasting, vol. 67, no. 2, pp. 383–394, 2021.

[14] M. A. Togou and G.-M. Muntean, “An Elastic DASH-based Bitrate
Adaptation Scheme for Smooth On-Demand Video Streaming,” in 2022
IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB), 2022, pp. 1–6.

[15] Z. Ye, Q. Li, X. Ma, D. Zhao, Y. Jiang, L. Ma, B. Yi, and G.-M.
Muntean, “Vrct: A viewport reconstruction-based 360° video caching
solution for tile-adaptive streaming,” IEEE Transactions on Broadcast-
ing, vol. 69, no. 3, pp. 691–703, 2023.

[16] A. Yaqoob, T. Bi, and G. Muntean, “A DASH-based Efficient Through-
put and Buffer Occupancy-based Adaptation Algorithm for Smooth
Multimedia Streaming,” in 2019 15th International Wireless Commu-
nications Mobile Computing Conference (IWCMC), 2019, pp. 643–649.

[17] D. Yun and K. Chung, “Dash-based multi-view video streaming system,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 8, pp. 1974–1980, 2018.

[18] S. Q. Jabbar, D. J. Kadhim, and Y. Li, “Proposed an Adaptive Bitrate
Algorithm based on Measuring Bandwidth and Video Buffer Occupancy
for Providing Smoothly Video Streaming,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 2, 2018.

[19] D. Anand, M. A. Togou, and G.-M. Muntean, “A Machine Learning
Solution for Video Delivery to Mitigate Co-Tier Interference in 5G
HetNets,” IEEE Transactions on Multimedia, vol. 25, pp. 5117–5129,
Jun. 2023.

[20] P. Szabó, A. A. Simiscuka, S. Masneri, M. Zorrilla, and G.-M. Muntean,
“A CNN-Based Framework for Enhancing 360° VR Experiences With
Multisensorial Effects,” IEEE Transactions on Multimedia, vol. 25, pp.
3245–3258, Mar. 2023.

[21] T. Bi, R. Lyons, G. Fox, and G.-M. Muntean, “Improving Student
Learning Satisfaction by Using an Innovative DASH-Based Multiple
Sensorial Media Delivery Solution,” IEEE Transactions on Multimedia,
vol. 23, pp. 3494–3505, Sep. 2021.

[22] Q. Li, Y. Chen, A. Zhang, Y. Jiang, L. Zou, Z. Xu, and G.-M. Muntean,
“A Super-Resolution Flexible Video Coding Solution for Improving Live
Streaming Quality,” IEEE Transactions on Multimedia, pp. 1–14, Sep.
2022.

[23] J. Walker, D. L. Williams, I. C. Kegel, A. P. Gower, J. Jansen, M. Lomas,
and S. Fjellsten, “2-IMMERSE: A Platform for Production, Delivery,
and Orchestration of Distributed Media Applications,” SMPTE Motion
Imaging Journal, vol. 128, no. 7, pp. 45–51, 2019.

[24] A. Domı́nguez, M. Agirre, J. Flörez, A. Lafuente, I. Tamayo, and
M. Zorrilla, “Deployment of a Hybrid Broadcast-Internet Multi-Device
Service for a Live TV Programme,” IEEE Transactions on Broadcasting,
vol. 64, no. 1, pp. 153–163, 2018.

[25] D. L. Williams, I. C. Kegel, M. Ursu, P. Cesar, J. Jansen, E. Geelhoed,
A. Horti, M. Frantzis, and B. Scott, “A Distributed Theatre Experiment
with Shakespeare,” in Proceedings of the 23rd ACM International
Conference on Multimedia, ser. MM ’15, 2015, p. 281–290.

[26] M. Rofe, S. Murray, and W. Parker, “Online Orchestra: Connecting
remote communities through music,” Journal of Music, Technology &
Education, vol. 10, no. 3, pp. 147–165, 2017.

[27] C. Drioli, C. Allocchio, and N. Buso, “Networked Performances and
Natural Interaction via LOLA: Low Latency High Quality A/V Stream-
ing System,” in Information Technologies for Performing Arts, Media
Access, and Entertainment. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, pp. 240–250.

[28] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-Optimal
Bitrate Adaptation for Online Videos,” IEEE/ACM Transactions on
Networking, vol. 28, no. 4, pp. 1698–1711, 2020.

[29] K. Spiteri, R. Sitaraman, and D. Sparacio, “From Theory to Practice:
Improving Bitrate Adaptation in the DASH Reference Player,” ACM
Trans. Multimedia Comput. Commun. Appl., vol. 15, no. 2s, Jul. 2019.

[30] C. Zhou, C. Lin, and Z. Guo, “mDASH: A Markov Decision-Based Rate
Adaptation Approach for Dynamic HTTP Streaming,” IEEE Transac-
tions on Multimedia, vol. 18, no. 4, pp. 738–751, 2016.

[31] Y. Sani, D. Raca, J. J. Quinlan, and C. J. Sreenan, “SMASH: A
Supervised Machine Learning Approach to Adaptive Video Streaming
over HTTP,” in 2020 Twelfth International Conference on Quality of
Multimedia Experience (QoMEX), 2020, pp. 1–6.

[32] M. Kim and K. Chung, “Reinforcement Learning-Based Adaptive
Streaming Scheme with Edge Computing Assistance,” Sensors, vol. 22,
no. 6, 2022.

[33] T. Huang, C. Zhou, R.-X. Zhang, C. Wu, X. Yao, and L. Sun, “Stick: A
Harmonious Fusion of Buffer-based and Learning-based Approach for
Adaptive Streaming,” in IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, 2020, pp. 1967–1976.

[34] J. A. Armijo, E. Çetinkaya, C. Timmerer, and H. Hellwagner, “ECAS-
ML: Edge Computing Assisted Adaptation Scheme with Machine Learn-
ing for HTTP Adaptive Streaming,” CoRR, vol. abs/2201.04488, 2022.

[35] W. Li, J. Huang, W. Lyu, B. Guo, W. Jiang, and J. Wang, “RAV:
Learning-Based Adaptive Streaming to Coordinate the Audio and Video
Bitrate Selections,” IEEE Transactions on Multimedia, vol. 25, pp.
5662–5675, Aug. 2023.

Mohammed Amine Togou (Member, IEEE) is an
Assistant Professor with the School of Computing,
Dublin City University, Ireland. He received B. Sc.
and M. Sc. in Computer Science and Computer
Networks from Al Akhawayn University in Ifrane,
Morocco and a Ph.D. in Computer Science from
the University of Montreal, Canada. He has pub-
lished over 40 peer-reviewed scientific articles in
top journals and flagship conferences. He has also
served as a member of the technical programme
committee of several international conferences. His

current research interests include 5G/6G networks, blockchain, machine
learning, adaptive multimedia delivery, IoT, and technology enhanced learning
(TEL).

12

Anderson Augusto Simiscuka (Member, IEEE)
is a Postdoctoral Researcher with the Performance
Engineering Laboratory, School of Electronic En-
gineering, Dublin City University. He received
the B.Sc. degree in Information Systems in 2014
from Mackenzie Presbyterian University, São Paulo,
Brazil and received his Ph.D from the School of
Electronic Engineering, Dublin City University. His
research is mainly focused on the Internet of Things
communications performance, virtual reality, mul-
tisensorial media and content adaptation. He is a

member of the IEEE Communications Society, and IEEE Broadcast Tech-
nology Society.

Rohit Verma (Member, IEEE) is an Assistant Pro-
fessor at the School of Computing, National College
of Ireland, Dublin. He received B.Eng. and M.Tech.
degrees in Computer Science and Information Se-
curity from the Manipal Institute of Technology,
MAHE, India. He was awarded a PhD degree by
the Indian Institute of Technology Indore, India.
Previously, he was a postdoctoral researcher with the
Performance Engineering Laboratory, Dublin City
University (DCU), Ireland. His current research ar-
eas include service computing, blockchain, adaptive

systems, cybersecurity, and autonomous computing.

Noel E. O’Connor is a Full Professor in the School
of Electronic Engineering at Dublin City University
(DCU) Ireland and CEO of the Insight SFI Research
Centre for Data Analytics. His research focuses on
multimedia content analysis, computer vision, ma-
chine learning, information fusion and multi-modal
analysis for diverse applications. He is an Area
Editor for Signal Processing: Image Communication
(Elsevier) and an Associate Editor for the Journal of
Image and Video Processing (Springer).

Iñigo Tamayo is a senior software developer with
the Department of Digital Media at Vicomtech,
Spain. He received his Computer Science Engi-
neering degree in 2007 from the University of
Mondragon, Spain and he obtained an advanced
degree on Computational Engineering and Intelligent
Systems from the University of Basque Country,
Spain in 2017. Since 2008, his research focuses on
distributed computing and Web technologies.

Stefano Masneri is a Technical Manager for AI
projects at NTT DATA and collaborates with the
Computer Languages and Systems Department, Uni-
versity of the Basque Country, Spain. He completed
the M.Sc. degree in Telecommunications in 2008
from Università degli Studi, Brescia, Italy and re-
ceived his Ph.D from the Faculty of Informatics,
University of the Basque Country in 2024. He is
currently involved in projects studying how to apply
generative artificial intelligence models to improve
industrial processes.

Mikel Zorrilla is the Head of the Digital Me-
dia Department at Vicomtech, Spain. He studied
Telecommunication Engineering at the University of
Mondragon (Spain), and obtained his PhD degree
in September 2016 from University of the Basque
Country, Spain, entitled “Interoperable Technologies
for Multi-Device Media Services”.

Gabriel-Miro Muntean (IEEE Fellow) is a Pro-
fessor with the School of Electronic Engineering,
Dublin City University (DCU) and co-Director of
the DCU Performance Engineering Laboratory. He
was awarded the PhD degree by DCU in 2004.
His research interests include quality-, energy- and
performance-related issues of rich media content
delivery. Prof. Muntean is an Associate Editor of
the IEEE Transactions on Broadcasting and the Mul-
timedia Communications Area Editor of the IEEE
Communication Surveys and Tutorials. He coordi-

nated the EU Horizon2020 project NEWTON and leads the DCU teams in
the EU projects TRACTION and HEAT. Contact: gabriel.muntean@dcu.ie

