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Abstract—HTTP live streaming delivers dynamically video
content with varying bitrates to accommodate the dynamic
real-time bandwidth fluctuations while considering diverse user
preferences and device capabilities. Existing flow control solutions
do not provide support for new features such as multi-source
content transmission. In this paper, we propose a distributed
multi-source rate control optimization algorithm (DMRCA) that
maximizes the overall network bandwidth utility and improves
viewer Quality of Experience (QoE). First, we model the rate
control problem as a dual-optimized multi-source and multi-rate
problem. Then, we decompose the problem into sub-problems
of source rate selection and user rate adaptation and we prove
that solving the original problem is equivalent to solving these
two sub-problems. Furthermore, we propose DMRCA as a fully
distributed algorithm to solve these sub-problems and derive
an optimal solution and we discuss DMRCA’s complexity and
convergence. Finally, through a series of simulation tests, we
demonstrate the superiority of our proposed algorithm compared
to alternative state-of-the-art solutions.

Index Terms—Rate Control, HTTP Live Streaming, Dual
optimization theory

I. INTRODUCTION

LATELY, there is a surge in the popularity of high-quality
multimedia streaming over the Internet [1–4], enabled

by its ability to provide timely, immersive, and personalized
viewing experience. The video streaming market is forecasted
to grow by $310.44 bn during 2022-2027, accelerating at
a CAGR of 20.36% during the forecast period [5]. The
widespread adoption of smart devices and the heterogeneity
of communication technologies (e.g., 5G and beyond, WiFi,
Fiber) have offered video users various resolution capabilities,
screen sizes, processing power and diverse access network
bandwidth and delay, among other aspects [6]. These support
the provision of an unprecedented range of services to an
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increasing video viewing population. Diverse solutions were
proposed which tailored video content to different presenta-
tions (i.e., bit-rate, resolution, etc.) and dynamically performed
adaptive delivery to meet bandwidth fluctuations, diversity
of device characteristics or other deployment-related require-
ments. For instance, the authors of [7] have proposed a
user gaze-driven adaptive solution for omnidirectional video
delivery, researchers of [8] have designed an energy-aware
adaptive solution based on machine learning and QAVA [9]
has introduced a quality-aware adaptive video bitrate solution
based on smart edge computing. DQAMLearn [10] proposed
a solution for educational video quality control on mobile
devices with different features, authors of [11] discussed
an innovative solution for virtual reality video streaming
and researchers of [12] proposed a viewport reconstruction-
based 360° video caching solution for Tile-adaptive streaming.
Authors of [13] have introduced a decentralised multicast
adaptive solution, those of [14] have proposed a fuzzy logic
solution for adaptive video streaming and researchers of [15]
have proposed a new neural enhanced adaptive streaming
framework for variable bitrate encoded videos, which is based
on selective prefetching of video blocks. Among adaptive
video streaming solutions, some researchers focus on HTTP
Live Streaming [16–18], which supports users to enjoy high-
quality video streaming through the HTTP protocol. These
solutions provide lightweight but effective algorithms that can
be easily deployed in web video applications. HTTP Live
Streaming has emerged as a promising paradigm for video
streaming in the context of future networks and services.

However, most studies related to HTTP live video streaming
concentrate on how to allocate network bandwidth given a
certain target bitrate suggested by an Adaptive Bitrate (ABR)
algorithm [19–21]. While most ABR algorithms address the
bitrate selection issue on the client side, little attention is
given to the rate control problem at the video provider’s end.
Nevertheless, it should be noted that this rate control issue
directly impacts bandwidth utilization of links and improv-
ing network bandwidth utilization enables nodes within the
network to transmit data at higher rates. As a result, there
is a direct improvement in video transmission quality, which
is desired. Unfortunately, most rate control algorithms do not
consider key aspects of video transmission scenarios such as
multi-source topology and multi-rate transmission [23–26].

The consideration of these new aspects increases the com-
plexity of both the solutions and network topology. A higher
number of video source providers allows for content delivery
by multiple node servers within the network, resulting in the
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possibility of a serving node switch during transmission, and
thereby altering the transmission path [22]. This makes it more
challenging for servers to access comprehensive network infor-
mation for performance improvement purposes. For instance,
they may be able to utilize the information associated with
their own node only for flow control. Therefore, there is a
need to propose a distributed rate control strategy that specifi-
cally considers multi-source and multi-rate aspects during the
video transmissions, in order to enhance network bandwidth
utilization and optimize user experience.

In this context, this paper proposes an innovative distributed
HTTP Live Streaming rate control mechanism, based on a
mathematical investigation of the achievable global rate opti-
mization in a multi-source multi-rate video delivery context.
An important feature of the proposed distributed multi-
source rate control optimization algorithm (DMRCA) is
that it enables providers and video consumers to dynamically
select optimal streaming rates individually, without relying on
a centralized control. The effectiveness of the proposed algo-
rithm is assessed via extensive simulation tests in comparison
with alternative approaches.

In summary, this paper’s main contributions are as follows:
(1) Multi-source rate-adaptive problem: by theoretically mod-

eling the HTTP Live Streaming, we formulate the optimal
rate selection problem of HTTP Live Streaming as a multi-
source rate-adaptive problem (MAP). We then introduce a
linear relaxation of MAP and prove its concavity, which
has unique optimal solutions.

(2) Problem decomposition: MAP is decomposed into a rate
selection sub-problem (SRSP) and a user rate adaptive
sub-problem (URAP). We prove the equivalence between
the original MAP and the two sub-problems. Furthermore,
we discuss the duality of the two sub-problems in order to
solve the rate control problem in a decentralized context.

(3) Distributed design: we propose a distributed optimization
for the DMRCA algorithm to derive the global optimal rate
control which enables providers and users to solve the rate
control problem without central coordination. Moreover,
the complexity, convergence and ]time-varying adaptation
aspects of DMRCA are also discussed.

(4) Performance evaluation: DMRCA was evaluated against
other state-of-art solutions under different network topolo-
gies. The simulation tests show how the proposed algo-
rithm outperforms existing solutions in terms of average
bitrate and playback freeze frequency.

The rest of the paper is organized as follows: Section II
surveys related works. Section IV describes the network and
QoE models. Section V analytically formulates MAP and its
linear relaxation, and the problem is decomposed into two
sub-problems in Section VI. The DMRCA design is carried
out in Section VII. Performance evaluation and conclusions
are provided in Section VIII and Section IX, respectively.

II. RELATED WORKS

The stringent demands for high throughput and low latency
associated with the latest video services dictate significant
requirements in relation to the transmission rates. Diverse

flow control mechanisms are employed to determine the rate
at which data packets should be transmitted. By optimizing
the flow control process, video content can be transmitted at
a higher rate and lower loss, thereby enhancing the quality
of presentation. This is equally performed for pre-recorded
and live video streaming and the goal is to improving the
viewers’ Quality of Experience (QoE). Consequently, numer-
ous research efforts have been focused on this issue, aiming
to design innovative flow control algorithms to improve the
performance of content delivery, including by maximizing the
overall network bandwidth utilization.

In [23], a throughput control method that leverages the
HTTP2 Flow Control mechanism is proposed. The author
designs a video streaming framework, in which a manager is
situated at the client side. This manager continuously monitors
the bandwidth of the bottleneck network and manages the
throughput by adjusting the flow control window size. The
authors note that while some solutions utilize the TCP flow
control to manage server sending rates, this approach may be
susceptible to security concerns. Given that the flow control
method in [23] is deployed at the application layer, it is
considered to be a relatively straightforward solution to deploy
and upgrade.

In the context of recent protocols such as QUIC, due to
its implementation based on UDP, which itself does not have
flow control, it implements its own native flow control strategy.
The flow control of QUIC itself is based on restrictions, which
mainly include two parts. The first part is to limit the amount
of data that can be sent on each flow to prevent a single flow
from occupying the entire receiving buffer of the connection.
The second part is to limit the total number of bytes of stream
data sent in stream frames across all streams. An enhanced
flow control algorithm has been proposed to improve the orig-
inal credit-based algorithm [24]. This new algorithm modifies
the threshold one packet ahead of the original flow control
algorithm in QUIC. This change circumvents misjudgments
of the flow control update signal’s timing. Concurrently, the
method for updating the maximum receive offset has been
altered, thereby avoiding the potential sub-optimal behavior
of the original scheme. The enhanced algorithm has been
validated through simulation experiments and has been demon-
strated to achieve the optimum performance in FC-limited
scenarios.

Recently, machine learning techniques have been employed
to solve increasingly complex problems, including to address
rate control issues. Iris [25] introduced an end-to-end statistical
learning-based congestion control method for real-time video
transmission. Within Iris, all streams maintain a small, fixed
number of packet queues to ensure minimal latency and
equitable bandwidth allocation. For rate control, a statistical
learning approach is employed to dynamically adjust the
transmission rate via online linear regression learning. This
eliminates the need for the fixed-step adjustment strategy
employed in traditional methods, resulting in accelerated con-
vergence. In [26], a reinforcement learning-aided in-network
congestion control scheme was proposed to address network
volatility on a time scale of 10 to 100 milliseconds. The
algorithm is directly deployed at the switches. The scheme
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leverages a multi-agent deep deterministic policy gradient
(MADDPG) algorithm to enable a distributed execution during
centralized training. A component within the training center
gathers information regarding the behavior of all switches in
the system and provides feedback, enabling the switches to
complete the training process in a distributed manner.

In the field of dynamic bitrate encoded videos, some flow
control strategies limit the amount of data from the encoding
level. In recent research of [28], a 360 degree video encoding
rate control (RC) algorithm based on virtual competitors is
proposed, which combines game theory to propose a frame-
level bit allocation model based on virtual competitors. The
algorithm provides a GOP level bit allocation scheme and
designs an overall bitrate allocation scheme based on this
to reduce the bitrate fluctuation of GOP. The scheme has
been proven to have the optimal Rate Control error and
bitrate fluctuation. Authors in [29] have proposed a quality
control algorithm to replace the rate control algorithm in video
transmission. The algorithm models the optimization problem
of rate distortion based on the rate distortion model, and solves
this continuous convex problem through the Karush-Kuhn-
Tucker equation. The author combines the rate quality (R-
Q) model to implement the proposed algorithm in versatile
video coding (VVC), and conducts verification experiments
to prove that the algorithm can achieve stable coding quality
while ensuring coding performance.

However, multi-source capabilities represent a novel fea-
ture that cannot be overlooked when addressing flow control
challenges. Performance-aware multi-source delivery solutions
would benefit from information about the network. How-
ever, there is a lack of access to comprehensive network
information, particularly needed when confronted with the
increased complexity brought about by multi-source attributes.
Implementing flow control algorithms across all nodes to
achieve optimal overall bandwidth utilization poses significant
difficulties. Consequently, distributed flow control algorithms
are required to enable nodes to make rate decisions for global
optimization in the absence of information from other nodes.
To date, to the best of the authors’ knowledge, previous
research on the flow control problem in video streaming [23–
29] has yet to demonstrate in practice the benefit of distributed
algorithms. Therefore, an urgent need exists for a distributed
rate control method that not only supports the multi-source
feature but also provides optimal rate configuration for HTTP
live streaming.

III. DISTRIBUTED FRAMEWORK

In the context of HTTP live streaming, users can access
network services using a variety of devices and from various
locations, as illustrated in Figure 1. The figure shows how
some users employ high-end computing devices connected to
the network via wired connections, thereby enjoying higher
bandwidth. Conversely, other users leverage mobile devices
to access the network through WiFi access points (AP) or 5G
base stations (BS), resulting in comparatively lower bandwidth
at the client side.

Concurrently, within the network, several provider nodes
cache video resources. On the cloud side, high-performance

Table I: Notations
Symbol Description

G The graphical topology of network
p (i, j) The link set of path from j to i
lx,y One-hop link from node x to y
S The set of content providers in G
U The set of video users in G
L The set of links in G
B The types of representations of HLS

bmax, bmin The maximum and minimum bitrates of HLS
L (i) The link set that used by provider i
si (u) The user set of provider i
sj (u)l The group of users of provider j that use link l
D(bm) The data size of video segment under quality bm

T The playback time of video segment

resource servers are interconnected with edge servers situated
closer to users through the core network. These servers are
equipped with the capability to cache video resources and
provide video transmission services. Along the link between
edge servers and users, there may be several router nodes
involved. The provider nodes offer various video bitrates to
cater to diverse network conditions and user preferences.
For instance, when users encounter poor client-side network
conditions leading to video stuttering or delays, they may opt
to reduce the bitrates to ensure smooth playback.

However, user nodes are unable to obtain the status infor-
mation of the entire network. Although clients can estimate
network congestion by calculating in real-time the network
bandwidth, their source of information is limited to the links
connected to the client. Information regarding congestion at
other network nodes, such as congestion at router nodes and
server loads, is inaccessible to the client. This makes it difficult
to determine the appropriate video rate to be requested. A
similar information gap exists at service nodes; service nodes
can also gather network-related information from the multiple
links connected to them. However, within a large network
topology, a single node remains unable to ascertain the overall
network congestion. As a result, the provider nodes also
face the issue of what rate they need to transmit the video
data. In the context of the illustration from Figure 1, we
consider a distributed framework in which each node deploys
a distributed flow control algorithm such as the proposed
DMCRA that determines the optimal bitrate selection solely
based on information received from the connected link.

IV. SYSTEM MODEL

In this section, we present the network and QoE models
to describe the HTTP live streaming system mathematically.
Table I summarizes the notations used in the rest of the paper.

A. Network Model

We consider a network of N nodes including source servers,
node servers and users that communicate with each other over
a given connected, undirected graph G = (V,L), where V
and L ⊆ V × V denote the set of nodes and links between
nodes, respectively. Let S = {1, . . . , S} ∈ V be set of video
providers in the network and U = {1, . . . , U} ∈ V the set of
end users. Due to the in-network caching, we assume that all
the node servers are equipped with content repositories and
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Figure 1: Distributed HTTP Live Streaming Framework

thereby they can be also treated as video providers, namely,
they belong to set S. Let p (i, j) denote the order set of links
of the path between the end user j and its provider i:

p (i, j) ≜ {li,x1
, lx1,x2

, lx2,x3
, . . . , lxn,j}

where i, xk ∈ S, k = 1, 2, 3, . . . , n and j ∈ U . lx,y indicates
the link between x and y. Assume the network is connected
(i.e. all users in U are able to access content from any provider
in S).

In our model, we consider the content to be encoded by
scaled video coding (SVC) [30] which encodes video into
a base layer and several enhancement layers. Thus, video
can either be decoded with only the base layer or with
base and multiple enhancement layers; the more enhancement
layers decoded, the better quality of video can be achieved.
Let the video in G consist of one base layer and m en-
hancement layers, the bitrates of the base layer and each
enhancement layer k are b1 and hk, respectively. Accord-
ingly, the types of representation of video v can be defined
as B ≜ (b1, b1 + h1, b1 + h1 + h2, . . . , b1 + h1 + . . .+ hm),
and let bmin = b1 and bmax = b1+h1+ . . .+hm. To simplify
the description, we assume that the required transmission rate
of the video is equal to its playback bitrates and all videos in
G have equal B.

B. QoE Model

Currently, most adaptive streaming services support the
HTTP-based DASH protocol [31]. Along the traditional HTTP
streaming, diverse video performance metrics are considered
in DASH-based adaptation, including bitrate, stalling and
startup delay. Consequently, diverse QoE models have been
proposed for DASH with diverse explanations; their use may
impact differently the final QoE estimation results. We extend
the QoE model introduced in [32] according to our problem
scenario:

QoE = max

(
5.67x

xmax
+ 0.17− 4.95F, 0

)
(1)

where x is the chosen bitrate and xmax is the transmission rate
of the best content representation bmax. The factor F calculates
the impact of stalling time and increases with the increase of
the jamming frequency. The detailed calculation method is
described in [32]. In an HTTP live video streaming scenario,
the occurrence of stalling is related to the bitrate. With the
increase of bitrate, the possibility of congestion in the network
gradually increases. This leads to higher frequency of stalling
and lower QoE. However, the sending bitrate of the provider
is not able to directly determine the stalling time of the video
at the consumer side. In order to minimize the stalling time,
we can control the bitrate to meet the following condition:

D(bm)

x
< T

where for a certain video quality level bm, the corresponding
video segment data size is Dbm and T denotes the time length
of the video segment. This condition indicates that the sending
time of the video segment should be less than its playback
time. In this situation, the impact of stalling can be minimized
and F can be regarded as a constant. Thus, we will focus on
the rate control problem which mainly considers how to select
the playback bitrate to optimize the network bandwidth utility
and user QoE.

V. PROBLEM FORMULATION

Let xj be user j’s delivery rate and ∀j ∈ U , xj ∈ B.
We refer to the vector x = {x1, x2, x3, . . . , xU} ∈ BU as
the network rate configuration. Generally, we assume that
S =

⋃
i∈S

si (u) and si (u) ∩ si′ (u) = ϕ, ∀i, i′ ∈ S. x can be

also rephrased as {x1,1, ..., xi,j , ..., xS,U}, where xi,j implies
the delivery rate of user j that receives the video from provider
i. We represent the capacity of links in L in terms of a vector
c = {c1, c2, c3, . . . , cL}. The rate configuration problem of
HTTP live video streaming can be described as follows: given
a utility function f (x) varying with rate configuration x, how
to select a x∗ so that f (x) is maximized under the link
capacity constraints c.
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In this paper, f (x) is defined as the overall sum of user
QoE values, as follows:

f (x) =
∑
i∈S

∑
j∈s(u)

J (xi,j)

where J (·) is the QoE estimation function using the model
described in eq. (1). In this context, we refer to the rate
configuration of HTTP live video streaming as a multi-source
adaptive rate problem (MAP), which is outlined below:

P1:

max
∑
i∈S

∑
j∈si(u)

J (xi,j) (2)

s.t
∑
i∈l(s)

xi,j ≤ cl − bl l ∈ L (3)

xi,j ∈ B i ∈ VS , j ∈ si (u) (4)
D(bi,j)

xi,j
≤ T (5)

where l (s) denotes the set of video providers that use link l.
The inequalities in constraints (3) ensure that for any link l, the
total rate of providers that use l cannot exceed the capacity cl.
Constraints (4) indicate the possible delivery rate of each user
j is in B and constraints (5) control the bitrate to minimize
the impact of stalling. Considering the form of (4), MAP is
an integer programming problem which may be hard to solve.
Instead, we consider a linear relaxation version of the MAP,
which can be represented as follows:

P2:

max
x∈[bmin,bmax]U

∑
si∈S

∑
i∈s(u)

J (xs,j) (6)

s.t
∑
i∈l(s)

max
j∈si(u)l

xi,j ≤ cl l ∈ L (7)

D(bi,j)

xi,j
≤ T (8)

where x ∈ [bmin, bmax]
U indicates the rate configuration which

can be chosen from a continuous U -dimensional close space,
which is considered as the relaxation of constraint (4) in P1.
Particularly, the following theorem holds for P2:

Theorem 1. Given the J (x) is concave and twice differential
as eq. (1), the problem P2 is a concave optimization problem,
namely there exists a unique rate configuration x which
maximizes the (6) under constraint (7).

Proof. Intuitively,
∑
s∈S

∑
i∈s(u)

J (xs,j) is concave given that

J (.) is concave and concave propagation propriety of the
summation [33]. For ∀x,y ∈ [bmin, bmax]

U and 0 < θ < 1,
we have:

θx+ (1− θ)y ∈ [bmin, bmax]
U

This is because for ∀i-th component of x and y, xi, yi belong
to the continuous interval [bmin, bmax] , we apparently have:

θxi + (1− θ) yi ∈ [bmin, bmax]

Thus, the closure space [bmin, bmax]
U is a convex set.

max
j∈si(u)l

xi,j is a maximum function which is convex [33].

Therefore, the relaxation version of MAP is a concave op-
timization problem [33] and has a unique x∗ that globally
optimizes P2.

Remark: In spite of focusing on a network with the multi-
source feature, the relaxed MAP can be also easily generalized
to other scenarios with minor modifications:
(1) Provider with Multiple Video Flows Scenario: Instead

of only delivering one video as we assumed in Section
IV, providers in realistic environments may concurrently
serve multiple videos. To be able to apply our proposed
approach in this case, we split the provider i with n
video flows into n virtual sources, each virtual source
corresponding to a video flow and can be represented by
following 4-tuple:

[ik, L (ik) , sik (u) , bmin, bmax]

where ik indicates the virtual source corresponding to flow
k, L (ik) is the link set used by video flow k and sik (u)
the group of users that access k from i.

(2) Multi-path Scenario: A typical network in realistic en-
vironments also supports multi-path delivery. In this
scenario, assuming end user j accesses content from
[f1, f2, . . . , fM ] video sources, the corresponding delivery
rate of each source fk is xi,jfk

. Hence, the total delivery
rate of user j:

xu =

M∑
k=1

xi,jfk

Then, the QoE function of u can be written as:

J

(
M∑
i=1

xi,jfk

)
.

VI. PROBLEM DECOMPOSITION

The distributed aspect of the network and the large numbers
of end users make it difficult to maintain a central controller
to configure the delivery rate for all end users. Consequently, a
distributed method which enables nodes to select the delivery
rate using the information about the delivery path rather than
some global information based on the interaction with other
users is more appropriate. In order to design such a distributed
rate configuration method for HTTP live video streaming,
in this section we decompose P2 into two sub-problems:
a provider rate selection problem (PRSP) and a user rate
adaptive problem (URAP), and consider both of them.

A. Provider Rate Selection Problem
By observing P2, we can easily find that providers can be

separated according to eq. (6) yet coupled according to eq.
(7). Hence, directly solving P2 requires a centralized method
coordinating all providers. First we consider the following
equivalence problem of P2, which converts the constraints (7)
into a set of linear combinations as follows:

P3:

max
x∈[bmin,bmax]U

∑
i∈S

∑
i∈si(u)

J (xi,j) (9)

s.t Xl1
T
l ≤ 1T

l .cl, l ∈ L (10)
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where |.| indicates the cardinality of set and 1T
l is a |l (s) |

dimension 1-vector whose all elements are 1. We denote
matrix Xl =

(
xl
ji

)
Nl×|l(s)| and xl

ji ∈ {xj,i|xj,i ∈ sj (u)l , j ∈
l (s)}. Accordingly, each row of the Xl indicates a user
rate combination of providers that use link l, and Xl lists
all Nl possible combinations. The number of all possible
combinations Nl corresponding to link l is equal to:∏

i∈l(s)

|si (u)l |

For instance, assume a network with 3 sources s1, s2 and
s3 over link l1. Let s1 (u)l1 = {x1,1, x1,2}, s2 (u)l1 = {x2,1},
s3 (u)l1 = {x3,1, x3,2}. Thus, for the elements x.1, x.2, x.3

of each row in Xl1 , x.1 ∈ {x1,1, x1,2}, x.2 ∈ {x2,1}, x.3 ∈
{x3,1, x3,2}. Therefore, Xl1 can be expressed as:

x1,1 x2,1 x3,1

x1,2 x2,1 x3,1

x1,1 x2,1 x3,2

x1,2 x2,1 x3,2


Then, we can introduce the following proposition:

Proposition 1. Let x∗ be the optimal value of P2; then exists
a group of Lagrange multipliers λ∗ = (λ11, . . . , λL×N ) and
it can be shown that

(i)

∑
i∈S

∑
j∈s(u)

∇xJ
(
x∗
i,j

)
−
∑
l∈L

Nl∑
j=1

λ∗
lj

|l(s)|∑
i=1

∇xx
l
ji

∗

 = 0

(11)
(ii) for all l ∈ L and j = {1, . . . , Nl},

λ∗
lj ≥ 0

(iii) for each link l, if λ∗
lj > 0, for all i = 1, . . . , |l (s) |,

xl
ji

∗
= max

k∈[1,...,Nl]
xl
ki

∗

otherwise, λ∗
ji = 0.

Proof. Defining the Lagrangian L (x,λ) of P3:

L (x,λ) =
∑
s∈S

∑
i∈s(u)

J (xs,j)−
∑
l∈L

Nl∑
j=1

λlj

|l(s)|∑
i=1

xl
ji − cl


(12)

and corresponding Lagrange function of eq. (12):

D (λ) =

sup
x

∑
s∈S

∑
j∈s(u)

J (xs,j)−
∑
l∈L

N∑
j=1

λlj

|l(s)|∑
i=1

xl
ji − cl


(13)

the dual problem of P3 is expressed as:
D1:

min D (λ)

s.t λ ≥ 0
(14)

Because the primal problem P3 is concave and constraints
(10) satisfy the Slater condition [33], the optimal value of
primal problem P3 is equal to its dual D1. This means given

the x∗ and λ∗ as the optimal solution of primal and dual
problem, respectively, we have f (x∗) = D (λ∗). Besides,
as the constraints (9)(10) are continuous and differential and
according to the Karush-Kuhn-Tucker condition [34], for the
optimal rate configuration x∗, there exists an unique Lagrange
multiplier λ∗ =

(
λ∗
11, λ

∗
12 . . . , λ

∗
L×N

)
, such that:

∇xL (x∗,λ∗) =
∑
s∈S

∑
i∈s(u)

∇xJ
(
x∗
s,j

)
−

∑
l∈L

N∑
i=1

λ∗
li∇x

|l(s)|∑
i=1

xl
ji

∗ − cl


=0

(15)

In addition, recalling that f (x∗) = D (λ∗), we have:

λ∗
li

|l(s)|∑
i=1

xl
ji

∗ − cl

 = 0, l ∈ L, i = 1, 2, . . . , N

according to the complementary slackness [33], we have:
λ∗
li > 0, if

(
|l(s)|∑
i=1

xl
ji

∗ − cl

)
= 0

λ∗
li = 0, if

(
|l(s)|∑
i=1

xl
ji

∗ − cl

)
< 0

(16)

Intuitively, for each link l, we have
|l(s)|∑
i=1

max
i∈sj(u)l

xl
ji

∗ ≥
|l(s)|∑
i=1

x∗
ji

l. Namely, only when a linear combination
|l(s)|∑
i=1

x∗
ji

l =

|l(s)|∑
i=1

max
k∈[1,...,Nl]

xl
ki

∗, equality
∑

j∈s(u)l

xl
ji

∗ − cl = 0 may hold.

Therefore, combining with (16), we can derive the following:
λ∗
li ≥ 0, if

|l(s)|∑
i=1

x∗
ji

l =
|l(s)|∑
i=1

max
k∈[1,...,Nl]

xl
ki

∗

λ∗
li = 0, if

|l(s)|∑
i=1

x∗
ji

l <
|l(s)|∑
i=1

max
k∈[1,...,Nl]

xl
ki

∗
(17)

hence, P1 is proved.

Now we will discuss how to enable each provider to deter-
mine the sending rate individually. Recall that L (i) denotes
the link set of provider i. We rewrite eq. (12) as follows:

L (x,λ) =
∑
i∈S

 ∑
j∈si(u)

J (xi,j)−
∑

l∈L(i)

∑
k∈si(u)l

λi,l,kxi,k


+
∑
l∈L

Nl∑
i=1

λljcl

(18)
Note that the first term of (18) is separable in terms of provider.

We define the user with max
j∈si(u)

xs,j as the main user and

the other users are called sub user. Importantly, the sending
rate Mi of provider i is equal to the rate of the main user.
Therefore, for each provider i, there definitely exists a main
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Figure 2: An illustration of network with two provider s1
and s2 provider videos to users

path from provider i to its main user with link set PM (i),
where

max
j∈si(u)l

xi,j = max
j∈si(u)

xi,j ,∀l ∈ PM (i)

We define the link belonging to PM (i) as the main link of i,
and the other links in L (i) as sub links. Figure 2 illustrates
a scenario of two providers delivering two videos to a set of
users. {l1, l2, l3} and {l4, l5, l6, l7, l8} are the main path of
provider s1 and s2, respectively. The delivery rate over the
main path of s1, s2 is equal to the main users x3 and x4. The
lines with arrows colored in orange and cyan denote the flows
to the sub users of s1 and s2, respectively. The delivery rates
for providers over their sub links are equal to the maximum
rates of the users that use these links, which may be less than
the rate of the main user. For example, l6 is the main link
of s1, and sub link of s2. Hence, the total rate of link l6 is
M2+max{x1, x2}. Based on the definition of main path and
main user, eq. (18) can be further rephrased as:

L (x,λ) =
∑
i∈S

J (Mi) +
∑

j∈si(u)/Λi

J (xi,j)

∑
l∈PM (i)

λlMi −
∑

l∈L(i)

∑
k∈si(u)l/Λi

λilkxi,k


+
∑
l∈L

N∑
i=1

λlicl

(19)

where Λi denotes the main user of provider i. Note, for ∀i ∈
S, M∗

i ∈ max{x∗
i,j |j ∈ si (u)l}. According to eq. (15) and eq.

(11) in Proposition 1, we have ∂L(x∗,λ∗)
∂M∗

i
= 0, and therefore:

J ′ (M∗
i ) =

∑
l∈PM (i)

λ∗
l (20)

For each source i, pi =
∑

l∈PM (i)

λ∗
l and Mi (pi) denotes the

delivery rate of provider as a function of pi, according to eq.
(20), the provider rate Mi (pi) is given by:

Mi (pi) = J ′−1

 ∑
l∈PM (i)

λl

 (21)

λ∗
l (l ∈ PM (i)) of the dual problem D (λ) can be derived

by the gradient projection descend method [35] which itera-
tively approximates the optimal value λ∗ along the gradient
direction ∇D (λ). Specifically, for each link l, a sequence of
{λ (t)}n is generated according to:

λl (t+ 1) = ⌈λl (t)− γ
∂D (λ)

∂λl
⌉+ (22)

where the γ is the stepsize of each iteration. Since the
∇D (λ∗) = 0, the stop criterion λ∗

l = λl (t) holds only when
λl (t) = λl (t− 1).

As λ∗
l ≥ 0, λ∗

l corresponding to the terms
S∑

j=1

xl
ji

∗
rj − cl

in eq. (12) is equal to zero, according to the Proposition
1. Namely, we only need to calculate λl corresponding to∑

i∈l(s)

(
max

j∈s(u)l

xi,j − cl

)
in D (λ). Therefore:

∂D (λ)

∂λl
= cl −

∑
i∈l(s)

max
j∈s(u)l

xi,j (23)

substituting eq. (23) into eq. (22), the descend rule of gradient
projection for λl is as follows:

λl (t+ 1) = ⌈λl (t)− γcl −
∑
i∈l(s)

max
j∈s(u)l

xi,j (t)⌉+ (24)

Since cl and for ∀i ∈ l (s) xl
i are local information for each

link l, eq. (24) can be solved by each link locally and hence, a
distributed algorithm can be applied. However, solving λl may
require the rate of sub users since max

j∈s(u)l

xi,j may not equal

to Mi. In the next section, we will discuss the rate selection
problem of sub users.

B. User Rate Adaptation Problem

In order to determine the rate of each user xi,j , we decom-
pose P2 in terms of users and the corresponding sub-problem
can be formulated as follows:

U1:

max
xi,j∈[bmin,bmax]

J (xi,j) (25)

s.t
∑

k∈l(s)/i

max
j∈si(u)l

xk,j + xi,j ≤ cl, l ∈ pj

(26)
xi,j ≤ max

j∈si(u)l

xi,j , l ∈ pj (27)

where pj indicates the link set used by user j. Constraint (26)
indicates that for each link l used by j, the rate of j should
not exceed the minimum residual link capacity, and eq. (27)
says that the playback rate of j cannot exceed the delivery
rate of provider i over l. To illustrate the equivalence between
U1 and P2, we introduce the following theorem.
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Theorem 2. For each user j ∈ U , the corresponding optimal
value x∗

j in P2 can be derived equally by solving the problem
U1. Namely, ∀j, x∗

j of P2 and U1 are equal.

Proof. By introducing the following parameters

xl
i = max{xi,j |j ∈ si (u)l}, i = 1, . . . , S; l = 1, . . . , L

problem P2 can be rephrased as follows:
P2:opt

max
x∈[bmin,bmax]U

∑
i∈S

∑
i∈s(u)

J (xi,j) (28)

s.t
∑
i∈l(s)

xl
i ≤ cl l ∈ L (29)

xi,j ≤ xl
i, i ∈ S, j ∈ si (u) , l ∈ pi, (30)

Denote the optimal solution of P2:opt as x∗. To derive the
optimal value x∗′ of U1, we aggregate U1 of all users j and
represent it as follows:
U1:A

max
xi,j∈[bmin,bmax]

∑
i∈S

∑
j∈si(u)

J (xi,j) (31)

s.t
∑

k∈l(s)/i

xl
k + xi,j ≤ cl, l ∈ pj , i ∈ S, j ∈ U

(32)

xi,j ≤ xl
i, l ∈ pj , i ∈ S, j ∈ si (u) (33)

Importantly, the theorem holds when x∗ = x∗′. Now we prove
x∗ = x∗′. Given a utility function such as the one from eq. (1),
eqs. (28)-(33) are differential and continuous, thus according
to the Karush-Kuhn-Tucker condition, we have eqs.(53)(54)
for P2:opt and U1:A, respectively.

According to Proposition 1,

∑
i∈S

∑
j∈s(u)

∇xJ
(
x∗
i,j

)
−
∑
l∈L

λ∗
l∇x

∑
i∈l(s)

xl
i

∗ − cl

 = 0

(34)
Recall that P3 is equivalent to P2:opt, so substituting eq.

(34) into eq. (53), we have:∑
i∈S

∑
j∈si(u)

∑
l∈pj

∇xυijl
∗
(
x∗
i,j − xl

i

∗)
= 0

And because slackness complementary condition, there is:{
υijl

∗ > 0, x∗
i,j = xl

i
∗

υijl
∗ = 0, x∗

i,j < xl
i
∗ (35)

Using x∗ to replace x∗′ in eq. (54), we have:∑
i∈S

∑
j∈si(u)

∑
l∈pj

∇xυijl
′∗
(
x∗
i,j − xl

i

∗)
= 0

For the case of
∑

k∈l(s)/j

xl
k

∗
+ x∗

i,j < cl, the correspond-

ing λ∗
ijl

′ = 0. This can be proved by contradiction. As-
suming there exists a λ∗

ijl
′ > 0, xl

k

∗
+ x∗

i,j < cl,

λ∗
ijl

′

( ∑
k∈l(s)/j

xl
k

∗
+ x∗

i,j − cl

)
> 0. This means there exists

a x̂∗ such that:∑
i∈S

∑
j∈si(u)

J
(
x̂∗
i,j

)
>
∑
i∈S

∑
j∈si(u)

J (x∗
i,j)

This contradicts with x∗′ being the maximum value.
For the case of

∑
k∈l(s)/j

xl
k

∗
+x∗

i,j = cl, we have:
∑

l(s)/j

xl
k

∗
=∑

k∈l(s)/j

xl
k

∗′and x∗
i,j = x∗

i,j
′.

Hence, in the above two cases, we have:

∑
i∈S

∑
j∈si(u)

∑
l∈pj

λ∗
ijl

′∇x

 ∑
k∈l(s)/i

xl
k

∗
+ x∗

i,j − cl


=
∑
i∈S

∑
j∈si(u)

∑
l∈pj

λ∗
ijl

′∇x

 ∑
k∈l(s)/i

xl
k

∗′
+ x∗

i,j
′ − cl

 (36)

As a result, eq. (54) is also equal to zero when replacing
x∗′ with x∗′, and considering the minimum value of U1 : A
is unique due to the concaveness, therefore, we have x∗′ = x∗

and the theorem is proved.

To derive the optimal x∗
i,j of U1, we consider the corre-

sponding dual problems.
The Lagrangian of U1 is:

Lu

(
xi,j ,λpj

,υpj

)
=J (xi,j)−

∑
l∈pj

υl
(
xi,j − xl

i

)
−
∑
l∈pj

λl

 ∑
j∈l(s)/i

xl
j + xi,j − cl


(37)

The Lagrange dual function is:

Du

(
λpj

,υpj

)
= sup

xi,j∈[bmin,bmax]

Lu

(
xi,j ,λpj

,υpj

)
(38)

Then, the dual problem is:
U1:D:

min Du

(
λpj

,υpj

)
s.t λl ≥ 0, l ∈ pj

υl ≥ 0, l ∈ pj

(39)

As U1:A is a concave optimization problem and satisfies
the Slater condition [33], the strong duality holds. Namely,
the optimal values of the primal and dual problems are equal.
Thus, the primal optimal solution x∗

i,j can be recovered from

the dual optimal point
(
λ∗
pj
,υ∗

pj

)
:

x∗
i,j = argmax

xi,j∈[bmin,bmax]

Lu

(
xi,j ,λ

∗
pj
,υ∗

pj

)
Let xi,j (pj) be the unique maximizer of

Lu

(
xi,j ,λpj ,υpj

)
. If the inverse of J (.) exists, according to

the Karush-Kuhn-Tucker condition of U1:A, xi,j (pj) can be
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∑
i∈S

∑
j∈si(u)

∇xJ
(
x∗
i,j

)
−
∑
l∈L

∇xλ
∗
l

 ∑
x∈l(s)

xl
i

∗ − cl

−∑
i∈S

∑
j∈si(u)

∑
l∈pj

∇x

(
υ∗
ijlx

∗
i,j − xl

i

∗)
= 0 (53)

∑
i∈S

∑
j∈si(u)

∇xJ
(
x∗
i,j

′)−∑
i∈S

∑
j∈si(u)

∑
l∈pj

λ∗
ijl

′∇x

 ∑
k∈l(s)/i

xl
k

∗′
+ x∗

i,j
′ − cl

−∑
i∈S

∑
j∈si(u)

∑
l∈pj

∇x

(
υ∗
ijl

′x∗
i,j

′ − xl
i

∗′)
= 0

(54)

derived as follows:
dJ (xi,j (pj))

dx
=
∑
l∈pj

(λl + υl) (40)

⇒xi,j (pj) = J ′−1

∑
l∈pj

(λl + υl)

 (41)

Because Du

(
λpj ,υpj

)
is continuous and differential for(

λpj
,υpj

)
, for each λl, υl, the corresponding partial differen-

tial is:

∂Du

∂λl

(
λpj

,υpj

)
=−

 ∑
k∈l(s)/i

xl
k + xi,j − cl

 , l ∈ pi

(42)
∂Du

∂υl

(
λpj

,υpj

)
=−

(
xi,j − xl

i

)
, l ∈ pi (43)

Therefore, based on eqs. (41)(42)(43), the dual problem U1:D
can be solved by the following dual descend method, which
is iteratively updated as follows:

xi,j (t+ 1) ≜ J ′−1

∑
l∈pj

(λl (t) + υl (t))

 (44)

λl (t+ 1) ≜ λl (t) + γ

 ∑
k∈l(s)/i

xl
k (t+ 1) + xi,j (t+ 1)− cl


(45)

υl (t+ 1) ≜ υl (t) + γ
(
xi,j (t+ 1)− xl

i (t+ 1)
)

(46)

Because the flows of l (s) and user j are delivered over link
l, for each link l, xl

i and xi,j can be obtained locally.

VII. DISTRIBUTED MULTI-SOURCE RATE CONTROL
OPTIMISATION ALGORITHM (DMRCA)

Based on the already-presented decomposed sub-problems,
in this section we introduce the distributed multi-source rate
control optimisation algorithm (DMRCA) for HTTP live video
streaming. We will also analyse the complexity, convergence
and time adaptation of our proposed method.

A. Algorithm Design

The DMRCA design has two major parts: processing at the
user and processing at the provider, which are described next.

Processing at the user: Recall that URAP can be solved by
iteration of eqs. (44)(45)(46). Specifically, eq. (44) is separable
in terms of users while eqs. (45)(46) can be processed locally

at each link. Consequently, the process at the user side can
be described as follows: in each iteration t, user solves
the corresponding eq. (44) to derive xi,j (t) by collecting
λl (t− 1) and υl (t− 1) from links over its delivery path
pj , and communicates xi,j (t) to all the links over pj . Link
l receives the xi,j (t) of all users that use l and selects
max

j∈si(u)l

xij (t) as xl
i (t) for each source s in l (s). Then,

link l uses xl
i and xi,j to compute λl (t+ 1) and υl (t+ 1)

according to eqs. (45)(46). The derived λl (t+ 1), υl (t+ 1)
will be delivered to user j for computing the new xi,j . The
above-described process is repeated until the results reach the
iteration criterion, xi,j (t+ 1) = xi,j (t). The above process
is fully distributed and does not require extra communication
resources, since the information of xi,j (t),λl (t),υl (t) is small
enough and can be smuggled into data packets.

Processing at the provider: Similarly, at the provider side,
each provider first determines the main path according to∑
l∈p

λl of each path in the broadcast tree si (l). As indicated

by (21), the path with the minimum value of
∑
l∈pj

λl will

be set the mainpath. After determining Mi, provider i will
send out a video with rate argmin

bi∈B
∥bi − Mi∥. Each link

calculates λl according to eq. (24). As eq. (24) is equal
to calculating eq. (45) with max

j∈si(u)l

xi,j which is already

computed as part of the processing at the user, (λ) can be
derived directly by the following recursion process: let lp (l, j)
denote the link set between l to user j. The link l selects
min

j∈si(u)l

∑
k∈lp(l,j)

λk, aggregates it with its own λl and sends

this min
j∈si(u)l

∑
k∈lp(l,j)

λk + λl to the upstream node. The up-

streaming link repeats the above-described process until the
provider is reached, when it stops.

The above processes at users and providers suggest treating
users and node servers as processors in a distributed processing
system, and the optimal rate of each user and provider can be
derived only by communicating with links over the delivery
path, without the need for coordination with other users or
providers. This communication can be easily implemented by
smuggling information into the data packets. Consequently,
the proposed DMCRA is a fully distributed, lightweight and
bitrate optimized solution. The DMRCA pseudo-code is given
in Algorithm 1.

B. Complexity Analysis
According to Algorithm 1, the complexity of links is

mainly determined by the loop of the descend method and
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Algorithm 1: Distributed rate configuration algorithm
for HLS
Input: x (0) , t = 0
Output: x∗, λ∗,υ∗

1 link l’s algorithm:
2 while λ (t)! = λ (t− 1),υ (t)! = υ (t− 1) do
3 receives the rate of xi,j (t) from all users that go

through link l;
4 foreach provider i use link l do
5 computes the xl

s (t) by
xl
s (t)← max{xi,j (t) |j ∈ s (u)l};

6 end
7 foreach user j go through the link l do
8 compute the λl (t), υl (t) according to (45)(46);
9 communicate the λl (t), υl (t) with user j;

10 end
11 foreach provider i use link l do
12 receive

∑
k∈lp(i,j)

λk from all down stream links

in s (l);
13

∑
k∈lp(l+1,j)

λk ← max
j∈si(u)l

∑
k∈lp(l,j)

+λl;

14 send the
∑

k∈lp(l+1,j)

λk to upstream link;

15 end
16 t++;
17 end
18 λ∗ = λ (t),υ∗ = υ (t);
19 return λ∗,υ∗;
20 user j’s algorithm:
21 while xi,j (t)! = xi,j (t+ 1) do
22 receives the sum of

∑
l∈pj

(λl (t) + υl (t)) from the

links over its path;
23 determines the next period delivery rate xi,j (t+ 1)

by: xi,j (t+ 1) ≜ J ′−1

(∑
l∈pj

(λl (t) + υl (t))

)
;

24 communicates the xi,j (t+ 1) to links l ∈ pj ;
25 end
26 x∗

j = xi,j (t);
27 return x∗

j ;
28 provider i’s algorithm: while Mi (t)! = Mi (t− 1) do
29 receives the sum of

∑
l∈PM (i)

λl (t+ 1) from the

broadcast tree; determines the new broadcasting
rate Mi (t+ 1) by

Mi (t+ 1) = J ′−1

( ∑
l∈PM (i)

λl (t+ 1)

)
;

30 broadcast the video with rate
arg min

b∈Bv

∥Mi (t+ 1)− b∥;
31 end
32 return Mi (t);
33 final ;

the number of providers and users that use each link. Let the
descending method iterate N times, and the number of users
and providers go through link l be Ul and Sl, respectively.
Thus, the complexity of the algorithm from a link perspective
is:

log (N (Ul + Sl))

From a user and provider perspective, the corresponding
complexity is mainly determined by the number of iterations
of eqs. (44)(21), which are both N according to the descend
method at the link. Therefore, the algorithm complexity is:

log (N)

Based on this analysis, the complexity of the user and
provider is dependent on the iteration, which is independent
of the number of nodes. Thus, the algorithm has no scalability
issue since the growing number of users will not significantly
affect the efficiency of the algorithm.

C. Convergence Analysis

The proposed distributed DMRCA algorithm generates a
sequence of {x (t)} approaching the optimal rate configuration
x∗. Naturally, there is the issue of whether the generated
sequence converges to the optimal rate or not. Namely, for
any ε > 0, there exists a T , such as we have:

∥x (T )− x∗∥ ≤ ε

Next we discuss the condition of algorithm convergence.
Let L̃ ≜ max

pj∈P
|pj |, where P is the set of all possible paths in

the network and S̃ = max
l∈L
|l (s) |. We have following theorem:

Theorem 3. Suppose J (x) is twice differential and for all
x ∈ [bmin, bmax], the corresponding −J ′′ (xi,j) ≥ 1

α̃j
, where

ã > 0. Then, when step size 0 < γ < 1

ÃL̃S̃
, where Ã = max

j∈U
αj

and from any initial point x (0), the (x∗,λ∗,υ∗) generated
by Algorithm 1 is dual optimal, namely, x∗ is the optimal rate
configuration for P2.

To prove this theorem with J (x) formulated in eq. (1), we
first introduce the following lemma.

Lemma 1. Given J (x) as in eq. (1) over [bmin, bmax], J (x)
is twice differential and the corresponding J ′′ (x) is bounded,
namely, there exists a constant α > 0 such that −J ′′ (x) ≥ 1

α .

Proof. Starting from eq. (1), the corresponding twice differ-
entiation is:(

−4.5e−0.77x
)′′

= −4.5×−0.772e−0.77x

< −4.5×−0.772e−0.77bmax
(47)

Hence, J ′′ (x) is bounded and α = 4.5×−0.772e−0.77bmax

Next we give the proof for Theorem 1:

Proof. Let β (j) = 1
−J′′(xi,j(pj))

, and let

A = (j)

[
B (j) 0
0 B (j)

]
= diag (β (j))2U×2U (48)
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be a 2S × 2S diagonal lumped matrix, where each B (j) is
U ×U with diagonal elements β (j) , j ∈ U . According to eq.
(40), we have:

J ′′ (xi, j (pl))
∂xi,j (pi,l)

∂pi,l
= 1

pi,l =

{
λl, i = 1, l ∈ pj
υl, i = 2, l ∈ pj

;

(49)

Hence, ∂xi,j(pi,l)
∂pi,l

can be represented as:

∂xi,j (pi,l)

∂pi,l
=

Rlj

J ′′ (xi, j (pl))

where Rlj ∈ {0, 1}, Rlj = 1 indicates the user j go through
link l and 0 otherwise. Using eq. (48), we have following
vector:

[
∂xi,j (pi,l)

∂pi,l
]2L = −A (j)CT

where CT =[R,R]T , and R = (Rlj). According to eqs.
(42)(43), we have:

∇2Du (λ,υ) = −C[
∂xi,j (pi,l)

∂pi,l
]2L

and hence we have: ∇2 (Du (λ,υ)) = CA (j)C According
to the mean value theorem, ∀m,n, we have:

∇Du (m)−∇Du (n) = ∇2Du (ξ) (m− n)

= CAj (ξ)C
T (m− n)

(50)

Based on the Schwartz inequality property of 2-norm ∥.∥,
further we have:

∥∇Du (m)−∇Du (n)∥ ≤ ∥CAj (ξ)C
T ∥.∥m− n∥

∥CAj (ξ)C
T ∥2 ≤ ∥CAj (ξ)C

T ∥∞.∥CAj (ξ)C
T ∥1

In particular, ∥
(
CAj (ξ)C

T
)′ ∥∞ = ∥CAj (ξ)C

T ∥1
and because CAj (ξ)C

T is symmetric, we further have
∥CAj (ξ)C

T ∥∞ = ∥CAj (ξ)C
T ∥1. Therefore,

∥CAj (ξ)C
T ∥2 ≤ ∥CAj (ξ)C

T ∥∞
= max

i

∑
j

[CAj (ξ)C
T ]i,j

= max
i

∑
j

∑
k

βk (w)RikRkj

= 2|pj |max
i

∑
k

βk (w)Rik

≤ 2|pj |βk max
i
|l (i) |

≤ 2ÃL̃S̃

(51)

Therefore, ∇Du is Lipschitz with:

∥∇Du (m)−∇Du (n)∥ ≤ 2ÃL̃S̃.∥m− n∥

Thus, the sequence of {λ (t) ,υ (t)} generated by the gradi-
ent method is dual optimal. In addition, according to eq. (41),

the primal optimal of x∗
i,j = J ′−1

(∑
l∈pj

(λ∗
l + υ∗

l )

)
. Because

J (.) is continuous and can be decoupled in terms of xi,j ,
hence, xi,j (pj) is continuous and therefore:

lim
t→∞

xi,j (t) = x∗
ij

Namely, xi,j (t) converges to x∗
i,j , and the theorem is proved.

Another important issue is the convergence rate of the
algorithm. In our algorithm, the optimal value is iteratively
derived by the descend method. Let p (t+ 1) be the sequence
generated by the gradient descend method with p (t+ 1) =
p (t)− γ∇Du, and p∗ be the optimal value. We then have:

p (t+ 1)− p∗

= p (t)− p∗ − γ∇Du

=

∫ 1

0

1− γ∇2Du (x
∗ + ξ (p (t)− p∗))dξ (p (t)− p∗)

(52)

from which we obtain by applying the 2-norm ∥.∥2:

∥p (t+ 1)− p∗∥2

≤
(
∥
∫ 1

0

1− γ∇2Du (x
∗ + ξ (p (t)− p∗))∥2dξ

)
∥p (t)− p∗∥2

≤ ∥1− γ∇2Du (x
∗ + ξ (p (t)− p∗))∥2∥p (t)− p∗∥2

(53)
Thus, the convergence rate is bounded by:

∥1− γ∇2Du (x
∗ + ξ (p (t)− p∗))∥2

D. Time Varying Adaptation

Although in problem formulation, the objective function,
video providers and routing are given and unchanged during
the process, we can still directly extend our algorithm to
an environment with time variable features such as dynamic
caching and routing, and a time-dependent objective function.
Importantly, the algorithm can still converge to the optimal
solution when the network conditions change.

To cope with the time-varing scenarios, the objec-
tive function P2 can be re-formulated as f (x, t) =∑
i∈S(t)

∑
j∈si(u,t)

J (xi,j), where s (t) and si (u, t) are the set of

providers and user set of provider i at time t, respectively.
l (s) in constraint (7) is replaced by l (s, t), which is the
time variant provider set that use link l. Based on the above
changes, each end user still executes the same user algorithm
as in Algorithm 1, except for computing p (j, t) in the place
of (j) in eq. (44). Each link executes the same link algorithm
as in Algorithm 1 with the minor change of replacing l (s) in
eq. (45) with l (s, t). Intuitively, if the change in link routing
and providers is relatively slower than the convergence rate of
the algorithm we discussed, the algorithm still can converge
to the optimal rates x∗. We will illustrate this aspect in the
experimental tests in Section VIII.
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Figure 3: Tree-based topology of
scenario I

[Mbps] Experim/

Optim/Capacity
Link

l1 14.9930/15/15

l2 20.0249/20/20
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l6 20.0743/20/25

Link Utilization Comparison

Case I
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Figure 4: Average link utilization
comparison
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Figure 6: Topology of American backbone network
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backbone topology

VIII. PERFORMANCE EVALUATION

The performance of HTTP live video streaming with DM-
RCA is evaluated using ndnSIM 2.0 [36], a simulation tool
based on Network Simulator 3 (NS-3). First, we present
the simulation set-up in terms of network, video and user
behaviors. Then, we describe the two scenarios considered. In
the first scenario, we evaluate the bandwidth utilization and al-
gorithm convergence at each link in a tree-based topology. The
second scenario considers the American backbone topology, in
which there are multiple sources and variable users. Users can
obtain requested videos from multiple video providers, so the
transmission path is also different. We compare our algorithm
to the state-of-art solution HAVS-CCN and a traditional buffer-
based adaptation method. HAVS-CCN optimizes the hop-by-
hop content transmission in HTTP streaming. It directly ad-
justs video quality when DASH inaccurately estimates network
throughput. We use the buffer-based approach provided by
DASH as the traditional adaptation method. This algorithm
increases the bitrate when the buffer size reaches certain level.
Our experiment measures the bandwidth utilization on differ-
ent links in video transmission networks and the convergence
value of the video bitrate during the video request process,
which can be used to represent the user QoE.

A. Simulation Setup

In the simulation network, forwarding and content caching
are the two main components, different forwarding and
caching strategies may influence the performance significantly.
Hence, we unify the forwarding and caching strategy that

used in simulation. We select BestRoute as our forwarding
strategy. In this strategy, each router maintains a routing table
in order to support minimum hop counts content searching.
For caching strategy, we employ the Leave Copy Everywhere
(LCE), which enables the routers to copy all passing content
to CS and evicting them out when CS is full. For test
video, we use MPEG-DASH multimedia streaming with SVC-
encoded format. Each segment is two seconds long. And
total test content catalogue contains 5 movies with 500s of
each. The video delivered in the network can be provided
using one base layer and four enhancement layers. The base
layer b1 has an average bitrate of kbps, and enhancement
layers 1, 2, 3, 4 have 600kps, 1600kps, 2600kps, 1940kps
and 4440kps, respectively. Thus, there are 4 possible kinds
of video representations, and their bitrates are b1 = 600kps,
b1+h1 = 2200kps, b1+h1+h2 = 4800kps, b1+h1+h2+h3 =
6760kps, b1 + h1 + h2 + h3 + h4 = 11200kps. We set a
group of users from 1 to 5 to start asking the same request at
the same time. The arrival rate of the user group follows the
Poisson distribution with λ = 0.1. Each user group randomly
selects a video to request by a Zipf distribution. Specifically,
the probability of requesting m-th popular video:

P (m) =
m−α

M∑
k=1

k−α

(54)

where α is the Zipf parameter with a value of 0.8, M denotes
the total number of videos, which is 5 in our simulation. After
determining the video to ask, end users will request the chunks
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of video in sequence and re-select a new video to request after
requesting all chunks of the current video.

B. Experimental Results

Scenario 1: Link utilization analysis
We focus on a tree-based network whose topology and link

bandwidth are shown in Figure 3. In this topology, user groups
{U1, U2, U3, U4} only connect to the edge routers and each
user group consists of 5 users. We consider two cases of user
video requesting behaviors: Case I, all users start to request
the video streaming at simulation starting time t = 0 and
request the same video; Case II, each user group concurrently
requests different videos at simulation start time t = 0.

Figure 4 shows the average link utilization in the two
cases in comparison with the theoretical optimal value and
actual link capacity. The theoretical value is computed by
implementing our algorithm in MATLAB. As Figure 5 shows,
for Case I, links l1, l2, l3, and l5 are the bottleneck links
and thereby achieve full utilization. Because l4 and l5 are not
bottleneck links, their bandwidth utilization are limited by the
upstream links l1 and l2, respectively. For Case II, link l1, l2
and l5 are still bottleneck links. However, due to the different
videos each user group requested, the utilizations of l3, l4 and
l6 reduce to 7.5 Mbps, 7.5 Mbps and 15 Mbps, respectively.
Figure 5 shows the comparison between theoretical and actual
convergence rate at each link in both cases. As expected, in
both cases, the proposed DMRCA algorithm also converges to
the optimal values. However, it can be observed that DMRCA
converges slower than theoretically. This is mainly because the
iteration results exchange between users and links in realistic
conditions experience a transmission delay. In addition, the
iteration results are smuggled in Interest and data packets
in our deployed algorithm, introducing an extra delay before
sending. These delays slow down the convergence rate of the
algorithm. In theoretical optimal computing, these delays are
neglected and the convergence rate is only influenced by the
iteration times and processing speed.

Scenario 2: Performance comparison
We consider the American backbone network topology as

illustrated in Figure 6 for the performance comparison. In this
network topology, each edge router builds links with 4 end
users, and provides 1, 3, 5 and 10Mbps access bandwidth to
each user, respectively. There are multiple video providers in
this topology, which are illustrated as source 1 to source 3
in the figure. In this situation, a group of users are randomly
selected to request the same video synchronously, while the
request distribution of the user group follows the Zipf law as
in eq. (54) and the grouped requests arrive asynchronously
according to a Poisson distribution.

We use various metrics to measure the performance of
the algorithm, which are link utilization, bitrate and stalling.
Link utilization reflects the actual utilization rate of network
bandwidth under the regulation of algorithm, which determines
the video transmission rate in the system, and further affects
the following two metrics. Bitrate and stalling are the core
factors affecting user experience. Bitrate determines the quality
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Figure 8: Convergence analysis of U1-3 in American
backbone topology

level of the video. Users can enjoy higher definition and
smoother video content in the case of high bitrate. In the
process of playing, if stalling occurs, it will have a direct
negative impact on user experience. Therefore, the less stalling
in the process of playing means the better user experience.

1) Link utilization convergence analysis: Figure 7 shows the
link convergence of (R8,R9), (R5,R4), (R1,R2) and (R1,R0)
in the American backbone topology. Note that in the topology
figure, the links we select are bottleneck links and the total
delivery rate of these links should equal to their link capacity.
We note that the simulation behaved as expected, the delivery
rate of each link converges to the theoretical optimal value,
which is equal to the link capacity. In addition, from the
convergence results, we also find that even when the network
conditions vary (i.e., new users join in the network or caching
on-path), the links still converge to the optimum value.

2) User rate convergence analysis: Figure 8 shows the rate
convergence of users at router R7 in the American backbone
topology. As the figure shows, the rate converges well to the
theoretical results. Specifically, the variation of user rates can
be explained as follows: user U1 first requests the video from
R6. Because there are no other video flows, it can exclusively
use the link (R6, R7) achieving a maximum delivery rate
of 10Mbps. When U2 joins the video distribution system, it
accesses the video from (R7, R8) and since there is a near
copy of the asked content at R8, it does not influence the rate
of U1. At 66s, when other flows from U3 pass over the link
(R6, R7), the link bandwidth of (R6, R7) is used by two flows
simultaneously and the rate of U1 decreases to 5Mps.

3) Average bitrate (ABR) comparison: we define the ABR
as the arithmetic mean of average bitrate of overall users, we
calculate the ABR at time T by:

ABR (T ) =
1

UT

U∑
u=1

T∑
t=1

BRu (t) (55)

where U is the total number of users and BRu (u) indicates
the bitrate of user u at time t.

Figure 9(a) depicts the ABR in the American backbone
topology. As the figure shows, the ABRs of the three solutions
compared experience an increasing trend at the beginning.
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Figure 9: Average cache hit ratio vs. simulation time along 2
sizes of video sets: (a)|V | = 30;(b)|V | = 40

After 200s, all solutions decrease their rates and then enter a
periodical vibration phase. This phenomenon can be explained
as follows. Initially, the network load is low, allowing the
link to accommodate all high bitrate video requests. However,
as the number of end users increases, the link’s capacity
restricts the growth of the average user throughput, leading
to a decrease in ABR. In the latter half of the simulation,
frequent user joining and leaving activities determine ABR to
dynamically fluctuate with the number of active users.

The results of Figure 9(a) suggest an increase of 30%
and 41% of ABR in favor of DMRCA when compared
with the other two solutions. In DMRCA, the overall bitrate
is distributively optimized and converges to the theoretical
optimal, hence, providing the best performance among the
three solutions. HAVS-CCN adjusts the data rate at each hop
locally, and fails to optimize the overall user bitrate. Each
client in DASH-CCN greedily requests higher bitrate videos
in order to maximize their own bitrate, which aggravates the
network congestion when the network is already in a high load
condition. Therefore, DASH-CCN has the worst performance
in terms of ABR.

4) Playback freeze frequency (PFF) comparison: We define
PFF as the average occurrence of freeze per second during
the simulation. The lower PFF is, the smoother playback
experienced by the client is. Figure 9(b) shows PFF in tests
with the American backbone topology. The results show that
when DMRCA is employed, PFF decreases by about 20%
and 25% in comparison with the values experienced by the
other two solutions. As mentioned, DMRCA uses a distributed
optimization method in order to fully use the link bandwidth
while also avoiding the network congestion by limiting the
total delivery rate to the link capacity and hence achieving a

smoother playback. HAVS-CCN also limits the data rate to
the link capacity at each hop, hence avoiding the network
congestion. DASH-CCN uses a greedy method to request
video content with a high risk of playback freeze when the
available bandwidth is not enough to support smooth playback
of high bitrate videos.

C. Discussion
DMRCA is a distributed rate control algorithm, so it needs

to be deployed at every node in the network. In general this is
associated with a large system deployment cost. Therefore, for
simple network architectures with fewer distributed nodes, the
optimization introduced by a possible deployment of DMRCA
is limited, considering the deployment cost. However, for large
deployments, the benefit of employing DMRCA is significant.
Therefore, an interesting research avenue is to explore for what
range of network topologies DMRCA is most suitable, and
consider the deployment decision from both deployment cost
and bandwidth utilization optimization points of view.

In addition, DMRCA is designed to select bitrate solely
based on information received from the connected link. There-
fore, it is obviously optimized for certain use cases, but it is
not necessary for all use cases. If there is a central server in
the network structure that provides information about network
links such as congestion status and available bandwidth to all
network nodes in a low-cost manner, the DMRCA calculation
process can actually be replaced by this mechanism, because
the core focus of DMRCA is to infer the optimal bit rate
selection from link usage. In a centralized structure, the rate
selection of each node can be uniformly performed by the
central node.

IX. CONCLUSIONS AND FUTURE WORK

This study introduced an innovative distributed multi-source
optimal bitrate control algorithm (DMRCA) for adaptive video
streaming. It includes a formulation of the rate control problem
as a concave MAP, which was decomposed into two sub-
problems, PRSP and URAP. Following a demonstration of
the equivalence between the original problem and the two
sub-problems, DMRCA was proposed as a distributed op-
timal solution that enables users and providers to commu-
nicate through links and achieve optimal rate control. The
paper discussed the complexity, convergence, and time-varying
adaptability of the proposed algorithm. Simulation results
demonstrated the superiority of DMRCA over other state-of-
art solutions. Future work will involve designing an online
asynchronous algorithm to facilitate deployment in highly-
dynamic mobile environments.
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