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The widespread availability of smart computing and display devices such as mobile phones, gaming consoles,
laptops, and tethered/untethered head-mounted displays has fueled an increase in demand for omnidirectional
(360°) videos. 360° video applications enable users to change their viewing angles while interacting with
the video during playback. This allows users to have a more personalized and interactive viewing experi-
ence. Unfortunately, these applications require substantial network and computational resources that the
conventional infrastructure and end devices cannot support. Recent-proposed viewport adaptive fixed tiling
solutions stream only relevant video tiles based on user interaction with the virtual reality (VR) space to use
existing transmission resources more efficiently. However, achieving real-time accurate viewport extraction
and transmission in response to both head movements and bandwidth dynamics can be challenging, which can
impact the user’s Quality of Experience (QoE). This paper proposes innovative dynamic tiling-based adaptive
360° video streaming solutions in order to achieve high viewer QoE. First, novel and easy-to-scale tiling
layout selection methods are introduced, and the best tiling layouts are employed in each adaptation interval
based on the prediction-assisted visual quality metric and the observed viewport divergence. Second, a novel
proactive tile selection approach is presented, which adaptively extracts tiles for each selected tiling layout
based on two low-complex viewport prediction mechanisms. Finally, a practical dynamic tile priority-oriented
bitrate adaptation scheme is introduced, which uniformly distributes the bitrate budget among different tiles,
during 360° video streaming. Extensive trace-driven experiments are conducted to evaluate the proposed
solutions using head motion traces from 48 VR users for five 360° videos with tiling layouts of 4x3, 6x4, and
8x6 and segment durations of 1s, 1.5s, and 2s. The experimental evaluations show that the dynamic video
tiling solutions achieve up to 11.2% more viewport matches and an average improvement in QoE of 9.7%-18%
compared to state-of-the-art 360° streaming approaches
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2 Yaqoob and Muntean

1 INTRODUCTION
Recently, 360° virtual reality (VR) video has improved the traditional streaming format by allowing
the viewer to feel fully immersed in the video by providing a complete spherical field of view (FoV).
This is achieved by capturing video from all directions using multiple cameras and then stitching the
video together into a single, seamless sphere. Users can have an incredibly immersive experience,
especially when using high-resolution head-mounted display (HMD) devices [53]. However, remote
transmission and rendering of ultra-high-resolution panoramic content significantly exceeds the
capacity of conventional infrastructure. However, the emerging 5G and beyond wireless network
technologies are expected to bridge the current performance gap by offering higher network
flexibility, transmission capacity, and mobility support [3].
Currently, a standard way to mitigate the transmission of ever-increasing 360° video services

is through viewport-based adaptive streaming frameworks (i.e., monolithic streaming [7, 64] and
tile-based streaming [37, 54]). Multiple versions of pre-defined viewports are prepared on the
server-side in monolith streaming. The entire spherical frame provides higher viewport quality
and gradually lower outside quality for each viewing feedback. Contrarily, tile-based streaming
lower these requirements by spatially partitioning the video frames into independently encodable
rectangular video parts known as tiles [21, 59]. The VR user can envision the FoV tiles in higher
quality levels [31, 65] compared to the other tiles which are delivered in lower resolution [12, 38]
or even discarded [49]. The user’s head motion patterns are an essential measurement for quality-
efficient remote transmission. However, it is limited in many cases. Viewport prediction can help
to reduce the time it takes for new tiles to be loaded as the viewer changes their viewing angle,
improving the overall streaming experience. The client can allocate more bits to these tiles based
on visual visit information [28].
The spatial partitioning structure of tiles plays a vital role in balancing viewport availability

and bandwidth utilization. Existing fixed tiling layout solutions [15, 16, 36] stream variable quality
views in order to reduce data transmission. However, this can still lead to poor visual boundaries
and inefficient use of bandwidth. In contrast, a dynamic tiling-based streaming framework reduces
redundant data and provides improved FoV availability for different viewing behaviours of users.
However, it is challenging to support dynamic tiling-based streaming under complex viewing
patterns. Similarly, identifying and selecting prioritized views is necessary but not simple. Using
traditional bitrate adaptation heuristics [42, 52] for tile-based streaming in the presence of various
uncertainties (such as connection speed, user movements, segment sizes, etc.) is not practical due
to the spatial and temporal separation of 360° content. Suppose learning-based [22, 45, 46], or
controlled adaptation technique [60, 61] can correctly calculate the bitrate for the next segment in
real-time. Still, it is strenuous to best match the quality scores due to the instantaneous short-term
viewport updates.

This paper introduces two novel Dynamic video Frames Tiling-based (DFT) 360° video streaming
solutions involving a three-tier adaptation in terms of tiling layout adaptation, streaming tiles
selection, and bitrate adaptation. In an end-to-end remote 360° video transmission, the first solution
DFT1 decides an optimal tiling layout based on a newly proposed priority-assisted weighted visual
quality metric. The second solution referred to as DFT2 intelligently adapts the tiling version based
on the head movement prediction accuracy for each video segment. The proposed DFTs solutions
perform prioritized tiles selection by classifying streaming regions into the following cases: (1) Case
1: Fixed viewport with no marginal tiles; (2) Case 2: Fixed viewport with marginal tiles; (3) Case 3:
Extended viewport with no marginal tiles. Finally, a DFT bitrate adaptation heuristic is designed
in such a way as to support the dynamic tiling-based streaming framework by implementing
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prioritized bitrate budget distribution between different tile groups. This paper has the following
main contributions:

(1) Adaptive Tiling Layouts Switching based onVisual Quality and Prediction Relevance:
Two innovative solutions that dynamically determine tiling layouts, taking into account
both visual quality prioritization (DFT1) and viewport prediction accuracy (DFT2) during
each segment playback are introduced. In particular, DFT1 selects the highest-quality tiling
layout to deliver an optimal viewing experience, effectively addressing the complexity and
scalability issues faced by existing solutions. The second strategy DFT2 tailors tiling layouts
based on viewport prediction performance, thereby enhancing viewport availability across a
variety of motion content.

(2) Efficient Computation of Streaming Regions: A low-complexity, precise solution for
determining the optimal arrangement of streaming tiles, utilizing a combination of two
viewport prediction mechanisms, where the viewport is defined in terms of 110° angles in
both horizontal and vertical directions is described. This approach employs advanced tiles
classification, i.e., dynamic viewport and marginal regions, in order to improve the displayed
viewport’s adaptability in response to non-native head movements.

(3) Region-based Uniform Bitrate Adaptation: A dynamic tiling-based uniform bitrate
adaptation algorithm that incorporates diverse adaptation policies, including aggressive,
weighted, and conservative is proposed. This novel algorithm proactively allocates the
available bandwidth to specific spatial regions and optimizes viewer experience according to
the desired adaptation strategy.

We present extensive experimental evaluations using real head motion traces of 48 VR users
considering five 4K videos prepared in three tiling layouts (4x3, 6x4, 8x6) and with three segment
durations (1s, 1.5s, 2s). Experimental results show that DFT improves the streaming performance
measured in terms of viewport overlap (8.6%-11.2%) and QoE (9.70%-18%) under dynamic bandwidth
conditions in comparison to popular fixed tiling-based and dynamic tiling-based solutions.

This work presents significant new contributions compared to our previously proposed solutions,
CFOV [55] and DVS [56]. In comparison to [55] and [56], the proposed solutions have the following
new points. First, two novel options for tiling layout selection are proposed which can improve
viewport availability and reduce the transmission of redundant pixels under variable headmovement
prediction accuracy. Secondly, the DFT tiles selection mechanisms are comprehensively different
from those proposed before. DFTs employ adaptive marginal and extension region selections, which
are fine-grained and help with highly dynamic viewing patterns. DVS considered visual complexity
and circular distance between viewpoints to classify viewport, marginal, and background tiles sets,
while CFOV considered fixed and extended FoV scenarios and adopts a wider marginal region
based on prediction results. Thirdly, DFTs solutions introduce a novel bitrate adaptation algorithm
designed to handle dynamic adaptation decisions for multiple tiling layouts, which is a significant
new contribution in contrast with the previously introduced fixed tiling-based solutions. DVS
specifically switches between uniform (per-region) and non-uniform (per-tile) quality allocation
strategies, while DFT considers per-region uniform bitrate adaptation. Finally, a significantly
expanded testing setup is used to evaluate comparatively the streaming behaviours of both fixed
and dynamic tiling-based solutions.

Paper Organization: Section 2 discusses the most recent literature on 360° tile-based streaming.
Section 3 details the structure of the proposed 360° adaptation framework and problem formulation.
The details of tiling layout selection, tiles selection, and tiles bitrate adaptation are introduced in
Section 4. Section 5 presents the experimental settings, results, and performance analysis. Finally,
Section 6 offers conclusive remarks.
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4 Yaqoob and Muntean

2 BACKGROUND AND RELATEDWORKS
This section presents the important technical background linked to our research and provides a
comprehensive overview of the most recent streaming techniques, applications, and limitations.

2.1 Fixed Viewport-based Streaming
In this streaming approach, the size of the viewer window (the "viewport") is fixed. The system
delivers a higher-quality version of the video to the portion of the video that is within the viewport.
This approach takes into account the viewer’s dynamic motion patterns, as the viewport is adjusted
to follow their movements.

Hosseini et al. [16] proposed a priority-based bitrate adaptation (PBA) algorithm for 360° video
streaming that takes into account the location of different tiles within the video (central, surrounding,
and outside). The algorithm starts by assigning the lowest quality version of the video to the entire
segment, and then gradually increases the quality of the central tile to the highest level, followed
by the surrounding and outer tiles. However, the PBA algorithm was evaluated using a VR setup
with a 2K resolution and videos encoded using H.264/AVC, which may not be optimal for enriched
360° videos. Similarly, Chen et al. [4] proposed a system for adapting the quality of 360° video
based on the location of different tiles within the viewport, with higher priority given to tiles in
the centre and lower priority given to tiles in the corners. However, this system does not take into
account viewer motion or use any prediction mechanism and was evaluated using fixed network
connections. Nasrabadi et al. [28] employed a cube map projection-based scalable video coding
scheme where each face of the cube was divided into two horizontal and two vertical tiles and
encoding was performed using one base layer and two enhancement layers. The experimental
evaluations using four streams of different spatiotemporal complexities demonstrate that compared
to the non-scalable coding, layer-assisted tiles coding results in fewer rebuffering events while
offering improved quality. Hooft et al. [15] proposed Uniform ViewPort quality (UVP) solution that
is designed for use with a fixed viewport. UVP divides the video into two regions: the viewport,
which is the portion of the video that is currently being displayed to the viewer, and the non-
viewport, which is the rest of the video. The tiles in both regions are arranged using a prediction
approach that extrapolates the viewer’s head motion to anticipate their upcoming viewing points.
However, this method was only tested using three videos with a single segment duration. Wei
et al. [45] proposed a hybrid adaptation solution to control viewpoint prediction and adaptation
decisions by leveraging a deep reinforcement learning (DRL) method to continuously compute first
the segment bitrate and then the per-tile bitrate based on predicted fixed viewport maps and use
them in a cooperative bargaining game theory approach. The proposed solution processes head
movement and eye fixation information to adjust the prioritized quality decisions within the spatial
and temporal domains.

2.2 Marginal Region-based Streaming
In this streaming approach, a spatial extension, known as the "marginal area," is defined around the
viewport. The purpose of the marginal region is to provide a buffer around the viewport to account
for possible errors in head movement prediction. Petrangeli et al. [36] proposed an adaptive virtual
reality (AVR) streaming approach which divides the tiles of the 360° video into viewport, adjacent,
and outside groups. The authors collected viewport traces using the Gear VR framework while
ten users watched a single 360° video. However, the evaluation was limited to a single 60-second
long 360° video clip. Ben Yahia et al. [2] divided the equirectangular frame into viewport, marginal,
immediate background, and far background regions. The proposed model involves two viewport
prediction intervals, i.e., before and during the delivery of the same segment. The client assigns
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variable weights to different priority regions and can update the resource allocation based on
updated prediction results. Zou et al. [65] introduced a convolutional neural network (CNN)-based
prediction mechanism and then distributed the communication resources for the quality selection
of predicted tiles. The proposed solution maps the spherical representation to the planer projection
to calculate the viewing probability of each tile. The tiles are then divided into viewport, marginal,
and background tiles groups. The marginal tiles surround the viewport in all directions, similar
to [36]. However, CNN-based viewport prediction models are computationally expensive and are
difficult to extend for different videos. Zhang et al. [57] proposed a simple yet effective buffer-based
quality-aware bitrate adaptation algorithm to allocate different quality levels to the viewport,
marginal, and outside tiles. The experimental evaluations using three 4K test sequences prepared in
a 6x4 tiling layout under staged bandwidth variations show that the proposed solution favours the
high visible quality levels with considerable navigation smoothness. However, concise simulations
were performed for each video content (about 10s). Yadav and Ooi [50] modelled the per-tile bitrate
allocation problem as a multiclass knapsack problem based on a dynamic profit function of the
current FoV, buffer level, and per-tile representation level. The proposed tile-rate allocation solution
based on the previously proposed non-tiled ABR algorithm [51], achieves good results in terms
of reducing playback interruptions and quality switches while improving the overall quality and
bandwidth savings. However, this approach may lead to higher spatial quality variance within the
viewport, and the use of a separate buffer for each tile can cause the playback of the entire video to
stall if one of the tiles is not downloaded in time.

2.3 Extended Viewport-based Streaming
Extended viewport-based streaming is a technique of delivering 360° video in which the viewport is
virtually extended by a certain percentage, typically 10-30%, in order to provide a buffer around the
viewport to account for viewer movements. Hooft et al. [15] proposed a quality adaptation approach
by considering the extended viewport (full-frame) region. This approach, called Centre Tile First
(CTF), focuses on improving the quality of the centre or viewpoint tile, and then gradually increases
the quality of the remaining tiles. CTF was evaluated considering the weighted viewport quality
metric, which assigns higher weights to the centre tile quality and gradually lowers the weights
towards the end tiles. It was shown to outperform the uniform viewport quality allocation solution
UVP for the weighted viewport quality metric. However, when tested using average viewport
quality, UVP performs better than CTF.

He et al. proposed [14] a joint adaptation solution that adjusts both the size of the viewport and
the bitrate of the video based on network conditions. The algorithm measures the round trip time
(RTT) of the network connection and uses this information to determine the viewport size and the
necessary bitrate for smooth streaming. Simulation results using the Network Simulator (NS)-3 tool
showed that this adaptable viewport coverage approach can improve the quality of the streaming
experience. However, the details of this work, such as the viewport prediction mechanism, the
dataset and tiling layout used, and the content resolution, are not provided. Similarly, Hu et al. [17]
proposed a system called MELiveOV for live streaming high-resolution 360° video using 5G-enabled
edge servers to distribute processing tasks. This edge-based live streaming system adjusts the size of
the viewport based on network conditions, with a smaller viewport (90°) requested in higher bitrates
under poor network conditions and a larger viewport (120°) selected for streaming under ideal
conditions. However, the performance of this work was only compared to a viewport-independent
streaming approach. Guo et al. [13] proposed a solution for 360° video streaming that takes into
account random motion patterns and variable network conditions for each viewer, and tries to use
multicast opportunities to reduce redundant data transmissions. The proposed solution computes
the actual viewport tiles for the current user and adds more tiles to the viewing region based on the
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6 Yaqoob and Muntean

common interest of other users. The authors considered 100° viewport coverage and an extra 15° in
both horizontal and vertical directions. Similarly, Long et al. [24] optimized the overall utility of
multiple users in a wireless network environment with a single server. The proposed solution takes
into account factors such as transmission time, video quality smoothness, and power constraints in
order to maximize the aggregated utility of the users.

proposed a method for optimizing the aggregated utility of multiple users in a single-server multi-
user wireless network environment by considering transmission time, video quality smoothness,
and power constraints.

2.4 Dynamic Tiling-based Streaming
In dynamic tiling-based adaptive streaming, multiple tiling layouts are prepared on the server-side
in order to optimize the delivery of a 360° video to a viewer. The tiling layout that is used for a
particular viewer may be changed dynamically in order to adapt to their viewing and network
conditions. Khiem et al. [39] investigated the impact of tiling layouts on interactive zoomable video
streaming by employing the dynamic cropping of regions of interest (RoI). The authors compared
the performance of regular monolithic streaming and tile-based streaming using two HD videos
and found that larger tiles can improve compression efficiency, but at the cost of transmitting
redundant pixels. In this work, we attempt to reduce the transmission bits and provide improved
viewport availability but with an unmodified decoder. In the follow-up work [30], the authors
employed user access patterns to encode the different streaming regions with different encoding
parameters. Our DFTs solutions also assign variable uniform bitrates to different streaming regions,
but with more profound viewing region selection and dynamic bandwidth distribution. Nguyen et
al. [32] proposed an adaptive tiling selection (ATS) solution for 360° video streaming. The authors
evaluated four different tiling layouts (4x3, 6x4, 8x4, and 8x8) and divided the selected tiles into
viewport and non-viewport groups for each layout. During each adaptation interval, the tile sets
that resulted in the minimum viewport distortion or the maximum viewport bitrate were chosen
for streaming. However, this approach did not incorporate any viewport prediction mechanism and
was tested using fixed network connections. Xiao et al. [48] proposed an optimal tiling solution by
partitioning a 360° segment into variable-size sub-rectangles to minimize the storage cost on the
server side. The proposed solution estimates the storage and transmission cost by extracting the
motion vectors and sizes of all basic sub-rectangles. An integer linear program (ILP) is then used to
output the optimal tiling version that covers possible views of the segment. The proposed solution
achieves interesting results, but at the cost of increased computational complexity. We attempt to
achieve a similar goal of balancing storage size and data transmission, but with reduced server-side
storage overhead and by utilizing standard computing and streaming components. The proposed
solutions are essential for viewers who want to take advantage of the immersive and interactive
VR experience, without having to invest in additional hardware.

Kattadige et al. [20] proposed a method for selecting the tiling layout of each segment of a video
based on the visual attention of the user. The approach involves analyzing the frames of the video,
creating visual attention maps for the user, and dividing the frames into three regions based on the
user’s attention. The proposed solution was compared to three fixed tiling layouts (4x6, 6x6, and
10x20) and was found to be more efficient in terms of pixels and bandwidth usage. Ozcinar et al.
[34] employed visual attention maps to improve the network capacity planning for different tile
groups. Variable-sized non-overlapping tiles are adaptively selected for each segment. However,
real-time visual attention map computation and transmission require extensive resources, which
is not in favour of this proposed solution. In a follow-up work [35], the authors extended their
visual attention aware variable size non-overlapping tile mapping to benefit from the dynamic
tiling structure. Each 360° video frame was split into two fixed-sized polar tiles (1/4th of the frame
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Table 1. Summary of Tile-based Viewport Adaptive 360° Video Streaming Solutions

Streaming
Techinque Works Design Dataset Tile Layouts Resolution Segment

Duration
Experimental

Duration

Fixed
Viewport

[16] Non-Uniform VP 5 Videos, 1 Users 6 tiles 720p-4K - Video duration
[4] Non-Uniform VP 5 Videos [23] 3x3, 4x4, 5x5 2K 1s 20s

[15] Uniform and
Non-Uniform VP 3 Videos, 48 Users [47]

1×1, 2×2, 4×2,
4×4, 8×4, 8×6,
8x8, 16×12/16

4K 1.067s Video duration

[49] Probability-based 1 Video, 5 Users 6x12 2K 1s 3m
[28] Layer-assisted 4 Videos, 5 Users 6 and 24 tiles 4K 32 frames Video duration

Marginal
Region

[36] Fixed Margin 1 Video, 10 Users 6 tiles 8K 1s, 2s, 4s 60s
[2] Fixed Margin 3 Videos, 3 Users [6] 6x4 4K 1s 1m
[65] Fixed Margin 3 Videos, 10 Users [1] 8x8 4K 1s Video duration
[57] Dynamic Margin 3 Videos, 1 Trace 4x6 4K 2s 10s

Extended
Viewport

[14] Dynamic Extension - - - - -
[17] Dynamic Extension 4 Videos, 1 User 4x6 4K Live Video duration
[13] Fixed Extension (15°) 1 Video 36x2 - 0.1s Video duration
[24] Fixed Extension (10°) 1 Video 18x36 - - Video duration

Dynamic
Tiling

[32] Visual distortion 1 Video, 10 Users 4x3, 6x4,
8x4, 8x8 4K 1s 60s

[35] Visual-attention 7 Videos, 25 Users Multiple 8K - 10s
[20] Region-based 30 Videos, 30 Users Multiple HD-4K - 60s
[48] Variable rectangles 5 Videos, 58 Users Multiple 2K & 4K - -

e

from the top and 1/4th from the bottom). The remaining equator region was horizontally divided
into 1 and 2 tiles and then each part was divided into 1, 2, 4, 8, and 16 vertical tiles. Numerous
dynamic tiling combinations can be considered using this division. The authors employed seven
different spatial and temporal motion content types, but all with a duration of 10s. However, this
type of tiling structure is not feasible in real-time streaming scenarios, as the two fixed size polar
tiles (half of the frame) need to be transmitted in full quality if any part of the viewport is predicted
to be in that region.
Table 1 illustrates the most significant streaming techniques for tile-based adaptive 360° video

streaming. These algorithms use user-specific viewing preferences to improve the user’s QoE by
establishing a stable background. Most of the fixed viewport-based solutions [4, 15, 16] define
variable quality levels within the viewport, which can lead to severe spatial quality oscillations
even for perfect prediction results. Several solutions [2, 12, 36, 65] simply employ a fixed marginal
area around the viewport in all directions. It can compensate for the highly dynamic viewing nature
of the user; however, a significant waste of the bandwidth can be observed under medium to high
prediction accuracy. Similarly, always extending the viewport region by 15° [13] and 10° [24] can
lead to unnecessary transmission under perfect predictions. Different from previous works, in our
approach the viewport and marginal region are considered special cases in the quest to overcome
viewing uncertainty. Dynamic tiling solutions [20, 30, 34, 35] are theoretically effective in terms of
increasing the picture quality and users’ QoE. However, some of these solutions require real-time
visual mapping which makes them difficult to implement in traditional on-demand scenarios.
Mixing different resolution tiles [44] to provide a non-redundant viewport transmission [20, 34, 35]
can result in users sensing quality variations and degradation for high and relatively static motion
content. These solutions are difficult to be extended to consider different content types and are
associated with additional coding and reconstruction overheads.

3 PROPOSED DYNAMIC TILING-BASED ARCHITECTURE
3.1 Dynamic Tiling-based System Architecture
Fig. 1 illustrates the workflow of DFTs solutions. On the server side, the 360° video is pre-processed
by dividing it into a number of segments, i.e., S = {S(1),S(2), ...,S(𝑖), ...,S(𝐼 )}. Each segment
is then divided into 𝑙 tiling layouts, i.e., T𝑙 (𝑖), ∀ 𝑙 ∈ {𝑥,𝑦, 𝑧}, containing small, medium, and large
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8 Yaqoob and Muntean

Fig. 1. The proposed 360° client-server streaming architecture.

number of tiles, respectively. Each tiling layout is further divided into a number of tiles, i.e.,
T𝑙 = {T 1

𝑙
(𝑖),T 2

𝑙
(𝑖), ...,T 𝑘

𝑙
(𝑖), ...,T𝐾

𝑙
(𝑖)}. These tiles are then encoded at a number of different

bitrates, i.e., L𝑙 = {L𝑘𝑙,1 (𝑖),L
𝑘
𝑙,2 (𝑖), ...,L

𝑘
𝑙,𝑗
(𝑖), ...,L𝑘

𝑙,𝐽
(𝑖)}. Let L𝑘

𝑙,𝑗
(𝑖) represent the 𝑗 th bitrate of the

𝑘th tile in the 𝑙th tiling layout of the 𝑖th segment.
The DFTs clients, which control the adaptive streaming operations, need to know in advance

about the available tiling layouts on the server side. DFT2 performs tiling layout selection before
determining the streaming tiles and bitrate allocations during each adaptation interval. The tiling
layout selectionmodule in DFT2 checks the overlap between the actual and predicted viewport areas
during the previous segment. The streaming tiles selection module selects sets of tiles for different
priority regions (i.e., viewport (T 𝑣

𝑙
(𝑖)), marginal (T𝑚

𝑙
(𝑖)), and background (T𝑏

𝑙
(𝑖))) based on the

predicted viewport coordinates for each segment. This helps to ensure that the video is able to adapt
to the viewer’s movements and maintain a high level of quality by pre-downloading tiles that are
most likely to be watched. The tiles bitrate adaptation unit then selects appropriate bitrates for each
tile based on the associated region and the available network capacity. DFT1, on the other hand,
first calculates the streaming regions and relevant bitrates for each tiling layout. It then selects the
tiling layout that results in the highest weighted-area-based visual quality score in each adaptation
interval. The segment request is then sent, and upon receiving the segments, the client decodes and
reconstructs the requested views similar to fixed tiling-based views in the post-processing phase
with no additional decoding overhead. The requested content is then presented to the user.

3.2 Problem Definition
In 360° adaptive video streaming, it is important to consider the user’s quality expactations which
depend largely on the quality of the visible area. Even if the viewport tiles are played at higher
quality levels, the intra- and inter-segments quality oscillations may not satisfy the user. The QoE
metric used in this context includes viewport quality and spatial and temporal smoothness factors,
as well as the risk of playback buffer issues.

• Viewport Quality: The user is able to visualize only certain tiles during 360° video playback.
The viewport quality reflects how much a user is satisfied with the visual perception. The
client can be presented with any visual quality representation, but the average quality levels
of the viewport tiles are highly correlated with the average bitrate that is actually consumed
by the viewer. Therefore, by averaging the quality of the actual viewport tiles in segment (𝑖),
for 𝑙th tiling layout, the viewport quality is given as follows [37, 63]:

f1 (𝑖) =
∑
𝑘∈T �̂�

𝑙
(𝑖)

∑
𝑗 ∈L𝑙
Q(L𝑘

𝑙,𝑗
(𝑖))

|T 𝑣
𝑙
(𝑖) |

(1)
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where T 𝑣
𝑙
(𝑖) represents the actual viewport tiles set in the (𝑖)th segment and |T 𝑣

𝑙
(𝑖) | indicates

the cardinality of the set. Q(L𝑘
𝑙,𝑗
(𝑖)) maps the 𝑗th bitrate of 𝑘th tile to the particular video

quality level.
• Temporal Quality Oscillations: The inter-segment quality switches can reduce the "sense
of being there" in an immersive environment. This may happen not only because of the
network fluctuations but also due to the differences in head movement predictions. The user’s
experience can be impaired by physiological symptoms such as dizziness and headache when
observing frequent visual disparity [41]. Therefore, the inter-segment quality fluctuations
should not be drastic and can be calculated as the difference between the observed viewport
quality levels of two consecutive segments [37, 63]:

f2 (𝑖) = | f1 (𝑖) − f1 (𝑖 − 1) | (2)
• Spatial Quality Oscillations: The visual tiles having different quality levels leads to complex
perception. Cybersickness, viewing irritation, nausea, fatigue, and aversion [11], can be driven
by inconsistent quality levels within the viewport. Compared to regular 2D videos, if the
perceived quality of 360° tiles is not smooth, it will reduce the overall QoE. Following [19],
we measured the spatial quality oscillations according to the coefficient of variation (CV) of
viewport tiles quality.

f3 (𝑖) =
𝜎 (Q(L𝑘

𝑙,𝑗
(𝑖)))

𝜇 (Q(L𝑘
𝑙,𝑗
(𝑖)))

, ∀𝑘 ∈ T 𝑣
𝑙
(𝑖),∀𝑗 ∈ L𝑙 (3)

The standard deviation of the viewport quality samples is in the numerator, and the mean of
the samples is in the denominator.
• Playback Buffer Risk: A large buffer capacity may not be efficient for 360° video streaming
because of the constantly changing FoV during playback [9, 33]. Pre-buffering high-quality
tiles can be risky, as the user’s FoV may shift at the time of playback. Instead of relying on the
traditional playback discontinuity under short-term viewport prediction, it is more beneficial
to assess directly risky buffer events based on the available connection bandwidth and the
selected video bitrates. This can be expressed as follows [45]:

𝑓4 (𝑖) =
{
1, if (𝐵(𝑖) < ∑

𝑘∈T𝑙 (𝑖) L𝑘𝑙,𝑗 (𝑖))
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

where 𝐵(𝑖) represents the available bandwidth budget for (𝑖)th segment.
Following the principle behind the QoE metric for traditional video [26], some works [37, 62,

63] consider video quality, quality variations, rebuffering events, etc. to model a QoE metric for
360° videos. The user-perceived QoE for each 360° segment is defined by a weighted summation
formulation:

QoE(𝑖) = 𝛼 × f1 (𝑖) − 𝛽 × f2 (𝑖) − 𝛾 × f3 (𝑖) − 𝛿 × f4 (𝑖) (5)
where 𝛼 , 𝛽 , 𝛾 , and 𝛿 are the parameters indicating how much importance a user gives to video
bitrate, temporal and spatial quality variances, and rebuffering risk, respectively. As users do not
want to experience quality fluctuations and rebuffering events, the functions f2 (𝑖), f3 (𝑖), and f4 (𝑖)
are set to negative.

Accurate evaluation of QoE is essential for optimizing the performance of traditional, multimedia
[58], and immersive video content. The level of satisfaction a user experiences while watching a
VR video is determined by how long they feel immersed in the scene. The proposed clients aim to
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select optimal bitrates for each segment in a dynamic tiling streaming system in order to maximize
the user’s long-term QoE reward. The mathematical problem formulation is as follows:

Problem:

𝑚𝑎𝑥
∑︁
𝑖∈S

𝑄𝑜𝐸 (𝑖) (6)

The proposed solutions solve this problem by implementing a three-tier adaptation mechanism.
Firstly, they select a relevant tiling layout for each segment. Next, DFTs solutions dynamically
perform the viewing area selection based on the two viewport prediction mechanisms to predict
the most likely to-be-watched tiles. Finally, the tiles bitrate adaptation mechanism improves the
bitrate budget distribution between different tiles groups. These mechanisms are elaborated on in
the next section.

4 PROPOSED DYNAMIC TILING-BASED ADAPTATION ALGORITHMS
This section presents the adaptation algorithms for DFT1 and DFT2 streaming clients.

4.1 DFT Tiling Layout Selection Algorithms
Tile-based encoding brings several opportunities such as efficient video coding [40], improved
quality distribution, parallel [25], and partial decoding [5], etc., for VR video applications. The
choice of the appropriate tiling layout, which reflects the spatial partitioning of frame areas, impacts
the overall video compression performance. In 360° video, the polar regions have higher viewing
distortions and less viewing probability than the equator regions when transforming a spherical
representation into a two-dimensional planer format, i.e., equirectangular projection. Therefore,
encoding polar areas with more pixels consume the user’s limited bandwidth to transmit data
related to less relevant image regions. Fixed tiling solutions encode polar and equator regions at
similar bitrate levels leading to unattractive viewport boundaries and losing positive compression
opportunities. Employing a smaller number of tiles (i.e., larger resolution tiles) can improve the
compression performance in some cases. Yet, at the same time, it may include unnecessary higher-
quality portions outside the viewport [35]. Contrary, smaller resolution tiles can reduce the number
of redundant pixels [45]; however, it may also cause visual distortions such as flickering, floating,
and blurring at the edges of the tiles [8]. Finding ways to dynamically select the most appropriate
tiling layout for a given viewing scenario and preferences is an important area of research. By
developing smart techniques that can take these factors into account and adjust the tiling layout
accordingly, it may be possible to improve the overall viewing experience. Therefore, the proposed
solution considers two tiling layout selection solutions to lower redundant data transmission and
facilitate a fine-grained visual perception for different motion content.
DFT1: The proposed DFT1 solution decides an optimal tiling layout during each adaptation

interval based on the observed visual quality scores. Since the user gaze point is mostly located
around the centre of the viewport [27, 43], the viewpoint quality should have a higher priority
compared to other tiles. Therefore, we design a priority-assisted visual quality metric to attentively
select the suitable tiling layouts during 360° video streaming. In this context, DFT1 assigns different
priority weights to the viewport tiles in such a way that the tiles closer to the viewpoint should
have a higher priority compared to other tiles. The tiles are arranged based on how far they are
located from the viewpoint. The priority weights are assigned such that the most important parts
of the image, as determined by their proximity to the centre of the viewer’s focus, are rendered
with the highest quality, while less important parts of the image are rendered with lower quality. In
this context, the highest and lowest weights are allocated for the mapped quality of the viewpoint
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Algorithm 1: Tiling Layout Selection Algorithm in DFT2
Input :O(𝑖 − 1): Tiles overlap percentage during the (𝑖 − 1)th segment
Output :T𝑙 (𝑖): Tiling layout selected for the (𝑖)th segment

1 if (𝑖 == 1) then
2 T𝑙 (𝑖) ← T𝑧 (𝑖)
3 else if O(𝑖 − 1) == 0 then
4 T𝑙 (𝑖) ← T𝑥 (𝑖) ; // No overlap

5 else if O(𝑖 − 1) == 100 then
6 T𝑙 (𝑖) ← T𝑧 (𝑖) ; // Perfect overlap

7 else
8 T𝑙 (𝑖) ← T𝑦 (𝑖) ; // Partial overlap

and the last tile, respectively, in the sorted tiles set. The weighted quality metric is given in Eq. (7):

WQ𝑣𝑙 (𝑖) =
∑ |T𝑣

𝑙
(𝑖) |

𝑘=1
∑𝐽

𝑗=1 (2)
|T𝑣
𝑙
(𝑖) |−𝑘 × Q(L𝑘

𝑙,𝑗
(𝑖))

(2) |T𝑣
𝑙
(𝑖) | − 1

(7)

where the quantity |T 𝑣
𝑙
(𝑖) | represents the number of tiles in the set of tiles predicted to be within

the viewport, and Q(L𝑘
𝑙,𝑗
(𝑖)) maps the video bitrate to a specific quality level. Since we consider

extended viewport case, elaborated in section 4.2, where the visual area can be different for different
tiling layouts, for instance, an extended viewport with T 𝑣𝑥 (𝑖) could cover more region as compared
to an extended viewport with T 𝑣𝑧 (𝑖). Therefore, we define the visual area-based weighted video
quality metric which tries to balance the visual area and the weighted quality and is given in Eq.
(8):

VQ𝑣𝑙 (𝑖) =
|T 𝑣
𝑙
(𝑖) |

|T𝑙 (𝑖) |
×WQ𝑣𝑙 (𝑖) (8)

where |T𝑙 (𝑖) | represents the total number of tiles in the tiling layout 𝑙 . The tiling layout selection
procedure for DFT1 is given as follows:
(1) For each tiling layout:
• Perform streaming tiles selection and identify the streaming case using Algorithm 2.
• Perform bitrate adaptation for the tiles groups of the selected case using Algorithm 3.
• Compute the prioritized visual area-based quality scores using Eq. 7 and Eq. 8.

(2) Stream the tiles from the tiling layout that results in the highest visual levels.
DFT2: DFT2 decides an optimal tiling layout based on the viewport prediction performance.

Unlike DFT1 which is based on visual area, DFT2 measures the closeness between actual and
predicted viewport tiles sets in terms of viewport overlap to select the appropriate tiling layout for
the next segment. Let O(𝑖 − 1) denote the overlap percentage of the actual and predicted viewport
tiles for the (𝑖 − 1)th segment, and is given as [29]:

O(𝑖 − 1) =
|T 𝑣
𝑙
(𝑖 − 1) ∩ T 𝑣

𝑙
(𝑖 − 1) |

|T 𝑣
𝑙
(𝑖 − 1) |

× 100 (9)

Algorithm 1 details the tiling layout selection procedure in DFT2. As no information is available at
the start, the tiling layout with a larger number of tiles (T𝑧 (𝑖)) is selected for the first segment (lines
1-2). If there is no overlap between actual and predicted viewing tiles, then the tiling layout with a
smaller number of tiles (T𝑥 (𝑖)) is selected for the (𝑖)th segment to deal with fast head rotations (lines
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12 Yaqoob and Muntean

Algorithm 2: Tiles Selection Algorithm in DFT
Input :T𝑙 (𝑖): Tiles set with tiling layout 𝑙 for the (𝑖)th segment; T 𝑣𝑛

𝑙
(𝑖): Primary predicted

viewport tiles set; T 𝑣𝑠
𝑙
(𝑖): Secondary predicted viewport tiles set

Output :T 𝑣
𝑙
(𝑖): Estimated viewport tiles set for the (𝑖)th segment; T𝑚

𝑙
(𝑖): Estimated

marginal tiles set for the (𝑖)th segment; T𝑏
𝑙
(𝑖): Estimated background tiles set for

the (𝑖)th segment
1

T 𝑣
𝑙
(𝑖) =

{
T 𝑣𝑛
𝑙
(𝑖) ∪ T 𝑣𝑠

𝑙
(𝑖) if T 𝑣𝑛

𝑙
(𝑖) ∩ T 𝑣𝑠

𝑙
(𝑖) = ∅

T 𝑣𝑛
𝑙
(𝑖) otherwise

T𝑚
𝑙
(𝑖) =

{
∅ if T 𝑣𝑛

𝑙
(𝑖) ∩ T 𝑣𝑠

𝑙
(𝑖) = ∅

T 𝑣𝑠
𝑙
(𝑖) \ T 𝑣𝑛

𝑙
(𝑖) otherwise

T𝑏
𝑙
(𝑖) =

{
T𝑙 (𝑖) \ (T 𝑣𝑛𝑙 (𝑖) ∪ T

𝑣𝑠
𝑙
(𝑖))

3-4). If actual and predicted viewports perfectly overlap during the previous segment, the smallest
resolution tiles are selected to lessen the abundance of unnoticeable pixels outside the viewport
region (lines 5-6). If the actual and predicted viewports partially overlap during the playback of the
previous segment, medium-resolution tiles represented as T𝑦 (𝑖) are streamed for the next segment
(lines 7-8). DFTs solutions do not involve complex frame partitioning and ensure a flexible uniform
tiling structure without any modifications of existing video coding and stream processing tools,
which makes them attractive to be adopted in on-demand and live streaming scenarios. DFT1 is
a scalable solution that can work with any number of tiling layouts. It is also practical for both
simulation and real-time environments.

4.2 DFTs Streaming Tiles Selection Algorithm
The ability to choose the best-fit tiles in response to the user’s unpredictable head movements is
one of the fundamental criteria for 360° video applications. The prediction accuracy of current
streaming solutions based on a single viewport prediction technique can decrease when predicting
longer in the future. To adaptively encompass the real viewing region, this work employs two
viewpoint/viewport prediction techniques. It’s interesting to note that, in the majority of cases,
the naive prediction model (using the current coordinates as predicted points) outperforms more
sophisticated models [10]. The primary viewport tiles set (T 𝑣𝑛

𝑙
(𝑖)) contains the viewport tiles

actually watched by the user during the previous segment. The secondary viewport tiles set
(T 𝑣𝑠
𝑙
(𝑖)) is computed using a spherical walk approach described in [15].

Algorithm 2 aims to find appropriate tiles for the viewport, marginal, and background regions,
respectively. The tiles identification and selection are dynamically performed for each adaptation
interval. Algorithm 2 takes as input the tiles set T𝑙 (𝑖) with tiling layout 𝑙 for the (𝑖)th segment,
the primary predicted viewport tiles set T 𝑣𝑛

𝑙
(𝑖), and the secondary predicted viewport tiles set

T 𝑣𝑠
𝑙
(𝑖). It outputs the estimated viewport tiles set T 𝑣

𝑙
(𝑖), the estimated marginal tiles set T𝑚

𝑙
(𝑖),

and the estimated background tiles set T𝑏
𝑙
(𝑖). The algorithm first determines the viewport tiles set

based on the intersection between the primary and secondary predicted viewport tiles sets. If the
primary and secondary predicted viewport tiles sets are disjoint sets, then the viewport tiles set
is the union of the primary and secondary predicted viewport tiles sets. Otherwise, the primary
predicted viewport tiles set is assigned to the viewport tiles set. Next, the algorithm determines the
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(a) Case 1 (b) Case 2 (c) Case 3

Fig. 2. Tiles selection cases in DFT2 for T𝑧 (𝑖) tiling layout of (𝑖)th segment.

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 3. Tiles selection cases in DFT2 for T𝑥 (𝑖 + 1) tiling layout of (𝑖 + 1)th segment.

marginal tiles set, such that if the intersection of primary and secondary viewport sets is empty,
then the marginal tiles set is empty. Otherwise, the marginal tiles set is the difference between the
secondary predicted viewport tiles set and the primary predicted viewport tiles set. Finally, the
algorithm determines the background tiles set following a check between tiles set and the primary
and secondary predicted viewport tiles sets. Specifically, all the tiles which do not belong to the
viewport or marginal tiles sets are added to the background tiles set. Fig. 2 and Fig. 3 illustrate the
tiles selection cases in DFT2 based on the output of Algorithm 1 for two consecutive segments. The
black rectangle represents the primary predicted viewport, while the blue rectangle represents the
secondary predicted viewport. The potential viewport tiles are represented by a purple window,
whereas the marginal and background tiles are marked in light green and brown, respectively.

4.3 DFT Tiles Bitrate Adaptation Algorithm
Adaptive streaming players usually maintains a large buffer space for regular 2D videos to absorb
the uneven motions in video scenes and playback interruptions. However, for 360° videos, a large
buffer capacity is not encouraged due to FoV dynamics. In practice, for 360° tiled video streaming,
the buffer should be as small as possible (usually 2 segments [15]) to accommodate the new chunks
in response to the user movements within the immersive video. Algorithm 3 takes into account
both the predicted tiles and network conditions to more accurately adjust the video quality for
smoother viewing experience. This algorithm is specifically designed for dynamic tiling-based 360°
video streaming. Both DFT1 and DFT2 clients employ the same bitrate adaptation algorithm to
decide the suitable bitrates for tiles.
In the absence of buffer consideration, accurate bandwidth estimation is crucial to achieving

higher playback performance [53]. An over/under-estimation of the available bandwidth can result
in frequent rebuffering/lower quality playback. Following [28], the bandwidth for (𝑖)th segment is
computed as follows:

𝐵(𝑖) =
∑
∀𝑘,𝑗 L𝑘𝑙,𝑗 (𝑖 − 1) ∗ 𝜏
D(𝑖 − 1) (10)

where L𝑘
𝑙,𝑗
(𝑖 − 1) represents the bitrate of previous segment, 𝜏 is the playback duration of the

segment, andD(𝑖 − 1) represents the download time of the (𝑖 − 1)th segment. The proposed bitrate
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Algorithm 3: Tiles Bitrate Adaptation Algorithm in DFT
Input :L𝑙 : Video bitrates set of 360° segments; T 𝑣

𝑙
(𝑖),T𝑚

𝑙
(𝑖),T𝑏

𝑙
(𝑖): Viewport, marginal,

and background tiles sets; |T 𝑣
𝑙
(𝑖) |, |T𝑚

𝑙
(𝑖) |: Number of tiles in viewport and

marginal regions; 𝐵(𝑖): Available bandwidth for the (𝑖)th segment;
𝑤 T

𝑣
𝑙 (𝑖) ← 1;𝑤 T

𝑚
𝑙 (𝑖) ← 0: Initialize priority weights of viewport and marginal

tiles; 𝐵T
𝑣
𝑙 (𝑖), 𝐵T𝑚𝑙 (𝑖), 𝐵T𝑏𝑙 (𝑖): Region-based bandwidth;

Output :LT𝑣
𝑙 (𝑖),LT𝑚𝑙 (𝑖),LT𝑏𝑙 (𝑖): Video bitrates selected for the tiles of (𝑖)th segment

1 if (𝐵(𝑖) ≤ ∑
𝑘∈T𝑙 (𝑖) L𝑘𝑙,1 (𝑖)) then

2 LT𝑙 (𝑖) = L𝑘
𝑙,1 (𝑖), ∀ 𝑘 ∈ T𝑙 (𝑖)

3 else if (𝐵(𝑖) ≥ ∑
𝑘∈T𝑙 (𝑖) L𝑘𝑙,𝐽 (𝑖)) then

4 LT𝑙 (𝑖) = L𝑘
𝑙,𝐽
(𝑖), ∀ 𝑘 ∈ T𝑙 (𝑖)

5 else
6 LT𝑙 (𝑖) = L𝑘

𝑙,1 (𝑖), ∀ 𝑘 ∈ T𝑙 (𝑖)
7 𝐵(𝑖) = 𝐵(𝑖) −∑𝑘∈T𝑙 (𝑖) L𝑘𝑙,1 (𝑖)
8 if (T𝑚

𝑙
(𝑖) ≠ ∅) then

9 𝑤 T
𝑚
𝑙 (𝑖) = |T𝑚

𝑙
(𝑖) |

2∗|T𝑣
𝑙
(𝑖) |+ |T𝑚

𝑙
(𝑖) |

10 𝑤 T
𝑣
𝑙 (𝑖) = 1 −𝑤 T𝑚𝑙 (𝑖)

11 𝐵T
𝑣
𝑙 (𝑖) = 𝐵(𝑖) ×𝑤 T𝑣

𝑙 (𝑖)
12 𝐵T

𝑚
𝑙 (𝑖) = 𝐵(𝑖) ×𝑤 T𝑚𝑙 (𝑖)

13 LT𝑣
𝑙 (𝑖) = 𝑚𝑎𝑥

𝑗 ∈[2:𝐽 ]
{L𝑘

𝑙,𝑗
(𝑖) |∑𝑘∈T𝑣

𝑙
(𝑖) L𝑘𝑙,𝑗 (𝑖) ≤ 𝐵T

𝑣
𝑙 (𝑖)}

14 LT𝑚𝑙 (𝑖) = 𝑚𝑎𝑥
𝑗 ∈[2:𝐽 ]

{L𝑘
𝑙,𝑗
(𝑖) |∑𝑘∈T𝑚

𝑙
(𝑖) L𝑘𝑙,𝑗 (𝑖) ≤ 𝐵T

𝑚
𝑙 (𝑖)}

15 𝐵T
𝑏
𝑙 (𝑖) = 𝐵(𝑖) − (∑𝑘∈T𝑣

𝑙
(𝑖) L𝑘𝑙, 𝑗 (𝑖) +

∑
𝑘∈T𝑚

𝑙
(𝑖) L𝑘𝑙, 𝑗 (𝑖))

16 LT𝑏𝑙 (𝑖) = 𝑚𝑎𝑥
𝑗 ∈[2:𝐽 ]

{L𝑘
𝑙,𝑗
(𝑖) |∑𝑘∈T𝑏

𝑙
(𝑖) L𝑘𝑙,𝑗 (𝑖) ≤ 𝐵T

𝑏
𝑙 (𝑖)}

allocation algorithm considers aggressive, weighted, and conservative quality adjustments for
different tiles selection cases to improve the corresponding bitrate choice for each tile that the
network can support. For tiles selection Case 1, an aggressive quality adjustment is performed for
viewport tiles. The algorithm performs a weighted quality adjustment if the marginal region is
non-empty (Case 2 of Algorithm 2). A relatively conservative bitrate selection is performed for
Case 3, where the viewport region is extended to lower the viewport mismatch while sacrificing
the quality.

Algorithm 3 determines the bitrate selection for the tiles belonging to different priority regions
calculated in Section 4.2. The input to the algorithm consists of various sets of video tiles (viewport,
marginal, and background tiles), the number of tiles in the viewport and marginal regions, the
available bandwidth for each segment of the video, and initial priority weights for the viewport and
marginal tiles. The output of the algorithm is the selected bitrates for each tile in each segment of
the video. The playback adaptation is performed for each segment after the previous segment has
been fully downloaded. The algorithm begins by checking if the available bandwidth is less than or
equal to the sum of the lowest bitrate options for all tiles in the current segment. If this is the case,
the lowest bitrate is selected for all tiles (lines 1-2). If the available bandwidth is greater than or
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Fig. 4. Bandwidth traces employed in experiments.

equal to the sum of the highest bitrate options for all tiles, the highest bitrate is selected for all tiles
(lines 3-4). In other cases, the algorithm sets the bitrate for all tiles to the lowest bitrate option and
calculates the remaining available bandwidth (lines 6-7). If there are tiles in the marginal region
(i.e., T𝑚

𝑙
(𝑖) ≠ ∅), the algorithm updates the priority weights for the viewport and marginal tiles

(lines 9-10). The priority weights are determined based on the number of tiles in the viewport and
marginal regions, with the viewport tiles being given higher priority. The viewport and marginal
tiles (only possible in Case 2) are then allocated bandwidth based on the computed weights (lines
11-12). Next, the highest possible bitrates for the viewport and marginal tiles are chosen based on
the available bandwidth for each region (lines 13-14). This ensures the weighted quality adaptation
for viewport and marginal tiles. If there are no marginal tiles, then for Case 1 or Case 3 of Algorithm
2, an aggressive or relatively conservative quality allocation is considered for viewport tiles to
ensure visual smoothness. After determining the bitrates for the viewport and marginal tiles, the
bandwidth for the background tiles is calculated by subtracting the sum of these bitrates from
the revised overall bandwidth budget (line 15). Finally, the bitrate of the background tiles is also
increased, as long as it does not exceed the available bandwidth budget (line 16).

5 EXPERIMENTAL EVALUATION
This section presents the experimental evaluations of our proposed solutions using a diverse range
of content and network conditions.

5.1 Experimental Setup
The proposed solution evaluation is performed by modifying a VR player provided by [15], on
a machine with an Intel Core i7-7500U CPU and 16 GB of memory running Ubuntu 16.04. In
the experiments, the VR player retrieves 360° video segments from an HTTP server while the
connection speed between the VR player and HTTP server was varied, as illustrated in Fig. 4.
Bandwidth trace 1 has more irregular increasing and decreasing trends compared to bandwidth
trace 2. The maximum connection speed for trace 1 is 20 Mbps, while for trace 2, the maximum
bandwidth value is 12 Mbps.

5.1.1 Content Pre-processing. This work employs a highly cited open-source video and head
movement dataset captured by Wu et al. [47]. The dataset contains real head movement patterns
of 48 unique VR users viewing 18 long-duration videos in two learning-based testing sessions
using an HTC Vive headset with a field of view of 110°. In the first experiment, participants were
asked to explore the content without paying too much attention to the specifics of what they
were looking at. In the second experiment, on the other hand, they were asked to focus on the
content and pay close attention to it, simulating certain behaviours or habits. We choose five
videos, namely, LOSC Football(experiment 1), Weekly Idol-Dancing(experiment 2), Google
Spotlight-HELP(experiment 1), GoPro VR-Tahiti Surf(experiment 1), and Rio Olympics VR
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Table 2. Content Characteristics

Videos Category Duration Resolution FPS
Football Sport 2′44′′ 3840x2160 25

Performance Performance 4′38′′ 3840x1920 29
Spotlight Film 4′53′′ 3840x2160 30
Surfing Sport 3′25′′ 3840x1920 29

VR-Interview Talkshow 3′07′′ 3840x1920 25

Interview(experiment 2) from this dataset. This is in line with the recommendations of ITU-T R.
P.913 [18] and is typical for research and development solutions evaluations. The five different
duration immersive clips in this dataset can be classified into four categories: Sport (LOSC Football
and GoPro VR-Tahiti Surf), Performance (Weekly Idol-Dancing), Film (Google Spotlight-
HELP), and Talkshow (Rio Olympics VR Interview). These videos are referred to as Football,
Performance, Spotlight, Surfing, and VR Interview throughout the remaining chapter. Table
2 summarizes the content features of five videos. All of the videos were resized to 4K resolution
using FFmpeg1 software. Following [12], we spatially split 360° videos into 4x3, 6x4, and 8x6 tiling
layouts. This work suggests that the 6x4 tilling structure results in an optimal trade-off between
viewport availability, bitrate overhead, and bandwidth requirements. The video tiles were encoded
using an open-source encoder called Kvazaar2, with five different quantization parameter (QP)
values: 22, 27, 32, 37, and 42. Considering the experimental recommendations for selecting segment
duration for viewport adaptive streaming [7, 38], three different duration, i.e., 1s, 1.5s, and 2s,
MPEG-DASH video segments were generated using GPAC MP4Box3. The playback buffer was set
to two segments for each experiment. The average segment sizes for each video are shown in Table
3. The simulation length was set according to the duration of each video.

5.1.2 Comparative Approaches. DFT solutions are compared with dynamic tiling-based (ATS) and
fixed tiling-based (UVP, CTF, PBA, AVR) solutions.
(1) ATS [32]: This solution performs adaptive tiles selection based on weighted viewport dis-

tortions. The tiling layout resulting in minimum viewport distortion or maximum viewport
bitrate is selected for streaming during each decision interval.

(2) UVP [15]: A straightforward per-region uniform quality adaptation approach for differ-
ent frame areas classified by considering the user’s walk on a spherical surface prediction
mechanism.

(3) CTF [15]: This scheme is an extended version of UVP but takes into consideration the entire
frame as a potential viewing area. Rather than dividing the frame into regions and assigning
bitrates evenly across them, this method increases the quality of the video in a per-tile fashion,
beginning with the centre tiles and working outward towards the edges.

(4) PBA [16]: The highly cited approach divides tiles into three zones, 𝑍1 (viewport centre
tile), 𝑍2 (surrounding tiles), and 𝑍3 (background tiles). In this system, priority-based bitrate
adaptation is applied to tiles within certain regions, while also considering the available
bandwidth budget.

(5) AVR [36]: One of the early approaches which allows for efficient use of resources while
maintaining a high quality of playback by dividing 360° frames into viewport, adjacent, and
outside regions.

1https://ffmpeg.org/
2http://ultravideo.fi/
3https://gpac.wp.imt.fr/mp4box/
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Table 3. Average and Standard Deviations of Segment Bitrates [Mbps] for the Football, Performance,
Spotlight, Surfing, and VR Interview videos.

Video QP 1s 1.5s 2s
4x3 6x4 8x6 4x3 6x4 8x6 4x3 6x4 8x6

Football

22 6.9±2.3 7.0±2.3 7.2±2.3 10.5±5.1 10.6±5.1 10.9±5.2 13.8±4.6 14.1±4.6 14.4±4.6
27 3.5±1.3 3.6±1.4 3.8±1.4 5.3±2.8 5.5±2.8 5.7±2.9 7.1±2.7 7.3±2.7 7.6±2.7
32 1.9±0.8 2±0.8 2.2±0.8 2.9±1.6 3.1±1.6 3.3±1.6 3.9±1.5 4.1±1.5 4.5±1.6
37 1.1±0.4 1.2±0.4 1.4±0.4 1.7±0.9 1.8±0.9 2.1±1 2.3±0.9 2.4±0.9 2.8±0.9
42 0.7±0.2 0.7±0.2 0.9±0.2 1±0.5 1.1±0.5 1.4±0.6 1.3±0.5 1.5±0.5 1.8±0.5

Performance

22 8.5±2.9 8.6±2.9 8.9±3.0 12.8±5.9 13.0±5.9 13.4±6.0 17.0±4.7 17.3±4.7 17.8±4.8
27 4.6±1.7 4.7±1.7 5.0±1.7 6.9±3.3 7.1±3.3 7.5±3.4 9.3±2.7 9.5±2.7 10.0±2.7
32 2.6±0.9 2.7±0.9 2.9±0.9 4.0±1.9 4.1±1.9 4.5±2.0 5.3±1.5 5.5±1.5 6.0±1.5
37 1.6±0.5 1.7±0.5 1.9±0.5 2.4±1.1 2.5±1.1 2.8±1.2 3.2±0.9 3.4±0.8 3.8±0.9
42 0.9±0.3 1.0±0.3 1.2±0.3 1.4±0.6 1.6±0.6 1.9±0.7 1.9±0.5 2.1±0.5 2.5±0.5

Spotlight

22 13.6±8.8 13.9±8.8 14.3±8.9 20.4±15.0 20.9±15.2 21.5±15.4 27.1±17.1 27.7±17.2 28.5±17.3
27 7.2±5.3 7.4±5.3 7.7±5.4 10.8±8.9 11.1±9.0 11.6±9.1 14.3±10.3 14.8±10.4 15.5±10.5
32 4.0±3.1 4.2±3.1 4.5±3.2 6.1±5.2 6.3±5.3 6.7±5.4 8.1±6.1 8.4±6.1 9.0±6.2
37 2.3±1.8 2.4±1.8 2.7±1.8 3.5±2.9 3.7±3.0 4.1±3.1 4.7±3.5 4.9±3.5 5.4±3.5
42 1.3±0.9 1.4±0.9 1.6±0.9 2.0±1.5 2.2±1.6 2.5±1.6 2.7±1.7 2.9±1.8 3.3±1.8

Surfing

22 22.7±11.2 23.0±11.3 23.5±11.4 34.0±21.0 34.5±21.2 35.3±21.4 45.3±22.2 45.9±22.3 46.9±22.5
27 12.8±6.7 13.0±6.8 13.4±6.8 19.2±12.4 19.5±12.5 20.2±12.7 25.5±13.3 26.0±13.4 26.8±13.5
32 7.2±3.9 7.4±3.9 7.7±3.9 10.8±7.1 11.1±7.2 11.6±7.3 14.4±7.7 14.7±7.8 15.4±7.8
37 4.0±2.2 4.1±2.2 4.4±2.2 6.0±3.9 6.2±4.0 6.6±4.1 7.9±4.3 8.2±4.3 8.8±4.3
42 2.1±1.1 2.2±1.1 2.5±1.1 3.2±2.0 3.4±2.1 3.7±2.2 4.2±2.2 4.5±2.2 5.0±2.2

VR Interview

22 7.6±1.0 7.7±1.1 7.8±1.1 11.4±4.1 11.5±4.2 11.8±4.3 15.2±2.0 15.4±2.0 15.7±2.1
27 3.7±0.7 3.8±0.7 3.9±0.7 5.5±2.1 5.7±2.2 5.9±2.3 7.4±1.3 7.6±1.3 7.9±1.4
32 1.7±0.3 1.8±0.4 2.0±0.4 2.6±1.0 2.8±1.1 3.0±1.2 3.5±0.7 3.7±0.7 4.0±0.8
37 0.9±0.2 1.0±0.2 1.2±0.2 1.4±0.6 1.6±0.6 1.8±0.7 1.9±0.4 2.1±0.4 2.5±0.4
42 0.6±0.1 0.7±0.1 0.8±0.1 0.9±0.3 1.0±0.4 1.3±0.4 1.2±0.2 1.4±0.2 1.7±0.2

5.1.3 Evaluation Metrics. The performance of the proposed and comparative schemes is assessed
in terms of the following metrics:
(1) Streaming Behavior:We evaluate how the DFT1 and DFT2 switch to different tiling layouts

and behave in terms of adopting tiles selection and bitrate adaptation scenarios. We also show
how the ATS client switches between available tiling layouts for each streaming session.

(2) Tiles Overlap: This metric measures the real and predicted viewport tiles overlap as defined
in eq. (9).

(3) Average QoE: It reflects the average quality score of all the users for each video for the QoE
metric defined in eq. (5).

5.2 Experimental Results
This subsection presents the results of experiments and a thorough analysis of the performance of
each solution in a variety of testing conditions.

5.2.1 Streaming Behavior. Table 4 provides insight into how the DFT1 solution performs interms
of tiling layout selection, tiles selection, and bitrate adaptation for five different motion 360° videos.
DFT1 supports the larger visual area with higher quality streaming; therefore, for all the videos,
larger resolution tiles (i.e., 4x3 and 6x4) are predominantly selected. However, The use of the 6x4
tiling layout decreases while the use of the 4x3 tiling layout slightly increases (by 5.38%) when
the segment duration is increased from 1s to 2s for all the videos. Overall, a small percentage
of smaller resolution tiles (i.e., 8x6) is selected for all videos. DFT1 selects a 4x3 tiling layout
for more than 67% for VR Interview video and mostly performs aggressive bitrate selection for
selected tiling layouts. DFT1 fetches the segments of Football, Performance, Spotlight, Surfing,
and VR Interview videos by performing aggressive bitrate selection by up to 59.14%, 75.33%,
66.27%, 58.75%, and 78.43%, respectively, averaged across three segment durations. DFT1 performs
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Table 4. Streaming Behavior of DFT1 Client in terms of Tiling Layouts Selection, Tiles Selection, and Bitrate
Adaptation Scenarios. The Percentage Results are Averaged for Five Videos Watched by 48 VR Users.

Videos Segment
Duration

Tiling Layout [%] Tiles Selection: Case 1
Bitrate: Aggressive

Tiles Selection: Case 2
Bitrate: Weighted

Tiles Selection: Case 3
Bitrate: Conservative

8x6 6x4 4x3 8x6 6x4 4x3 8x6 6x4 4x3 8x6 6x4 4x3

Football
1 17.73 52.27 30.00 8.84 37.39 20.45 8.70 14.36 6.45 0.19 0.53 3.09
1.5 17.53 50.10 32.38 7.42 32.59 17.74 9.54 16.02 7.91 0.57 1.49 6.73
2 17.48 47.97 34.55 6.43 30.06 16.51 9.88 15.19 9.07 1.17 2.72 8.97

Performance
1 4.96 66.74 28.30 2.68 55.40 21.41 2.16 11.08 5.42 0.12 0.25 1.47
1.5 5.42 63.77 30.81 2.80 51.00 21.32 2.48 12.18 6.48 0.14 0.59 3.02
2 6.71 60.49 32.79 3.75 46.66 20.97 2.67 13.08 7.69 0.30 0.75 4.14

Spotlight
1 21.00 44.49 34.51 12.99 32.75 27.48 7.71 11.13 5.09 0.30 0.61 1.93
1.5 19.01 42.00 39.00 10.30 27.67 27.24 8.10 12.86 7.47 0.61 1.46 4.28
2 18.06 38.90 43.04 8.57 24.14 27.66 8.65 12.50 9.41 0.84 2.27 5.97

Surfing
1 20.46 42.23 37.32 11.12 28.75 27.63 9.10 12.89 7.00 0.24 0.59 2.68
1.5 19.30 39.81 40.89 8.67 23.62 24.68 10.04 14.32 9.87 0.59 1.87 6.34
2 17.84 36.67 45.49 7.12 19.72 24.96 9.59 14.02 11.17 1.13 2.93 9.36

VR Interview
1 6.46 26.42 67.11 3.93 19.11 59.60 2.46 6.87 5.99 0.07 0.45 1.52
1.5 7.29 24.14 68.57 4.33 16.15 57.48 2.67 7.17 7.64 0.29 0.82 3.44
2 8.60 23.16 68.23 4.61 14.45 55.65 3.20 7.53 8.00 0.78 1.19 4.59

weighted quality adjustments for segments of these videos by up to 32.37%, 21.08%, 27.64%, 32.66%,
and 17.18%. Interestingly, there is a decrease in the percentage of aggressive quality adjustments
and an increase in the percentage of weighted quality adjustments when the segment duration is
increased. In addition, a tiny percentage of conservative bitrate selection is observed for all the
videos in the DFT1 solution.

The streaming behaviour of the DFT2 client is presented in Table 5. DFT2 achieves a perfect
viewport match (by up to 65.50%), a partial viewport match (by up to 27.71%), and a complete
viewport mismatch (by up to 6.77%) by selecting on average 8x6, 6x4, and 4x3 tiling layouts,
respectively. In particular, DFT2 observes a perfect viewport match (i.e., 57.35% for the Football
video, 73.88% for the Performance video, 64.95% for the Spotlight video, 55.46% for the Surfing
video, and 75.86% for the VR Interview video) averaged across three prediction horizons. The
lower values of perfect viewport match for the sports videos, i.e., Football and Surfing, reflect
the fast-moving objects within these videos. Therefore, the client observes a lower percentage of
aggressive bitrate adaptation, 34.03%, 31.31% for the Football and Surfing videos, with an 8x6
tiling layout in comparison to other videos. For content with minimal movements, such as the
Performance and VR Interview videos, there is only a small percentage of viewport mismatch
even when the segment duration is set to 2s. DFT2 requests a 4x3 tiling layout by up to 3.36%
and 5.94% for the Performance and VR Interview videos, respectively, for 2s segment duration.
Therefore, these videos observe a limited percentage of extended viewport and conservative bitrate
adaptation cases compared to the other videos. Interestingly, the percentage of the 4x3 and 6x4 tiling
layouts selection increases with the increase in segment duration. Additionally, as the segment
duration increases, the viewer tends to experience a higher percentage of weighted and conservative
quality adjustments. Conversely, the percentage of fixed viewport cases that come with aggressive
bitrate adjustments tends to decrease with longer segment durations. This is because the accuracy
of predictions tends to decline when attempting to predict further into the future.

Fig. 5 represents the streaming behaviour of the ATS algorithm in terms of selecting the average
tiling layouts for the entire video data set. ATS selects tiling layouts based on the minimumweighted
viewport distortions measured to achieve maximum viewport bitrate. ATS results in selecting a
4x3 tiling layout mostly for Football video, followed by 8x6 and 6x4 tiling grids. ATS requests
6x4 and 8x6 tiling layouts for about 15.06% and 50.94% of the streaming session for Performance
video with 1s, 1.5s, and 2s. The 6x4 tiling layout is mostly requested for VR Interview video
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Table 5. Streaming Behavior of DFT2 Client in terms of Tiling Layouts Selection, Tiles Selection, and Bitrate
Adaptation Scenarios. The Percentage Results are Averaged for Five Videos Watched by 48 VR Users.

Videos Segment
Duration

Tiling Layout [%] Tiles Selection: Case 1
Bitrate: Aggressive

Tiles Selection: Case 2
Bitrate: Weighted

Tiles Selection: Case 3
Bitrate: Conservative

8x6 6x4 4x3 8x6 6x4 4x3 8x6 6x4 4x3 8x6 6x4 4x3

Football
1 62.94 31.97 5.09 39.46 10.66 0.74 23.24 21.16 2.39 0.24 0.15 1.96
1.5 56.31 33.68 10.02 33.03 9.27 0.73 22.76 24.06 4.05 0.52 0.34 5.24
2 52.82 34.55 12.63 29.62 8.51 0.76 22.41 25.28 4.07 0.79 0.76 7.80

Performance
1 77.81 20.51 1.68 57.95 8.03 0.20 19.66 12.40 0.85 0.19 0.08 0.62
1.5 73.85 23.28 2.87 52.48 7.38 0.17 21.07 15.64 1.19 0.30 0.26 1.51
2 69.99 26.65 3.36 48.91 7.76 0.10 20.65 18.51 0.99 0.43 0.37 2.26

Spotlight
1 71.39 24.18 4.44 46.03 8.26 0.75 25.21 15.73 1.92 0.15 0.19 1.76
1.5 64.12 28.40 7.48 38.76 7.69 0.56 24.96 20.42 2.69 0.41 0.29 4.23
2 59.35 30.77 9.88 35.50 9.18 1.50 23.38 21.03 2.95 0.47 0.55 5.43

Surfing
1 62.08 32.17 5.74 37.10 10.25 0.87 24.75 21.78 2.71 0.23 0.14 2.15
1.5 54.41 34.93 10.66 30.52 8.06 0.81 23.51 26.51 4.43 0.38 0.36 5.43
2 49.90 36.25 13.86 26.31 7.71 0.85 22.92 27.51 4.53 0.67 1.03 8.47

VR Interview
1 79.18 17.67 3.15 58.25 6.38 0.29 20.68 11.23 1.59 0.25 0.06 1.27
1.5 74.75 20.33 4.92 53.41 6.15 0.34 20.93 13.93 1.65 0.40 0.25 2.94
2 73.66 20.41 5.94 50.13 5.62 0.31 22.92 14.14 1.68 0.60 0.65 3.94

Fig. 5. Average Tiling Layout Selection in the ATS method.

with a 2s segment duration. For Spotlight and Surfing videos, ATS mostly requests an 8x6 tiling
layout (41.23% and 38.71%) followed by the 6x4 (34.97% and 30.29%) and 4x3 (23.79% and 30.98%),
respectively. For the entire test dataset, the ATS method achieves 42.61% for selecting 8x6, 29% for
6x4, and 28.39% for 4x3. This is because the larger tiling layout results in relatively larger segment
sizes.

5.2.2 Average Tiles Overlap. Fig. 6 summarizes the average tiles overlap results (per video 48 head
movement traces) for the DFT1, DFT2, ATS, and UVP methods under various prediction horizons.
The ATS, UVP, CTF, PBA, and AVR streaming algorithms all use the spherical walk prediction
method which is used to inform adaptive tiles selection and bitrate selection. According to Fig. 6, it
can be seen that the DFT1method leads to higher tile overlap for all five videos. This is because the
tiles in the dynamic tiling layouts produced byDFT1 are arranged based on the arc distance between
the viewpoint and the centre of each tile. This allows DFT1 to cover the viewport and reduce
the risk of gaps in the visual field. The Football and Surfing videos tend to elicit more dynamic
head movements from viewers because they contain fast-moving outdoor sports-related objects. In
contrast, the Performance and VR interview videos tend to have a higher average tile overlap
because they feature slower-moving indoor objects that are the primary focus of attention. This
suggests that the nature of the content being watched can impact the amount of head movement
and, in turn, the tiles overlap observed in the video. It is notable that DFT1 and DFT2 attain higher
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(a) Segment duration: 1s (b) Segment duration: 1.5s (c) Segment duration: 2s

Fig. 6. Average tiles overlap achieved by DFT1, DFT2, and Spherical Walk methods for the Football,
Performance, Spotlight, Surfing, and VR Interview videos. These videos were prepared in 4x3, 6x4, and
8x6 tiling layouts, which were watched by 48 VR users. The recorded results are for 1s, 1.5s, and 2s segment
durations.

matching performance and outperform the ATS and UVP methods for different user behaviours.
For all 48 VR users, DFT1 and DFT2 experience an average tiles overlap of 85.40% and 81.95%
(Football), 92.22% and 90.43% (Performance) for 1s (Fig. 6a), 84.09% and 80.50% (Spotlight), 90.03%
and 86.94% (VR Interview) for 1.5s (Fig. 6b), 74.93% and 70.91% (Surfing) and 88.92% and 85.54%
(Performance) for 2s (Fig. 6c) prediction windows. The proactive tiles selection methods are able
to adapt more effectively to the varied spatial and temporal information present in different motion
scenes, which explains their superior performance. Simultaneously, The ATS method exhibits a
lower average tile overlap than the UVP method for content with fast and stable head movements.
As can be seen in the Spotlight video, DFT1 outperforms the ATS and UVP methods by up to
8.88% and 11.19% for the next 1.5s (Fig. 6b), and by 14.66% and 12.43% for a 2s prediction horizon
(Fig. 6c), respectively. Similarly, DFT2 demonstrates its ability to increase viewport overlap for the
Surfing video, outperforming other methods by achieving viewport overlap that is about 7.37%,
9.02%, and 10.35% higher for 1s, 1.5s, and 2s prediction times, respectively. For Spotlight video,
the average gain of DFT methods ranges from 6.27%-9.32%, 7.02%-10.61%, and 9.28%-12.98% for
different prediction horizons. The tiles overlap for the DFT2 is reduced by 8.64% (Football) and by
10.23% (Surfing) when the segment duration is increased from 1s to 2s. In contrast, for the ATS
and UVP methods, the tiles overlap is reduced by 11.83% and 11.57% (Football) and by 13.29% and
13.17% (Surfing), respectively (Fig. 6). This indicates that the DFT2 method is more effective at
maintaining a high level of tile overlap even when the segment duration is increased. As a result, it
can be concluded that employing two prediction mechanisms (as in DFT) leads to better viewing
probability than employing a single prediction mechanism for fixed (UVP) and dynamic (ATS)
tiling-based streaming.

5.2.3 Average QoE. Next, the performance of the proposed solutions is tested against five tile-based
methods by employing bandwidth trace 1 and trace 2 for Football and Performance videos. We
normalized the values of the QoE functions defined in eq. 1-4. The QoE weight coefficients are set
as 𝛼 = 1, 𝛽 = 0.8, 𝛾 = 0.6, 𝛿 = 0.2. The weights are selected to emphasize a different combination of
QoE objectives. A larger value of 𝛼 indicates that the user is more concerned with the quality of
the viewport, while a smaller value of 𝛿 indicates that the user places less importance on playback
buffer risk. Increasing the weights of the 𝛽 , 𝛾 , and 𝛿 parameters results in negative QoE values for
CTF and PBA clients for Surfing videos. Therefore, these values are selected to provide a useful
QoE comparison between the proposed and other solutions.

The reference tile-based delivery solutions use viewers’ head motion patterns to adaptively select
bitrates. Fig. 7 depicts the video quality experienced and averaged across 48 users for 1s, 1.5s, and 2s
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(a) Football-Trace 1 (b) Football-Trace 2

(c) Performance-Trace 1 (d) Performance-Trace 2

Fig. 7. Average QoE achieved by DFT1, DFT2, ATS, UVP, CTF, PBA, and AVR streaming clients for Football
and Performance videos.

segments. It can be seen that the performance of the algorithms in Fig. 7a and Fig. 7c is higher than
that shown in Fig. 7b and Fig. 7d. The average QoE values are lower accordingly with bandwidth
decrease for the same QoE weight coefficients. The higher QoE scores of larger tiling layouts (i.e.,
6x4 and 8x6) for the 1s Performance video (Fig. 7c-Fig. 7d) are due to the higher average tiles
overlap. Despite the lower tiles overlap, the UVP, CTF, PBA, and AVR streaming methods achieve
higher quality scores for the Football video with a 1s segment duration due to the smaller average
segment sizes (Fig. 7a and Fig. 7b). Fig. 7a results show that DFT1 improves the QoE compared to
other methods by about 3.96%, 9.29%, and 12.90% for Football video with 1s, 1.5s, and 2s segment
durations when employing bandwidth trace 1. For both bandwidth traces, DFT1 outperforms ATS
by about 25.31%-38.71%, UVP by about 2.25%-4.25%, CTF by about 5.08%-7.67%, PBA by about
11.16%-15.42%, and AVR by about 13.37%-20.07% for Football video with a 1.5s segment duration.
Fig. 7b shows that DFT2 achieves about 5.44% (for 1s), 12.56%(for 1.5s), and 15.98% (for 2s), higher
average QoE for Football video streaming in comparison to other solutions. The increment in
quality with the increase in segment duration reflects that DFT solutions have better prediction
accuracy with longer segment duration. Similarly, Fig. 7c and Fig. 7d show that DFT solutions
observe the highest visual quality levels for all segment durations since they better accommodate
the user’s viewing directions than the other methods. In particular, DFT1 achieves an average gain
of 7.45% (1s), 14.42% (1.5s), and 17.69% (2s) for Performance video streaming under bandwidth
trace 1, while it is increased to 10.34% (1s), 23.20% (1.5s) and 27.23% (2s) for bandwidth trace 2.
Viewport mismatch leads to a drop in quality for tile-based streaming methods for longer segment
lengths. In DFT methods, the combination of viewport coverage selection and bitrate selection
policies favour the higher quality perceptibility of the viewing area. For Performance video
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(a) Spotlight-Trace 1 (b) Spotlight-Trace 2

(c) Surfing-Trace 1 (d) Surfing-Trace 2

(e) VR Interview-Trace 1 (f) VR Interview-Trace 2

Fig. 8. Average QoE achieved by DFT1, DFT2, ATS, UVP, CTF, PBA, and AVR streaming clients for the
Spotlight, Surfing, and VR Interview videos.

with a 2s segment duration, DFT2 outperforms fixed tiling-based solutions by about 2.34%-6.39%,
11.76%-21.67%, 27.75%-43.46%, and 23.80%-35.58% for both bandwidth scenarios. The improved
performance of DFT solutions over CTF and PBA methods is for the reason that they perform a
uniform quality allocation for the predictive tiles to favour the higher visual quality levels with a
reduced amount of data for the background tiles.

The results of the experiments on the Spotlight, Surfing, and VR Interview videos are shown
in Fig. 8. It can be seen that the Surfing and Spotlight videos require higher bitrates for satisfactory
quality scores (as seen in Table 3), making it more difficult to achieve a high QoE with limited
network connections and high QoE expectations. On the other hand, the VR Interview video has
higher QoE scores due to its smaller average segment sizes and higher viewport overlap. Therefore,
factors such as segment size, bandwidth capacity, and viewport prediction significantly impact the
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(a) QoE Weight Coefficients Samples (b) Average QoE Vs QoE Weight Coefficients

Fig. 9. Average QoE obtained by DFT1, DFT2, ATS, UVP, CTF, PBA, and AVR streaming clients for the
comprehensive dataset (comprising 5 videos, 3 tiling patterns, 3 segment durations, and 2 bandwidth traces)
when assessed under varying QoE weight coefficients.

streaming performance of 360° videos. For example, when streaming the Spotlight video with a 2s
segment duration, the DFT1 method achieves average QoE improvements of up to 29.8%, 12.15%,
24.36%, 28.7%, and 30.6% compared to ATS, UVP 8x6, CTF 8x6, PBA 6x4, and AVR 8x6, respectively
(Fig. 8b). This is because DFT1 has 14.65% and 12.15% higher average tiles overlap than the ATS
and UVP methods for the Spotlight video with a 2s segment duration (Fig. 6c). The average quality
score for the Surfing video with a 1s segment duration under bandwidth trace 2 (Fig. 8d) is 64.21%
for DFT1, 61.57% for DFT2, 37.53% for ATS, 56.45% for UVP 4x3, 48.79% for CTF 6x4, 38.9% for PBA
8x6, and 41.08% for AVR 4x3. For the VR Interview video with a 1.5s segment duration, DFT2
improves the average QoE by up to 20.55% compared to ATS, 3.02% compared to UVP, 9% compared
to CTF, 17.61% compared to PBA, and 37.74% compared to AVR for bandwidth trace 2 (Fig. 8f),
while the average improvement for DFT1 is 25.7%, 5.3%, 13.94%, 23.64%, and 42.3% for all tiling
layouts of ATS, UVP, CTF, PBA, and AVR, respectively, for the 2s VR Interview video (Fig. 8e).
The ATS method performs better than the AVR method in only a few cases for the Performance
and VR Interview videos. The poor performance of the ATS method is due to its restriction of the
quality of background tiles to minimum levels, which leads to lower quality scores under lower
and medium prediction performance. In Fig. 8, it can be seen that when simulated with all tiling
layouts, segment durations, and bandwidth profiles, the DFT1 and DFT2methods result in QoE for
Spotlight, Surfing, and VR Interview videos, with improvements of 16.53%, 15.56%, and 13.62%,
respectively. This is because the QoE metric used favours higher visible quality. The lower QoE
values for the PBA algorithm are due to its strategy of assigning different priorities to tiles within
the viewport zones (Z_1 and Z_2) and lead to poor user-perceived quality and visual smoothness.
The AVR method, meanwhile, performs poorly even under stable head movements because it
unnecessarily increases the quality of adjacent tiles. In general, the DFT1 and DFT2 solutions
lead to average QoE improvements of 9.70%-10.56% for Football, 16.33%-16.72% for Performance,
15.08%-18% for Spotlight, 14.33%-16.79% for Surfing, and 13.45%-13.79% for VR Interview videos
compared to other solutions.

5.2.4 Ablation Study—Impact of QoE Weight Coefficients. We investigated and evaluated the
influence of QoE weight coefficients on the streaming performance of adaptive 360° video solutions.
For each streaming solution, we collected streaming metrics, presented in eq. (1) - eq. (4), including
viewport quality, temporal quality oscillations, spatial quality oscillation, and playback buffer
risk, across a comprehensive testing dataset that encompassed five videos, three tiling patterns,
three segment durations, and two bandwidth traces. Fig. 9a illustrates the values for QoE weight
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coefficients where the values of 𝛼 , 𝛽 , 𝛾 , and 𝛿 are in the range of 0 and 1. Fig. 9b displays the average
QoE values for each corresponding weight sample. The findings from Fig. 9b reveal that DFT1 and
DFT2 solutions consistently outperform the other methods by achieving the highest QoE scores
across all combinations of QoE weight samples. The average QoE scores obtained are as follows:
DFT1 (60.82%), DFT2 (59.17%), ATS (35.08%), UVP (56.06%), CTF (48.45%), PBA (38.23%), and AVR
(36.02%). In general, DFT1 and DFT2 surpass ATS by up to 24-25.74%, UVP by up to 3.11-4.76%,
CTF by up to 10.71-12.36%, PBA by up to 20.94-22.59%, and AVR by up to 23.14-24.79% in terms
of improved QoE performance. The average QoE weights coefficients are 𝛼 = 0.885, 𝛽 = 0.835, 𝛾 =
0.817, and 𝛿 = 0.466.

5.3 Discussion
Existing fixed tiling-based adaptive streaming solutions aim to improve visual quality while reducing
variations in spatial and temporal quality and the risk of playback interruptions. However, the
proposed dynamic tiling-based streaming solutions result in more accurate viewport prediction and
higher QoE levels since they systematize the best resolution tiles for static and dynamic motion
scenes. The ATS and UVP solutions allocate bitrate uniformly to tiles in the same classification to
improve the visual smoothness objectives defined in Eq. 2-3. However, ATS limits the background
quality to the minimum level with lower viewport matching performance and achieves the lowest
average QoE values for the entire test dataset. The UVP solution, on the other hand, increases
the quality of the whole video to the highest possible level and produces better quality scores
even under difficult-to-predict head movements. For CTF and PBA solutions, the primary focus
is on improving the quality of the centre tile, which significantly leads to degraded quality levels
for poor viewport prediction and spatial quality variations even for stable viewport prediction
results. The underperformance of the AVR streaming method under drastic and stable viewport
switches is due to the inefficient tiles’ arrangement to consume an essential share of the network
bandwidth. In contrast, DFT solutions consume a much larger bandwidth share for the most likely
to be watched tiles and result in higher QoE scores than the comparative methods for all tested
datasets. DFT1 provides a useful trade-off between visual area and visual quality, and DFT2 works
to minimize the viewport mismatch ratio. Both proposed solutions work reasonably well under
different testing settings and try to avoid unacceptable viewport deviations for end-users. The DFT
solutions allocate a fair share of the bandwidth to tiles in the viewport, marginal, and background
regions, resulting in lower spatial and temporal quality variations for different viewport prediction
results. Under stable or variable motions of experienced or naive VR users, the dynamic selection
of the tiling layouts and coverage of the visible region (Fixed/Extended) along with the aggressive,
weighted, and/or conservative quality adjustment policies provide improved QoE for different
bandwidth settings, segment sizes, and motion trends. Therefore, the proposed solutions have
demonstrated their potential to offer superior quality of experience compared to other approaches
for delivering 360° video.

6 CONCLUSIONS AND FUTUREWORKS
This paper proposed and evaluated two novel dynamic video frames tiling-based solutions, DFT1
and DFT2, for advanced predictive tiles selection during adaptive 360° video streaming. DFT
solutions achieve an appropriate balance between viewport availability and perceived visual quality.
DFT1 performs an interactive tiling layout selection by leveraging the visual area and associated
weighted quality with overcoming the attention field’s dynamics. DFT2 observes the potential
viewport prediction errors to best accommodate different tiling layouts. DFT solutions extract
the user attention fields by leveraging two viewport prediction mechanisms to select the best-fit
dynamic size regions for transmission over bandwidth-limited networks. The proposed solutions
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consider the level of interest in each region when deciding how much bitrate it should receive in
order to simplify the process of selecting the appropriate bitrate for each tile. The effectiveness of
the DFTs algorithms was evaluated through extensive trace-driven experiments. The experimental
results on publicly available dataset under different segment lengths and bandwidth settings
demonstrate that the proposed solutions achieve up to 8.6%, 9.77%, and 11.2% improved viewport
availability for 1s, 1.5s, and 2s segment duration. At the same time, DFT solutions can improve QoE
(9.7%-18%) for different motion VR videos compared to other alternative solutions. In the future,
we aim to develop a guidance-enhanced fuzzy reinforcement learning (FRL) solution to control
the continuous tile selection and bitrate adaptation for equirectangular, cubemap, and truncated
squared pyramid projected 360° videos under more complex network and head movement datasets.
Using advanced QoE metrics, we will evaluate the effectiveness of our FRL-based solution and
identify any potential optimization opportunities.
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