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Abstract—Due to its exceptional ability to create favorable line-
of-sight (LoS) propagation environments, the intelligent reflecting
surface (IRS) is widely recognized as a technological enabler
for wireless inland waterway communications. In this paper, an
IRS-assisted hybrid unmanned aerial vehicles (UAV)-terrestrial
network architecture with unmanned surface vehicles (USVs) is
proposed and a USVs energy minimization problem is formulated
by jointly considering offloading decisions, computation capabil-
ity, beamforming vector design and IRS phase shift-vector. To
address the formulated problem, we decouple the original prob-
lem into two subproblems, in which the first subproblem focuses
on joint offloading decisions and computation capability and the
second subproblem concerns joint IRS phase shift-vector and the
beamforming vector design. The enhanced differential evolution
algorithm (EDE) is proposed to solve the former subproblem,
and the minimum-variance-distortionless-response (MVDR) and
enhanced min-maximization (EMM) algorithms are proposed
to obtain optimized beamforming vector and IRS phase shift-
vector in the second subproblem, respectively. Simulation results
show how the proposed solution realizes a good tradeoff between
network energy consumption and capacity in comparison to three
alternative algorithms. The results also show that the proposed
algorithm can improve the network performance in terms of the
number of successfully offloaded tasks.

Index Terms—Wireless Inland Waterway Communications,
Intelligent Reflecting Surface, Unmanned Aerial Vehicles, Mobile
Edge Computing, Quality of Service.

I. INTRODUCTION

A. Background and Motivation

W ITH the increasing popularity of low-cost and fully
autonomous unmanned surface vehicles (USVs) and

rapid deployment of the fifth-generation (5G) communications
infrastructure, both academia and industry have been enthusi-
astic regarding research in the field of wireless inland water-
ways communications [1-3]. Currently, USVs can generate a
large amount of data that needs to be processed in real-time,
such as marine resource exploration, environmental monitor-
ing, maritime search and rescue, autonomous navigation and so
forth. However, USVs are commonly operated far away from
the energy source and must be powered by onboard batteries
with limited computational capabilities and suffering substan-
tial technical challenges to satisfy the strict quality of service
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(QoS) requirements of their resource-intensive tasks [4-5].
Moreover, due to the unpredictable and randomness of wireless
communication channels between USVs and terrestrial base
stations (TBSs), signal transmission suffers reflections, diffrac-
tions and scattering, resulting in attenuation and delay [6-9].
Such channel effects become critical negative factors in the
quest to enhance wireless inland waterways communications
performance, including network energy efficiency.

Mobile/multi-access edge computing (MEC) is a novel
communication approach in the 5G era, bringing cloud-like
computing resources to the network edge, specifically to
TBSs [10-13]. In particular, MEC is capable of improving
the computation capability of USVs by allowing them to
offload computation-intensive and latency-sensitive tasks to
resource-rich MEC servers. In this manner, the majority of
task execution-related energy consumption can be transferred
from battery-limited USVs to MEC servers. Although applying
tethered unmanned aerial vehicles (UAVs) to inland waterway
environments can offer UAVs substantial additional energy
supply to serve data transmission and processing, it is still a
challenge to design efficient offloading solutions. Particularly
it is challenging to enable the use of MEC server computation
capabilities to support USVs’ communication and computation
cooperation when tasks cannot be successfully offloaded due to
poor transmission link quality [14]. An additional issue when
realizing a sustainable UAV-based MEC network is related to
the limitation in terms of the energy supply.

In the last period, one commonly used approach for mobile
network operators to handle data transmission problems has
been to deploy more TBSs. However, this method suffers
from large energy waste, severe interference and especially
huge operational costs. Fortunately, with the rapid progress
in meta-materials, an innovative sixth-generation (6G) tech-
nology, namely intelligent reflecting surface (IRS), has been
introduced in the wireless communication community as a
promising solution to establish an intelligence propagation en-
vironment [15]. As a revolutionary technique in non-terrestrial
wireless communications, IRS-assisted UAV MEC systems are
expected to offer support in terms of low energy consumptions,
short transmission delays, simple hardware implementations,
extended flight durations and so on. Unfortunately, currently
this emerging technology is affected by significant limitations
in relation to the acquisition of accurate channel state infor-
mation (CSI) at the IRS.

B. The Main Contributions
According to the above background and technical difficul-

ties, deploying a UAV to perform as a relay in the air to
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serve USVs in inland waterway environments or deploying
an IRS near TBS requires mobile network operators to install
new telecommunications infrastructure, which is both expen-
sive and time-consuming. One effective way to improve the
energy efficiency of the network performance is to utilize
a UAV-mounted IRS-assisted MEC network over an aerial
relay network, in conjunction with the existing communication
network. The resource allocation schemes for USVs’ energy
minimization in IRS-assisted hybrid UAV-terrestrial MEC
network are of great significance in overcoming the battery
and computation capability limitations of USVs. Although
some resource allocation schemes were designed for energy
efficiency optimization in IRS-assisted MEC networks, there
are very few works to address the resource allocation schemes
for energy efficiency of USVs in IRS-assisted hybrid UAV-
terrestrial networks because of the challenging optimization.
In particular, an energy-efficient joint resource allocation
of USVs’ energy consumption in IRS-assisted hybrid UAV-
terrestrial MEC networks is not yet available in the literature.
Motivated by the reasons above, the energy minimization
problem of USVs by jointly considering USVs’ offloading
decisions, USVs’ computation capabilities, beamforming vec-
tor, and IRS shift-vector is formulated. A heuristic solution is
proposed to realize the corresponding resource allocations and
obtain the suboptimal solution to the challenging formulated
problem. With this solution, superior energy efficiency perfor-
mance is achieved. The main contributions of this paper are
listed as follows

1) The tethered UAV-mounted IRS brings numerous tech-
nical advantages. First, tethered UAV can obtain a reli-
able energy supply by TBS via cable to support heavy
load capacity to carry large-area IRS. In this way, the
frequency of information exchange between TBS and
IRS can be significantly decreased, USVs can offload
computation tasks to TBS for execution with the assis-
tance of UAV-mounted IRS and enjoy reliable wireless
link quality. Moreover, the design of TBS beamforming
vector to serve each USV and IRS phase shift-vector
only relies on the statistical CSI obtained from location
information, which varies considerably slower compared
with the instantaneous CSI and the shared data size of
location information between TBS and IRS controller
is extremely small that can be neglected. In addition,
each IRS is connected to an IRS controller, which is
able to adjust the amplitude and phase of incident signals
from USVs. Consider the technical advantages of tethered
UAV-mounted IRS-assisted transmission, a novel IRS-
assisted hybrid UAV-terrestrial MEC network architecture
with USVs is proposed, where each USV can offload its
computation task to MEC server directly or assisted by
a tethered UAV-mounted IRS.

2) Aiming to prolong USVs’ network lifetime, this paper
formulates USVs’ energy minimization by jointly consid-
ering USVs’ offloading decisions, USVs’ computation ca-
pability, beamforming vector design and IRS phase shift-
vector. To address the formulated problem, a heuristic
solution called DMM is proposed. The solution involves

dividing the challenging original optimization problem
into two subproblems and solving them with novel al-
gorithms. First, the joint USVs offloading decisions and
computation capability subproblem is solved using a pro-
posed enhanced differential evolution algorithm (EDE).
Then, by employing the solution to this subproblem, the
second subproblem is focused on obtaining the optimal
beamforming vector and IRS phase shift-vector. The
paper introduces the minimum variance distortionless
response algorithm (MVDR) and the enhanced min-
maximization algorithm (EMM), which are used in an
iterative manner, respectively.

3) The proposed solution improves the system performance,
especially in terms of energy consumption. The results
verify that the proposed algorithms considerably de-
crease USVs’ energy consumption in comparison with
a wide range of alternative energy-efficient algorithms.
Moreover, the results also demonstrate that the network
capacity can be significantly enhanced by utilizing the
proposed IRS-based DMM.

The rest of the paper is organized as follows. The system
model and the formulated optimization problem are given
in Section II. The proposed heuristic solution is introduced
in Section III. The performance evaluation of the proposed
solution is compared with that of some selected advanced
algorithms in Section IV. Finally, conclusions are drawn in
Section V.

II. RELATED WORKS

A. UAV-Enabled MEC Networks

Ren et al. proposed a joint resource allocation and task
offloading strategy to enhance the QoS of mobile devices [16].
The results showed that the network energy consumption could
be remarkably reduced while satisfying average execution
latency requirements. However, this technique only focused
on a single-user case and cannot be applied to a multi-
user network. The authors of [17] mentioned that a major
technical difficulty in the event of task offloading scheduling
is determining offloading decisions since mobile devices may
suffer an amount of transmission energy consumption to of-
fload tasks to MEC server, and consequently for the receiving
of computation results from MEC server. The authors of
[18] demonstrated that each mobile device offloading decision
could affect other devices offloading decisions; some mobile
devices may even increase their transmission power to obtain
high link quality, leading to severe interference and increasing
the transmission failure probability. Wang et al. proposed
that mobile devices can be divided into different sets, e.g.,
local execution set, offloading set and reschedule set, based
on data size, latency requirement, network interference and
the remaining computation resource of MEC server. Mobile
devices from the offloading set are allowed to offload tasks
to MEC server while devices in the local execution set and
reschedule set can only be locally executed. In this way,
the number of successfully offloaded tasks can be increased.
The authors of [19] proposed an UAV-enabled MEC network
architecture by integrating UAVs with a MEC server. The
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results showed that this emerging network architecture could
serve mobile devices in a more flexible manner compared
with terrestrial MEC networks. The authors of [20] investi-
gated the energy minimization problem of the proposed UAV-
empowered MEC network by joint considering mobile devices
offloading decisions, network resource allocation and UAV
trajectory. To address the formulated challenging problem, the
authors first divided the original problem into two subproblems
and then utilized an alternating optimization algorithm to solve
each subproblem iteratively. Fortunately, tethered UAVs bring
a novel solution to this technical difficulty. In particular, each
tethered UAV is capable of receiving a stable energy supply via
a tether connected to TBS and offering durable communication
and computation services in places lacking telecommunica-
tions infrastructure. In this way, the main design challenges
of an untethered UAV-enabled MEC system, e.g., UAV’s
energy minimization, can be successfully solved by deploying
tethered UAV. AT&T utilized a low-altitude tethered UAV at
around 60 meters to provide temporary communication service
in Puerto Rico after Hurricane Maria in 2017 [21]. The author
of [22] proposed a tethered UAV-assisted MEC system to serve
a list of mobile users. The results validated the effectiveness of
tethered UAV in enhancing task offloading energy efficiency
performance. The authors of [23] designed an energy-efficient
task scheduling framework for a tethered UAV-based MEC
network in rural areas. The results showed that by utilizing
sufficient energy supplied tethered UAVs, the network could
successfully execute a higher number of offloaded tasks.

B. IRS-assisted Wireless Communications

IRS is a two-dimensional meta-surface consisting of an
array of passive/active scattering electromagnetic elements and
each element can be controlled to change the electromagnetic
properties, including incident signal phase shift and reflection
angle to realize various purposes, such as beam-steering,
beam-splitting, diffusion and polarization [24]. Note that IRS
may serve multiple communicating entities simultaneously by
splitting the incident beam into sub-beams and adjusting each
sub-beam to focus on one specific direction; this technology
suffers extremely technical difficulties, such as the hybrid
beamforming design of TBS and the active beamforming
design of IRS. As such, the majority of the current research
works focus on IRS to perform the beam focusing function on
serving one communicating entity. Zhang et al. proposed that
IRS technology can be used to create smart signal prorogation
environments and support imperfect phase compensation for
severe signal transmission attenuation [25]. Different from
the traditional amplify-and-forward (AF) and decode-and-
forward (DF) relaying techniques that consume substantial
energy to receive and process the received signal, IRS has an
extremely low energy consumption and each element is able
to coordinate the dynamic wireless environments. The authors
of [26] investigated the comparative performance between the
AF relaying technique and IRS-assisted data transmission.
The results showed that IRS realizes higher energy efficiency
than the DF relaying under high rates scenarios. Moreover,
the lightweight IRS realizes satisfactory compatibility for

flexible deployments. For example, IRS can be either coated
on terrestrial objects such as walls or installed on different
types of existing aerial platforms, such as UAVs and satellites,
without installing any new hardware.

C. IRS-assisted UAV MEC Systems and CSI Acquisition
Wang et al. investigated the energy minimization problem

by jointly considering the beamforming vector and IRS phase
shift-vector design for IRS-assisted UAV networks [27]. More-
over, the authors assumed that each time slot is sufficiently
long to allow each mobile device to offload tasks, adjust
computation capability and complete task execution. The
authors of [28] formulated the latency minimization problem
for IRS-assisted UAV MEC networks by jointly considering
passive IRS phase shift-vector and mobile devices’ offloading
schedules. However, this approach only considered a two-user
case and cannot be applied to real world scenarios. Wu et al.
demonstrated that the network sum-rate could be significantly
improved by joint optimizing IRS beamforming gain and UAV
trajectory [29]. The results showed that the integration of IRS
and UAV could considerably enhance the non-terrestrial net-
work performance in terms of energy consumption and UAV
trajectory can be more flexible. The authors of [30] proposed
an IRS-assisted UAV MEC network architecture, where a UAV
is used to create a line-of-sight (LoS) link between UAV and
ground mobile devices. The results showed that the network
energy efficiency could be effectively improved. Aiming to
minimize UAV swarm energy consumption, the authors of
[31] presented a four-phase-based algorithm to jointly optimize
UAV swarm trajectories and IRS phase shift-vector in a novel
multi-IRS and multi-UAV-assisted MEC network architecture.
The authors of [32] proposed a unified dynamic beamforming
framework to boost the energy efficiency of an IRS-assisted
MEC network. The results showed that the computational
mode selection of mobile devices and IRS beamforming
design are highly coupled. Under the assumption that task
offloading is with the assistance of IRS in both flat-fading
and frequency-selective channels, Sun et al. proposed that
the mobile devices energy minimization problem for an IRS-
assisted MEC network is considered by jointly optimizing
their local CPU frequencies, offloading decisions, task size
and IRS phase shift-vector [33]. Some perspective scenarios
regarding energy efficiency enhancement of IRS-assisted UAV-
enabled MEC networks are described in [34]. Although some
resource allocation schemes were designed for energy effi-
ciency optimization in IRS-assisted MEC network, there are
very few works to address the resource allocation schemes
for energy efficiency of USVs in IRS-assisted hybrid UAV-
terrestrial networks because of the challenging optimization.

The authors of [35] investigated the channel estimation
problem and compared the energy efficiency performance
between passive IRS and hybrid IRS systems. The results
show that CSI of purely passive IRS scenarios can be easily
obtained, which is of significant importance to shift the
fundamental paradigm of wireless network design in the real
world. The authors of [36] reported that the statistical CSI ac-
quisition could be realized by using the location information-
aided scheme with reduced overhead of channel estimation
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Fig. 1: The proposed IRS-assisted hybrid UAV-terrestrial net-
work architecture with USVs.

for a reflecting-only IRS-assisted network in comparison with
instantaneous CSI. As a result, the reflecting-only IRS-assisted
transmission methods are widely recognized as a promising
technology for creating smart wireless communication envi-
ronments with low hardware implementation complexity with
the statistical CSI. The authors of [37] proposed that CSI
for a fully passive IRS-assisted UAV-enabled system can be
effectively estimated based on the received pilot signals from
the transmitter or receiver by designing IRS phase shift-vector
and then the obtained CSI can be wirelessly transmitted to
IRS controller to adjust IRS phase shift-vector. The authors
of [38] explored the relationship between IRS phase shift
design, the number of required IRS reflecting elements and
UAV flight time. The results showed that UAV flight time
could be remarkably prolonged by decreasing the number
of IRS reflecting elements. Note that tethered UAV-mounted
IRS can receive a reliable energy supply in practice, offering
extremely long-endurance operations. In addition, tethered
UAVs can support heavy load capacity to carry large-area
IRS to support diverse functionalities, such as offering full
360-degree angle reflection toward the ground and assisting
wireless transmission between any pair of communicating
entities with LoS channels.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 shows the proposed IRS-assisted hybrid UAV-
terrestrial MEC network architecture with USVs. In this sys-
tem, a set of tethered J UAVs, denoted as J = {1, 2, · · · , J},
are dynamically dispatched and form virtual clusters with
TBSs to serve a set of N single-antenna USVs, denoted as
N = {1, 2, · · · , N}. Each tethered UAV is equipped with
a K-element IRS1 and the phase shift-vector is denoted by
θ = [θ1, θ2, · · · , θK ]T with θk ∈ [0, 2π), k ∈ [1, 2, · · · ,K].
Moreover, each MEC server is placed next to a M -antenna
TBS via optical fiber and is utilized to perform computation
services and deliver power supplies for tethered UAVs. In
the same manner with [39], UAV-mounted IRS transmission
links are assumed based on long-term statistical CSI to reduce
the signaling and hardware implementation complexity. In
addition, we assume that MEC server is aware of the locations
of UAVs and CSI2 as a priori.

1In this paper, IRS element spacing is assumed sufficient enough and thus
we ignore the small-scale fading associated with any two reflecting elements.

2In this paper, the statistical CSI can be effectively obtained using the
location information aided method proposed in [40].

Assume that during each equal-length time slot, each USV
i randomly generates a computation task, denoted by Ui =
(Di, Fi, Ti), i ∈ N . Di, Fi and Ti denote the task size (in
bits), the number of required CPU cycles and the maximum
time allowance to execute task Ui, respectively. Moreover,
each task Ui is assumed as indivisible and can either be
locally executed by USV i itself or offloaded to a MEC
server for execution. Similar to [27], each time slot is assumed
sufficiently long to enable each USV to offload tasks, adjust
computation capability and complete task execution. Note that
each tethered UAV is assumed to fly at the fixed height H and
can simultaneously serve no more than one USV.

A. Network Computation and Communication Models

Considering each virtual cluster, denote αi as the offloading
indicator of USV i, where αi = 1 means that USV i decides
to offload task Ui while αi = 0 means otherwise. When USV
i decides to execute task by itself, i.e., αi = 0, the local
execution time can be expressed as:

T l
i =

Fi

fi
, i ∈ N , (1)

where fi is the computation capability of USV i. The cor-
responding energy consumption of USV i can be expressed
as:

El
i = T l

iκi(fi)
ζi , i ∈ N , (2)

where κi and ζi are the switched capacitance and positive
constant, respectively, which are both dependent on USV i’s
hardware architecture.

The amplitude reflection coefficient is defined as β, which
ranges from [0,1] and thus IRS reflection-coefficient matrix
can be expressed as:

Θ = diag(βejθ1 , βejθ2 , ..., βejθK ). (3)

Similar to [41], we assume that IRS follows a full reflection,
and thus the value of β is set to 1. Let ptri and si be
the transmission power and unit-power signal of USV i,
respectively. Define n ∼ CN (0, σ2I) as the noise with mean
zero and variance σ2I. When USV i decides to offload its task
with the assistance of IRS, i.e., αi = 1, the received signal at
TBS from USVs via IRS-assisted offloading can be given as:

y =

N∑
i=1

√
ptri (hd,i +GΘhr,i)si + n, (4)

where hd,i ∈ CM×1, hr,i ∈ CK×1 and G ∈ CM×K are
the channel gain from USV i to TBS, USV i to IRS and
IRS to TBS, respectively. Since the signal transmitted from
USV i is processed by TBS with the multi-user detection
technique and thus one has yi = wi

Hy, where wi ∈ CM×1

is the beamforming vector of TBS to serve each USV i, the
corresponding signal to interference noise ratio (SINR) at TBS
can be expressed as:

γi =
ptri ∥wi

H(hd,i +GΘhr,i)∥2∑N
j ̸=i p

tr
j ∥wi

H(hd,j +GΘhr,j)∥2 + σ2∥wi∥2
,

i, j ∈ N , i ̸= j,

(5)
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where hd,j ∈ CM×1 is the channel gain from USV j to the
corresponding TBS.

The corresponding IRS-assisted offloading channel capacity
can be given as:

Ci = Bi log2(1 + γi), i ∈ N , (6)

where Bi is the allocated bandwidth of USV i.
The corresponding transmission time from USV i to MEC

server can be expressed as:

T tr
i =

Di

Ci

, i ∈ N . (7)

Finally, the corresponding offloading energy consumption
of USV i is:

Etr
i = ptri T tr

i , i ∈ N . (8)

B. Problem Formulation

In this paper, we aim to prolong the network lifetime of
battery empowered USVs, that is, to minimize the energy
consumption of USVs by jointly considering USVs’ offloading
decisions α = {αi, i ∈ N}, USVs’ computation capabilities
f = {fi, i ∈ N}, beamforming vector wi and IRS phase
shift-vector θ, which can be formulated as:

P1 : min
α,f ,θ,wi

Etotal =

N∑
i=1

((1− αi)E
l
i(fi) + αiE

tr
i (θ,wi))

s.t. C1 : αi ∈ {0, 1}, i ∈ N ,

C2 : fmin
i ≤ fi ≤ fmax

i , i ∈ N ,

C3 : 0 ≤ θk < 2π, k = 1, 2, ...,K.
(9)

Constraint C1 points out that the offloading decision variable
of each USV i is a 0-1 binary integer. Note that when each
USV decides to offload a task, USV can offload this task
to MEC server directly or assisted by a UAV-mounted IRS,
where the offload decision of each USV can be determined
whether to be locally executed or offloaded, regardless of
the specific content of task and the practice of ignoring the
specific information of offloading task in this paper follows
the recent literature [42-44]. Constraint C2 indicates that the
computation capability of USV i should follow the range of
[fmin

i , fmax
i ], where fmin

i and fmax
i denote the minimum

and maximum allocated computation resources of each USV
i for task execution, respectively. Constraint C3 specifies that
phase shift of each IRS element k ranges within [0, 2π). Note
that in the studied IRS-assisted hybrid UAV-terrestrial network,
USVs are assumed to follow the same range of computation
capability, i.e., [fmin

i , fmax
i ].

Note: P1 is a non-linear non-convex optimization problem,
which is challenging to be solved, due to the following aspects.
First, due to Constraint C1, the existing exhaustive searching
approaches cannot be efficient to solve P1 even with extremely
high time costs and computation resources. Moreover, one
can observe that optimization variables are closely coupled,
resulting in extremely high dimensional variables with the
expansion of network size. Consider computation offloading
problems of USVs, due to the close couplings among different
USVs, channel conditions, the energy status and computation

capability of USVs, it is generally challenging to optimize the
offloading decision strategy. The research on this type of opti-
mization problem has not been comprehensively investigated
and only a few works are available, such as [14]. Inspired
by [45], DE algorithm is proposed as a simple and efficient
algorithm to solve global optimization problems. However, the
DE algorithm cannot effectively solve large-scale optimization
problems. For example, in the studied network, when each
USV generates 20 tasks during each time slot, this involves
10× 20× (2+K+M) optimization variables when N = 10.
As such, DE may become inefficient in solving the formulated
optimization problem P1, even when using large amounts of
computation resources.

IV. DMM - THE PROPOSED HEURISTIC SOLUTION

In this section, DMM, a heuristic solution is proposed to
solve the challenging formulated problem P1. In particular,
we first decouple P1 into two subproblems, i.e., the joint
optimization subproblem of α and f and the joint optimization
subproblem of θ and wi. The EDE algorithm is proposed to
tackle the first subproblem and obtain the feasible solutions
of α and f . Then, by substituting the obtained feasible α
and f into the latter subproblem, the optimal beamforming
vector and IRS phase shift-vector can be obtained via utilizing
MVDR algorithm and the EMM algorithm, respectively, in an
iterative manner. In this way, one can solve the challenging
formulated problem P1 efficiently.

A. The Joint Optimization Problem of α and f

Given any feasible θ and w, P1 can be reduced to:

P1.1 : min
α,f

N∑
i=1

((1− αi)Fiκi(fi)
ζi−1 + αiE

tr
i )

s.t. C1− C2.
(10)

Note that it is still challenging to solve P1.1 due to the
existence of constraint C1. As an efficient global optimization
and heuristic search algorithm, DE has been widely used to
solve a number of optimization problems, such as big data
optimization, order scheduling and so forth. In comparison
with other evolutionary algorithms, DE has a strong conver-
gence ability and robustness [46]. In this paper, an enhanced
DE algorithm (EDE) is proposed to solve P1.1, where the
significant steps, e.g., encoding, mutation, crossover, analysis
of boundary condition and offspring selection, are given in
detail as follows.

A population 

(N USVs offloading decisions 

and computation capability )

An individual 

(offloading decision 

+ computation 

capability of each 

USV)

Fig. 2: The proposed encoding mechanism.
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Encoding: The proposed encoding mechanism is demon-
strated in Fig. 2, where each individual can be regarded as a
joint offloading decision and computation capability allocation
of each USV. Let pg

i = (αi,fi)
g, i ∈ N be the population in

the g-th generation of USV i, where each population can be
expressed as (αi,fi)

g = ((αi, fi)
g
1, (αi, fi)

g
2, ..., (αi, fi)

g
N ).

In this way, the length of each individual can be reduced from
N × 2N to 2 × N in comparison with the traditional DE
algorithm [47]. At the initialization stage, the initial generation
individual can be expressed as:

(αi,fi)
0 =(αL,fL) + [ρ · {(αU ,fU )− (αL,fL)}], i ∈ N ,

(11)
where ρ ∈ C1×2 and each element of ρ is a random num-
ber uniformly distributed between 0 and 1. αU ,αL,fU ,fL

represent the upper and the lower bound of α,f , respectively.
Mutation: The individual variation can be realized by

employing the differential strategy. As recommended in [48],
a common differential strategy DE/rand/1 is selected and
utilized. Let the g-th generation mutation vector be (νi,ui)

g =
((νi, ui)

g
1, (νi, ui)

g
2, ..., (νi, ui)

g
N ), i ∈ N , one has:

(νi, ui)
g
n = (αi, fi)

g
r1 + F · ((αi, fi)

g
r2 − (αi, fi)

g
r3)

= (αi, fi)
g
r1 + (int[F · ((αi)

g
r2 − (αi)

g
r3)],

F · ((fi)gr2 − (fi)
g
r3)), n ̸= r1 ̸= r2 ̸= r3,

(12)

where F ∈ [0, 2] is the mutation operator. The operator
int[·] indicates to obtain the nearest integer number. Let
gmax be the maximum number of generations. For simplicity,
gmax is also utilized to represent the predetermined maximum
number of iterations of the proposed EDE algorithm. The
adaptive mutation operator is proposed to prevent premature
convergence, which can be expressed as:

F = F0 · 2e
1− gmax

gmax+1−g
, (13)

where F0 is the mutation operator and F ranges from
[F0, 2F0]. To maintain individual diversity and avoid pre-
mature convergence, F gradually decreases and finally ap-
proaches F0. In this respect, adaptive mutation can enhance
the network performance regarding the probability of finding
feasible solutions.

Crossover: To increase the diversity, crossover opera-
tion is conducted on each pair of g-th generation individual
(αi,fi)

g and mutation individual (νi,ui)
g . One can obtain

the n-th individual of the (g + 1)-th generation, i.e., (νi)g+1
n

and (ui)
g+1
n , according to the following rule:

(νi)
g+1
n =

 (νi)
g
n, if randi < CR or rand = 1 ,

(αi)
g
n, otherwise,

(ui)
g+1
n =

 (ui)
g
n, if randi < CR or rand = 2 ,

(fi)
g
n, otherwise,

(14)

where CR is the crossover control parameter and randi is a
random number uniformly selected between 0 and 1. rand ∈
[1, 2] is a randomly selected integer number.

Analysis of boundary condition: To obtain feasi-
ble offloading decisions, the boundary absorption method is

utilized to investigate the boundary condition. The boundary
absorption of νi can be expressed as:

νi =


αL
i , if νi < αL

i ,

αU
i , if νi > αU

i ,

νi. else.

(15)

Note that the detection and absorption rule of ui can be
obtained in the same manner as eq. (15) and is omitted due
to space limitations.

Offspring selection: Note that the trial vector is only
compared with one individual rather than all individuals. As
such, offspring selection can be realized according to the
comparison between the trial vector and the current target
vector, where the vector with the minimum objective function
mentioned in P1.1 is selected as the offspring. One has:

pg+1
i =


(νi,ui)

g+1, if Etotal((νi,ui)
g+1)

≤ Etotal((αi,fi)
g),

(αi,fi)
g, otherwise.

(16)

One can select the individual (αg+1
i , fg+1

i ) of pg+1
i with the

minimum corresponding value of Etotal as the offspring. Let
εthDE be the acceptable accuracy parameter of the proposed
enhanced DE algorithm. The termination conditions are set
to εg+1

DE =
|Etotal(αg+1

i ,fg+1
i )−Etotal(αg

i ,f
g
i )|

Etotal(αg
i ,f

g
i )

≤ εthDE or the
maximum number of iterations gmax is reached. In this way,
one can obtain the feasible α∗

i and f∗
i . Detailed information

regarding the proposed EDE algorithm is summarized in
Algorithm 1.

Algorithm 1 The proposed EDE algorithm

Inputs: fmax
i , ptri , Ui, θ, wi, εthDE , gmax

Outputs: α∗
i , f∗

i

1: set q = 0 and ε
(0)
1 = 1;

2: randomly generate numbers between [0,1] to form ρ;
3: initialize 0-th generation according to Eq. (11);
4: while εgDE > εthDE or g < gmax do
5: mutation (νi,ui)

g according to Eq. (12);
6: crossover (νi,ui)

g according to Eq. (14);
7: detect the boundary conditions of (νi,ui)

g+1 accord-
ing to Eq. (15);

8: select the individuals entering the next generation
population pg+1

i according to (16);
9: εg+1

DE =
|Etotal(αg+1

i ,fg+1
i )−Etotal(αg

i ,f
g
i )|

Etotal(αg
i ,f

g
i )

;
10: g ← g + 1;
11: end while
12: update α∗

i = αg
i , f∗

i = fg
i
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B. The Joint Optimization of θ and wi

Given any feasible α∗ = {α∗
i , i ∈ N} and f = {f∗

i , i ∈
N}, P1 can be reduced as:

P1.2 : min
θ,wi

N∑
i=1

((1− α∗
i )E

l
i(f

∗
i )

+
α∗
iDi

Bi log2(1 +
ptr
i ∥wi

H(hd,i+GΘhr,i)∥2∑N
j ̸=i p

tr
j ∥wi

H(hd,j+GΘhr,j)∥2+σ2∥wi∥2 )
)

s.t. C3.
(17)

After removing the constant terms, P1.2 can be simplified:

P̃1.2 : max
θ,wi

ptri ∥wi
H(hd,i +GΘhr,i)∥2∑N

j ̸=i p
tr
j ∥wi

H(hd,j +GΘhr,j)∥2 + σ2∥wi∥2

s.t. C3.
(18)

One can observe that P̃1.2 is still difficult to tackle since
optimization variables θ and wi are closely coupled. To this
respect, we divide P̃1.2 into two subproblems, i.e., P̃1.2.1
and P̃1.2.2. By fixing θ, one can obtain the following uncon-
strainted optimization problem P̃1.2.1:

P̃1.2.1 :min
wi

∑N
j ̸=i p

tr
j ∥wi

H(hd,j +GΘhr,j)∥2 + σ2∥wi∥2

ptri ∥wi
H(hd,i +GΘhr,i)∥2

.

(19)
In same manner with [49], the antenna gain in the direction

of interest is assumed as unity. Note that MVDR algorithm can
adaptively guarantee the output power of the array unchanged
in the desired direction and decrease interference and noise
power in other directions to promise the SINR performance
[50-51]. As such, we utilize MVDR to obtain the optimal
beamforming vector. For simplicity purposes, denote H =
(
∑N

j ̸=i p
tr
j (hd,j+GΘhr,j)(hd,j+GΘhr,j)

H)+σ2IM, where
IM is the identity matrix of M ×M and hi =

√
ptri (hd,i +

GΘhr,i). According to Proposition 1, the optimal solution
wi

∗ to P̃1.2.1 can be obtained via MVDR and expressed as
wi

∗ = H−1hi

hi
HH−1hi

.

Proposition 1: The optimal solution wi to P̃1.2.1 is wi
∗ =

H−1hi

hi
HH−1hi

.

Proof. Note that P̃1.2.1 cannot directly yield a closed-form
solution by applying the conventional MVDR. To make P̃1.2.1
more tractable, introducing wi

Hhi = 1, one can obtain that
∥wi

H(hd,j + GΘhr,j)∥2 = wi
H(hd,j + GΘhr,j)(hd,j +

GΘhr,j)
Hwi. Since σ2∥wi∥2 = wi

H(σ2IM)wi, the numer-
ator of P̃1.2.1 can be rewritten as:

N∑
j ̸=i

ptrj ∥wi
H(hd,j +GΘhr,j)∥2 + σ2∥wi∥2

= wi
H((

N∑
j ̸=i

ptrj (hd,j +GΘhr,j)(hd,j +GΘhr,j)
H)

+ σ2IM)wi.

(20)

Let H = (
∑N

j ̸=i p
tr
j (hd,j+GΘhr,j)(hd,j+GΘhr,j)

H)+

σ2IM, one has:

wi
H(hd,j +GΘhr,j)(hd,j +GΘhr,j)

Hwi = wi
HHwi.

(21)
Let hi =

√
ptri (hd,i+GΘhr,i). The denominator of P̃1.2.1

can be rewritten as:

ptri ∥wi
H(hd,i +GΘhr,i)∥2 = wi

Hhihi
Hwi. (22)

Due to wi
Hhi = 1, one can obtain that wi

Hhihi
Hwi = 1.

The optimization problem P̃1.2.1 can be rewritten as:

Ṗ1.2.1 : min
wi

wi
HHwi

s.t. C4 : wi
Hhi = 1.

(23)

By utilizing the Lagrange multiplier method, the Lagrange
function L(wi) can be expressed as:

L(wi) = wi
HHwi + λ(wi

Hhi − 1). (24)

Assuming that wi
∗ is the optimal solution to Ṗ1.2.1, the

following can be obtained:

∂L
∂wi

∣∣∣∣
wi=wi

∗
= 2Hwi

∗ + λhi = 0. (25)

Thus, one can obtain that wi
∗ = −λ

2H
−1hi. Since

wi
Hhi = hi

Hwi = 1, one can observe that hi
Hwi =

hi
H(−λ

2H
−1hi) = 1. Note that hi

HH−1hi is a real number
with −λ

2 = 1
hi

HH−1hi
. After substituting it into wi

∗ =

−λ
2H

−1hi, the following equation results:

wi
∗ =

H−1hi

hi
HH−1hi

. (26)

The proof is completed.

Substituting w∗
i into problem P̃1.2, one has

P̃1.2.2 : max
θ

ptri ∥(wi
∗)H(hd,i +GΘhr,i)∥2∑N

j ̸=i p
tr
j ∥(wi

∗)H(hd,j +GΘhr,j)∥2 + σ2∥wi
∗∥2

s.t. C3.
(27)

One can observe that P̃1.2.2 is a non-convex optimization
problem and cannot be solved efficiently. As proved in [52],
MM algorithm has numerous advantages over than widely
used semidefinite relaxation algorithm to handle the formu-
lated problem due to its appealing features, such as fast
speed, stability and lower computational complexity. Inspired
by the traditional MM algorithm, the enhanced MM algo-
rithm (EMM) is proposed to solve P̃1.2.2. Define v =
Gdiag(hr,i) ∈ CM×K , Φ = [Φ1,Φ2, · · · ,ΦK ]T ,Φk = ejθk

and Q = hd,i
Hwi

∗(wi
∗)Hhd,i, which is a constant. As such,

the numerator of P̃1.2.2 can be rewritten as:
where step (a) exploits R = ΦHΦ and step (b) grasps
X = ptri vHwi

∗(wi
∗)Hhd,i ∈ CK×1 and Y = ptri [QR Ik +

vHwi
∗(wi

∗)Hv] ∈ CK×K .
Define A =

∑N
j ̸=i Yj +

σ2

R Ik and B =
∑N

j ̸=i Xj, the
denominator of objective function mentioned in P̃1.2.2 can
be rewritten as

∑N
j ̸=i p

tr
j ∥(wi

∗)H(hd,j +GΘhr,j)∥2 + σ2 =

ΦHAΦ + 2Re{ΦHB}. As such, the objective function of
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ptri ∥(wi
∗)H(hd,i +GΘhr,i)∥2 = ptri [(hd,i

H +ΦHvH)wi
∗][(wi

∗)H(hd,i + vΦ)] (28)

= ptri [Q+ hd,i
Hwi

∗(wi
∗)HvΦ+ΦHvHwi

∗(wi
∗)Hhd,i +ΦHvHwi

∗(wi
∗)HvΦ] (29)

(a)
= ptri [ΦH(

Q

R
Ik + vHwi

∗(wi
∗)Hv)Φ+ hd,i

Hwi
∗(wi

∗)HvΦ+ΦHvHwi
∗(wi

∗)Hhd,i] (30)

(b)
= ΦHYΦ+ 2Re{ΦHX}, (31)

P̃1.2.2 can be rewritten as ΦHYΦ+2Re{ΦHX}
ΦHAΦ+2Re{ΦHB} , which is de-

fined as the function f(Φ). In this way, P̃1.2.2 can be rewritten
as:

Ṗ1.2.2 : max
Φ

f(Φ)

s.t. C5 : ∥Φk∥ = 1, k = 1, 2, ...,K.
(32)

According to Proposition 2, one can obtain the lower bound
of the objective function f(Φ) of Ṗ1.2.2.

Proposition 2: The lower bound of f(Φ) can be given as

f(Φ) = C1 + C2 +
2Re{ΦH

0 (Y + 2
RRe{Φ0X}Ik)Φ}

ΦH
0 AΦ0 + 2Re{ΦH

0 B}

− ΦH
0 YΦ0 + 2Re{ΦH

0 X}
(ΦH

0 AΦ0 + 2Re{ΦH
0 B})2

× [ΦHλmax(A)Φ

+ 2Re{ΦH(A− λmax(A)Ik)Φ0}+ 2Re{ΦHB}],
(33)

where λmax(A) is the maximum eigenvalue of A, Φ0 is a
feasible point and

C1 =

ΦH
0 YΦ0 + 2Re{ΦH

0 X}
ΦH

0 AΦ0 + 2Re{ΦH
0 B}

+
2Re{ΦH

0 YΦ0 + 2Re{Φ0X}}
ΦH

0 AΦ0 + 2Re{ΦH
0 B}

+
ΦH

0 YΦ0 + 2Re{ΦH
0 X}

(ΦH
0 AΦ0 + 2Re{ΦH

0 B})2
× (ΦH

0 AΦ0 + 2Re{ΦH
0 B}),

C2 =

ΦH
0 YΦ0 + 2Re{ΦH

0 X}
(ΦH

0 AΦ0 + 2Re{ΦH
0 B})2

× (ΦH
0 (λmax(A)Ik −A)Φ0).

(34)

Proof. Define Σ = ΦHAΦ+2Re{ΦHB} as an intermediate
variable. As proved in [53], the function f(a,b) = aHb−1a
is jointly convex with (a,b) when b > 0. To this respect, Y+
2
RRe{ΦX}Ik is positive definite and Σ > 0. As such, f(Φ,Σ)
is jointly convex with (Φ,Σ). In addition, since the lower
bound of a convex function is its first-order Taylor expansion,
and thus one has [54]

f(Φ,Σ) ⩾ f(Φ0,Σ0)

+
2Re{ΦH

0 (Y + 2
RRe{Φ0X}Ik)(Φ−Φ0)}

Σ0

− ΦH
0 YΦ0 + 2Re{ΦH

0 X}
Σ2

0

(Σ− Σ0)

= C1 +
2Re{ΦH

0 (Y + 2
RRe{Φ0X}Ik)Φ}
Σ0

− ΦH
0 YΦ0 + 2Re{ΦH

0 X}
Σ2

0

× Σ,

(35)

where Σ0 is the corresponding value of Σ under given Φ0.
By Introducing a K × K Hermitian matrix λmax(A)Ik that
satisfying λmax(A)Ik ≥ A. According to [55, Lemma 1], one
has the following inequality:

f(Φ,Σ) ⩾ C1 +
2Re{ΦH

0 (Y + 2
RRe{Φ0X}Ik)Φ}
Σ0

− ΦH
0 YΦ0 + 2Re{ΦH

0 X}
Σ2

0

× [ΦHλmax(A)IkΦ

+ΦH
0 (λmax(A)Ik −A)Φ0

+ 2Re{ΦH(A− λmax(A)Ik)Φ0}+ 2Re{ΦHB}]

= C1 + C2 +
2Re{ΦH

0 (Y + 2
RRe{Φ0X}Ik)Φ}

ΦH
0 AΦ0 + 2Re{ΦH

0 B}

− ΦH
0 YΦ0 + 2Re{ΦH

0 X}
(ΦH

0 AΦ0 + 2Re{ΦH
0 B})2

× [ΦHλmax(A)Φ

+ 2Re{ΦH(A− λmax(A)Ik)Φ0}+ 2Re{ΦHB}].

(36)

The proof is completed.

Note that the constant term f(Φ0,Σ0) affects the value of
f(Φ,Σ) under given Φ0. Define Φ(rMM ) as the value of Φ
obtained in iteration rMM

3. To this respect, one can utilize
Φ(rMM ) to replace Φ0 by generating a series of feasible
vectors. Since ΦHλmax(A)IkΦ = Rλmax(A), C1 and C2

are constant terms under certain Φ(rMM ), Ṗ1.2.2 can be
reduced as follows after removing irrelevant constants:

P̃1.2.3 : max
Φ

Re{ΦHZ(rMM )}

s.t. C5 : ∥Φk∥ = 1, k ∈ 1, 2, ...,K,
(37)

where

Z(rMM ) =
(YH + 2

RΦ(rMM )X)Φ(rMM )

(Φ(rMM ))HAΦ(rMM ) + 2(Φ(rMM ))HB
−

(Φ(rMM ))HYΦ(rMM ) + 2(Φ(rMM ))HX

((Φ(rMM ))HAΦ(rMM ) + 2(Φ(rMM ))HB)2

× [(A− λmax(A)Ik)Φ
(rMM ) +B].

(38)

According to Proposition 3, the optimal solution
to the optimization problem P̃1.2.3 can be given as
Φ(rMM+1) = ejarg{Z

(rMM )}. The termination condition is
set to reaching the maximum number of iterations rmax

MM

or |Etotal(Φ(rMM+1),wi
(rMM+1))−Etotal(Φ(rMM ),wi

(rMM ))|
Etotal(Φ(rMM ),wi

(rMM ))
≤

εthMM , where εthMM is the acceptable accuracy parameter.
Detailed information of the EMM algorithm is summarized

3For notational simplicity, rMM is the current iteration number as men-
tioned in Algorithm 2.
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in Algorithm 2.

Algorithm 2 The proposed joint IRS phase shift-vector and
beamforming vector optimization algorithm.

Inputs: α∗
i , f∗

i , ptri , Ui, hd,i, hr,i, εthMM , rmax
MM

Outputs: Φ∗, wi
∗

1: set rMM = 0 and ε
(0)
MM = 1;

2: initialize Φ(0) and satisfies ∥Φk∥ = 1;
3: while ε

(rMM )
MM > εthMM or rMM < rmax

MM do
4: substitute α∗

i and f∗
i into P1 to obtain P1.2;

5: transform P1.2 into P̃1.2 by removing constant terms;
6: divide P̃1.2 into P̃1.2.1 and P̃1.2.2;
7: The MVDR algorithm:
8: transform P̃1.2.1 to Ṗ1.2.1 and utilize MVDR algo-

rithm to solve Ṗ1.2.1 and obtain wi
∗;

9: substitute w∗
i into problem P̃1.2 to obtain P̃1.2.2;

10: transform problem P̃1.2.2 into Ṗ1.2.2;
11: The EMM algorithm:
12: utilize Φ(rMM ) to replace Φ0, and reformulated
Ṗ1.2.2 into P̃1.2.3;

13: solve P̃1.2.3 and obtain the optimal Φ(rMM+1);
14: compute ε

(rMM+1)
MM =

|Etotal(Φ(rMM+1),wi
(rMM+1))−Etotal(Φ(rMM ),wi

(rMM ))|
Etotal(Φ(rMM ),wi

(rMM ))
;

15: rMM ← rMM + 1;
16: end while
17: update Φ∗ = Φ(rMM ), wi

∗ = wi
(rMM )

Proposition 3: The optimal solution to the optimization
problem P̃1.2.3 can be given as Φ(rMM+1) = ejarg{Z

(rMM )}.

Proof. Proposition 3 is proved by contradiction. Define F =
{Φk|Φk = ejθk , θk ∈ [0, 2π), k ∈ 1, 2, ...,K}. Let ξ be the
angle between any feasible vector Φ and Z(rMM ). The project
mapping Z(rMM ) onto the set F is the mapping defined by
PF . In this way, P̃1.2.3 can be equivalently transformed into:

Ṗ1.2.3 : max
ξ

PFZ
(rMM )

s.t. Φk ∈ F , k = 1, 2, ...,K.
(39)

Assuming that there exist another optimal solution Φ′ to
Ṗ1.2.3 with Φ′ ̸= ejarg{Z

(rMM )} and ξ ∈ (0, 2π). The
objective function of Ṗ1.2.3 can be given by:

PFZ
(rMM ) =∥Z(rMM )∥∥Φ′∥ cos ξ = ∥Z(rMM )∥ cos ξ

<∥Z(rMM )∥∥ejarg{Z
(rMM )}∥ cos 0

=∥Z(rMM )∥∥ejarg{Z
(rMM )}∥.

(40)

According to eq. (37), one can observe that there always
exists Φ = ejarg{Z

(rMM )} to promise a better solution to
PFZ

(rMM ) rather than Φ′. As such, the optimal solution to
P̃1.2.3 can be realized if and only if when Φ(rMM+1) =

ejarg{Z
(rMM )}. The proof is completed.

Algorithm 3 The framework of the proposed DMM solution

1: initialize α, f , θ and wi;
2: set the iteration number r = 0 and the maximum iteration

number rmax;
3: repeat
4: for i = 1 : N do
5: fix θ and wi to obtain subproblem P1.1;
6: utilize Algorithm 1 to solve P1.1 and obtain α∗

i

and f∗
i ;

7: fix α∗
i and f∗

i to obtain subproblem P1.2;
8: utilize Algorithm 2 to solve P1.2 and obtain θ∗

and wi
∗;

9: update θ and wi

10: end for
11: r ← r + 1;
12: until convergence

C. The Complexity Analysis of the Proposed Solution

The overall process to solve P1 is presented in Fig. 3.
We first divide P1 into a series of subproblems, e.g., P1.1
and P1.2. To solve the optimization problem P1.1, the EDE
algorithm (refer to Algorithm 1) is proposed to optimize
integer variable αi and continuous variable fi. After obtaining
the feasible solutions α∗

i and f∗
i according to Algorithm 1,

IRS phase shift-vector θ and beamforming vector wi and
can be jointly optimized by using Algorithm 2. The overall
framework of the proposed heuristic algorithm is summarized
in Algorithm 3. In particular, the convergence of the Algorithm
3 is set to |[Etotal(α∗,f∗,θ∗,wi

∗)]r+1−[Etotal(α∗,f∗,θ∗,wi
∗)]r|

[Etotal(α∗,f∗,θ∗,wi
∗)]r

≤ ε
or the maximum iteration number rmax is reached. In this
way, one can obtain the suboptimal solution to the challenging
formulated problem P1 in an efficient manner. The complexity
analysis of Algorithm 3 is summarized in Proposition 4. Note
that the proposed DMM runs at the MEC server where the
computation resources are sufficient and thus the computation
overhead can be negligible [56]. Moreover, the communication
overhead can be ignored since each UAV-TBS and TBS-MEC
server link is supported by optical fiber and cable, respectively.
In addition, TBS can send the optimization parameters, such
as offloading decisions and computation capability information
to USVs even when the transmission between TBS and USVs
is affected by external factors, by temporarily increasing the
transmission power.

Proposition 4: The complexity of the proposed DMM solu-
tion can be roughly given as O(IrN(IEDEN

2+ IMM (M3+
K3))), where Ir, IEDE , and IMM denote the number of
iterations required for steps 3-12 in Algorithm 3, steps 4-11 in
Algorithm 1 and steps 3-14 in Algorithm 2 until convergence,
respectively.

Proof. The complexity of Algorithm 1 to solve P1.1 is
O(IEDEN

2). The complexity to obtain the matrix inverse of
H and the maximum eigenvalue of A is O(M3) and O(K3),
respectively. Therefore, the complexity of Algorithm 2 to solve
P1.2 is O(IMM (M3 + K3)). As a result, the complexity
of Algorithm 3 can be roughly given as O(IrN(IEDEN

2 +
IMM (M3 +K3))).
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Fig. 3: The overall process to solve P1.

2 4 6 8 10 12 14 16 18 20

The number of USVs

0

1

2

3

4

5

6

7

8

9

T
h
e 

n
et

w
o
rk

 e
n
er

g
y
 c

o
n
su

m
p
ti

o
n
 (

J)

104

DMM

Without IRS/Relay

DF-MMSE

IRS-RandPhase

Fig. 4: The network energy consumption versus the different
number of USVs.
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Fig. 5: The network capacity versus the different number of
USVs.

V. PERFORMANCE EVALUATION

The simulation setup of the proposed IRS-assisted hybrid
UAV-terrestrial MEC network with USVs is described as
follows. USVs are randomly distributed in a circular area with
a radius of 75 meters (m) and UAV flies at a fixed altitude
of H = 10 m. Each USV generates 50 tasks. The maximum
computation capability of each USV and MEC server are set as
fmax
i = 5×105 and fm = 1×107 CPU cycles/s, respectively.
ki and ζi are set as 10−11 and 2, respectively. In this paper,
we assume that channels are follow small-scale fading, which
can be given by

Gr = Gr0 − 10ηlog10(
d

d0
), (41)

where Gr0 = 30 dB is the path loss (PL) at the refer-
ence distance d0 = 1 m. USV-UAV link is assumed as
a controllable LoS channel when utilizing IRS technique.
UAV-TBS link and USV-TBS link are assumed as LoS and
non-LoS, respectively [57]. η indicates the PL coefficients,
where USV-TBS link, IRS-TBS link and USV-UAV link are
set to 3.5, 2.2, 2.2, respectively. The noise power σ2 is −70
dBm and the channel bandwidth is 1 MHz. The convergence
accuracy parameters εthDE , εthMM and ε are set as 10−3. In the
same manner with [58], wireless communication channels are

assumed to be perfectly estimated. Let the total time cost to
execute Ui via IRS-assisted offloading be T IO

i . Note that when
Ti ≤ {T l

i , T
IO
i }, i ∈ N , Ui is regarded as failed and cannot

be allocated any computation resources or bandwidth. The
selected up-to-date advanced algorithms, e.g., the DF-MMSE
algorithm, the IRS-RandPhase algorithm and the Without IRS
algorithm, are selected as benchmarks. Most significant infor-
mation regarding these algorithms is summarized as follows.

DF-MMSE algorithm: The energy efficient method, called
the relay-assisted based algorithm (refer to DF-MMSE in the
following), is selected. In particular, this approach utilizes a
DF relay to assist task offloading and applies the minimum
mean-square error (MMSE) method to design TBS beamform-
ing vector as mentioned in [59].

IRS-RandPhase algorithm: The random phase algorithm
(refer to RandPhase in the following) aims to maximize the
number of offloaded tasks by randomly generates IRS phase
shift-vector and TBS beamforming vector.

Without IRS/Relay algorithm: The without IRS algorithm
(refer to Without IRS/Relay in the following) do not utilize
IRS and thus set GΘhr,i = 0. The optimization of USVs
offloading decision and computation capability is in the same
manner with Algorithm 1 and the TBS beamforming vector
design follows MVDR algorithm as mentioned in Algorithm
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2.
For simplification, the network energy consumption is de-

fined as the total energy consumption of USVs. The network
energy consumption versus the different number of USVs is
shown in Fig. 4 when K = 75 and ptri = 2 W. One can
observe that with the increase of USVs, the network energy
consumption correspondingly increases. In particular, DMM
realizes the lowest network energy consumption at nearly
1.35× 104 J (Joule) and 2× 103 J when N = 20 and N = 5,
respectively, where the corresponding value of the DF-MMSE
algorithm is about 2.1× 104 J and 3.8× 103 J. Followed by
the IRS-RandPhase algorithm with the corresponding values
at about 5.5× 104 J and 4× 103 J, respectively. The Without
IRS/Relay algorithm realizes the worst performance, with the
network energy consumption around 8.5×104 J when N = 20.
This is because DMM solution can jointly optimize the beam-
forming vector wi and IRS phase shift-vector θ. In this way,
the channel capacity can be significantly enhanced while the
offloading time cost of USVs can be reduced. As a result, the
proposed algorithm outperforms the IRS-RandPhase algorithm
regarding network energy consumption. Moreover, one can
observe that network energy consumption can be significantly
decreased by utilizing IRS-assisted transmission compared
with the DF-MMSE and Without IRS/Relay algorithm.

The relationship between the network capacity versus the
number of USVs is demonstrated in Fig. 5 when K = 75 and
ptri = 2 W. As can be seen from Fig. 5, the proposed algorithm
achieves a higher network capacity than the Without IRS
algorithm under the same number of USVs. In particular, the
network capacity of the proposed algorithm is approximately
10.6 × 109 bits/s and 5.9 × 109 bits/s when N = 20 and
N = 5, respectively. The Without IRS algorithm realizes the
network capacity at around 1.7 × 109 bits/s and 2.4 × 108

bits/s when N = 20 and N = 5, respectively. Note that
although DMM solution can promise lower network energy
consumption compared with the IRS-RandPhase algorithm,
this may result in sacrificing the SINR performance and
decreasing the network capacity.

Fig. 6 and Fig. 7 plot the number of IRS-assisted offloading
tasks versus the number of USVs and IRS elements, respec-
tively. As shown in Fig. 6, as the number of USVs increases,
the number of USVs that select the IRS-assisted offloading
method increases correspondingly. In particular, the number
of IRS-assisted offloading tasks of the DMM solution is about
510 when N = 10 while this value is around 105 for the IRS-
RandPhase algorithm. This is because the proposed algorithm
can optimize IRS phase shift-vector; USVs are highly likely to
select IRS-assisted offloading method with the lower energy
consumption rather than local execution. One can observe
from Fig. 7 that a larger number of IRS elements promises a
higher number of IRS-assisted offloading tasks. In particular,
when K = 50, the number of IRS-assisted offloading tasks for
the proposed algorithm is nearly 225 while this value is around
128 for the IRS-RandPhase algorithm. This is because the
DMM solution realizes the higher spatial degree-of-freedom
compared with the IRS-RandPhase algorithm, which promises
a higher number of tasks that can be successfully executed via
IRS-assisted offloading method.

To balance the number of USVs and IRS elements, we select
N = 5 for further discussion. Fig. 8 shows the network energy
consumption versus the number of IRS elements under the
typical computation capability of MEC server when employing
the proposed algorithm and the IRS-RandPhase algorithm. One
can observe that a higher number of IRS elements results
in lower network energy consumption for both algorithms.
Moreover, the DMM solution outperforms the IRS-RandPhase
algorithm when utilizing the same number of IRS elements.
In particular, the DMM solution realizes the network energy
consumption around 2 × 103 J when K = 75 and fm = 107

CPU cycles/s while this value is nearly 1.6 × 104 J when
fm = 106 CPU cycles/s. This may involve the fact that
MEC execution time can be significantly decreased with higher
computation capability. As such, the proposed algorithm en-
courages a higher number of USVs to offload tasks to MEC
server for execution, which in turn decreases the network
energy consumption.

Fig. 9 and Fig. 10 show the network energy consumption of
the proposed algorithm under different numbers of USVs and
IRS elements, respectively. One can observe that the network
energy consumption increases with USVs transmission power
rise. According to Fig. 9, the network energy consumption is
almost 3.2 × 104 J when N = 20 and ptri = 5 W while this
value is nearly 5.3 × 103 J when ptri = 0.5 W. According
to Fig. 10, when K = 50 and ptri = 5 W, the network
energy consumption is approximately 2.7 × 104 J, while this
value is about 2.1 × 103 J when K = 100. As such, in
the case of higher transmission power, one can reduce the
network energy consumption by increasing the number of
IRS elements, especially when the number of IRS elements
is less than 50. Moreover, one should aware that increasing
the transmission power of USVs promises better transmission
quality while suffering additional energy consumption.

The proposed DMM solution has numerous practical advan-
tages in comparison with existing state of the art algorithms.
In this paper, we assume that each task is indivisible and
can either be executed by USV itself or offloaded to MEC
server via IRS-assisted offloading method according to the
dynamic communication environment. Moreover, the proposed
algorithm assumes that each USV follows the same range
of computation capability, i.e., [fmin

i , fmax
i ]. In this regard,

the computation capabilities of USVs need to be dynamically
determined rather than determined as fixed values as studied in
[60-61]. In addition, unlike [60], the proposed algorithm can
optimize each USV’s computation capability to avoid energy
waste. Furthermore, the joint optimization of beamforming
vectors of each USV i and IRS phase shift-vector is taken
into consideration. In this way, IRS is capable of adjusting its
phase shift dedicatedly for its associated USV to enhance the
channel condition. The performance of the proposed algorithm
regarding the different number of USVs and IRS elements
are respectively presented. The fact that the simulation results
show that the proposed DMM algorithm achieves better perfor-
mance in comparison with several state-of-the-art algorithms
indicates that DMM gets closer to the optimum solution than
the other energy efficient algorithms.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. X, XX XXXX 12

4 8 12 16 20

The number of USVs

0

100

200

300

400

500

600

700

800

900

T
h
e 

n
u
m

b
er

 o
f 

IR
S

-a
ss

is
te

d
 o

ff
lo

ad
in

g
 t

as
k
s

IRS-RandPhase

DMM

Fig. 6: The number of IRS-assisted offloading tasks versus
the different number of USVs.
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Fig. 7: The number of IRS-assisted offloading tasks versus
the different number of IRS elements.
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Fig. 9: The network energy consumption versus the different
number of USVs under different typical USV transmission
power.
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number of IRS elements under different typical USV trans-
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VI. CONCLUSIONS

This paper proposed an IRS-assisted hybrid UAV-terrestrial
MEC network architecture with USVs to reduce energy con-
sumption and increase network capacity. The energy con-
sumption minimization problem of USVs is formulated by
jointly considering USVs’ offloading decision, computation
capability, IRS phase shift-vector and beamforming vector
design, which is a non-linear non-convex optimization problem
and challenging to solve. To solve the formulated problem,
the original optimization problem was divided into two sub-
problems and a heuristic solution named DMM was proposed.
Part of DMM, the enhanced DE algorithm was introduced to
solve USVs offloading decisions and computation capability
subproblem, and the MVDR and the enhanced MM algorithms
were used to solve the joint IRS phase shift-vector and
beamforming vector design subproblem. Simulation results
have demonstrated the efficiency of the proposed algorithm in
terms of multiple aspects. In particular, the proposed algorithm
achieves higher energy efficiency than existing solutions: DF-
MMSE, IRS-RandPhase and an Without IRS/Relay approach.
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Additionally, DMM testing results have shown that the IRS-
assisted offloading method can obtain a higher network capac-
ity than existing algorithms. Furthermore, the proposed algo-
rithm completes a higher number of IRS-assisted offloading
tasks than the IRS-RandPhase algorithm.

Future work will consider the evaluation of the solution
performance also from a quality of experience (QoE) per-
spective in a multimedia data transmission context. QoE
can be estimated using several components, which include
the bitrate of the transmitted video, stall time caused by
network delay, degradation of video quality due to variation
across consecutive segments and waiting time for the video
to start the playout when the transmission begins [62-63].
In addition, although intuitive heuristics have been proposed
for IRS deployments [64-65], performing a comprehensive
mathematical formulation for multiple IRS placements and
optimization based on long-term statistical-computed and/or
estimated CSI values is still an open research problem. More-
over, the optimization of IRS reflecting elements number still
needs further research since when multiple IRSs are deployed
to serve a list of USVs, the optimal IRS association strategy
is generally still unknown according to the current literature
[66-68]. This may also influence the flight time and energy
consumption of UAVs since the motors consume the higher
propulsion and hovering power to keep the total weight in the
air, especially for non-tethered UAVs that rely on on-board
batteries [69].
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