Efficient generic calibration method for general cameras with single centre of projection

Selected Experimental Results Datasets

Aubrey K. Dunne, John Mallon, Paul F. Whelan

Vision Systems Group School of Electronic Engineering Dublin City University

April 2009

1 Introduction

This document contains the data underlying the results plots in Figs. 4 and 11 of the paper 'Efficient generic calibration method for general cameras with single centre of projection'.

2 Simulated experiments

Fig. 1 shows the relative performances of the standard generic method, the standard generic method with subsequent bundle adjustment, and the proposed generic method for a simulated camera for increasing additive Gaussian noise. Each trial was repeated 50 times with random noise. The data underlying the plots is presented in Table 1.

3 Experimental results

Fig. 2(a) shows the results for a translation estimation task for a hyperboloidal catadioptric camera calibrated using both the standard and proposed generic methods. The accompanying data is presented in Tables 2. Fig. 2(b) shows the results for a rotation estimation experiment for the same camera calibrated using both the standard and proposed generic methods. Table 3 contains the corresponding data. Note that for visualisation purposes the differences between the average translation vector and the estimated translation vectors in Fig. 2(a) are scaled $\times 10$ for each method.

Figure 1: Centre and transformation estimation performance plots versus Gaussian noise for standard generic method, standard generic method with bundle adjustment, and proposed generic method (BA = bundle adjustment). The rotation error is defined as the sum of the out-of-plane and in-plane rotation errors. Note that the SDs for the proposed generic method in these results are non-zero, but are significantly smaller in magnitude than the SDs of the standard generic method.

	Method	Error	Gaussian noise standard deviation (pixels)							
		type	0.1	0.3	0.5	0.7	0.9	1.1	1.3	1.5
	Standard	Mean	0.5769	2.7643	4.4157	9.6959	22.1382	24.5759	27.8104	36.6232
C		SD	0.3629	2.3431	3.1170	9.3825	20.9556	20.0411	25.7186	22.0392
estimation	Standard	Mean	0.0933	1.8409	3.8982	9.3167	21.7579	24.3738	27.7091	36.5224
error	+ BA	SD	0.0482	2.2734	3.1874	9.4640	21.0891	20.0904	25.7042	22.0325
(mm)	Proposed	Mean	0.1054	0.3019	0.4792	0.7416	0.8649	1.0403	1.4200	1.4756
		SD	0.0622	0.1441	0.2295	0.3718	0.3969	0.4937	0.7519	0.6527
	Standard	Mean	0.1067	0.3783	0.6288	1.1047	2.0232	2.2420	2.6535	3.5008
Ray-point		SD	0.0182	0.1416	0.1803	0.6667	1.5461	1.2003	1.6760	1.7675
error	Standard	Mean	0.0894	0.2829	0.4969	0.8453	1.4719	1.6641	2.0407	2.7726
(mm)	+ BA	SD	0.0021	0.0481	0.0890	0.4959	1.0385	0.8198	1.1051	1.4409
	Proposed	Mean	0.0894	0.2687	0.4480	0.6249	0.8011	0.9804	1.1631	1.3448
		SD	0.0021	0.0060	0.0097	0.0138	0.0192	0.0234	0.0243	0.0289
	Standard	Mean	0.1852	0.7537	1.4383	2.6021	5.1502	6.7572	7.2935	10.8411
Translation		SD	0.1393	0.6121	1.1933	2.6865	5.6602	6.5074	7.8203	11.0117
error	Standard	Mean	0.0153	0.1826	0.5974	1.7560	4.3587	6.1544	6.6521	10.4023
grid 1	+ BA	SD	0.0088	0.1921	0.9507	2.5267	5.6776	6.3673	7.8067	10.9021
(mm)	Proposed	Mean	0.0185	0.0523	0.0857	0.1158	0.1346	0.1923	0.2333	0.2594
		SD	0.0094	0.0300	0.0569	0.0670	0.0853	0.1062	0.1060	0.1296
	Standard	Mean	0.0311	0.1397	0.2462	0.5312	1.0562	1.3573	1.4731	2.1392
Rotation		SD	0.0172	0.1012	0.1568	0.5320	0.9103	1.3144	1.2164	1.7937
error	Standard	Mean	0.0073	0.1625	0.3400	0.7818	1.7647	2.0714	2.2530	2.9404
grid 1	+ BA	SD	0.0042	0.2107	0.2858	0.7647	1.7122	1.7742	2.1554	1.8687
(°)	Proposed	Mean	0.0080	0.0268	0.0379	0.0587	0.0717	0.0908	0.1133	0.1365
		SD	0.0044	0.0121	0.0190	0.0310	0.0322	0.0425	0.0505	0.0592
	Standard	Mean	0.2438	0.9846	1.8903	4.0697	7.8513	8.2439	11.1387	15.0503
Translation		SD	0.1972	0.8678	1.9245	5.5066	9.5829	6.6144	10.1301	13.5420
error	Standard	Mean	0.0141	0.2233	0.9294	2.8447	6.6524	7.0085	10.0703	14.2287
grid 2	+ BA	SD	0.0067	0.4387	1.5154	5.4960	9.7573	6.5490	10.1884	13.6921
(mm)	Proposed	Mean	0.0150	0.0463	0.0861	0.1220	0.1553	0.1551	0.2500	0.2162
		SD	0.0079	0.0229	0.0599	0.0702	0.0822	0.1036	0.1543	0.1274
	Standard	Mean	0.0233	0.1297	0.1901	0.4111	1.1195	1.2502	1.2656	1.5664
Rotation		SD	0.0170	0.1293	0.1343	0.3709	1.6533	1.4746	1.5267	1.0990
error	Standard	Mean	0.0067	0.1426	0.2722	0.6027	1.6052	1.7721	1.9935	2.4098
grid 2	+ BA	SD	0.0036	0.2016	0.2346	0.5897	1.8535	1.6572	2.2167	1.5896
(°)	Proposed	Mean	0.0072	0.0212	0.0371	0.0503	0.0640	0.0911	0.0949	0.1120
		SD	$0.003\overline{6}$	0.0101	0.0151	0.0237	0.0267	0.0402	0.0423	0.0475

Table 1: Data underlying Fig. 1.

Figure 2: a) Translation and b) rotation reconstruction using calibration data from standard generic method and proposed generic method.

		Motion					
Point	Coordinate	Actual	Estimated using	Estimated using			
			standard method	proposed method			
1	х	0.0000	0.0000	0.0000			
	у	0.0000	0.0000	0.0000			
	z	0.0000	0.0000	0.0000			
2	х	13.8171	12.8227	12.7840			
	у	-9.9434	-11.2215	-11.2562			
	z	10.4984	10.4717	10.4818			
3	x	27.6342	28.1003	28.1267			
	у	-19.8867	-20.0892	-20.0327			
	z	20.9969	20.1449	20.1649			
4	х	41.4513	40.8569	40.8970			
	у	-29.8301	-29.8918	-29.9058			
	z	31.4953	32.1799	32.1197			
5	х	55.2684	55.2442	55.2352			
	у	-39.7735	-39.5100	-39.5332			
	z	41.9937	42.2683	42.2589			
6	х	69.0855	70.1025	70.0839			
	у	-49.7169	-48.3445	-48.3293			
	z	52.4921	52.3129	52.3523			

Table 2: Data underlying Fig. 2(a).

		Motion				
Point	Coordinate	Actual	Estimated using	Estimated using		
			standard method	proposed method		
1	х	10.0000	10.0000	10.0000		
	У	0.0000	0.0000	0.0000		
2	x	9.8481	9.8225	9.8229		
	У	1.7365	1.7407	1.7644		
3	x	9.3969	9.3825	9.3805		
	У	3.4202	3.3445	3.3723		
4	x	8.6603	8.6104	8.5975		
	У	5.0000	5.0011	5.0417		
5	x	7.6604	7.5521	7.5247		
	У	6.4279	6.5000	6.5470		
6	х	6.4279	6.3792	6.3438		
	У	7.6604	7.6678	7.7087		
7	х	5.0000	5.1814	5.1340		
	У	8.6603	8.4989	8.5386		
8	х	3.4202	3.7462	3.7148		
	У	9.3969	9.2549	9.2715		
9	х	1.7365	2.4641	2.4114		
	У	9.8481	9.6812	9.6970		
10	x	0.0000	1.3639	1.2716		
	У	10.0000	9.9064	9.9173		
11	x	-1.7365	0.3048	0.1365		
	У	9.8481	9.9322	9.9493		
12	x	-3.4202	-1.1205	-1.3015		
	У	9.3969	9.9214	9.9035		

Table 3: Data underlying Fig. 2(b).