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Abstract. This paper introduces the Spectral Clustering Equivalence
(SCE) algorithm which is intended to be an alternative to spectral clus-
tering (SC) with the objective to improve both speed and quality of
segmentation. Instead of solving for the spectral decomposition of a sim-
ilarity matrix as in SC, SCE converts the similarity matrix to a column-
centered dissimilarity matrix and searches for a pair of the most an-
ticorrelated columns. The orthogonal complement to these columns is
then used to create an output feature vector (analogous to eigenvectors
obtained via SC), which is used to partition the data into discrete clus-
ters. We demonstrate the performance of SCE on a number of artificial
and real datasets by comparing its classification and image segmentation
results with those returned by kernel-PCA and Normalized Cuts algo-
rithm. The column-wise processing allows the applicability of SCE to
Very Large Scale problems and asymmetric datasets.
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1 Introduction

Recent years have witnessed an enormous increase in research and applications
devoted to spectral clustering (SC) where the problem of grouping is reformu-
lated in an induced feature space. This attention comes not undeserved for sev-
eral reasons. Firstly, SC can be referred to as a fully unsupervised classification
method [13]. Secondly, SC excels in discovering hidden and secondary relation-
ships [20], managing non-convex cluster shapes, non-metric data [14] and noise
reduction [11] in a well defined and theoretically sound framework. Finally, the
segmentation and grouping based on eigenvectors is able to return the perceptual
organization features present in an image [16, 5, 6]. Conceptually, SC belongs to
the domain of manifold learning methods aimed at the unsupervised extraction
of a low-dimensional representation [19]. The term spectral therein refers to a
broad family of clustering methods that make use of the eigenvectors of some
normalized similarity matrix [15]. Different SC algorithms formalize the grouping
problem in different ways and differ widely in the retained number and ranking
of eigenvectors and matrix normalization steps [8, 7]. By far, the most popular
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application to image segmentation is the normalized cuts (Ncut) algorithm pre-
sented by Shi and Malik in 1997 as the first application of SC to computer vision
and image analysis domain [4].

Despite its merits, SC has also its limitations associated with the computa-
tional complexity of spectral decomposition [19, 6] and the problem of discretiza-
tion of continuous eigenvectors [16]. Particularly, pixel classification tasks for
large indefinite (possibly asymmetric) and fully dense similarity matrices form
a considerable computational bottleneck for SC. Given an image with N pixels,
the size of the similarity matrix increases to N2 × N2 and the decomposition-
based implementations of SC become quickly infeasible. This is a well-known fact
which has been continually emphasized over the past decade [19, 6]. Approaches
dealing with this paradigm range from exploiting the sparsity, subsampling of
an image or similarity matrix to the low-rank approximation methods such as
Nyström algorithm [21, 23]. We infer that this is still an open problem from the
most recent work by Chen et al. in [25] where the team of researchers presents a
parallel HPC implementation of SC. The other recent work by Tung et al. in [24]
approaches the scalability problem of SC by using a combination of blockwise
processing and stochastic ensemble consensus.

In this contribution we do not seek numeric or platform-related solutions
to speed-up SC but rather a method which questions the optimality of eigen-
vectors. We therefore raise a question if the important aspects of the data can
be represented through a less expensive alternative. This consideration opens
the door to a much broader range of techniques in statistical machine learning
and dimensionality reduction which forms the basis for any SC implementa-
tion. Therein, the family of learning methods encompasses but is not limited to
principal component analysis (PCA), kernel-PCA, Linear Discriminant Analysis
(LDA), other generative, discriminative, latent variable [18] and Independent
Component Analysis (ICA) methods [11].

In this paper, we assume a low-dimensional manifold and search for a com-
putationally less expensive alternative to eigenvector-based analysis. We next
highlight the idea behind our algorithm that given a separable dataset [18], the
core information related to the leading eigenvectors is contained in the columns
of a kernel matrix. We call our algorithm Spectral Clustering Equivalence (SCE)
and in the next sections we show its connection with kernel-PCA (Sections 2,3),
Ncut (Section 4) and the Ising model [3] (Section 5).

The major contribution of our paper is the reformulation of the standard
spectral clustering through the construction of uncorrelated, orthogonal and cen-
tered components without the use of eigenvectors.

2 Development of Our Method

In multidimensional scaling (MDS), the spectral decomposition is carried out on
the inner product matrix (Gram) G in the feature space with the main emphasis
to preserve the inner-point distances [9]. Let us denote a similarity matrix by S
and a dissimilarity matrix by A (see Table 1). Either A or S can be viewed as a
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dot product matrix G in some feature space according to Schölkopf and Smola
[27] or transformed to G with kernelization and normalization [9] according to
a particular SC formulation and application [6].

Table 1. SCE notations.

S similarity matrix
A kernel matrix (dissimilarity matrix)
C column-centered kernel matrix
R correlation matrix computed on the columns of C

ρmin minimal signed Pearson correlation coefficient,
ρ ≡ cos ∠c1, c2

c1,2 a pair of most anticorrelated columns of C,
∠c1, c2 ≡ θ1 → π

t1,2 orthogonal complement to c1,2, θ2 → π/2
⇒ next following operation
M mixing matrix M = Cz

z equivalence coefficient
Φ centered and uncorrelated SCE feature vectors
X eigenvector-based feature vectors

G̃ embedded (psd) Gram matrix [9]
λmin minimal eigenvalue (additive shift constant) [9]

We assume that A is a generally indefinite (possibly asymmetric) matrix
and interpret it as a multidimensional space spanned by its columns. Further,
we center the columns of A, call the new matrix C and consider a 2-class data
partitioning problem. In order to answer the question about which columns
in C carry more information about the binary class labels, we proceed with
the analysis of linear dependencies present in C. From the related works on
linear dependency analysis, Srebro and Jaakkola in [17], for example, also seek
to identify a low-dimensional subspace that captures the dependent and the
”important” aspects of the data, and separate them from independent variations.

Thus, a natural way to conduct dependency analysis is to analyze correlations
between different variables and the first step, prior to applying correlation anal-
ysis, is the centering of variables. Contrary to the formation of G in kernel-PCA
which involves double-centering [9], our normalization of A in order to obtain C
does not involve row centering. Next, we define the correlation between two cen-
tered columns, c1 and c2, according to the formula of Pearson product-moment
correlation coefficient [1]:

ρ1,2 =
N∑

i=1

[
c1,ic2,i

]
/

√√√√
N∑

i=1

c2
1,i

N∑

i=1

c2
2,i . (1)
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A strong negative correlation provides a suitable measure of discrimination ac-
cording, for example, to [2] and also indicates that the decrease in one variable
is controlled by the increase in the second variable. In regards to natural images,
it is reasonable to view foreground and background as the two most distinct and
thus most anticorrelated image structures. We therefore are interested in the
lower bound of ρ ∈ [−1, 1] and define a pair of observations (columns of C) with
a strong negative correlation ρij → −1 dissociation patterns.

In order to construct the orthogonal and uncorrelated kernel-PCA estimates
we first draw on the idea of canonical spaces [28]. Let X and Y be the two
unknown subspaces spanned by the columns of C. The largest canonical angle
between X and Y is defined as θ(X ,Y) = maxx∈X miny∈Y ∠(x, y) [28]. We know
that the correlation between centered variables is equivalent to the cosine of the
angle between these variables [1]. The cosine of the largest (canonical) angle
θ → π can therefore be interpreted as the minimal signed Pearson correlation
coefficient between the columns of C, ρmin → −1 [1]. According to the cosine

input output

image ⇒ features ⇒ S ⇒ A ⇒ Dimensionality ⇒ X1,2 (SC) set of discrete
Reduction Φ1,2 (SCE) clusters

A ⇒ G = UΛUT ⇒ λmin ⇒ G̃ = ŨΛ̃ŨT ⇒ X = Ũ
√

Λ̃ ⇒ X1,2 . (2)

A ⇒ C ⇒ R ⇒ ρmin ⇒ c1,2 ⇒⊥⇒ t1,2 ⇒ Mt1,2 ⇒ decorrelate ⇒ Φ1,2 .
with 2× 2 PCA
and center

(3)

Fig. 1. Algorithm description and the comparison of SC (2) and SCE (3). Both methods
take a similarity matrix S as an input and produce a pair of orthogonal and uncorrelated
feature vectors. SC is based on the eigen-decomposition of the pseudo-Gram matrix
G. Conversely, SCE is a decomposition-free method which is based on the dependency
analysis of the column-centered kernel matrix C. Because SCE works on the columns
of C, it can generally be applied on asymmetric, non-PSD and rectangular datasets.
The convention to write a pipeline of equations with ”⇒” has been adopted from [9].

definition, π is the maximum possible angle corresponding to cos(θ) = ρmin = −1
[1]. Thus, ρmin not only defines a pair of mostly anticorrelated columns c1 and c2

but also provides the link with the first canonical angle θ1. According to Stewart
in [28], the number of canonical angles in the case of dim(X ) < dim(Y) is equal
to dim(X ), which in our case dim(X ) = 2. This fact allows the construction
of the second SCE-based feature component by employing the orthogonality
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constraint to obtain θ2. For this purpose for ∀k ∈ [1, N2] we seek an orthogonal
complement vector ck to c1,2, and in this process we discard the least orthogonal
pair of vectors:

t1,2 =
{

c1,k, if |∠c1, ck − π/2| < |∠c2, ck − π/2|
c2,k, otherwise .

(4)

Further, we multiply t1,2 by Cz (”C to the power of z”) to maximize linear
dependency and subsequently decorrelate (and center) with PCA on the com-
puted 2× 2 covariance matrix (refer to Table 1 for notations) in order to obtain
the pair Φ1,2 of orthogonal, uncorrelated and centered SCE feature vectors. In
this formulation, the SCE approximation of kernel-PCA feature vectors X1,2 is
controlled by the coefficient z. After decorrelation and centering and similarly
to the ranking of the PCA components [11], our selection of the leading feature
vector Φ1 is based on the maximum variance principle such as σ2(Φ1) > σ2(Φ2).
The product Czt can also be viewed as a multivariate polynomial regression
model with t being a vector of N2 × 2 regression coefficients. The algorithm
description and the progression from c to Φ is outlined in Fig. 1.

3 Results of Comparison to kernel-PCA

In this section we compare SCE-based classification to the kernel-PCA-based
result and consider an experiment with an asymmetric dataset. We created an
interlocked spirals dataset, shown in Fig. 2, which is considered to be a challeng-
ing benchmark for spectral clustering [22]. To alleviate this challenging clustering
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Fig. 2. Segmentation of asymmetric data with binary k-means in SC (a) and SCE
(c) constructed feature spaces. An interlocked two spirals dataset is considered as a
challenging benchmark for SC [22]. As can be seen in (c), SCE results in a better inter-
cluster separation in the feature space. As the symmetry condition constitutes one of
the four metric axioms [12], this example also tests the non-metric invariance of SCE.

problem, Chang and Yeung present in [22] a robust path-based spectral cluster-
ing algorithm with the use of a Gaussian kernel. The main objective of our
experiment is to demonstrate the asymmetric and non-metric invariance of SCE
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and we designed the following asymmetric similarity measure:

sij = b1 ·
(
dxi − dxj

)
,

sji = b2 ·
(
dyi − dyj

)
.

(5)

In the experiment outlined in Fig. 2 each spiral consists of 151 data points and
is generated according to the equation of Archimedean spiral. Two separately
computed coordinate vectors have been further concatenated to form x and y
vectors. In (5) we are using the first derivatives dx and dy of the raw coordinates
x and y. The model parameters b1 and b2 control the degree of asymmetry and
with b1 = 20 and b2 = 2 we obtain a highly asymmetric S. Due to the symmetric
formulation of SC we decompose S into its symmetric and skew-symmetric parts
S = Ssym + Sskew according to [10]. Because of its symmetric formulation, SC
disregards Sskew and diagonalizes only Ssym.

Given a high degree of asymmetry, SC fails to correctly identify the two
separate spirals as illustrated in Fig. 2(b). Conversely, SCE fully utilizes the in-
formation in the asymmetric component of S to achieve the correct separation
(Fig. 2(d)) and results in a better projection and thus higher inter-cluster sep-
arability than kernel-PCA. The application of SCE to image segmentation and
its relation to Ncut will be investigated in the next section.

4 Connection of SCE with Normalized Cuts

Ncut is the graph-theoretic formulation of SC with the objective to minimize a
normalized measure of disassociation [7]. Ncut operates on the 2nd generalized
eigenvector of a normalized weight matrix W where the normalization procedure
has the purpose to penalize large image segments. Ncut then computes the diag-
onal matrix D containing the sum of all edges and solves for the eigenvectors of
N = D− 1

2 WD− 1
2 with N(i, j) = W(i, j)/

√
D(i, i)

√
D(j, j). The second small-

est generalized eigenvector λ2 of W is a componentwise ratio of the second and
first largest eigenvectors of N [6]. We are interested if our Φ-based approximation
can provide computational savings over the Ncut algorithm while maintaining
the same image partition.

For comparative purposes we have acquired the Ncut demo software from
[26] and used the supplied parameters for the calculation of the adjacency matrix
based on intervening contour similarities. In order to compare the segmentation
results, we take the returned N matrix and compute Φ as outlined in Fig. 1.
There are two aspects which are non-trivial in connection with Ncut : definition
of a feature similarity and selection of a partitioning threshold which can take
the values of 0, median or a point that minimizes Ncut(A,B) [7]. In our SCE
formulation we center the columns of N before mixing with t for a number of z
iterations. We can also implement Nzt mixing iteratively by centering only the
mixed N2 × 2 components after each iteration. The successive centering results
in the ideal non-parametric case, where we partition the graph according only
to the signs (A = {Φ1 > 0}, B = {Φ1 ≤ 0}). For our experiments we used a
Dell Precision M6300 dual-core notebook with 2GB RAM and Matlab R2009a
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environment. The results of an experiment on the full resolution 321×481 images
from the Berkeley segmentation database are shown in Fig. 3.
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Fig. 3. Original 321 × 481 images from the Berkeley database are shown in the first
column and SCE-based results in the second column. The last three columns show
the Ncut-based result and the first and the second eigenvector returned by Ncut. This
diagram is best viewed in color.

The returned binary Ncut partition (Fig. 3, third column) is given by the
second computed eigenvector (fifth column). We observe the qualitative equiva-
lence between SCE segmentation based on Φ1 and the first eigenvector (fourth
column) returned by Ncut algorithm which also outputs a very narrow-banded
sparse matrix N with ≈ 0.1% non-zero elements. Due to the inherent sparsity
advantage which has its roots in the definition of similarities [7] Ncut does not
rely on the direct eigen-decomposition of N. Instead, it uses the iterative Lanczos
eigensolver [28] which, similarly to SCE, is also based on sparse matrix-vector
multiplications. In our experiments with the returned sparse N, the ρmin is
marginally low ρmin = −8.6025e− 004 which explains the high number of SCE
iterations (z ≈ 1e4) needed to approximate the first Ncut eigenvector.

5 SCE Extension with Latent Variables

It is known that although the eigenvectors are efficient in capturing the per-
ceptual organization features [16, 5, 6], binary Ncut solution does not guarantee
the correct discrete image partitions [7]. Conversely, in our SCE formulation,
the approximation to the first Ncut eigenvector is connected with the rotation
and scaling of two hyperplanes, implemented through iterative N by t multipli-
cations. Therefore, it is reasonable to assume that the foreground innovations
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can be extracted ahead of the eigenvector equivalence condition and in a much
shorter time. To approach these problems, we initially followed the idea of a
greedy search and designed an optimization procedure detailed in Table 2.

Table 2. Ising-based SCE extension.

function [Ω, A, B] = scecut(N, t, itmax)
k = cov(t); [u,v] = eigs(k); t = t ∗ u; t = t− t̄; it = 0;
while it<itmax
b = N ∗ t; b = b− b̄;
if std(b1) > std(b2)
t1 = −sign(b1) ∗ b2; t2 = b2;

else
t1 = −sign(b2) ∗ b1; t2 = b1;

end
it = it + 1;

end
Ω(:, 1) = t1; Ω(:, 2) = t2

A : Ω(:, 1) > 0; B : Ω(:, 1) ≤ 0;

Therein, we view the matrix N as the matrix of features and consider that N
is sparse. Further, we view the signs of a pair of columns as two latent (hidden)
binary support variables s1(+) and s2(−) and thus establish the connection with
the Ising model which is a special Markov random field (MRF) [3].

In Table 2 we define s1 = sign(b1) if std(b1) > std(b2) and s2 = sign(b2) if
std(b1) ≤ std(b2), where ”std” denotes the standard deviation. Instead of using
the Ising model to represent pixels, we work with similarities contained in the
normalized sparse matrix N. We denote the optimized feature vectors by Ω. The
initial condition is given by the pair of columns t1,2 which, with the change in
notation such that S ≡ N, can be obtained according to:

N ⇒ P ∈ RN2×H ⇒ pi = pi − p̄i ⇒ R⇒ c1,2 ⇒ t1,2 . (6)

Due to memory limitations we did not search for the global minimum on
correlation in N but instead operated on a subset matrix P of H randomly
selected columns. Thus, in the experiment shown in Fig. 4 we selected H = 100
in order to process a 321× 481 image from the Berkeley database.

Although the automatic selection of the stopping criterion is still an ongoing
work, we note that one possibility to obtain the optimal partition is to analyze
the dynamic oscillatory behavior of the correlation coefficient ρ(t1, t2) (first col-
umn in Fig. 4) and we observed that the optimal figure ground cut occurs at
the change in phase of ρ. The binary A (figure) and B (ground) partitions have
to be computed twice for the two successive iterations corresponding to the ρ
transition. The final segmentation result F combines the intermediate results at
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SCE, itmax=298, 41.24 sec

SCE, itmax=438, 55.13 sec

SCE, itmax=439, 54.26 sec

SCE, itmax=299, 37.3 sec SCE combined result

Ncut output seg=2, 126.3 sec

SCE combined output

Fig. 4. Concept of the Ising-based SCE. We analyze the dynamic oscillatory behavior of
the correlation coefficient to find the optimal transition. For the two iterations near the
transition point we compute the binary classification and combine the results to yield
the optimal figure ground segmentation. The transition is given by the point where the
hyperplanes are flipped around the Ω1 (strongest) axis as can be seen in the second
column. On our computer SCE runs faster (see the computational time above the
diagrams) than Ncut and returns more perceptually meaningful binary segmentation.

different iterations such that F = F1∩F2, where F1 = A1∪B1 and F2 = A2∪B2

(see Fig. 4 last row). Random subsampling of N (6) explains somewhat differ-
ent, but consistent with perceptual meaning, segmentation results in the second
and the third row of Fig. 4, where we used different random subsets of N. The
results in Fig. 4 show that not only the Ising-based SCE detects the foreground
innovations in the analyzed image but also has a factor 2 speed-up compared to
Ncut.

6 Conclusions and Future Work

In this paper we developed an efficient alternative to eigenvector-based feature
classification. We started by examining the conditions of the feature space equiv-
alence between the proposed SCE and the kernel-PCA outputs. We further have
shown that the proposed algorithm reduces the dimension of the feature space
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while improving classification performance and thus results in a better projection
and higher inter-cluster separability than kernel-PCA. In regard to image seg-
mentation, we demonstrated that the proposed method has potential to replace
eigenvector-based computation at least for applications considering the detection
of foreground innovations. Our future work will concentrate on generalizing SCE
to multiclass problems as well as investigating the regularization and stopping
criteria of the proposed Ising-based SCE extension.

Although the Ising model takes SCE beyond the equivalence pursuit, it shows
that segmentation without eigenvectors is a more flexible framework than that
offered by the standard spectral clustering.
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