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AUTOMATIC	ANALYSIS	OF	THE	ANGER	EXPRESSIONS	FROM	
THE	FACE	

Abstract— This paper describes a simple method for the 
detection of anger expressions from the face. The other basic 
expressions are not involved in this work. A single SVM with 
linear kernel is trained on neutral and angry examples from the 
D.C.U. face database, a dataset gathered for the purpose of the 
project. The face is extracted with a boosted cascade classifier 
similar to Viola and Jones’ object detector and processed by a 
restricted bank of 6 Gabor filters. The Gabor filter coefficients 
are the features used to train the classifier.  

Two approaches are addressed and compared: a single 
analysis of the whole face or a combination of the two face 
“hemispheres” separately analyzed. While the separate analysis 
is consistent to the model of the human visual perception of the 
expressions, it is outperformed by the single analysis approach. 
Both of the approaches perform badly on a complex 
generalization test, showing that the dataset is too restricted. On 
a more simple validation procedure 79% of detection accuracy is 
achieved with the single analysis method. 

 
 

Index Terms— Cascade Classifier, Face Recognition, Gabor 
Filters, Gesture Recognition, Image Sequence Analysis, Support 
Vector Machines, 

 

I.INTRODUCTION 
n a communication, a message is defined by its context, its 
content and its aim. While humans express content with 
words only, they employ other ways to convey the context 
and the aim of a message. A few examples of them are the 

voice tone or the body language. The high communicative 
power of the face makes of it one the major vector of 
“unspoken language” [11]. Being able to perform an automatic 

analysis of the expressions from the face would highly 
improve the human-machine interaction but also be a major 
innovation in a wide range of field, such as security 
monitoring, psychiatry, research on pain and depression, 
interactive teaching and telecommunications [1][2]. Due to 
these promising applications, the facial expression analysis 
has grown as an active research topic. However, many aspects 
are still to be resolved for a robust detection in a real-world 

application [11]. The diversity of the face view is one of the 
major issues to be overcome. Uneven illuminations, glasses or 
facial hair are likely to disrupt the analysis of the expression 
[11].  

 To cope with these issues, a lot of solutions are 
proposed following many different approaches. The analysis is 
based on different kinds of facial features inspired by 
anatomic knowledge (fiducial points) or by complex models 
(Active Shape Models, Hidden Markov Models) [11]. They 

are extracted by either tracking facial motion (difference 
images, feature point tracking, optical flow, motion models) or  
measuring the deformation of the face (based on images or on 
models) [11].   

 This project is mostly inspired from the work of G. 
Littlewort et al. described in [1]. They aim to detect the six 
universal expressions (anger, disgust, joy, sadness, fear, 
surprise) with a bank of 63 SVMs trained with Gabor 
coefficients selected with Adaboost. The face is first extracted 
from the frame using a version of Viola and Jones face 
detector. It is then processed by a bank of Gabor filters, of 
which the most representative coefficients are selected by 
Adaboost to train the bank of classifiers. Each SVM is trained 
on a different pair of expressions. Several approaches are 
described and compared, one of them achieving a 
classification accuracy rate of 86,3% on images of the Cohn 
Kanade dataset. [1] is also one of the few papers to discuss 
about the computation efficiency of the selected approach.  
The project described in this document is similar to [1] but 
also simpler as it is focused on the anger expression. A facial 
expression video set described in section II.1 was created to 
support this project. Different approaches  were tested and 
compared, they are described in section II and their 
performances are detailed in the section III.  
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5.  TRAINING THE SUPPORT 

VECTOR MACHINES (S.V.M.) 
The Gabor filters coefficients are used to train a C-

type SVM with a linear kernel.  
In [1], G. Littlewort et al. evaluated the performances 

of different SVM kernels for the purpose of facial expressions 
classification (Linear, polynomial, Laplacian and Gaussian). 
The linear kernel and unit-width Gaussian reach the best 
performances, but the linear kernel is selected because it is the 
fastest option [1], [9]. 

A C-type SVM allows the differentiation of n classes 
(with n ≥ 2) with possible imperfect separation [10]. The best 
hyperplane separating the n clusters of data is chosen in an 
attempt to minimize the number of misclassified examples and 
maximize the margin between the hyperplane and the closest 
examples [10]. The advantage is given to one of the approach 
in function of the regularization parameter C value. For a large 
value of C, the optimization minimizes the number of 
misclassified examples, even if it leads to smaller margins to 
the hyperplane. The opposite approach is taken for a small 
value of the regularization parameter.  

In this project, the SVM is trained with different 
values of C to find the optimal value minimizing the test set 
error [9]. A cross validation estimate gives the classification 
error for each new value of the regularization parameter. The 
training examples are a neutral and an angry expression at its 
highest intensity for each video of the D.C.U. face dataset 

 
In the second approach, a SVM is trained for each 

part of the face with the same type of examples. The 
classification decision is based on the addition of the 
classification value of the two parts of the face. 
 

III. RESULTS OBTAINED 
Four different tests were performed to measure the 

performance of the two chosen approaches. 

6. TEST WITH AN EXTERNAL 

DATASET 
First, a simple test was performed to measure the 

performance of the single analysis approach on an external 
dataset. The testing sample was composed of image of neutral 
and angry faces from 21 subjects selected from the Cohn-
Kanade dataset [3], [4].  

The algorithm, trained with the D.C.U. face database, 
scanned the images and predicted the expressions displayed by 
the subjects. The very bad results of the experiment motivated 
another test with the same testing sample. This time, the 
classification values of the neutral frames were compared 
subject by subject to the values of the angry ones. 

The results of the two tests are shown in the table 
below. 
 

The first test show bad results: only 6 out of 21 
subjects are correctly classified. Most of the expressions are 

misclassified, but the classification values of the angry frames 
tend to be higher that the neutral ones. The average difference 
between the two classification values is 0.7904, while typical 
classification values are included between -2 and 2. This 
consideration shows that the algorithm differentiates the two 
expressions but cannot recognize them without a reference.  

It leads to the second test for which a much better 
detection accuracy rate of 90.5% is reached.  

In the first test, most of the misclassifications are due 
to the same labelling of the neutral and angry faces, while the 
classification values follow the right trends. A solution to this 
issue would be to extend the training dataset to provide more 
examples. 

 
Direct detection accuracy 28,6% 
Detection Accuracy With 

neutral reference
90,5% 

Average classification 
distance between the neutral 

and angry examples 
0,7904 

	
Table	1:	Results	from	the	anger	recognition	test	with	
training	samples	extracted	from	the	CK	and	CK+	dataset	
[3],	[4].	

7. VALIDATION PROCEDURE WITH 

THE VIDEO SET 
The second test is much more complex, and was run with 

the two approaches. The algorithms were tested on videos of 
the D.C.U. face database following the Leave One Out Cross 
Validation procedure. In this procedure, all the subjects of the 
dataset except one are used to train the classifier. A video of 
the subject left over is used to test the classifier. This process 
is repeated with a different subject for the test as many times 
as there are subjects in the dataset. The global error rate is 
computed as the average of all the misclassified frames 
divided by the total number of frames of the video set.  The 
transient state between two expressions is not included in the 

test phase. 

Detection 
Accuracy Rate 

Direct 
Classifi
cation 

Classification 
with neutral 

reference 

Classification 
with average 
value of the 

first ten 
frames

Average on the 
whole dataset 
with the single 

analysis

42,66%  42.61% 37.63% 

Average on the 
whole dataset 

with the 
combined 
analysis

30,82% 25.77% 43.41% 

	
Table	2:	Results	from	the	anger	recognition	test	with	
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training	samples	extracted	from	the	CK	and	CK+	dataset	
[3],	[4].	
	

As the table 2 shows above, both of the tested methods 
performed badly with accuracy rates of 42,66% and 30,82%. 
Surprisingly, the second approach combining the analysis of 
the two parts of the face exhibits the worse results. The 
separate analyses of the face interfere, leading to an incorrect 
prediction. In particular, the classification of the lower part of 
the face has proven to be unreliable. This is due to the fact that 
it is easier to provide good training examples of the upper part 
of the face. A clear distinction between the neutral and angry 
state is harder to perform with the lower part of the face. The 
solution to this issue would be to investigate more complex 
decisions schemes to combine the two analyses, such as the 
MLR (multinomial logistic ridge regression) reported in [1]. 

As the results of the direct classification method are bad, the 
validation procedure was run again, using this time, the 
classification value of the first frame as the neutral reference. 
Therefore, every frame with a classification with a 
classification higher than this reference is interpreted as an 
angry frame. This approach is motivated by the fact that for 
some subjects, the shape of the eyebrows suggests the 
characteristic frown of the anger expression. As every testing 
video starts with a neutral face, the first frame can be used as a 
reference. The results with this approach are even worse, with 
accuracy rates of respectively 42,61% and 25,77%. 

Another attempt is to use the average of the first 10 frames 
classification value as the neutral reference. This allows to 
reduce the probability that the reference value is an outlier. 
This strategy shows also bad results, with respectively 37,63% 
and 43,41% of detection accuracy. 

These results show that the validation procedure is too 
complex and that the detection can hardly be performed on 
new subjects. The inability of the algorithm to generalize is 
due to the restricted size of the dataset, not broad enough to 
cope with the high diversity of the human face. 

8. SECOND VALIDATION 

PROCEDURE WITH THE VIDEO SET 
The second validation procedure is a simpler version of the 

Leave One Out Cross Validation procedure suggested from 
the bad results of the previous validation procedure. This time, 
all the videos of the dataset but one are used for training, the 
video left behind being used for the test phase. Each of the 18 
subjects of the dataset features in at least three training videos. 
The testing sample is therefore a new sample, but from a 
subject that the classifier has been trained with. This 

procedure is repeated as many times as there are subjects in 
the dataset. 

Detection 
Accuracy Rate 

Correct 
Classification 

False 
Negative 

False 
Positive 

 Average rate on 
the whole dataset 
with the single 
analysis 

79% 12,23% 8.76% 

 
Table	3:	Results	from	the	anger	recognition	test	with	
training	samples	extracted	from	the	CK	and	CK+	dataset	
[3],	[4].	
	

 This procedure shows much better results with an 
average detection accuracy rate of 79%. For three testing 
samples a detection accuracy of 100% is even achieved. The 
results in table 3 also show that the algorithm misclassifies 
more often the angry faces (12,23% of the frames) than the 
neutral ones (8.76%). 
 

9. EXPERIMENT WITH A SIMILAR 

UNIVERSAL EXPRESSION 
Most of the state of the art solutions developed to 

automatically detect facial expressions attempt to recognize 
the six universal expressions reported by P. Ekman: anger, 
sadness, happiness, surprise, fear and disgust [1],[6], and [11]. 
 In this project, the outcomes of the analysis are either 
anger or neutral, but the neutral actually refers to “all the 
expressions but anger”.  This solution was selected because it 
is too complex to provide a comprehensive sample of all the 
facial expressions that differ from anger. At this stage, it has 
then been assumed that no other expression would interfere in 
the analysis. However, this is too restrictive for a real world 
application. It is important to know the influence of the others 
expressions in the detection process. 

The last test described in this report involves the expression 
of disgust which is really close to anger (see Fig. 6). 

The testing set is composed of neutral and disgusted frames 

of 50 subjects selected from the CK dataset [3], [4]. The 
classifier predicting the nature of the expression has been 
trained on the D.C.U. face dataset.  

As expected, 72% of the disgusted expressions are 
misclassified as anger expressions. This is due to the similarity 
of the two expressions and to the nature of the training. 
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