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Abstract

This paper presents a new approach to Dynamic Texture (DT) classification based on the spatiotemporal
analysis of the motion. The Grey Level Co-occurrence Matrix (GLCM) is modified to analyse the distri-
bution of the magnitude and the orientation of the Optical Flow which describes the motion. Our method
is therefore called Combined Co-occurrence Matrix of Optical Flow (CCMOF). The potential of a mul-
tiresolution analysis of the motion is revealed by experimentation. We also demonstrate the importance of
the analysis of motion in the spatiotemporal domain. Finally, we demonstrate that adding a spatiotemporal
motion analysis (CCMOF) to an appearance analysis (Local Binary Patterns on Three Orthogonal Planes
(LBP-TOP)) significantly improves the classification results.
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1 Introduction

Dynamic Texture (DT) is an extension of static texture in the temporal domain, introducing temporal variations
such as motion and deformation. Doretto et al. [6] describe a DT as a sequence of images of moving scenes
that exhibits certain stationary properties in time. Examples of natural DTs include smoke, clouds, trees and
waves. The analysis of DTs embraces several major problems including classification, segmentation, synthesis
and indexing for retrieval. Those are essential for a large range of applications including surveillance, medical
image analysis and remote sensing. This paper focuses on the classification of DTs. However, the developed
algorithm and ideas can be used in other DT problems. The aim in DT classification is to assign an unknown
sequence to a set of DT classes.
The analysis of motion for DT classification is of particular interest due to both the logic of the approach and the
positive results obtained in the literature. Motion, along with shapes and color, is a key element in the analysis
of a scene by the human visual system [1]. Moreover, while watching a sequence of images, the human’s brain
interprets the succession of still frames as a dynamic moving scene [21]. Therefore, combining a motion and an
appearance analysis seems to be a natural way of dealing with dynamics. However, the literature either focuses
on the spatial distribution of the Optical Flow (OF) (motion based) or on the pixel intensities’ distribution in the
spatiotemporal domain (statistical and transforms). A significant amount of information is lost by neglecting
the evolution of the motion over time. In this paper, we present two new methods for DT classification which
explore the potential of the analysis of the motion in the spatiotemporal domain. We use a co-occurrence matrix
approach applied on the OF field in thespatiotemporal domain. We investigate the positive impact of a temporal
multiresolution analysis of the motion as well as the combination of motion and appearance analysis.



2 State of the Art

The main methods developed for DT analysis can be classified in four categories, namely statistical, motion
based, model based and spatiotemporal transforms.
Statistical approaches mainly use standard texture analysis in a new manner to include the temporal dimen-
sion. The Grey Level Co-occurrence Matrix (GLCM) is used by Flores et al. [8] to extract a set of features on
each frames of the DT sequence. This is the most basic adaptation of a static texture analysis method to DT
analysis. Hu et al. [14] also use well-known spatial descriptors on each frame but combine them with GLCM
features calculated in the temporal domain to capture the correlation of neighbouring pixels in time. Boujiha
et al. describe in [2] a spatiotemporal co-occurrence matrix approach, extracting co-occurrence matrices on a
3D (x, y, t ) neighbourhood. In a similar manner, Zhao and Pietikäinen extend the Local Binary Pattern (LBP)
to DTs by creating the LBP Volume (LBP-V) [24] and the LBP on Three Orthogonal Planes (LBP-TOP) [23].
The latter extracts LBPs on three planes: XY which is the classic spatial texture LBP as well as XT and YT
which consider temporal variations of the pixel intensities.
Realising the limitations of only analysing a DT as a 3D image, motion based methods were developed. Ex-
tracting the motion between consecutive frames of the DT sequence can be achieved, among other methods,
by Normal Flow [16], OF [4, 7, 15], or Local Motion Pattern (LMP) [9]. Various statistical analyses have
been developed to extract features describing the spatial distribution of the motion field such as GLCM, Fourier
spectrum, difference statistics [16], histograms [4, 9, 15] and statistics on the derivatives of the OF [7]. These
motion features are often logically combined with features based on spatial statistical analyses.
Introduced by Saisan et al. in [20], model based methods aim at estimating the parameters of a Linear Dy-
namical System (LDS) using a system identification theory. This approach is designed for a synthesis problem.
However, the estimated parameters can be used for a classification task [6]. Positive results were obtained in
the learning and synthesis of temporal stationary sequences such as waves and clouds [6]. However, the model
based approach raises several difficulties such as the distance between models lying in a non-linear space and
the non-invariance to rotation and scale. Finally, it is not suitable for segmentation since it assumes stochastic
and segmented DTs. Ravichandran et al. [18] overcome the view-invariance problem using a Bag of dynamical
Systems (BoS) similar to a Bag of Features with LDSs as feature descriptors, obtaining precise results.
In the same manner as statistical methods, several transform approaches used in texture analysis were extended
to spatiotemporal transform for DT analysis.Derpanis and Wildes [5] use spacetime oriented filters extract-
ing interesting features which describe intrinsic properties of the DTs such as unstructured, static motion and
transparency. In [17], Qiao and Wang use 3D Dual Tree Complex Wavelet combining an appearance with a
dynamic analysis. Finally, Gonçalves et al. use spatiotemporal Gabor filters in [11].

3 Classification using Extended Plots and multiresolution

In this section, we develop a DT classification method based on the analysis of the OF. The idea of extracting the
history of motion on Extended Directional and Extended Magnitude Plots developed in [16] is further explored
in particular with a multiresolution analysis, different features and a rotation invariant method.

Co-occurrence matrix background The Grey Level Co-occurrence Matrix (GLCM) aims at describing the
relationships between neighbouring pixel intensities by analysing their joint probability function [12, 13]. The
GLCM summarizes the occurrence of pairs of pixels on a texture image. The (i , j )th entry of the matrix
represents the number of times a pixel with intensity value i is separated from another pixel with intensity
value j at a distance d in the direction θ. This matrix contains meaningful information about the distribution
of the pixel intensities as indicated by the 14 Haralick’s features [12, 13].

Method description



magnitude value mapping
]3.555, 4] 0

]3.111 , 3.555] 31
]2.666 , 3.111] 63
]2.222 , 2.666] 95
]1.777 , 2.222] 127
]1.333 , 1.777] 159
]0.888 , 1.333] 191
]0.444 , 0.888] 223

[0 , 0.444] 255
Table 1: Magnitude mapping

OF extraction: The OF is calculated between every two consecutive
frames of the sequence using Black’s algorithm [22]. As suggested by
Sun et al. [16], most magnitudes being in the range zero to four pixels,
the flow vectors with magnitudes greater than four pixels are regarded as
noise and called stationary points. The other points are called moving
points.
Quantisation: Based on [16], the magnitude and the direction are
mapped into the Magnitude Plots and the Directional Plots. The mag-
nitude is arbitrarily mapped into nine grey levels shown in Table 1. Re-
gions of darker grey in the Magnitude Plots correspond to regions with
larger normal flow magnitudes. The direction is mapped into nine grey
levels as shown in Figure 1.

Figure 1: Quantisation of normal flow direction into 16 grey levels. (figure extracted from [16])

Extended Plots: The Extended Magnitude Plots (EMPs) and Extended
Directional Plots (EDPs) [16] are calculated in order to trace the motion
history. τ Magnitude Plots ft are superimposed to construct an EMP, where t ∈ [1,τ] is the position of the plot
in the temporal domain. The EMP F (i , j ) at pixel location i and j takes the value of the last moving point
in ft (i , j ). It takes the value 255 if f1(i , j ), f2(i , j ), . . . , fτ(i , j ) are only stationary points. The EDP G(i , j ) is
similarly calculated from τ Directional Plotsg t (i , j ). Following the setup from [16], we choose τ= 5.
Multiresolution: A basic multiresolution analysis is performed, with the purpose of demonstrating the potential
of this approach in a DT classification problem. The original sequences are decomposed into several temporal
resolutions by applying a temporal Gaussian convolution and downsampling.
Dynamic Texture features: The co-occurrence matrices of the EMPs (9 by 9 matrices) and of the EDPs (10 by
10 matrices) are calculated and averaged over the whole sequence for each resolution. An angle θ = 0° and
a distance d = 1 pixel between the pixel neighbours are chosen in this experiment as a proof of concept. The
final features are composed of the mean co-occurrence matrices of each resolution concatenated in one single
feature vector.
Rotation Invariance: In order to further estimate the robustness of the algorithm, rotation invariance is devel-
oped in the feature extraction process. The rows and columns of the co-occurrence matrices are re-organised
depending on the dominant orientation of the EDPs.This is similar to rotating the OF vectors so that the dom-
inant direction always points leftwards. Hence, similar features are extracted, for instance, from sequences of
cars moving in different directions.

Results and discussions The developed algorithm is tested on the Dyntex++ database [10]. It consists of 36
classes of 100 sequences of size 50*50*50. The experimental setup is similar to [10, 18, 19]. 50 sequences
are randomly selected from each class as the training set, and the other 50 sequences are used in testing. This
process is repeated 100 times to obtain the average classification rate. We use a linear Support Vector Machine
(SVM) classifier [3]. The classification results are summarised in Table 2 and compared to the state of the
art in Table 3. The state of the art method which obtains the best results ([19]) uses PCA-cLBP (PCA on the



concatenated LBP), PI-LBP (Patch-Independent), PD-LBP (Patch-Dependent) and a super histogram averaging
the histograms across the sequence. Finally it uses a RBF SVM classifier. Our experiment does not aim to
maximise the classification results, but rather to demonstrate the importance of the OF, the multiresolution
analysis and the rotation invariance in a DT classification framework. It performs only 2.7% worse than the
state of the art on the Dyntex++ database. The multiresolution analysis greatly improves the performance of
our method from 74.8% to 89.7% with respectively one and four resolutions. Moreover, one could expect the
classification success rate to dramatically drop with the rotation invariance since crucial information about the
direction is lost. However, it is interesting to point out that we only measure a drop of 2.3% and 1.6% with
respectively four and one resolutions.

number of resolutions 1 2 3 4
normal 74.8% 84.4% 87.4% 89.7%

rotation invariant 73.2% 82.5% 85.6% 87.4%

Table 2: Global classification results of our method on Dyntex ++ for different numbers of resolutions

Method Classification rate
DL-PEGASOS [10] 63.7%

Extended Plots - 4 resolutions (our method) 89.7%
PCA-cLBP/PI-LBP/PD-LBP+super histogram + RBF SVM [19] 92.4%

Table 3: Classification results comparison with the state of the art on Dyntex++

Finally, it should be noted that some sequences are misclassified into classes with very similar motion. For
instance, eight sequences of the class 27 "leaves on branches swaying with wind" are misclassified into the
class 33 ("branches swaying in wind (no leaves)". Adding a spatial analysis to this method would overcome
this issue.

4 Combined Co-occurrence Matrix of Optical Flow (CCMOF)

Introduction As shown in section 3, the co-occurrence matrix approach developed in [12, 13] can be used
to characterise the distribution of the OF. However, creating a co-occurrence matrix from a vector image is
not as straightforward as the classic GLCM extracted from pixel intensities. Indeed, the occurrence of two
values must be taken into account such as the x and y components of the flow vectors or their magnitudes
and directions. This is why the EDPs and EMPs were used in [16]. However, analysing the two components
separately gives rise to a loss of information carried by the joint distribution. Furthermore, the quantisation of
the magnitude is not as simple as the quantisation of a grey-scale image or an orientation image. Grey-scale
images and orientation images are respectively defined in the bounded intervals [0,255] and [-180,180], whereas
the magnitude is only limited by the size of the image. In [16] and section 3, flow vectors with a magnitude
larger than four pixels were considered as noise which is not the case in many DT sequences. Extending the
quantisation to the maximum magnitude that a correct flow vector can have (maximum magnitude of all the
sequences, up to 25 pixels length) is not a convenient solution either. In order to overcome these issues, a new
framework combining the magnitude and the orientation of the flow is developed using individual quantisation
levels of the magnitudes for each sequence.

Method description The framework of our CCMOF method is illustrated in Figure 2. The OF is calculated
between every two consecutive frames of the DT sequence, using the algorithm from [22]. A sequence of 100
frames thus results in 99 motion vector images. In the second block, the magnitude and the orientation of the OF
are calculated from the x and y values of the motion vectors. Subsequently, the magnitude and the orientation
are jointly quantised. As shown in Figure 3, eight bins of magnitude and eight bins of orientation are used,
resulting in 64 bins spanning the OF vector values. For each sequence, the magnitude is linearly quantized
in eight bins in the ranges [0, Ms] ([0, 1

8 Ms], [ 1
8 Ms , 2

8 Ms], . . . , [ 7
8 Ms , Ms]), where Ms is the largest magnitude



Figure 2: Feature extraction diagram of the CCMOF

of the sequence after removing large outliers. Finally, the co-occurrence of the neighbouring flow vectors is
calculated, resulting in two 64 by 64 CCMOFs; one for the spatial, the other one for the temporal domain. The
matrix extracted in the space domain summarises the occurrence of the pairs of neighbours on the x and y axes.
This co-occurrence is calculated on every frame, then added up on the entire sequence and normalised. In the
time domain, the same process is applied with neighbours on the temporal axis. These co-occurrence matrices
differ from the classic GLCM as they combine two dimensions. The definition of new features is necessary
in order to extract the distributions of the magnitude and of the orientation as well as their joint distribution.
In total, 19 features are calculated based on Haralick’s features [13]; 11 in the spatial domain and eight in
the temporal domain: The Energy, Contrast, Orientation Contrast, Magnitude Contrast, Correlation, Sum
of Squares Variances, Homogeneity and Entropy are extracted from both the spatial and temporal CCMOFs.
The Dominant Orientation, Dominant Magnitude and Weighted Dominant Orientation are calculated only in
the spatial domain. We need to slightly modify the calculation of the Haralick’s features [13] regarding the
difference n between neighbours. In Haralick’s features, the difference between neighbours n is defined as
Equation (1) and represents the variation in the neighbours’ intensities.

n = |i − j |, n ∈ {q1, q2, . . . , qN } (1)

Where i , j ∈ {q1, q2, . . . , qN } represent the quantised values of the pair of neighbours and q1, q2, . . . , qN are the
N discrete grey levels of quantization. In our case, n is chosen as the Manhattan distance between neighbour
vectors (Equation (2)).

n = |M̂i − M̂ j |+ |Ôi −Ô j | mod 4, n ∈ {0;1;2; . . . ;11} (2)

Where M̂i , M̂ j are the quantised magnitudes of the neighbour vectors and Ôi ,Ô j their orientations. On Figure
3, the distance between the two vectors is n = 2. Finally, it was observed by examining the CCMOFs and the
OF that the smallest magnitudes in a vector image are often due to noise on a static part of the DT. For instance,
in a traffic DT, OF vectors are calculated on the supposedly static road with magnitudes close to zero. Their
orientation is therefore not relevant and reduces the discriminative power of the features calculated from the
CCMOFs. Therefore, the same 19 features are calculated from the CCMOFs in which the bin corresponding to
the smallest magnitudes is removed (resulting in 7 by 8 matrices). A total of 38 features is thus extracted from
each DT sequence.

Figure 3: OF quantisation with two vector examples (M̂ = 7, Ô = 6 (left); M̂ = 6, Ô = 7 (right)).

DT recognition, as proposed in [19], should largely rely on appearance analysis as it contains the most discrim-



inative information. Therefore, we combine our motion features with LBP-TOP features [23]. Thus, we cover
the analysis of the motion (CCMOF) in the spatiotemporal domain as well as the pixel intensities’ distribution
(LBP-TOP) in the spatiotemporal domain.

Results and discussion A sequential feature selection is applied in order to determine those which discrim-
inate the best between classes and to remove irrelevant and redundant features.We use a K-Nearest Neighbors
(K-NN) classifier with K = 1. Angles θ = 0°, θ = 90° (x and y axes) and a distance d = 1 pixel between neigh-
bours are chosen for the construction of the co-occurrence matrices. For the testing of this method, a dataset
is created using sequences from the Dyntex database. The current benchmarks (Dyntex, Dyntex++, UCLA)
suffer, in our point of view, several drawbacks. We sought to rectify those by focusing on videos which exhibit
only one DT and contain the same dynamic on the entire space-time domain. We also select sequences which
depict different scenes, from various viewpoints. The resulting dataset contains 10 classes of DTs, each with
20 sequences of size 100*100*50. The experimental setup is the same as in section 3. 10 sequences are ran-
domly selected from each class for the training set. The other 10 sequences are used for testing. The confusion
matrix presenting the classification results using the CCMOF features in combination with LBP-TOP is shown
in Figure 4 and the overall classification results are presented in Table 4. One can notice that the main misclas-
sifications occur for very similar classes ("water"/"waves" and "foliage"/"trees") which share similar dynamics
and spatial texture.

Figure 4: Confusion matrix of CCMOF + LBP-TOP on
the developed database

Method Classification rate
CCMOF 68.0%

LBP-TOP [23] 81.7%
LBP-TOP + CCMOF 84.4%

Table 4: Classification results of CCMOF and
LBP-TOP on the developed database

The motion analysis using the CCMOF approach significantly improves the classification of our dataset when
combined with the analysis of the spatiotemporal distribution of the pixel intensities (LBP-TOP). Solely analysing
the motion is not sufficient to obtain a classification as accurate as the literature. It confirms that a DT recogni-
tion system mostly relies on the spatial texture analysis [19] and the motion analysis provides complementary
information that can improve the performance.

5 Conclusion

In this paper, we investigated the analysis of the OF in the spatiotemporal domain and the combination with
complementary spatiotemporal features based on pixel intensities’ distribution. Section 3 showed a simple use
of the OF for DT classification with co-occurrence matrices as well as the potential of a temporal multiresolution
analysis of the motion. Section 4 presented good results obtained with our new method CCMOF. In particular
it showed the importance of the analysis of the motion in the spatiotemporal domain, the combination of an
appearance and motion analysis as well as the joint analysis of the magnitude and orientation of the motion.
Our CCMOF approach greatly improves the state of the art on the developed database when combined with
appearance analysis (LBP-TOP).
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