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Abstract

In this paper we describe the development of a computationally efficient computer-

aided detection (CAD) algorithm based on the evaluation of the surface morphology

that is employed for the detection of colonic polyps in computed tomography (CT)

colonography. Initial polyp candidate voxels were detected using the surface normal

intersection values. These candidate voxels were clustered using the normal direc-

tion, convexity test, region growing and Gaussian distribution. The local colonic

surface was classified as polyp or fold using a feature normalized nearest neighbor-

hood classifier. The main merit of this paper is the methodology applied to select

the robust features derived from the colon surface that have a high discriminative

power for polyp/fold classification. The devised polyp detection scheme entails a low

computational overhead (typically takes 2.20 minute per dataset) and shows 100%

sensitivity for phantom polyps greater than 5mm. It also shows 100% sensitivity for
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real polyps larger than 10mm and 91.67% sensitivity for polyps between 5 to 10mm

with an average of 4.5 false positives per dataset. The experimental data indicates

that the proposed CAD polyp detection scheme outperforms other techniques that

identify the polyps using features that sample the colon surface curvature especially

when applied to low-dose datasets.
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1 Introduction

Colon cancer is the second leading cause of cancer deaths in the developed

nations [1–3]. Early detection and removal of colorectal polyps via screening

is the most effective way to reduce colorectal cancer mortality [4–7]. Virtual

Colonoscopy (VC) or CT Colonography (CTC) [8–11] is a rapidly evolving

technology for the detection of colorectal polyps and permits interactive view-

ing with two-dimensional (2D) and three-dimensional (3D) image display tech-

niques. This medical imaging method is being widely investigated as a non-

invasive examination procedure for the detection of colorectal polyps and many

researchers have advocated CTC as the optimal mass screening technique for

colorectal cancer [12]. Since the introduction of CTC, a significant number of

studies have been conducted to evaluate the performance of computer aided

detection (CAD) of colonic polyps. In this regard, Vining et al. [13] proposed

a method to detect the colonic polyps by analysing the local curvature of the

colon surface and they claimed that a 73% sensitivity with 9 to 90 false posi-

tives (FP)/dataset was attained. Summers et al. [14,15] developed a method

that identifies the convex surfaces that protrude inward from the colon by eval-
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uating the principle and mean curvature of the colon surface. Their method

achieved 29% to 100% sensitivity and 6 to 20 FPs/dataset depending on the

filter chosen to evaluate the curvature. Yoshida et al. [16,17] proposed to use

of features such as the shape index (cup, rut, saddle, ridge, cap) and curved-

ness values on small volume of interest and apply fuzzy clustering for polyp

detection. They reported 89% sensitivity with 2.0 FP per dataset, but FP per

polyp increased by a factor of 1.5 when sensitivity was 100%. Paik et al. [18]

proposed a technique based on contour normal intersection to detect surface

patches along the colon wall and shows 85% to 90% sensitivity with a high

rate of FP. Kiss et al. [19–21] combined the surface normal distribution and

sphere fitting to produce 90% polyp sensitivity for polyps higher than 6mm

with 2.82 FPs/dataset. Recently, Kiss at el. [22] employed the slope density

function to discriminate between polyps and folds and their technique shows

85% sensitivity for polyps higher than 6mm with 2.48 FPs/dataset. More re-

cently, Paik et al. [23] developed a new technique based on surface normal

overlap where the sensitivity was 100% with 7.0 FPs/dataset. Acar et al. [24]

suggested a method that detects spherical patches by Hough Transform (HT)

[17] and the algorithm analyses them using the optical flow to decide if they

are polyps or not. The sensitivity rate of their method was 100%, specificity

was 85% and the level of false positives per dataset was 3. Other interesting

automated CAD-CTC techniques include the work of Gokturk et al. [25], Acar

et al. [26], Wanga at el. [27], Jerebko et al. [28] and Kiraly et al. [29].

All the above mentioned CAD techniques show different levels of accuracy

and indicate that future investigations are needed in order to obtain a robust

technique for polyp detection. In this paper, we propose a computationally

efficient method for polyp detection based on surface normal concentration,
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3D histogram and morphological features extracted from the colon surface.

The main contribution of this paper is the inclusion of these features that

maximize the discrimination between folds and polyps. Also we propose a

new approach for data training in order to increase the identification rate for

small polyps. The resulting polyp detection algorithm shows a high sensitivity

for polyps > 5mm even when applied to low-dose CT datasets.

2 Materials and Method

Prior to their scheduled examination all patients were instructed to take a

low-residue diet for 48 hours followed by clear fluids for 24 hours. Prior to

the day of examination, patients were prescribed one sachet of Pixcolax at

8.00, a second sachet of Pixcolax at 12.00, a sachet of clean prep in a litre

of cold water at 18.00 and a Senokot tablet at 23.00. Before the CT scan,

a rectal tube is inserted and the colon is gently insufflated with room air to

the maximum level tolerated by the patient. All scans were performed on a

commercially available Siemens Somatom multi-slice Spiral CT scanner. The

scanning parameters were 120kVp, 100mAs, 2.5x4mm collimation, 3mm slice

thickness, 1.5mm reconstruction interval, 0.5s gantry rotation. The scanning

time ranges from 20 to 30s, and the image acquisitions were performed in a

single breath-hold. The procedure was first performed with the patient in the

supine position and then repeated with the patient in the prone position. The

number of CT images per scan varies from 200 to 350 depending on the height

of the patient. Typically, the size of the volumetric data is approximately

150MB.
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3 CAD Algorithm

This paper details the development of a CAD polyp detection technique that

evaluates the morphology of the local 3D data. Figure 1 gives an overview of

the proposed algorithm, which consists mainly of four steps that are detailed in

the following sections of the paper. Sections 3.1 and 3.2 describe the technique

used for segmentation and polyp surface generation. Section 4 explains the

feature extraction and Section 5 details the adopted classification scheme.

3.1 Segmentation

CT images provide high contrast between the gas and colon surface and the

gaseous region can be successfully segmented by applying a standard region

growing algorithm [30]. Sometimes remaining residual material and water can

create collapses in the colon and the region growing algorithm may require

multiple seed points to segment the entire colon. The threshold value for seg-

mentation was set to -800HU, as suggested in [13,31]. The colonic wall (CW)

is defined as the adjacent voxels having HU values higher than -800HU.

3.2 Polyp Surface Detection

3.2.1 3D Hough Transform

The normal vector for each voxel in the CW -set was calculated using the

Zuker and Hummel operator [32]. Each voxel in the CW creates 7 Hough

points (HP) (see Figure 2) in the normal direction from 2.5mm to 10mm (2.5,
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3.75...8.75, 10.0) by varying the parameter t in Eq. 1,

p = p1 + t× n (1)

where p1 is the colon wall voxel and n is the normal vector to that voxel. In

Eq. 1 the value of t starts from 0.1 and changes at the step size of 0.1mm

until all the HP points situated at distances 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, and

10.00mm are generated.

3.2.2 3D Histogram

The HPs are uniformly distributed from 2mm to 10mm along the normal

vector direction for each voxel of the colon wall (CW) and the intersections

between the HPs are recorded (see Figure 2) in a 3D histogram. Thus, the 3D

histogram records the intersections between the HPs that are in fact intersec-

tion of the normal vectors. As the normal vectors are determined using 3D

local operators their orientation is sensitive to abrupt changes in the 3D struc-

ture of the CW, and to reduce the level of noise in the histogram a weighted

smoothing procedure is applied using the expression illustrated in Eq. 2,

Vsmooth = δ × V oxel +
26
∑

0

(1− δ)× V oxelneighbour
26

(2)

where δ is equal to 1/
√
2.

3.2.3 Non Maximum Suppression

After smoothing, all HP’s having histogram values higher than 4.0 intersec-

tions are considered as initial candidate center points (ICCP) of the candidate

polyp surfaces. Non maximum suppression was applied in the ICCP set to cre-
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ate potential center points. The cluster of surface points was created by includ-

ing the HPs and their corresponding surface voxels within a certain distance

from ICCP (10mm to 25mm). It is useful to remember that folds are gener-

ally shaped like cylinders and show a uniform distribution of the number of

intersections generated by the HPs along the axis of the cylinder. Conversely,

polyps resemble either spherical or ellipsoidal shapes and show a narrow peak

in the 3D histogram. A minimum distance of 10mm was experimentally se-

lected in initial clustering to include the highest possible number of surface

points in the clustered surface. The distance threshold varied from 10mm to

25mm depending on the histogram value for each center point in ICCP. The

candidate surface cluster may include surrounding non-convex surface points

or disconnected surfaces (Figure 3) that may create problems when the can-

didate surface is analysed to decide if it is a polyp or a fold. To eliminate

these undesired surface points from the initial cluster, a Candidate Surface

Processing procedure is applied. This procedure is described in detail in the

next section.

3.2.4 Candidate Surface Processing

To remove the non-convex surface points and the disjoint points from the

initial cluster, we developed a Candidate Surface Processing procedure that

calculates the Gaussian mapping for each cluster and performs a non-convex

surface voxel removal test.

1. Gaussian Center and Radius Detection: To calculate the center and radius

of each cluster, a Gaussian distribution depicted in Eq. 3 was calculated for
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each HP of the cluster,

GMi =
N

∑

j=1

e(−x2/2.0×σ) (3)

where the variable x is the distance between the HPs, σ is the standard devi-

ation and is set to 1. The quantity N is the number of HPs in the cluster and

j takes values between 1...N.

The HP with the highest Gaussian distribution was set as the center of the

clustered surface and the Euclidian distance between the center and its corre-

sponding surface point is the radius of the cluster.

2. Surface Convexity Test: Let S be a surface voxel, n be the normal vector

at the surface voxel S and Q be the intersection point of the surface normal

and the perpendicular line from the center of the cluster to the surface normal

(see Figure 4). To remove the non-convex points from the initial cluster we

employed a simple surface convexity test. In this regard, the non-convex sur-

face point S will be removed from the cluster if the dot product < SQ, n > is

less than zero. In Figure 4, the points s1 and s4 and their associated HP will

be removed from the cluster as they do not pass the convexity test. We also

check the normal distance from the center of the cluster (CP) to the surface

normal at position SP and the distance between the surface point (SP) and

the intersection point (IP) as illustrated in Figure 5. If the distance between

the surface point SP and the intersection point IP is larger than 10mm (the

maximum HP distance), the surface point SP is eliminated from the candidate

surface.

After the removal of the non-convex surface voxels, each cluster was further

processed to evaluate discontinuities in the surface under examination. If dis-
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continuities exist in the surface area, the cluster is divided into multiple clus-

ters and their Gaussian maps, centers and radius are recalculated (see Fig-

ure 6).

4 Feature Extraction

Our aim is to calculate the features associated with each cluster surface, which

will be considered as input for the classifier. The features must be selected in

order to maximize the discriminative power between polyps and folds. Re-

call that the nominal model for polyp is either spherical or ellipsoidal, while

the nominal model for fold is cylindrical [19,23]. The features we compute

are: Gaussian distribution, sphere fitting error and radius, three axis of the

ellipsoid, ellipsoid fit error.

The Gaussian distribution employed to estimate the center and radius of each

cluster was calculated in the candidate surface processing stage(see Section

3.2.4). Sphere fitting for each cluster was performed in two phases. Firstly,

the error in the least square sphere fitting [33,34] was calculated using the

existing Gaussian center and the Gaussian radius of the cluster. Secondly, the

cluster radius and the center point were re-calculated using a least square

sphere fitting algorithm [33,34]. Experimental results indicate that for spheri-

cal polyps, the Gaussian radius and the cluster center were very close to those

obtained using the least square estimated sphere and as a consequence the

error in fitting is small. For folds the least square estimated radius is higher

than the Gaussian radius and the sphere fitting error is significantly higher

than the fitting error for polyps. This is illustrated in Figure 7 (note that the

polyp and fold classes are ordered by size in ascending order) where the sphere
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fitting error for a large variety of polyps and folds is plotted.

The principal axes of the fitted ellipsoid and its associated estimation error

[33,34] were calculated for each polyp candidate surface and its derived half-

radius surface. The half-radius surface voxels are determined from the existing

cluster and include those surface voxels which have a distance from the cen-

ter of cluster to the surface normal less than a half radius threshold (HRT).

The HRT is selected in conjunction with the Gaussian distribution value and

varies from 2mm for small cluster surfaces to 5mm for large cluster surfaces.

The minimum value of HRT (2mm) was experimentally selected. The Surface

Change Rate (SCR) value computed using Eq. 4 is minimal for polyps (see

Figure 8) but it is large for fold (see Figure 9, 10),

SCR = (NT −NH)/NH (4)

where NT is the number of surface voxels in the cluster and NH is the number

of surface voxels in the half radius surface.

It was also found that the change in the major axis direction of the fitted

ellipsoid for the candidate surface and the half radius surface was significantly

higher for folds when compared to polyps (see Figure 11).

The other features that are used for classifying the candidate surface as polyps

and folds are the sphere radius, change in sphere radius, principle axes of ellip-

soid fitting, change in ellipsoid fitting error, change in Gaussian distribution.

All the above mentioned features exhibit high discrimination between polyps

and folds as shown in Figures 7,8, and 11 and these features are employed for

polyp detection by our CAD-CTC system.

10



5 Classification

For polyp/fold classification we employed two classifiers, namely the multiple-

class-segregated feature normalized nearest neighborhood (FNNN) classifier de-

tailed in [35] and Probabilistic Neural Network (PNN) [36] in order to evaluate

their performance with respect to the detection of true polyps and the reduc-

tion of false positive in CAD-CTC. The FNNN classification scheme consists

of two stages. Firstly, the training database is created by using the features

detailed in the previous section for each class of polyps and folds. Features of

each class were normalized in order to avoid the situations where the features

with the largest values subdue the remaining ones. The feature normalization

scheme was performed in order to normalize each feature to zero mean and

unit variance as illustrated in Eq. (5) and (6),

mi =

∑k
j=1 xj[i]

k
si =

√

∑k
j=1(xj[i]−mi)2

k
(5)

Xj[i] =
xj[i]−mi

si
for j = 1, ..., k, i = 1, ..., n (6)

where n defines the number of features per pattern,mi and si are the mean and

the variance of the ith features, xj is the unprocessed j th pattern, k defines

the number of patterns contained in the model database and Xj represents

the normalized j th pattern. The classification stage computes the Euclidian

distance between the input objects and the objects contained in the database,

distj =

√

√

√

√

n
∑

i=1

(Xj[i]− Y [i])2 for i = 1, ..., n (7)

where Xj is the j th object from the model database and Y defines the input

pattern to be classified. The input is declared as polyp if the min(distj) belongs
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to polyp class, otherwise declared as fold.

Our FNNN training databases consist of five polyps and five folds databases.

We classify the polyps into small spherical, medium spherical, big spherical,

elliptical, and non-spherical polyp. We also divided the fold database into

small folds, small convex non-polyp surface, medium folds, large folds, tube.

In Figures 7,8 and 11 class 1 polyp, class 2 polyp, class 3 polyp and class 4

polyp represents small, medium, large and elliptical polyps respectively and

class 1 fold, class 2 fold, class 3 fold and class 4 fold represents large folds,

medium size folds, small folds and small convex non polyp surfaces. Class 5

polyp and class 5 fold in Figures 8 and 11 represent non spherical polyps and

surfaces associated with inserted tubes respectively. In total 64 polyps and 155

folds were used to train the FNNN and PNN classifiers. In our opinion the

approach of segregation in polyp training by size offered the optimal solution

to increase the polyp identification rate especially for small polyps (< 5mm)

but not at the expense of increasing the level of false positives.

6 Results

Five patients’ data with 33 synthetic polyps [37], 32 patients’ data with 101

polyps, and a phantom data with 47 polyps of various sizes [38] were tested

using the proposed method. The synthetic polyp insertion in patient data was

semi-automatic. The candidate points were manually selected using a custom

GUI and the local colon tissue density and the orientation information of the

candidate points were used to generate synthetic polyps based on an elliptical

model [37]. The overall sensitivity of our CAD-CTC system was 90.909%

and the false positive level was 3.6 per dataset when the polyp detection
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algorithm was applied to synthetic data (Table 1). The sensitivity for polyps

greater than 5mm was 100.00% and the sensitivity for polyps less or equal

to 5mm was 66.66%. When the algorithm was applied to real databases, the

overall sensitivity was 76.24% and the level of false positives per dataset was

4.5 (Table 2). The sensitivity for polyps >= 10mm was 100%, for polyps

[5 to 10mm) was 91.67% and for polyps < 5mm was 69.86%.

The synthetic phantom was constructed using a PVC tube, two acrylic tubes,

two plastic plates and latex material to emulate the colon wall and the polyps

as depicted in Figure 12 [38]. The polyp inserts for phantom were made us-

ing latex material having a HU value of -95. We have chosen to use latex as

this material allows us to generate very realistic shapes (pedunculated, sessile,

flat, flat-depressed) for polyps as illustrated in Figure 13. The phantom was

scanned at 100mAs, 40mAs, 30mAs, and 13mAs with slice thickness of 3mm,

reconstruction interval of 1.5mm, table speed of 30mm/rotation, 1.5× 16mm

collimation and 120kVp. For 100mAs phantom data, the overall sensitivity

was 87.23% (Table 3). The sensitivities for polyps < 5mm, [5 to 10mm), >=

10mm and flat polyps were 80%, 100%, 100% and 44.44% respectively (Ta-

ble 3). The phantom was also scanned at 40mAs, 30mAs, and 13mAs. The

overall sensitivities for 40mAs, 30mAs, 20mAs and 20mAs phantom data were

87.23%, 82.97%, 87.23%, 82.97% respectively. The sensitivities for polyps

>= 10mm were 100%, 92.95%, 100% and 92.97% when the algorithm was

applied to 40mAs, 30mAs, 20mAs and 13mAs phantom data (Tables 4, 5, 6

and 7). The sensitivity for polyps [5 to 10mm) was 100% in 40mAs, 20mAs,

13mAs phantom data and was 94.73% in 30mAs phantom data. For compara-

tive testing purposes we made the phantom data available from the following

web page: http : //www.eeng.dcu.ie/ ∼ whelanp/cadctc
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We also employed a PNN classifier to classify candidate surfaces as polyps

or folds. Results of the PNN classifier are shown in Tables 1 to 7 and clearly

demonstrate that our FNNN classifier outperforms the PNN classifier in both

sensitivity and false positive reduction.

To determine whether a polyp was correctly detected by the proposed al-

gorithm, we compared the polyp location with the CTC reports performed

by the radiologists. Also we compared the location of the polyps with the

colonoscopy reports. In our tests, we used both supine and prone views for

polyp detection. It is important to mention that approximately 20% of the

polyps were seen in only one view and as a consequence there was only one

chance to detect these polyps.

As indicated in Section 2 the average size of a typical CT dataset was 150MB

for each view. The average time required for processing each volume of data

was approximately 2.20 min on a Pentium-IV 2.2 GHz processor machine with

512MB memory.

7 Discussion and Conclusion

The proposed CAD system for colonic polyp detection provides high sensitivity

for medium and large polyps, while maintaining a low false positive incidence

per dataset. Also in our experiments we evaluated two different classifiers in

order to determine the optimal classification scheme that minimizes the false

positive incidence while keeping the sensitivity higher than 90% for polyps

larger than 5mm. Our detection technique shows a relative low sensitivity for

small polyps (69.86%). Since we use data with 3mm collimation and 1.5mm
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reconstruction interval, the number of surface voxels that belong to polyps less

than 5mm is small, and this is the reason why the sensitivity for small polyps is

drastically reduced. Another reason for missing small polyps was the condition

where the polyp was adjacent to a fold. Therefore, the features derived from

small polyps when positioned adjacent to folds show similar characteristics

as generic folds, and the classifier detected them as folds. When the CAD

system was applied to real datasets, 18.18% (4 out of 22) of the undetected

small polyps were placed adjacently to folds and the classifier failed to identify

them correctly. However, a better surface detection technique in line with an

improved reconstruction interval can increase the polyp detection rate when

small polyps are situated adjacently to folds.

By using surface normal intersection and least square fitting [33,34] (sphere

and ellipsoid) surface features, we tried to obtain the best result from geomet-

rical and statistical methods. In fact, sphere and ellipsoid fitting of surface

voxels and circle fitting on three views of the HPs may provide good discrim-

ination when the polyps are situated adjacent to folds.

Our developed CAD-CTC method presents better results for the detection

of small and medium size polyps when applied to lower resolution data (re-

construction interval (RI) 1.5mm) compared to the high resolution CT data

used to evaluate the methods developed by Kiss et al. [22] (0.8mm RI), Sum-

mers et al. [15] (1.0mm RI), Acar et al. [26] (1.0-1.50mm RI), and Kiraly et

al. [29] (1.0mm RI). The experimental data indicates that our polyp detection

technique also outperforms the methods reported in [13-29] especially when

dealing with small and medium sized polyps. Also it is worth mentioning that

our algorithm exhibits a remarkable robustness to noise. To demonstrate this,

we have applied our algorithm to low-dose phantom datasets (clinical inves-
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tigations in Ireland typically use 100mAs as a standard dose) and numerical

results are depicted in Tables 4 to 7.

One particular advantage of our method is its low computational overhead and

more importantly it shows high sensitivity for medium [5− 10mm) and large

(≥ 10mm) polyps while the false positive rate is maintained at low levels.

The experimental results indicate that our CAD polyp detection technique is

a suitable tool to be utilised in clinical studies.
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 3D Volume Data      Segmentation and 

  Polyp Surface Detection

Geometrical Feature 
Extraction

        Normalized Nearest        

     Neighbourhood Classifier

Train Data

Test Data

Decision: Polyp, non-polyp

Fig. 1. Overview of the proposed CAD-CTC system.
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Fig. 2. The distribution of the 7 Hough Points (HP) in the normal direction.
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(a) (b) (c)

Fig. 3. 3D surface after initial clustering. (a) 3D surface of an inserted tube, (b) 3D

surface of a fold and (c) 3D surface of a polyp

s2
s3

s4

s1

C

q1
q2

q3

q4

n

n n

n

Fig. 4. Convexity test. The point C is the center of the cluster. The surface points

s2 and s3 pass the convexity test whereas the surface points s1 and s4 and their

associated HPs will be removed from cluster as they do not obey the condition that

the dot product < SQ, n > is less than zero.
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SP

CP

IP

SP - Surface Point

CP - Center Point

IP - Intersection Point

Fig. 5. SP, CP and IP are the surface point, center point and intersection point

respectively. Circles between the SP and IP represent the 7 HPs for each surface

point.

(a) (b) (c)

Fig. 6. 3D surface after re-clustering the voxels of the candidate surface. (a) 3D

surface of the inserted tube illustrated in Figure 3a, (b) 3D surface of the fold

illustrated in Figure 3b, (c) 3D surface of the polyp illustrated in Figure 3c.
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Sphere Fitting Error of polyps
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Sphere Fitting Error of folds
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Fig. 7. Sphere fitting error analysis. (a) and (b) represent sphere fitting error analysis

for different classes of polyps and folds respectively (polyps and folds classes are

sorted by size in ascending order).
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Surface Change Rate of polyps
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Surface Change Rate of folds
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Fig. 8. Surface change rate. (a) and (b) show the surface change rate for different

classes of polyps and folds.
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Fig. 9. 3D surface generation of a polyp (a) and its half radius surface (b). No

significant differences in shape between them are noticed.

Fig. 10. 3D surface generation of a fold (a) and its half radius surface (b). It can be

noticed a significant difference in shape between them.
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Change in Principle Axis of polyps
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Change in Principle Axis of folds


0


10


20


30


40


50


60


1
 3
 5
 7
 9
 11
 13
 15
 17
 19
 21
 23
 25
 27
 29
 31
 33
 35
 37
 39
 41


Number of fold surface


C
ah

ng
e 

in
 P

ri
nc

ip
le

 A
xi

s(
m

m
)


Class_1 Fold


Class_2 Fold


Class_3 Fold


Class_4 Fold


Class_5 Fold


(b)

Fig. 11. Change in major (principle) axis orientation. (a) and (b) display the change

in major axis orientation for different classes of polyps and folds.
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(a) (b)

Fig. 12. Synthetic colon phantom. (a) Longitudinal view. (b) Transversal view.

Fig. 13. Latex sheet with various types of phantom polyps and folds.
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Table 1

Performance analysis for synthetic polyp data

Type Number FNNN PNN

True Positive Sensitivity True Positive Sensitivity

< 5mm 6 4 66.66% 2 33.33%

[5− 10)mm 17 17 100% 15 88.24%

≥ 10mm 9 9 100% 7 77.78%

Flat 1 0 00.00% 0 0%

Total 33 30 90.91% 24 72.73%

FP 3.6 6.4

Table 2

Performance analysis for real polyp data

Type Number FNNN PNN

True Positive Sensitivity True Positive Sensitivity

< 5mm 73 51 69.86% 48 65.75%

[5− 10)mm 24 22 91.67% 17 70.83%

≥ 10mm 4 4 100% 3 75%

Flat 2 1 50% 1 50%

Total 103 78 75.73% 69 66.99%

FP 4.54 6.7
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Table 3

Performance analysis for phantom polyp data

Type Number FNNN PNN

True Positive Sensitivity True Positive Sensitivity

< 5mm 5 4 80% 3 60%

[5− 10)mm 19 19 100% 18 94.74%

≥ 10mm 14 14 100% 13 92.86%

Flat 9 4 44.44% 2 22.22%

Total 47 41 87.23% 36 76.60%

FP 2 2

Table 4

Performance analysis for low-dose (40 mAs) phantom polyp data

mAs Type Number FNNN PNN

True Positive Sensitivity True Positive Sensitivity

40 < 5mm 5 4 80% 3 60%

40 [5− 10)mm 19 19 100% 18 94.74%

40 ≥ 10mm 14 14 100% 14 100%

40 Flat 9 4 44.44% 1 11.11%

Total 47 41 87.23% 36 76.60%

FP 3 4
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Table 5

Performance analysis for low-dose (30mAs) phantom polyp data

mAs Type Number FNNN PNN

True Positive Sensitivity True Positive Sensitivity

30 < 5mm 5 4 80% 3 60%

30 [5− 10)mm 19 18 94.74% 15 78.94%

30 ≥ 10mm 14 13 92.86% 12 85.71%

30 Flat 9 4 44.44% 1 11.11%

Total 47 39 82.98% 31 65.96%

FP 4 4

Table 6

Performance analysis for low-dose (20mAs) phantom polyp data

mAs Type Number FNNN PNN

True Positive Sensitivity True Positive Sensitivity

20 < 5mm 5 4 80% 3 60%

20 [5− 10)mm 19 19 100% 16 84.21%

20 ≥ 10mm 14 14 100% 12 85.71%

20 Flat 9 4 44.44% 2 22.22%

Total 47 41 87.23 33 70.21%

FP 4 2
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Table 7

Performance analysis for low-dose (13mAs) phantom polyp data

mAs Type Number FNNN PNN

True Positive Sensitivity True Positive Sensitivity

13 < 5mm 5 4 80% 3 60%

13 [5− 10)mm 19 19 100% 17 89.47%

13 ≥ 10mm 14 13 92.85% 12 85.71%

13 Flat 9 3 33.33% 2 22.22%

Total 47 39 82.98% 34 72.34%

FP 3 4
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