
Automation of waste recycling using hyperspectral image analysis 

Artzai Picon1 Ovidiu Ghita2 Pedro Mª Iriondo 3 Aranzazu Bereciartua1 Paul F. Whelan2

apicon@robotiker.es ghitao@eeng.dcu.ie pedro.iriondo@ehu.es abereciartua@robotiker.es paul.whelan@dcu.ie

1 Tecnalia Research and Innovation, Infotech Unit, Parque Tecnológico Ed 202 Robotiker-Tecnalia, 
Zamudio, Spain. 

2 Centre for Image Processing and Analysis, Dublin City University, Ireland. 
3 Department of Automatic Control and Systems Engineering, University of the Basque Country, 

Spain

Abstract

The advent of new hyperspectral imaging modalities 
made possible the implementation of flexible machine 
vision systems that can be designed to solve a variety of 
industrial tasks such as automatic material sorting. 
However the design of robust machine vision systems is 
far from a trivial task as several issues including 
mechanical design, development of an appropriate 
illumination set-up, optimal interfacing between the 
sensing and optical equipment with the computer vision 
component have to be properly addressed in order to 
accommodate all challenges that are encountered in a 
typical industrial environment. In this paper we present 
a novel methodology to automate the recycling process 
of non-ferrous metal Waste from Electric and Electronic 
Equipment (WEEE) where a particular emphasis is 
placed on the design choices that were made in the 
development of the proposed waste sorting system. The 
developed machine vision system has been subjected to a 
thorough robustness evaluation and the reported 
experimental results indicate that the proposed solution 
can be used to replace the manual procedure that is 
currently used in WEEE recycling plants.  

1. Introduction 
The last published reports indicate that the retired 

EEE constitutes 4% of the total municipal waste in 
Europe and is increasing by 16-28% every five years 
[1,2]. In this context, it is useful to note that the 
European Economic Area (EEA) countries generate 6.5 
million tonnes of WEEE per annum and currently 
approximately 90% of this potentially hazardous waste is 
disposed as unsorted in generic municipal landfills. 
According to the current statistics, the EEE waste is 
growing 3 times faster than the standard municipal waste 
and the overall WEEE is expected to increase to 12 
million tones by 2015. 

Although substantial efforts have been devoted to 
improve the WEEE recycling process [4], the success of 
current technologies available in recycle plants has been 

limited as the EEE scrap is formed by a relative large 
mix of different materials. The methods that are 
currently used to break the electronic equipment in their 
constituent parts require a labour intensive procedure, a 
fact that makes the recycling process not only time 
consuming but also very expensive. In the standard 
recycling process only the largest Aluminium, Copper 
and Stainless Steel parts are separated, since the cost and 
the time requirements to manually sort the rest of the 
shredded EEE waste are too prohibitive. To provide 
some insight into the cost of the recycling process, the 
financial demand to recycle cars or washing machines is 
approximately 100 Euro per tonne, whereas the 
estimated cost to recycle a tonne of electronic equipment 
is six times larger. However, besides processing costs 
(which are crucially important in any efficient industrial 
activity), it is useful to note that often the EEE waste has 
associated a high level of toxicity, a fact that projects a 
completely different perspective on the overall value of 
the WEEE recycling and disposal processes. As 
indicated earlier, it is estimated that more than 6 million 
tonnes of electrical equipment will be retired in the EEA 
countries this year, and in addition to issues related to 
the high level of toxicity and the substantial costs 
required to maintain and extend the municipal landfills 
where WEEE is disposed, it is useful to mention that the 
improper recycling of EEE precludes the further use of 
valuable materials as follows, 

• 2.4 million tonnes of ferrous metal  
• 1.2 million tonnes of plastic  
• 652,000 tonnes of Copper   
• 336,000 tonnes of Aluminium  
• 336,000 tonnes of glass  

Due to the aforementioned factors, legislation that 
sets specific requirements and targets with the aim of 
reducing WEEE quantity and its negative impact on the 
environment has been recently introduced. In this regard, 
the introduction of the European Directives 2002/96/EC 
on WEEE [3] and 2000/53/CE on End-of-Life-Vehicle 
has generated a completely different approach towards 
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EEE recycling. This legislation will force companies to 
adjust their environmental policies, where product 
recycling being a prime example. As a result, new 
technologies for WEEE recycling need to be developed 
and this generates a favourable scenario for small and 
medium enterprises (SMEs) to be involved in a business 
that is now viable from an economic perspective. 

In particular the SMEs involved in the WEEE 
recycling process are interested in developing new 
technologies that allow the identification and separation 
of small sized (10-50 mm) non-ferrous fractions. This is 
motivated by the fact that the vast majority of the retired 
electronic equipment is shredded before it is subjected to 
recycling procedures. Therefore, after the application of 
technological processes including magnetic, mechanical 
and densitometric sorting, the resulting EEE scrap still 
contains significant quantities of non-ferrous metals (e.g. 
Aluminium, Copper, Zinc, Brass, and Lead) that cannot 
be sorted using standard procedures. This issue has 
negative economic implications since the value of 
recycled materials depends largely on purity, and the 
unsorted non-ferrous material fractions are sold at a 
much lower price. Hence, substantial research on new 
methodologies that are able to robustly sort non-ferrous 
materials is currently under development with the aim of 
increasing the added value of the recycling process. In 
this regard, the major objective of this paper is to detail 
the technology behind the development of a novel 
machine vision system that has been designed to robustly 
identify and sort non-ferrous materials in the 
hyperspectral domain.  

2. System architecture 
In this section the design choices that were made 

during the development phase of the proposed material 
sorting system will be analysed and the main emphasis 
will be placed on issues related to material distribution, 
illumination set-up, hyperspectral image acquisition, 
non-ferrous material classification and material sorting. 

In order to devise a flexible machine vision solution 
we have adopted a modular approach. The proposed 
system consists of three main components and a block 
diagram that shows the logic arrangement of the 
constituent modules is depicted in Figure 1. The first 
component of the proposed system has the role to 
uniformly place the non-ferrous WEEE particles on the 
conveyor belt via a vibratory feeding system. The next 
module performs the hyperspectral image acquisition 
that is triggered by the arrival of the scrap at the 
inspection line and its role is to capture the image data 
that is used in the subsequent material classification 
process. The final module of the system performs 
material sorting based on the information provided by 
the classification process via a pneumatic part extractor. 
A detailed discussion about each component of the 
developed conveyor-based material sorting system will 
be provided in the next sub-sections of the paper.   

Figure 1. Overview of the designed material sorting system. 

2.1. WEEE vibratory feeder module 

The vibratory feeder module is an important part of 
the system and it has the role to place the non-ferrous 
particles in a uniform layer on the conveyor belt of the 
system. This module has been carefully designed to 
allow the particles to be arranged on the conveyor belt 
without overlaps and to offer a facile loading of the 
unsorted EEE scrap that has to be carried out by an 
operator. The component that places the WEEE particles 
on the conveyor belt consists of a group of mechanical 
elements that are activated in a sequential manner to 
implement a non-overlapping parts delivery system. The 
feeder module has been designed to ensure that the 
WEEE scrap mixture is placed in a thin layer to allow 
the implementation of an accurate and computationally 
efficient material classification process. 

2.2. WEEE particle transport system 

Once the particles that define the WEEE mixture are 
placed on the conveyor belt, they are transported to the 
inspection line to be classified and later sorted. In this 
process the speed of the belt is controlled by digital 
encoders to ensure a uniform image acquisition process 
and to preserve the information related to the position of 
the particles on the belt when they are sorted in the bins 
allocated for each material. The speed of the conveyor 
has been set in conjunction with the size of the non-
ferrous particles and the scan frequency of the 
hyperspectral image acquisition equipment. Based on 
these requirements the conveyor can be operated at 
speeds in the range 10 to 15 m/min, a performance that is 
compliant with the operational speed of the scrap 
transport systems that are used in recycling plants. 

2.3. Non-ferrous material identification module  

The non-ferrous material identification is the most 
sophisticated module of the system and it has three 
major sub-components, namely the illumination set-up, 
hyperspectral image acquisition and the material 
classification process. The illumination set-up is one of 
the key elements that have a significant impact on the 
overall performance of any machine vision system [6]. In 
the proposed implementation, the illumination module 
has been specifically designed to reduce the specular 



reflections generated by the surface of the non-ferrous 
materials and to provide a homogeneous and even 
illumination that covers the wavelengths that can be 
captured by the hyperspectral camera. Based on these 
premises, the illumination system consists of a parabolic 
surface that uniformly distributes the light generated by 
9 halogens and 18 white LEDs covering the spectral 
range between 400 to 1000 nm. 

The second component of the non-ferrous material 
identification module involves the acquisition of the 
hyperspectral data that capture the characteristics of the 
non-ferrous materials that arrive at the inspection line. 
This technology involves the acquisition and 
interpretation of multi-dimensional digital images and 
the current range of spectral imaging systems is able to 
capture multiple bands from ultraviolet to far infrared 
with good bandwidth resolution. In our implementation 
we have employed a hyperspectral PHF Fast10 camera 
[5] that is able to capture wavelengths in the range 400 to 
1000 nm with a spectral resolution of less than 1 nm. 
The PHF Fast10 camera is fitted with a CMOS sensor 
(1024 × 1024 resolution), a Camera Link interface and a 
special Fore objective OL10. The hyperspectral camera 
is interfaced to an industrial PC computer using a 
standard National Instruments framegrabber.  

The last component of the non-ferrous material 
identification module deals with the detection and 
classification of the non-ferrous particles using an 
analysis in the hyperspectral domain. The hyperspectral 
data can be thought of as a multi-dimensional image in 
which each layer corresponds to a certain wavelength 
(see Figure 2). Thus, each image pixel is defined by a 
vector where each component samples the amplitude of 
the optical signal for a particular wavelength. 

Figure 2. Hyperspectral image data. 

While the hyperspectral data allow a more elaborate 
analysis of the properties associated with the non-ferrous 
materials than the standard RGB information, the main 
problem is the sheer amount of information that has to be 
evaluated during the classification process. To 
circumvent the computational related problems, 
decorrelation techniques are often applied to reduce the 
dimensionality of the hyperspectral data. In a recent 
paper [8] we have reported a novel classification 
algorithm that is based on the integration of spatial and 
spectral features in conjunction with a custom designed 
hyperspectral data decorrelation scheme.
     The devised non-ferrous material classification 
algorithm entails two stages, a primary classification that 
is followed by a statistical region merging procedure. In 
the first step, the local histograms that sample the 

spatial-spectral features are calculated for each pixel in 
the image and they are compared with a priori models 
that are computed for each material during the training 
stage. In the second step a region merging re-
classification is initiated to merge the regions that were 
incorrectly classified during the first stage due to 
problems caused by strong highlights and various 
oxidization levels. Full details about the proposed 
material classification can be found in [8].  

2.4. Material sorting module 

The material sorting module consists of 40 air 
blowing electrovalves and a PLC unit that controls their 
operation. This PLC unit also controls the vibratory 
feeder module and the speed of the conveyor belt using 
standard digital and analogic IO interfaces. The PLC unit 
communicates with the industrial PC and the information 
obtained after the application of the material 
classification process is used to estimate the position for 
each identified non-ferrous particle. Based on this 
information the PLC unit activates the adequate 
expulsion pneumatic valve to move the particles in the 
bins that are provided for each non-ferrous material. 

3. Experimental Results 
The system has been designed to perform the 

automatic identification and sorting of the following 
materials: white copper, aluminium, Stainless Steel, 
brass, copper and lead (see Figure 3).  

Figure 3. The non-ferrous materials investigated in this study.

The material samples that were used to validate the 
proposed material sorting system have been provided by 
Indumetal Recycling S.A. and IGE Hennemann 
Recycling GmbH which are part of the SORMEN 
project consortium [1]. The non-ferrous materials have 
been manually sorted by expert operators and in this 
process they used all available knowledge about each 
non-ferrous waste fraction. In this study the captured 
datasets were divided into training and testing sets where 
half of the data was used for training and the remaining 
half was used for testing.  



After the background pixels are identified using a 
pixel-based classification procedure, the hyperspectral 
data is subjected to data decorrelation to reduce its 
dimensionality. In our evaluation we have analysed the 
performance of several decorrelation schemes including 
Principal Component Analysis (PCA), Linear 
Discriminant Analysis (LDA), Wavelet decomposition, 
automatic band selection [7] and a new approach based 
on spectrum fuzzyfication [8]. The experimental results 
are depicted in Table I. In the first row of Table I the 
classification results using single-pixel spectral features 
are reported. These experiments have been conducted to 
identify the decorrelation scheme that returns the best 
performance. The results reported in Table I reveal that 
the decorrelation technique based on spectrum 
fuzzyfication outperformed the classical data 
decorrelation methods such as PCA, LDA, Wavelet and 
automatic band selection [8].  

The experimental results shown in the second row 
were obtained when the spectral-spatial features were 
employed as features in the classification process. As 
expected, the experimental data clearly show that the 
fusion of spatial and spectral features is opportune as it 
samples in a more elaborate fashion the characteristics of 
the non-ferrous materials. The results depicted in the 
second row of Table I also indicate that the decorrelation 
technique based on spectrum fuzzyfication produces 
more consistent results than standard data decorrelation 
methods. 

Figure 4. Classification results. (Top) Pixel-based classification 
results. (Middle) Classification results using spectral-spatial 
feature vectors. (Bottom) Classification results after region 
merging and re-classification.

     As indicated in Section 2.3 the regions identified in 
the first step of the classification process (see the results 
in the second row of Table I) are subjected to re-
classification using a statistical region merging approach 
[8] and the experimental results are shown in the third 
row of Table I. These results clearly indicate that the 
application of the region merging process reduced to a 
great extent the classification errors generated in the first 
step of the classification process. This is illustrated in 
Figure 4 where are depicted the results when the 
classification process has been carried out using single-
pixel spectral features, spatial-spectral features and after 
the application of the statistical region merging process.

4.  Conclusions 
The aim of this paper was to detail the 

implementation of a novel machine vision system that 
addresses the automatic sorting of the EEE waste based 
on the evaluation of the properties associated with non-
ferrous materials in the hyperspectral domain. In this 
paper we have provided a comprehensive discussion 
about each module of the system and we have analysed a 
large spectrum of design choices that were made during 
the development stage of the proposed material sorting 
system. The reported experimental results show that the 
proposed non-ferrous material classification algorithm 
attained over 98% correct classification when applied to 
the identification of the WEEE scraps containing six 
different non-ferrous materials. This level of 
performance indicates that our system is a viable and 
cost-effective solution to the manual sorting procedure 
that is currently used in WEEE recycling plants. 
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TABLE I
COMPARATIVE RESULTS: SINGLE-PIXEL DESCRIPTORS, FUZZY 

HISTOGRAMS AND REGION MERGING

Algorithm PCA 
8 features 

Fuzzysets 
8 features 

Wavelet 
8 features 

FSM 
 8 bands 

Single pixel 66.43% 71.52% 63.79% 62.03% 
Fuzzy histograms 78.85% 85.62% 76.53% 79.14% 
Region merging 94.44% 98.36% 96.02% 93.81% 


