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Abstract

Hyper-spectral data allows the construction of more robust statistical models to sample the material properties
than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity
of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to
facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality
of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors.
Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant
analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training
procedures and in addition the compressed spectral information is not directly related to the physical (spectral)
characteristics associated with the analyzed materials. The major objective of this article is to introduce and
evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The
proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant
information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in
the context of non-ferrous material classification
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1. Introduction
Hyper-spectral imaging involves the acquisition (see Fig-
ure 1) and interpretation of multi-dimensional digital
images that are able to sample the spectral properties of
the materials associated with the visualized objects [1].
Nowadays, the current range of spectral imaging systems
is able to capture multiple bands from ultraviolet to far
infrared with good bandwidth resolution. This increased
flexibility in the image acquisition process prompted the
inclusion of the hyper-spectral imaging systems in the
development of a wide variety of computer vision sys-
tems, such as video surveillance, food inspection, medi-
cal imaging, remote sensing, and material classification
[2-4].
The main characteristic of the hyper-spectral images is

that each pixel is defined by a multi-dimensional vector
whose elements are the spectral (electromagnetic or
wavelengths) components that are captured from the
light arriving at the spectral sensor. In this regard, the

hyper-spectral imaging sensors (or spectrographs) allow
the extraction of a richer source of information beyond
the visible spectral domain (that is usually captured by a
standard color camera), a fact that opens the possibility
to analyze not only the tri-chromatic characteristics of
the scene materials, but also their chemical composition
[1,3,5-7].
One issue that is common for all hyper-spectral appli-

cations is associated with the optimal evaluation of the
material characteristics in the hyper-spectral domain. To
address this issue, several distance metrics that evaluate
the dissimilarity among the spectral descriptors
extracted from the analyzed materials were proposed in
the specialized literature [8,9]. One apparent conclusion
that emerged from past investigations indicates that
classical approaches that evaluate the distance between
unprocessed hyper-spectral features in the multi-dimen-
sional Euclidean, space or those based on the measure-
ment of the angle between spectrums’ SAM (spectral
angle mapper) [9-11] provide information in regard to
the similarity between two or more materials, but they
are not able to overcome the high correlation associated
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with the hyper-spectral descriptors [3]. This observation
is in particular valid, as the simplistic analysis of the raw
hyper-spectral data is inappropriate for several practical
reasons. The first reason is given by the fact that the
analysis of the unprocessed hyper-spectral data is com-
putationally intensive, while the second reason is asso-
ciated with the high correlation attained by the closely
spaced spectral bands in the hyper-spectral domain [12].
These factors substantially complicate the material clas-
sification process as the increased spectral correlation
reduces the discriminative power associated with the
spectral descriptors that describe the properties of the
analyzed materials. This problem is known as the
Hughes phenomenon [12,13] and states that the number
of samples required to train a specific classifier increases
exponentially with the increase in the number of spec-
tral features [12,13].
The intra-class variations for each analyzed material

can be better modeled if the high dimensionality of the
hyper-spectral data is reduced before feature extraction.
In this sense, to circumvent the problems caused by the
large feature vectors calculated from raw (unprocessed)
hyper-spectral data when used for classification pur-
poses, feature reduction (or decorrelation) techniques
are usually applied to avoid the Hughes phenomenon
[12-14]. Thus, the hyper-spectral data has been com-
monly subjected to standard decorrelation schemes,
such as PCA, WD [15-19], uniform band design (UBD)
[20] or its dimensionality reduced by applying methods
based on user-defined band selection (UDBS) [21-23].
Nonetheless, these classic decorrelation techniques
reduce the number of features calculated from the
hyper-spectral spectrum, but it is useful to note that
these data transformations often alter the physical
meaning of the extracted features, and as a result they
are difficult to interpret and analyze. In addition to this,
the above-mentioned techniques involve tedious and
subjective training procedures that are applied to sample

the distributions associated with all materials to be ana-
lyzed. The requirement of laborious training procedures
pose a particular challenge when developing flexible
industrial applications and this issue is substantially exa-
cerbated if new materials are often included in the clas-
sification process, a situation when retraining is
necessary.
To avoid these problems, more flexible methodologies

that are able to perform hyper-spectral data decorrela-
tion have to be devised. These approaches should
reduce the dimensionality of the hyper-spectral data by
selecting the most relevant bands that maximize the
classification rate (or the separation among materials)
without reducing the discriminative power of the
extracted features [24]. To achieve these goals, branch
and bound algorithms [25], machine learning techniques
based on genetic algorithms [26], and methods based on
the evaluation of the data using a combination of classi-
fiers [27] were recently proposed. These methods proved
efficient when applied to extract the discriminative fea-
tures that characterize the materials included in the
datasets, but similar to classic decorrelation approaches,
they entail retraining if the automatic sorting system
requires the inclusion of new materials in the classifica-
tion process. Given these limitations, an optimal decorr-
elation technique should comply with the following set
of assumptions:

- To reduce as much as possible the dimensionality
of the hyper-spectral data.
- To maximize the discriminative power of the dec-
orrelated feature vectors.
- Should not be dependent on training procedures,
so they can be used when new materials are
included in the classification process.
- Data decorrelation should not alter the physical
meanings of the transformed spectral components.
- Data decorrelation should be material independent.

To accommodate these requirements, in this article
we propose a new data decorrelation scheme using an
approach that is closely related to that employed by
the human visual system (HVS) in the process of con-
verting the electromagnetic radiation that is emitted by
the surrounding objects into chromatic information.
The main contribution associated with this study
resides in the application of the fuzzy sets theory, as
introduced by Zadeh [28], to maximize the discrimina-
tive power associated with the hyper-spectral features
calculated for each pixel in the image. Other contribu-
tions resulting from our study are located in the
detailed evaluation of the proposed data decorrelation
technique when applied to non-ferrous material classi-
fication tasks.

Hyper-spectral camera

Aperture Prism
 CCD
Sensor

    Conveyor belt
 moving direction

Figure 1 The principle of the hyper-spectral image acquisition
process.

Picon et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:66
http://asp.eurasipjournals.com/content/2011/1/66

Page 2 of 10



This article is organized as follows: Section 2 intro-
duces the proposed hyper-spectral data decorrelation
technique, where the main emphasis is placed on the
extension of the biologically inspired models when
applied to the hyper-spectral domain. Section 3 details
the experimental results, while concluding remarks are
provided in Section 4.

2. Biologically-inspired hyper-spectral modeling
The HVS has adapted through years of evolution to effi-
ciently capture the visual information that helps the
humans in the process of interacting with the surround-
ing environment. The human eye is able to capture the
electromagnetic spectrum in the range 400-700 nm,
although other animals like fish or insects can acquire
information from the UV spectrum as well.
The photoreceptors present in the human eye consist

of three different types of spectral-sensitive cells, where
each cell (retinal cone) is able to convert the electro-
magnetic information into chromatic information [29].
Each of these visual receptors, as shown in Figure 2,
responds strongly to restricted domains of the electro-
magnetic spectrum (S = blue, M = green, L = red) and
the first stage of human color information entails a dec-
orrelation process that evaluates the response generated
by each type of photoreceptor. As indicated by several
studies that investigated the HVS with respect to the
chromatic perception [29-32], the sensitivity of the
human eye employs models that are consistent with the
fuzzy sets theory (see Figure 2).
Following this theory, in this article we propose a new

data decorrelation approach where each defined fuzzyset

would correspond to a “virtual retinal cone” that
responds strongly at specific wavelengths of the hyper-
spectral domain using models that are consistent with
the human chromatic perception. More precisely, the
proposed approach can be conceptualized as an hyper-
spectral eye, where each fuzzyset emulates the spectral
response of a distinct type of retinal receptor in a
restricted bandwidth of the hyper-spectral domain.
The proposed data decorrelation method exploits the

knowledge that the adjacent wavelengths of the spec-
trum are more correlated than the more distant wave-
lengths. This observation is justified since the
electromagnetic spectra emitted by solid materials show
a slow variation with respect to successive wavelengths.
As a result of this coherent radiometric model, the
spectral information can be better sampled by groups of
continuously distributed wavelengths rather than unique
spectral bands, which is the case of the unprocessed
(raw) hyper-spectral data. To achieve this, the response
for each “virtual” (fuzzy) cone is calculated as the sum
of the weighted intensity values corresponding to a sub-
domain of adjacent wavelengths, and in this process the
spectrum is divided into a predefined number of dis-
tinct groups to attain the desired spectral selectivity.
Nonetheless, the quantization of the spectral response
will be problematic at the interface between consecutive
sub-domains and to avoid the issues that are caused by
a crisp division of the spectrum, in this article a method
based on the spectrum fuzzyfication is proposed. This
involves the separation of the hyper-spectral data into a
predefined number of fuzzy groups, where each group
covers a range of wavelengths and the contribution of
each wavelength is modeled by fuzzy membership rules.
Let L be the N-dimensional spectral vector as defined

in Eq. 1 and M be the number of fuzzysets that cover
the full hyper-spectral domain.

L = {L1, L2, ..., LN}T (1)

To sample the spectral response, a membership func-
tion is defined to measure the level of appartenance for
any wavelength of the spectrum to its related fuzzysets.
For the sake of simplicity, the membership functions are
commonly implemented either as triangular shaped (Eq.
2) or Gaussian functions (Eq. 3).

Mfk(λ) =

⎧⎨
⎩1 −

∣∣∣∣λ − λCk

D

∣∣∣∣ , λCk − D < λ < λCk + D

0, Otherwise
(2)

Mfk(λ) =
(

1
2πσ 2

)1
2 e

−
1

2σ 2
(λ−λCk)

2
(3)

Figure 2 Sensitivity of the human visual receptors to the
different wavelengths of the spectrum. In this diagram, for
simplicity reasons, the sensitivity of the human receptors is modeled
by triangular-shaped fuzzysets.
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Where lCk is the central wavelength value of the fuz-
zyset k Î [1,M] and D defines the spectral separation
between two consecutive central wavelengths when tri-
angular shaped functions are employed. If the member-
ship functions are modeled using Gaussian distributions,
the standard deviation s in Eq. 3 plays the role of the
parameter D in Eq. 2. In practice the triangular shaped
functions are preferred, since they model linearly the
grade of membership of the wavelengths contained in
each fuzzyset with respect to the central wavelength and
this approach is also followed in the implementation
detailed in this article. Figure 3 provides a graphical
representation of the triangular membership functions
when applied for spectrum fuzzyfication.
As illustrated in Figure 3, each of the spectrum’s

wavelengths (li, I Î [1,N]) has a membership grade dif-
ferent than zero for the two fuzzysets that intersect it
and a membership grade of zero for the rest of the fuz-
zysets, a process that is similar with the chromatic per-
ception process performed by the human eye’s visual
receptors. As mentioned earlier, our approach emulates
the principles associated with the human chromatic per-
ception to the hyper-spectral domain and this process is
illustrated in Figure 4.
The decorrelated data are calculated for each pixel in

the image and consists in an M-dimensional vector,
where for each fuzzyset with the central wavelength lCk
(k Î [1,M]) an energy value Ek is calculated by weighing
the intensity of each wavelength of the spectrum li(i Î
[1,N]) with respect to the membership function as fol-
lows,

Ek =

λ=N∫
λ=1

Mfk(λ) · L(λ)dλ (4)

where the energy Ek defined in Eq. 4 measures the
strength of the intensity signal captured by the hyper-

spectral camera within the bandwidth covered by the
fuzzyset with the index k. Based on the values of ener-
gies calculated for each of the M fuzzysets, we can attain
useful information that describes the radiometric (or
spectral) properties of the scene materials that were cap-
tured during the hyper-spectral image acquisition pro-
cess. As indicated earlier, each hyper-spectral pixel (or
hyper-spectral feature) is defined by a vector containing
the energy values Ek (k Î [1,M]) as shown in Eq. 5.

X = {E1, E2, ..., EM}T (5)

Since the light absorption for a particular material is
selective for a well-defined range of wavelengths, this
makes the analysis of the spectral energies calculated
using Eq. 4 adequate and allows us to derive more accu-
rate hyper-spectral features, whose discriminative power
is increased when compared to the features calculated
from the unprocessed data. At the same time, since the
calculation of the energies for all fuzzysets involves a
local summation modulated by the membership func-
tion, this approach has another obvious advantage as it
performs a drastic reduction of the image noise present
in the unprocessed (raw) hyper-spectral data. In this
manner, the absorption bands that are characteristic for
each material are directly parameterized by the energy
calculated for each fuzzyset.
This fuzzy representation facilitates the analysis of the

spectral information in an efficient manner by addres-
sing all conditions that were mentioned in the last part
of the introductory section. In this regard, the proposed
data decorrelation scheme based on the spectrum fuzzy-
fication does not involve any training procedures as
those required by other decorrelation techniques, such
as PCA, LDA, WD, or UDBS. In addition to this, the
proposed technique allows the extraction of the spectral
features that are strongly related to the radiometric
properties of the analyzed materials and the dimension-
ality of the hyper-spectral data is optimally reduced

Figure 3 Triangular shaped membership functions. Note that in
this diagram lCk (k Î [1,M]) denotes the central wavelength
associated with the fuzzyset k.

Figure 4 An example that illustrates the membership grade
associated with the wavelength li.
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since the fuzzyfication procedure maximizes the decorr-
elation between adjacent spectral bands.

3. Application to non-ferrous material
classification
As indicated in the previous section, the proposed data
decorrelation scheme based on spectrum fuzzyfication
implements an efficient dimensionality reduction of the
unprocessed hyper-spectral data by sampling the most
discriminative characteristics of the spectral bands that
measure the radiometric properties of the materials
included in the classification process. In order to evalu-
ate the efficiency of the proposed technique, in this sec-
tion we compare its performance against those attained
by different decorrelation schemes in the context of
non-ferrous material classification.
To evaluate the efficiency of the analyzed decorrela-

tion methods, in our study we have used sample spectra
that are acquired for three different non-ferrous materi-
als (see Figure 5). Among them, the materials A and C
present are significant spectral similarities, while the
material B is the most dissimilar.
In this initial study, we aim to evaluate the perfor-

mance of the analyzed decorrelation schemes by quanti-
fying the separability that is measured as the distance
between the non-ferrous samples used in our experi-
mental set-up. To achieve this N2 collections of four
spectral samples were used for experimentation, two of
them belonging to the material A (aluminum) (A1 and
A2) and the other two belonging to the materials B
(copper) and C (stainless steel), respectively. In each col-
lection, the separability has been estimated by measuring
the intra- and inter-class distances as shown in Eq. 6.

Separability =

N2∑
i=1

Dist(A1i , Bi) + Dist(A1i , Ci)
2Dist(A1i , A2i )

N2

(6)

When evaluating the separability between the non-fer-
rous spectrums (A, B and C materials) an important
issue is the selection of the distance metric. To provide
a comprehensive evaluation, in our study the differences
between the hyper-spectral feature vectors are quantified
using classical metrics that were widely used in the
development of hyper-spectral classification schemes. In
this regard, metrics like Manhattan, Tchebychev, and
Euclidean distances are used as well as other metrics,
such as SAM [10,11] (SAM is also referred in the litera-
ture to as goodness of fit coefficient (GFC) [9]) and
probabilistic metrics like spectral information divergence
(SID) [3] (see Eqs. 7, 8).

cos(α) =
〈La, Lb〉

‖La‖ ‖Lb‖ , SAM(La, Lb) = cos−1(α) (7)

SID(La, Lb) = DKL(La, Lb) + DKL(Lb, La) (8)

where La and Lb are the hyper-spectral vectors, <. > is
the scalar product, ||.|| defines the standard L2 vector
norm and DKL denotes the Kullback-Leibler divergence.
Table 1A depicts the results obtained when the feature

vectors are extracted from the hyper-spectral data that
has been subjected to various decorrelation schemes. In
these tests, the separability (calculated using Eq. 6)
achieved when the feature vectors are calculated from

Figure 5 Sample spectrums calculated for materials A, B, and
C.

Table 1 (A) Separability achieved by the analyzed data
decorrelation techniques (absolute values) and (B)
Separability achieved by the analyzed data decorrelation
techniques (z-score normalized values)

RAW PCA LDA WD UDBS UBD FuzzySets

A

City block
distance

237.2 132.2 121.0 334.7 262.7 306.4 359.7

Euclidean
distance

222.4 134.7 143.5 305.5 258.9 313.6 362.7

Tchebychev
distance

136.9 181.3 190.6 277.3 270.9 299.5 370.5

SAM 100.8 253.7 151.0 12.8 173.7 39.6 101.1

SID 421.5 182.9 119.7 187.1 320.8 355.9 782.4

B

City block
distance

-0.14 -1.26 -1.38 0.89 0.13 0.59 1.16

Euclidean
distance

-0.30 -1.31 -1.21 0.65 0.12 0.75 1.31

Tchebychev
distance

-1.36 -0.81 -0.69 0.38 0.30 0.65 1.53

SAM -0.22 1.64 0.39 -1.29 0.67 -0.97 -0.22

SID 0.37 -0.70 -0.98 -0.68 -0.08 0.08 1.99
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raw (unprocessed) hyper-spectral data is compared
against the separability obtained where a range of data
decorrelation methods (such as PCA, LDA, WD [18],
UBD [20], UDBS [23], and the proposed fuzzysets-based
method) are applied before feature extraction. Since the
results reported for the various distance metrics in
Table 1A have different units and limits of variation, to
allow a direct comparison they are normalized to a
common scale by using z-scores to attain zero mean
and unit variance normalized results (i.e., standard vari-
ables). The z-score normalized results are depicted in
Table 1B.
The experimental results shown in Table 1A, B indi-

cate that the proposed fuzzyset method outperforms the
other analyzed techniques for all distance metrics with
the exception of SAM, where the decorrelation schemes
based on PCA, LDA, and UBD achieved better perfor-
mance. These results are motivated by the fact that the
SAM metric samples the variation in the orientation
between hyper-spectral vectors and it does not explicitly
measure the closeness in the hyper-spectral domain
between the extracted feature vectors. However, it is
useful to mention that the increase in separability is not
sufficient to fully characterize the performance of the
decorrelation techniques, but the preliminary results
shown in Table 1A, B give an indication that the pro-
posed technique produced more consistent results when
compared to those achieved by the classic decorrelation
schemes. To fully evaluate the performance of the dec-
orrelation methodologies analyzed in this investigation,
the results shown in Table 1A, B will be complemented
with the results achieved when the data decorrelation
algorithms are evaluated in the context of material
classification.
To attain this objective, we have developed a classifi-

cation framework (see Figure 6) that consists of the fol-
lowing computational stages:

1) Image acquisition.
2) Hyper-spectral data normalization. This step is
applied to alleviate the high spectra variability
induced by shadows and various level of oxidization
between samples of non-ferrous materials that are
included in the same class.
3) Spectral decorrelation and extraction of the
hyper-spectral feature vectors.
4) Statistical classification using a multivariate Gaus-
sian classifier. In this approach, a Gaussian model is
created for each non-ferrous material where μ and Σ
are the mean vector and the covariance matrix,
respectively, of the modeled material class. The clas-
sification process is implemented using Eq. 9, where
X is the feature vector associated with the unknown
(to be classified) non-ferrous material.

N(X| µ,
∑

) =
1

(2 · π)M/2

1∣∣∑∣∣1/2
e

{
−

1
2

(x−µ)T∑−1(x−µ)

}
(9)

As mentioned earlier, we elected to assess the perfor-
mance of the proposed decorrelation technique (spec-
trum fuzzyfication) in the context of material
classification. This approach is motivated by the fact
that the non-ferrous materials present similar spectral
properties and their robust classification pose a challen-
ging research issue. In this investigation the following
materials were used for experimentation: white copper,
aluminum, stainless steel, brass, copper, and lead (see
Figure 7).
In the experimental analysis, half of the data was used

for training and the remaining half was used for testing.
From each of these datasets more than 500,000 hyper-
spectral vectors were extracted. As indicated before, the
non-ferrous materials present substantial similarities in

Figure 6 Block diagram of the proposed classification
framework.
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their chromatic appearance, and in addition it is useful
to note that their spectra modeled from unprocessed
hyper-spectral data show considerable intra-class disper-
sion and a relative high inter-class similarity (see Figure
8), a fact that makes their classification particularly diffi-
cult. Nonetheless, these intrinsic properties of the non-
ferrous materials generate a challenging classification
scenario that would allow a comprehensive performance
evaluation for the classic and proposed decorrelation
techniques.

3.1. Hyper-spectral data normalization
Due to the wide variety of shapes associated with the
shredded non-ferrous materials (see Figure 7), their arbi-
trary orientations on the conveyor belt and imperfec-
tions in the optical and sensing equipment, the hyper-

spectral image acquisition process is affected by the sha-
dows, specular reflections (highlights), and inhomoge-
neous illumination. To compensate for these image
formation issues, in our investigation two data normali-
zation schemes, that were proposed by Stockman and
Gevers [33] (see Eq. 10) and Montoliu et al [34] (see Eq.
11) were investigated.

LnormS(λj) = Ln(λj) − min
i∈[1,N]

(Ln(λi)) (10)

LnormM(λj) =
L(λj) − min

i∈[1,N]
(L(λi))

∑N
n=1

(
L(λn) − min

i∈[1,N]

(
L(λi)

)) (11)

Figure 7 Samples of non-ferrous materials used in the experimental study.
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where Ln(λj) =
L(λj)∑N

n=1 L(λn)
and j Î [1, N].

The experimental results shown in Table 2 indicate
that both methods reduce to some extent the undesired
effects generated by shadows, highlights and uneven illu-
mination, and Figure 9 illustrates the performance of the
investigated intensity correction algorithms when
applied to a hyper-spectral image consisting of a clut-
tered arrangement of non-ferrous materials. Since the
method proposed by Stockman and Gevers [33] returns
better performance, the classification results that will be
reported in the next section are obtained when the
hyper-spectral data are normalized using this approach.

3.2. Classification results
The efficiency of the features extracted after the applica-
tion of the decorrelation techniques is evaluated by
creating a Gaussian model for each non-ferrous material
using the expression shown in Eq. 9. Table 3 illustrates

the classification performance obtained when the RAW,
RGB, and decorrelated hyper-spectral data (PCA, LDA,
WD, UBD, UDBS, and the proposed technique) are
used for non-ferrous material classification.
The results shown in Table 3 indicate that the RGB

data, as expected, returns the worst performance
(43.83%), and better results are obtained when unpro-
cessed (raw) hyper-spectral information is used for
material classification (55.67%). However, the experi-
mental data clearly indicate that the application of dec-
orrelation techniques improve significantly the
classification results and the results reported in Table 3
reveal that the proposed technique outperforms the clas-
sic decorrelation schemes including PCA, LDA, Wavelet,
and UBD. For the sake of completeness, results are also
reported when the number of fuzzysets and the number
of principal components retained after the application of
PCA is varied (see Table 3). These results clearly indi-
cate the superiority of the proposed decorrelation
scheme over classic algorithms based on LDA and PCA
decomposition, and it is useful to note that the pro-
posed scheme also circumvents the complications asso-
ciated with the implementation of cumbersome and
subjective training procedures.

4. Conclusions
In this article we introduced a new hyper-spectral dec-
orrelation methodology that has been specifically
designed to improve the classification accuracy of the
non-ferrous material sorting process. While the primary
aim of this article was focused on the development of a
decorrelation approach that is able to optimally sample
the spectral characteristics of the non-ferrous materials,
in our investigation we had to confront additional issues
generated by the image formation process (such as sha-
dows, specular reflections, and inhomogeneous illumina-
tion) and practical issues related to the optimal size of
the hyper-spectral feature vector.
The decorrelation approach presented in this article

extends to the hyper-spectral domain, the concepts
associated with the chromatic perception process per-
formed by the human eye. In this regard, the developed
scheme applied the fuzzy sets theory to decorrelate the
high-dimensional hyper-spectral images based on the
knowledge that the data encompassed by closely spaced
wavelengths in the spectral domain is more correlated
than the information provided by more distant wave-
lengths. The proposed decorrelation scheme does not
require any training procedure to extract the most rele-
vant features and this is another important advantage
that our approach has over other classic data decorrela-
tion techniques.
In our study, the performance of the data decorrela-

tion approach detailed in this article has been

Figure 8 Spectral dispersion among the different materials
evaluated in this study (aluminum: blue, copper: red, brass:
green, lead: cyan, steel: magenta, white copper: yellow). All
diagrams included in this article are best viewed in color.

Table 2 The effect of the intensity correction on the
classification results

Normalization method

Decorrelation
technique

No correction
(%)

Stockman
(%)

Montoliu
(%)

Fuzzy sets (M = 8) 53.45 71.52 60.29

Fuzzy sets (M = 4) 49.13 63.10 55.62

PCA (M = 8) 44.58 66.43 57.63

LDA 48.04 62.86 44.36

WD 61.25 63.79 60.29

RGB 25.14 43.83 44.54

RAW 20.62 55.67 39.85
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numerically evaluated against a wide range of classic
decorrelation schemes and the experimental results indi-
cate that the proposed method outperforms the classic
techniques with respect to class separability and when
applied to material classification tasks. In our future
investigations we will focus on the deployment of the
proposed hyper-spectral decorrelation scheme into prac-
tical systems that are developed for robust material
classification.
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UDBS: user-defined band selection; WD: wavelet decomposition.
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