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This paper is concerned with the introduction of a new gradient vector flow (GVF) field formulation that
shows increased robustness in the presence of mixed noise and with its evaluation when included in
the development of image enhancement algorithms. In this regard, the main contribution associated
with this work resides in the development of an adaptive image enhancement framework that couples
the anisotropic diffusion models with the adaptive median filtering that is designed for the restoration
of digital images corrupted with mixed noise. To further illustrate the advantages associated with the
proposed GVF field formulation, additional experiments are conducted when the proposed strategy is
applied in the construction of anisotropic models for texture enhancement.
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1. Introduction

Image enhancement is one of the fundamental topics of research
in computer vision. As a result of this interest from the computer
vision community, a large number of approaches have been proposed
where the main goal was the implementation of feature preserving
noise removal and image enhancement strategies. The majority of the
existing noise removal algorithms assumes that the image noise has
two main characteristics, it has either a Gaussian distribution or it is
of impulse type, and as a result substantial research efforts have been
devoted to address the optimal restoration of digital images that are
corrupted by one particular noise component. In this regard, the
anisotropic diffusion approach proposed by Perona and Malik [18]
is one representative feature-preserving smoothing strategy that
addresses the restoration of images corrupted by Gaussian noise.
Since its introduction a large number of studies have been devoted to
propose various computational schemes that improve either the
numerical stability [2,5,6,10] or the edge preservation performance
[4,11,15,16,24] of the original Perona-Malik (P-M) anisotropic diffu-
sion model. In this sense, the introduction of the shock filters by
Osher and Rudin [17] opened the possibility to reformulate the image
enhancement as a combination of two coupled terms that implement
inverse (shock) and forward diffusion processes [1,9]. Another step
forward was represented by the incorporation of the gradient vector
flow (GVF) field in the implementation of the anisotropic diffusion
models. The GVF field has been originally introduced by Xu and
Prince [19] in the development of a novel active contour formulation
where a new external force model (GVF) has been shown to
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circumvent the difficulties faced by the conventional external forces
in capturing the shape concavities. This desirable property of the GVF
has been investigated in detail in the paper by Yu and Chua [23]
where they demonstrated that the GVF field is invariant to the
application of the image diffusion process and in addition they proved
that the GVF is able to capture more accurately the object boundaries
in images corrupted by high levels of Gaussian noise than the
anisotropic models based on standard partial differential equations
(PDE). However, since the GVF is constructed using a pair of
differential equations that diffuse the gradient vectors in orthogonal
directions, this PDE model is vulnerable when the image data is
corrupted by impulse or mixed noise. In this paper we propose a new
version of GVF that shows more stability in the presence of impulse
noise. The evaluation of the proposed GVF formulation when applied
to image data corrupted by different types of image noise and its
inclusion in the development of a new filtering scheme that is able to
restore and enhance images corrupted by mixed noise represent the
main contributions associated with this work. This paper is organised
as follows. Section 2 introduces a new GVF formulation that is able to
adapt to impulse noise. Section 3 details the implementation of a
coupled image restoration scheme based on the Alvarez-Mazora [1]
anisotropic diffusion. Section 4 presents the experimental results,
while Section 5 concludes this paper.

2. Gradient vector flow

In the original implementation [19], the GVF has been defined
as the vector field that minimises the following functional:

&)= [ VYR +IVFPV-V) 42 M
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where f is the input image, V=[u,v] is the GVF field, V is the
gradient operator and €2 is the image domain. The minimisation of
the functional &(V) can be achieved using the calculus of
variations (see Appendix A for additional details) and the GVF
field V can be determined for each pixel in the image as the
stationary value of the following iterative equation:

Ve = pAV—(V—Vf) Vf|? )

where V; is the partial derivative of the GVF with respect to the
time variable t and A is the Laplacian operator. This formulation
can be implemented in a recursive fashion in the discrete domain
as follows:

ue = pAu—[u—fJIf2 +£1
Ve = pAV—[v=RIIFZ + 7] 3
U—o=fx Vico=fy

where f and f, are the partial derivatives of f with respect to x and
y axes. As illustrated in (1)—(3), the GVF field is formed by two
terms. The first term performs the diffusion of the edge
information in agreement with a regularization parameter g,
while the second term ensures that the GVF field maintains the
maximum values at positions in the image where the gradient
information is maximised. This property is desirable since the sign
of the GVF on both sides of the edge are opposite. Consequently,
the intensity of the GVF field shows a progressive descent with
the increase in the distance between the pixels situated in the
edge neighbourhood with respect to the position where the
gradient is maximised. Thus, the incorporation of the edge
diffusion process in the development of anisotropic models is
advantageous since the GVF field does not attenuate the edge
information and allows the application of the data filtering
process in an increased region around both sides of the edge

map. Unfortunately, this positive aspect associated with the GVF
field is compromised in the presence of impulse noise and this can
be clearly visualised in Fig. 1 (image size 128 x 128).

This behaviour of the GVF field is expected since the aim of the
formulation shown in (1) is to preserve the strength of the
gradient information. In a recent paper, Xu and Prince [20] tried to
address the sensitivity to noise of the original GVF field by
replacing the constant term p with a diffusive term, u«<g(|Vf)),
and multiply the second term of the GVF with (1-g(|Vf))). It is
useful to note that in their paper the authors omitted the term u
in the formulation of the generalized (G)-GVF field. While the
diffusion function g(|Vf|)=exp(—|Vf|/K) is bounded in the
interval (0,1], the regularization term is still necessary to maintain
the convergence of the GVF field, unless the time step At is
reduced in the discrete implementation of the GVF. For more
details the reader can refer to Xu and Prince [20]. Nonetheless,
this simple modification introduces a spatially varying weighting
term that regularizes the edge diffusion process and improves the
performance of the GVF field when applied to noisy images
corrupted by Gaussian noise, but has virtually no positive
influence when the input data is corrupted by impulse noise. If
we analyse (1) in detail, we can notice that the second term of the
GVF field dominates close to the edge boundaries, as |Vf|> has
large values near strong edges, and this term cancels the effect of
the first term that implements the edge diffusion process. This
behaviour is highly detrimental when the image data is corrupted
by impulse noise, as the original and the generalized GVF
formulations [12,20] preserve the noisy gradients in the GVF
field. Thus, in this paper we focus our attention on the second
term of (1) with a view of implementing a new GVF formulation
that is able to preserve the field continuity in the presence of
impulse noise. In the proposed formulation shown in (4), the
second term of the GVF is weighted by the response of an impulse
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Fig. 1. The GVF field: (a) original image and the corresponding GVF field [19] and (b) image corrupted with impulse noise and the corresponding GVF field. For visualisation
purposes the GVF field is displayed only for the region of interest marked with a rectangle in the left image.
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noise estimator (INgs) as follows:
V)= [ VYR + NIV V-V 42 )

where Q is the R? image domain. Let iy be the neighbourhood
around the pixel of interest x; and X = {x;n}|(m,n) € Y be the set
that is constructed by reading the pixels that define ¥ in
lexicographical order. The impulse noise estimator is implemen-
ted based on the assumption that the pixels situated in the local
neighbourhood i approximate a Gaussian distribution unless the
data is corrupted by impulse noise. Using this assumption the
impulse noise estimator « can be implemented as follows:

o= (xj—X)* /(202 +¢) 6))
where
X = # Z Xmn
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are the mean and the standard deviation of the pixels contained in the
set X, ¢ is a small value that prevents the division by zero in constant
image areas and card(y/) denotes the cardinality of the set . It can be
observed that o takes large values if the central pixel is corrupted by
impulse noise and low values for regions with a flat pixel distribution.
Nonetheless, the relationship depicted in (4) will also respond to a
lesser extent to image details such as edges and to further improve
the selectivity of the impulse noise estimator we propose to map the
responses generated by (5) using an exponential function as follows:

INggt (x;5) = exp(—ar) (6)

It can be observed in (6) that INg, is a bounded function that takes
values in the interval (0,1] and converges to zero when the central
pixel of the distribution X is corrupted by impulse noise. To improve
the continuity of the GVF field in the local image domain, the impulse
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Fig. 2. GVF field calculated for the noisy image shown in Fig. 1: (a) original GVF implementation [19]; (b) generalized G-GVF [20], K=0.05; (c) generalized G-GVF [20],

K=0.2 and (d) Proposed INgs~GVF (=0.2). In all experiments At =1.

Fig. 3. Results of the image restoration algorithm detailed in Eq. (17): (a) ‘Lena’ image corrupted with mixed noise (Gaussian noise—A\/ (0,20), impulse noise—probability
0.1); (b) GVF—Eq. (1)—PSNR 20.39; (c) generalized (G)-GVF—PSNR 20.35 and (d) proposed INg;-GVF—PSNR 20.65.
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noise estimator is calculated as follows:
INEse (x;) < irllf(INEst(f ) (7

where I is a local neighbourhood around the central pixel x; and inf'is
the infimum operator. It can be noted that the infimum operator
implements a local diffusion for INg; values calculated with (6) and
this allows the edge diffusion term (u|VV|?) shown in (4) to
dominate in the calculation of the GVF field within the I

a

Fig. 4. Close-up details from images depicted in Fig. 3: (a) GVF;
INEs-GVF image restoration scheme.

neighbourhood around the pixels corrupted by impulse noise. Similar
to the original [19] and generalised GVF formulations [12,20], the
proposed scheme is also convergent if the following relationship that
illustrates the mutual dependence between the time step (At) and
parameter u is upheld.

AxAy
4p

At < 8)

) G-GVF; (c) INgy-GVF. Note the improved preservation of the objects’ boundaries attained by the

v,
'

Fig. 5. Experimental results when the image restoration algorithms are applied to ‘Lena’ image corrupted by Gaussian noise: (a) noisy images: top row A/(0,20), middle
row N (0,30), bottom row A (0,40); (b) GVF-AM (Eq. 16); (c) G-GVF-AM (Eq. 16) and (d) INgs,-GVF-AM (Eq. 17). PSNR values calculated when the GVF-AM, G-GVF-AM and
IN.+-GVF-AM image restoration schemes are applied to ‘Lena’ image corrupted by different levels of Gaussian noise are depicted in Fig. 7.
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Proposition. The INg;-GVF formulation is convergent if the relation- and Ny(ij) defines the four connected neighbourhood around the

ship shown in (8) is upheld. pixel with coordinates (i,j) and the superscript n denotes the
iteration index. If we assume that u}} is a maxima, then the term

Proof. (Proof is provided only for the component u of the GVF INEs(f(ij)) ~ 0 and (9) can be re-written as follows:

field since the demonstration is identical for the v component.)

The implementation of the INg,~GVF field (component u) in the ael_.on  MAE At
discrete domain is shown in (9). Ui =T AxAy A+ AxAy %:(mus (10)
€Ny
ur = puAu—INEse (F)(u—Fol VS €)
where Since ug- is a maxima (0 < ug.“ < u}}) and the term
ut - 25 e Nyt Us — Ui AL > us<uf
Ue="A¢r Au= AxAy AXAyseM,(iJ) !

Fig. 6. Edge information extracted using the Canny edge detector (scale parameter=1.0) corresponding to the images shown in Fig. 5: (a) noisy images: top row A(0,20),
middle row A(0,30), bottom row A(0,40); (b) GVF-AM (Eq. (16)); (c) G-GVF-AM (Eq. (16)) and (d) INgs-GVF-AM (Eq. (17)).
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Fig. 7. (a) PSNR values and (b) root mean square (RMS) errors (image data normalised in the interval [0,1]) when the GVF-based Alvarez-Mazora (A-M) anisotropic
diffusion schemes analysed in this study are applied to data (‘Lena’ image) corrupted by different levels of Gaussian noise.
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then (10) becomes,

UAE
0<uj— AxAy

While the right hand side of the expression illustrated in (11) is
obvious since —(uAt/AxAy)4uj; <0, we further analyse the left
hand side of (11),

—uf < —(uAt/AxAy)4uf;

1 =>At<AXAy

_uT} <4

Al <ul an

s if we multiply both sides by

(12)

i,

Fig. 8. Experimental results when the image restoration algorithms are applied to ‘Lena’ image corrupted by impulse noise:

bottom row—probability 0.2; (b) GVF-AM; (c) G-GVF-AM and (d) INgs-GVF-AM.

If the spacing between pixels Ax=Ay=1, then At<1/4u. A
similar judgement can be applied if the point uj; is a minima. If the
time step At=1, then the INg,~GVF field is convergent if the
regularization parameter u is set to values in the range [0, 0.25].

Fig. 2 illustrates the results of the GVF field when the original,
generalized and proposed (INgs~GVF) formulations are applied to
the noisy image shown in Fig. 1. O

The experimental results shown in Fig. 2 indicate, as expected,
that the standard GVF (see Eq. (1)) is not able to reject the

et
6

) noisy images: top row—probability 0.1,

Fig. 9. Experimental results when the proposed image restoration scheme is applied to image data corrupted by mixed noise: (a) noisy image (Gaussian noise—A\/(0,10),
impulse noise—probability 0.1); (b) filtered image—Yang and Fox [22]—PSNR 20.58; (c) filtered image (INg;,~GVF-AM)—PSNR 20.82; (d) noisy image (Gaussian
noise—A\/(0,20), impulse noise—probability 0.2); (e) filtered image—Yang and Fox [22]—PSNR 20.48 and (f) filtered image (INg;~GVF-AM)—PSNR 20.61.
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gradients generated by impulse noise. The generalized imple-
mentation (G-GVF) [20] shows instability around pixels cor-
rupted by impulse noise and this is more noticeable when the
diffusion parameter K is set to larger values. These results are
expected since the diffusion function g(|Vf|) = exp(—|Vf|/K) that
replaces the regularization parameter u in (1) shows poor
stability in the presence of impulse noise (as it evaluates the
gradient information). Conversely, the proposed INg,-GVF for-
mulation shows a much better performance in the presence
of impulse noise and its properties prompt us to investigate
its usefulness in the implementation of image and texture

e

a) Yang-Fox [22]—Fig. 9(b); (b) INg~GVF-AM—Fig. 9(c); (c) Yang-Fox [22]—Fig. 9(e) and (d) INgs,-GVF-

Fig. 10. Close-up details from images depicted in Fig. 9:

enhancement algorithms. This is demonstrated in Fig. 3 where
the image restoration scheme detailed in (17) is applied to an
image corrupted with mixed noise (combination of Gaussian and
impulse noise). For visualisation purposes close-up details are
shown in Fig. 4.

3. GVF and anisotropic diffusion-based image enhancement

The application of the diffusion models for image enhance-
ment has been first evaluated by Perona and Malik [18] where

d

AM—Fig. 9(f). Note the undesired blurring effects generated by Yang and Fox [22] method and the improved preservation of the objects’ boundaries attained by the INg-

GVF-AM image restoration scheme.
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Fig. 11. (a) Original image [27]; (b) filtered image—Yang and Fox [22]; (c) filtered image—INgs-GVF-AM and (d) Pixel intensities plotted for the highlighted line depicted in
image (a). Note the better edge preservation attained by the INg,~GVF-AM image restoration scheme.
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they formulated the smoothing process in terms of the derivative
of the flux function as follows:

It =V(g(VI)VI), I(t=0)=f, Newman conditions (13)

where g( -) is a monotonically decreasing function. The Perona-
Malik (P-M) equation implements the diffusion process by
performing aggressive smoothing in image areas defined by weak
gradients and stopping the smoothing process at image regions
defined by strong gradients. The P-M equation has received a
significant amount of interest over the past two decades and
numerous studies have been devoted to propose different
mathematical models that either address the optimal implemen-
tation of the diffusion function g(-) [7,9,11] or improve its
numerical stability around singular points [8,13,24]. While the
anisotropic diffusion process is described in terms of PDE models,
most of the efforts were concentrated on the development of
mathematical schemes that are able to adjust the diffusion coeffi-
cients to the local image content. One such example is repre-
sented by the incorporation of the GVF field into the development
of anisotropic diffusion models and this issue has been addressed
in detail in the paper by Yu and Chua [23]. In this paper we will
further analyse this approach and our study will be in particular
concerned with the incorporation of the proposed INg,-GVF field
in the development of an image restoration scheme with a view of

improving the performance of the filtering process in the presence
of impulse noise.

3.1. Alvarez—-Mazora formulation

The P-M anisotropic diffusion may be viewed as the solution
of the heat conduction equation where the diffusion coefficient
can be considered independent of space location. Building on this
concept, Alvarez and Mazora (A-M) [1] reformulated the image
restoration in terms of two coupled anisotropic diffusion models
as follows:

Iy = —sign(Go«lyy) | Vf | +clge, 1(t=0)=f 14)
VI VI . (VI
— (gt Y - LS
Iyy = <H IlVIl VI > and I |VI|dw(|w|> (15)
where * is the convolution operator, # is the direction of

the gradient, ¢ is the direction orthogonal to the gradient, ¢
is a positive term, {> defines the dot product, H?> is the
Hessian matrix and div is the divergence operator. It can be
observed that the first term in (14) defines a shock filter [17]
that implements an inverse diffusive process. The aim of the
shock filter is to perform a deblurring process between
areas defined by zero-crossings of the smoothed second
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Fig. 12. (a) Original image [27]; (b) filtered image—Yang and Fox [22]; (c) filtered image—INg~GVF-AM; (d) Pixel intensities plotted for the highlighted line depicted in
image (a). Note the better edge preservation attained by the INg,~GVF-AM image restoration scheme.
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derivative in the direction of the gradient. The second term
implements a forward isotropic diffusion process along the
isophotes and it has the role to smooth the noise in relatively flat
image regions. This formulation produces superior results when
compared to the standard P-M equation, but it is important to note
that the A-M formulation is highly sensitive to noise as it is based
on the calculation of the second order derivatives. This is the main
motivation behind the introduction of the GVF field in the
development of inverse and forward diffusion models, as the GVF
field basically implements a weighted gradient diffusion process.
Based on this observation, Yu and Chua [23] introduced the GVF
field in equation (14) as follows:

lo= —sign( <V.igpo> ) VF1+80VIDAL 1(6=0)=f (16)
where V is the GVF field that is calculated using (1). In their paper,
Yu and Chua [23] not only demonstrated that (16) leads to superior
results when compared to (14), but also they have shown that (16)
reaches the steady state solution more quickly then the original A-
M equation. However, in their paper Yu and Chua did not analyse
the stability of the image restoration scheme detailed in (16) when
applied to data corrupted by impulse or mixed noise. Since the
gradient information VI is used in the calculation of the inverse
(shock) and forward diffusion components in (16), the GVF-based
A-M anisotropic diffusion shows significant instability in the
presence of impulse noise.

To compensate for this issue we propose a new formulation
where the terms that implement the inverse and forward
diffusion models are coupled with another term that implements

a

Pixel intensity
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an adaptive median filter [14]. The combination between the
median and anisotropic diffusion has been explored before by
Yang and Fox [22] where the authors simply performed a
weighted sum between the output of the median filter and the
output of the A-M anisotropic diffusion term. Nonetheless, this
approach is not appropriate since this noise removal scheme
indeed attenuates the amplitude of the impulse noise in the
filtered output, but this advantage is attained at the expense of
weak feature preservation. Another disadvantage is related to the
optimal selection of the parameter that weights the contribution
of the median filter in the overall filtering process. In the
implementation proposed by Yang and Fox [22] this weight is a
user-defined parameter. To circumvent these undesirable effects,
we propose the following coupled formulation:

o= (1IN ) medf) 1+ N )| i Vi > ) +£0VIDA]
a7

where INg; is the impulse estimator defined in (7), med is the
adaptive median filter and Vjy,, is the INg-GVF field defined in
(4). In order to analyse in detail the formulation shown in (17) we
recall that INgs takes values close to zero when the image is
corrupted by impulse noise. In this way, we note that the first
term performs impulse noise cancelling as it couples the original
image with the output of the median filter.

Proposition. If the pixel with coordinates (ij) is corrupted by
impulse noise, then the output of the image enhancement process
shown in (17) approximates the output of the median filter.
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Fig. 13. (a) Original medical image [28]; (b) filtered image—Yang and Fox [22]; (c) filtered image—INg,~-GVF-AM and (d) Pixel intensities plotted for the highlighted line
depicted in image (a). Note the better edge preservation attained by the INg,~GVF-AM image restoration scheme.
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Proof. If the pixel with coordinates (i,j) is corrupted by impulse
noise (INgs(f(ij)) ~0) and the time step At =1, then the discrete
implementation of (17) becomes,

" (i) = I"(i) + med(f (i),0)—I"(ij) = """ (i,j) = med(f(i,j),0)
where n is the iteration index and ¢ is the local neighbourhood
where the median filtering is applied.

The second term of (17) implements the modified A-M
equation depicted in (16) where the original GVF field has been
replaced with the INg,-GVF field and for simplicity the diffusion
function g( - ) has been implemented using an exponential form
g(IVI)) = exp(—(|V1|/k)?), k being a diffusion parameter. As it can be
observed in (17), the forward diffusion term dominates in the
proposed INg,-GVF image restoration scheme in image areas defined
by relative homogenous intensity distributions that are corrupted by
Gaussian noise (INgg ~ 1) whereas the first term dominates in image
areas corrupted by impulse noise (INgg; ~0). O

(18)

4. Experimental results

The first set of experimental results aims to demonstrate
the improved performance of the proposed image restoration
formulation detailed in (17) when compared to the original GVF-
based anisotropic diffusion proposed by Yu and Chua [23] when

a

Pixel intensity
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applied to image data corrupted by Gaussian noise, impulse noise
and mixed noise. To evaluate numerically the performance of the
proposed formulation, the experimental results are quantified
using the peak-signal-to-noise-ratio (PSNR).

max(I(x))2. o

I Jiij e oUG)—00))* didj

PSNR = 101log;, 19)

_1
size(£2)

where Q is the R? image domain, O(i,j) defines the pixel intensities
of the original (noiseless) image and I(i,j) are the pixel intensities
resulting after the image restoration algorithms are applied to the
image that is corrupted with noise. In all experiments conducted
in this section the GVF field parameters have been set to the
following values: p=0.2 (all GVF forms), K=0.05 (G-GVF) and
I'=3 x 3 (INg~GVF). The diffusion parameter k is set to 0.1
(function g( - ) in Egs. (16) and (17))

As mentioned earlier the initial tests are conducted on data
that is corrupted with Gaussian noise, visual and numerical
results are depicted in Figs. 5-7.

The experimental results depicted in Figs. 5-7 indicate that all
GVF-based A-M image restoration schemes analysed in this paper
produce similar results when applied to data corrupted by low
levels of noise. When the level of the Gaussian noise is increased,
the proposed scheme (INg~-GVF-AM) produces more consistent
results than the standard and the generalized GVF-AM
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Fig. 14. (a) Original medical image [29]; (b) filtered image—Yang and Fox [22]; (c) filtered image—INg~GVF-AM and (d) Pixel intensities plotted for the highlighted line
depicted in image (a). Note the better edge preservation attained by the INg,,-GVF-AM image restoration scheme.
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approaches. These results were motivated by the vulnerability of
the shock filter to high levels of image noise. The improved
performance of the proposed scheme was expected since the
regularized INgs-GVF leads to more stable fields in the presence of
strong noise.

The second set of experiments has been conducted to evaluate
the performance of the analysed image enhancement scheme
when applied to data corrupted by impulse noise. A number of
experimental results are shown in Fig. 8.

As Fig. 8 illustrates, the image restoration schemes implemen-
ted using (16) are extremely vulnerable in the presence of
impulse noise, while the proposed (INg-GVF) strategy imple-
mented using (17) is well able to accommodate the impulse noise.
The third set of experiments was conducted on images corrupted
by mixed noise [21] and results are shown in Fig. 9 (in this
experiment only the image restoration scheme detailed in (17) is
evaluated as the previous experiments demonstrated that the
GVF-based schemes constructed using (16) are vulnerable in the
presence of impulse noise). For comparative purposes, the results
and the PSNR values obtained when the Yang and Fox [22]

method is applied to data corrupted by mixed noise are also
included in Fig. 9. For visualisation purposes close-up details are
shown in Fig. 10. The results depicted in Figs. 9 and 10 indicate
that the Yang and Fox method [22] is also able to reject the
mixed noise, but this advantage is obtained at the expense of
increasing the level of image blur. On the other hand, the
proposed technique (INg,~GVF-AM) generates crisper results
where the contextual image features such as edges are better
preserved. This observation is further enforced by the higher PSNR
values obtained by the INg,~-GVF-AM image restoration scheme.
Additional results are shown in Figs. 11-14 where the perfor-
mance of the Yang and Fox [22] and INg,-GVF-AM is analysed
with respect to edge preservation. The experimental results
illustrated in Figs. 11-14 demonstrate that the INg,-GVF-AM
outperforms the Yang and Fox [22] image restoration technique
with respect to intra-region smoothing and contextual feature
preservation.

The last experiments were conducted to evaluate the con-
tribution of the proposed INg,-GVF field when included in the
development of texture enhancement algorithms [25,26]. In the

Fig. 15. Coherence-enhancing anisotropic diffusion (CEAD): (a) Weickert implementation [26] and INg,-GVF-based CEAD—iterations=1; (b) INgy-GVF-based
CEAD—iterations=5; (c) INg~GVF-based CEAD—iterations=10 and (d) INgs,-GVF-based CEAD—iterations=15.

Fig. 16. Coherence-enhancing anisotropic diffusion (CEAD) when applied to a Brodatz [3] texture: (a) Original image; (b) Weickert implementation [26] and INgg,-GVF-
based CEAD—iterations=1; (c) INgs~-GVF-based CEAD—iterations=5. (d) INgs,-GVF-based CEAD—iterations=10.

Fig. 17. Coherence-enhancing anisotropic diffusion (CEAD) when applied to a texture image characterised by strong orientation: (a) original image; (b) Weickert
implementation [26] and INg,-GVF-based CEAD—iterations=1; (c) INg,~-GVF-based CEAD—iterations=5 and (d) INg,-GVF-based CEAD—iterations=10.
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remainder of this section we investigate the algorithm proposed
by Weickert [26] where the structure tensor is included in the
development of an anisotropic diffusion scheme that is able to
enhance the coherent structures in the image. In this paper we
have constructed the diffusion tensor using the INg,-GVF field and
a number of experimental results are depicted in Figs. 15-17. The
experimental results indicate that the application of the INg;,-GVF
field for texture enhancement is justified, as the edge diffusive
process in the INg,-GVF field is applied in an iterative manner and
the number of iterations controls the size of the neighbourhood
where the coherent structures in the image are enhanced, as
opposed to the original implementation [26]. It is useful to note
that the proposed INg,-GVF-based algorithm generate the same
results as those returned by Weickert’s technique [26] when the
GVF field is calculated using one iteration (i.e. u(t=0)=f,,

v(t=0)=f,).

5. Conclusions

Due to its intrinsic properties, the GVF field is an attractive
approach that can be applied in the development of image
enhancement schemes. The standard GVF scheme proposed by
Xu and Prince [19] is based on the evaluation of the second order
derivatives and as a result this formulation shows severe
instability in the presence of impulse noise. Thus, one of the aims
of this work was focused on the development of a new GVF
formulation where the gradient preservation term is regularized
by the response of an impulse noise estimator. The new GVF-
based formulation has been included in the development of a new
image enhancement strategy that performs an adaptive coupling
between the responses provided by the median and A-M
anisotropic diffusion filtering schemes. The proposed scheme
has been tested on image data corrupted by different types of
noise and the experimental results indicate that the proposed
image enhancement technique is able to better adapt to the
characteristics of the image noise than the GVF-based A-M image
filtering formulation proposed in [23]. Additional experiments
have been conducted to illustrate the advantages associated with
the proposed INg,-GVF field when incorporated in the develop-
ment of texture enhancement algorithms. Our future studies will
be focused on the evaluation of the proposed strategy when
applied to practical cases such as the robust segmentation of
multi-dimensional medical data.
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Appendix A

As indicated in Section 2, the GVF is defined as the vector field
that minimises the following functional:

V)= /;u\VV\ZHVfIZ(V—Vf)ZdQ: /

F(x,y,V,Vy,Vy) dx dy
xy)eQ

(A1)

where fis the input image, V is the gradient operator, V,, V, are
the partial derivatives of the GVF field V with respect to x and y
axes and Q is the two dimensional image domain. The minimisa-
tion of the functional &(V) shown in (A1) can be performed using

the calculus of variations by applying the Euler-Lagrange
equation as follows:

OF 0 0F 0 0oF 0 (A2)

If we calculate the partial derivatives of the function F(-) in
equation (A2) (i.e.)

oF

o 20y _ _ vy 9 _
= =2VEV-V), 2uAV

we obtain the following expression:
HAV—|VfP(V=Vf)=0 (A3)

where A is the Laplacian operator. If we consider that the GVF
field V is a function of the time variable ¢, then the functional
depicted in (A1) takes the form of a first-order Hamilton-Jacobi
and the solution of the equation shown in (A3) can be solved as
follows:

ovV(x,y,t)

at +min(E(V(xy,t)) =0 (A4)

If we use the notation

oV(xy,t)

VI(vavt) = ot

then (A4) becomes,

Vexy.t) = pAVEY.O— I V)PV xy.H -V xy)) (A5)

where the stationary values for V(x,y,t) = [u(x,y,t),v(x,y,t)],t — oo are
the solutions of the Euler-Lagrange equation shown in (A3).
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