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Abstract—In this paper we investigate the segmentation of closed contours in sub-cellular data using a 

framework that primarily combines the pairwise affinity grouping principles with a graph partitioning 

contour searching approach. One salient problem that precluded the application of these methods to large 

scale segmentation problems is the onerous computational complexity required to generate comprehensive 

representations that include all pairwise relationships between all pixels in the input data.  To compensate for 

this problem a practical solution is to reduce the complexity of the input data by applying an over-

segmentation technique prior to the application of the computationally demanding strands of the 

segmentation process. This approach opens the opportunity to build specific shape and intensity models that 

can be successfully employed to extract the salient structures in the input image which are further processed 

to identify the cycles in an undirected graph. The proposed framework has been applied to the segmentation 

of mitochondria membranes in electron microscopy (EM) data which are characterized by low contrast and 

low signal to noise ratio. The algorithm has been quantitatively evaluated using two datasets where the 

segmentation results have been compared with the corresponding manual annotations. The performance of 

the proposed algorithm has been measured using standard metrics such as Precision and Recall and the 

experimental results indicate a high level of segmentation accuracy.  

 

Index Terms—Mitochondria segmentation, electron microscopy, affinity models, spectral clustering and 

graph searching.  
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I. INTRODUCTION 

The accurate segmentation of mitochondria in microscopy images represents a challenging research topic that is 

motivated by the biological importance of these membrane-enclosed sub-cellular organelles. Mitochondria are 

substructures of the cells with sizes ranging from 0.5 to 10 µm and their primary role is the processing of the food 

molecules into adenosine triphosphate (ATP) which provides energy for the cells. In addition to the generation of 

ATP, mitochondria play an important role in several cellular functions such as signaling, differentiations, cell 

growth and mitochondrial regulation processes [1-3] and a substantial number of studies were focused on the 

investigation of the cellular mechanisms that regulate the mitochondrial shapes and their links to specific cellular 

functions and mitochondrial diseases [4]. In this sense, mitochondria present substantial morphological variations 

which correspond to different cellular states which are in particular noticeable during mitochondrial fusion and 

fission processes  [2]. In addition to shape variations that normally occur during the cellular life, substantial 

morphological changes in the structure of mitochondria are also caused by disturbances caused by cellular 

perturbations [2,5].    

    Sub-cellular imaging is commonly performed using electron microscopy (EM) modalities which have sufficient 

resolution to image organelles such as mitochondria [7]. The interpretation of EM mitochondria data presents a 

challenging process in scientific studies due to two main issues. The first issue is associated with the vast amount of 

data that is generated by the EM modality, while the second problem is given by the presence of numerous non-

mitochondrial structures, high level of noise and substantial intensity variations. These two problems gained 

substantial prominence in clinical studies as the interpretation of the EM mitochondria data involves manual 

segmentation, which proved to be an extremely laborious and time consuming task. The labor intensive 

characteristic of the manual annotation process is detailed in [8]. In this analysis the researchers use semi-automatic 

software tools such as IMOD [9] and CellProfiler [10] and the exhaustive analysis of the EM mitochondria may 

require several months [8]. These limitations raised several questions in regard to the practicality of the manual 

annotation of the EM mitochondria data and a recent direction of research investigates the application of pattern 

recognition and statistical machine learning methods for automatic mitochondria segmentation. While the use of 

computer vision solutions for mitochondria identification in sub-cellular data answers a demanding clinical problem, 

the development of such automatic segmentation algorithms provides a challenging task. This conclusion is 
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motivated by several factors which include computational issues that are generated by the volume of data to be 

processed, wide range of shapes and textures that are associated with mitochondria which can be easily confused 

with other sub-cellular structures such as membranes and vesicles, severe intensity variations and low signal to noise 

ratio. It is important to mention that these challenges vary to a great extent depending on the type of cells that are 

analysed and the development of automatic mitochondria segmentation is currently an open area of research. 

 

 
 

 

Fig. 1. Mitochondrial structure. The left image illustrates the main components of a mitochondrion [6]. The right image presents 

the segmentation results obtained after the application of the proposed segmentation algorithm that is described in Section II. 

Note the highly cluttered background and the low intensity contrast that is specific for mitochondria EM data.    

 

     The main hypothesis that was employed in the development of computer vision solutions for mitochondria 

segmentation is based on the observation that these sub-cellular organelles are defined by closed structures with 

distinct inner textures (see Fig. 1). Thus, two main directions of research emerged that attempted to exploit specific 

knowledge in relation to the morphology and/or structural characteristics of mitochondria [33]. In this regard, a good 

example of this line of approach is represented by the work of Narasimha et al [11] where they proposed a texton-

based algorithm for mitochondria detection which involves the joint classification using k-NN, support vector 

machines (SVM) and adaptive boosting (AdaBoost). This approach has been applied to the segmentation of 

mitochondria in MNT-1 cells and they conclude that their method performs similar and in some situations better 

than semi-automatic techniques based on level sets. A similar idea is followed in [12] where the authors employed 

the standard Gabor filtering method in conjunction with a Gentle-Boost classifier to detect mitochondria in rat brain 

tissues. The reported experiments indicate relative large misclassifications (false acceptance rate is 25% and false 
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rejection rate is 20%) and this fact highlights two major disadvantages associated with the texture-based methods: 

the complexity of the training process and the fact that these approaches are poorly equipped to adapt to changes in 

the cristae structure (cristae are folds of the inner mitochondrial membrane) that are induced by cellular and 

mitochondria membrane events [3].       

       To counteract the limitations associated with structure-based segmentation methods when applied to 

mitochondria segmentation, alternative approaches based on active contours [5,13] and graph partitioning [1,14,15] 

have been proposed. Active contours methods in particular proved successful when deployed in the implementation 

of semi-supervised segmentation algorithms, but they have shown to be impractical when applied in conventional 

forms to mitochondria EM data. This is caused by several issues such as difficulty in obtaining accurate contour 

initialization, weak gradients caused by low intensity profiles that are often characteristic for mitochondria 

membranes, random textures, noise, and more importantly difficulties in deriving statistical models that precisely 

encompass the modes of variation of the mitochondria shapes. To mitigate these limitations Seyedhosseini et al [7] 

combined the use of algebraic curves and texture to identify image patches that resemble mitochondria which are 

later ranked by a random forest classifier. They have tested their algorithm on mouse neuropil and Drosophila VNC 

data and they report promising results. In an effort to redress the problems associated with traditional level sets 

implementations when used for segmentation of sub-cellular structures, Nguyen and Ji [16] initially embedded the 

watershed segmentation into an energy minimization framework (watersnake) and then they incorporate prior 

information in the form of fixed and variable shape terms that constrain the space that is spanned during the contour 

propagation process. They quantitatively evaluated their algorithm on rat liver mitochondria data and they 

demonstrated that the inclusion of prior shape information proved a key element in achieving accurate segmentation 

results. In spite of these performance improvements the use of active contours for mitochondria segmentation proved 

problematic due to contour initialization errors and a large set of parameters that require optimization. Therefore, 

these approaches were successful when applied to cellular data where the range of mitochondria shapes varies within 

a restricted domain.  

       This limitation was recently addressed by the application of graph partitioning algorithms to mitochondria 

segmentation and the guiding idea was to identify the cycles corresponding to mitochondria contours in undirected 

graphs. This is usually obtained by enforcing shape minimization constraints to an undirected graph where the nodes 
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are defined in most simplistic cases by pixels or in more involved approaches by adjacent regions resulting from a 

pre-segmentation step. Building on this idea, Lucchi et al [1,14] combined a primary segmentation step that involves 

the calculation of superpixels with a graph cut algorithm where unary and pairwise potentials of an energy function 

were employed to incorporate shape cues that are inferred by SVM classification. While graph partitioning 

techniques are better equipped than active contour-based methods for the segmentation of sub-cellular structures 

they have several practical issues. The first problem relates to the complexity of the undirected graphs in which 

closed contours are detected and the second (and perhaps the most difficult problem to tackle) is the inference of 

graph searching constraints that accurately encode a set of rules that allows the identification of mitochondria 

membranes when dealing with the noisy and low contrast nature of the EM data. These issues form the main 

research problems that are addressed in this paper and it is our conviction that these challenges can be elegantly and 

efficiently answered by an algorithm that combines pairwise affinity grouping principles with graph partitioning 

techniques. The proposed algorithm provides an attractive segmentation framework as it facilitates the 

implementation of an automated solution that is able to adapt to the large diversity of the mitochondria shapes in 

highly cluttered environments that are characteristic for EM data.  

       This paper is organized as follows. Section II starts with a brief overview of the proposed segmentation method 

which is continued by a detailed presentation of all computational strands of the algorithm. Section III includes a 

discussion about experimental results and compares the performance achieved by the proposed segmentation method 

when applied to mitochondria segmentation with the results reported for other related implementations. Section IV 

provides concluding remarks that highlight the main findings that emerge from this investigation and outlines the 

future directions of research.  

II. OVERVIEW OF THE PROPOSED METHOD 

The proposed segmentation method consists of a multi-stage scheme in which the first step involves data pre-

processing whose aim is twofold, to reduce the noise and to enhance the local structure coherence. To reduce the 

complexity of the input data, the second step of the algorithm applies the technique detailed in [17] which over-

segments the data in superpixels, which are image patches with similar intensity characteristics. This reduction in 

data complexity allows the application of a spectral clustering algorithm where targeted association rules between 
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superpixels are factored into a similarity model which encompasses the intensity and spatial properties of the 

mitochondria membranes. The resulting similarity model encapsulates specific saliency models into an affinity 

matrix and the extraction of the salient features implies the calculation of the leading eigenvector from which are 

derived sets of discrete clusters. The output of the spectral clustering algorithm generates the primary mitochondria 

segmentation which consists of a set of connected superpixels that require additional processing stages to accurately 

identify the mitochondria membranes. To facilitate further contour processing, an undirected graph is constructed 

which encodes the spatial relationships between the superpixels resulting from the spectral clustering step. Then a 

standard graph searching approach is applied to identify the cycles in the undirected graph structure. From this 

information, the mitochondria contour is identified by enforcing intensity minimization constraints. The last step of 

the algorithm applies contour post-processing which aims to correct the localization errors in the estimation of the 

superpixels which are caused by the low gradients that are associated with mitochondria membranes. The complete 

processing pipeline is presented in Fig. 2 and full details related to each step of the proposed segmentation algorithm 

will be presented in the remainder of this section. 

 
 

Fig. 2. Overview of the mitochondria segmentation algorithm. 

A. Data Pre-processing Step 

The high level of noise and the low intensity contrast between mitochondria membranes and background are distinct 

characteristics of the EM data. Thus, the first step of the algorithm, as illustrated in Fig. 2, applies a data pre-

processing procedure to improve the coherence of the local structures and contextual information (i.e. enhancement 

of directional consistent (or flow-like) patterns) in the input data. The goal of this pre-processing step is to improve 

the contour completion using directional filters which involves an approach related to the coherence anisotropic 
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diffusion process proposed by Weickert in [18]. The filtering scheme detailed in [18] enhances the directional 

structures in the image with respect to the local orientation computed from the structure tensor and a version of this 

algorithm has been applied by Tasdizen et al [34] to improve the contrast in transmission EM images. In this paper, 

we have replaced the iterative anisotropic diffusion smoothing scheme in [18] with the application of directional 

Gaussian kernels [19,20] to implement a more scalable feature enhancement process that allows better regularization  

(i.e. contour gap completion) along flow-like structures. This is motivated by two reasons. Firstly, the directional 

Gaussian filters provide a wider non-linear spatial averaging than the anisotropic process, which allows better 

contour completion when dealing with larger gaps in the local structure, and secondly this approach involves a non-

iterative scheme which has clear advantages in the presence of high levels of noise by decoupling the scale of the 

noise from the scale of the contour gaps that need to be bridged by the enhancement of the oriented features in the 

image. As the use of directional Gaussian filters requires knowledge in relation to local orientation, the first step of 

the data enhancement (pre-processing) step involves the calculation of the integrated structure tensor Jρ (for clarity 

reasons we have used the same notations used in [18]),  

 

( ) +∈∇∇∗= RuuKJ
T σρσσρρ ,  ,                                                                  (1) 

 

where Kρ denotes the Gaussian filter with the scale parameter ρ and σu∇  is the convolution of the input image with 

the first derivative of the Gaussian filter with the scale parameter σ. In (1) ρ is a spatial integration coefficient that 

controls the neighbourhood over which the structure tensor is calculated and σ is a parameter chosen in relation to 

the level of noise present in the image. The increased spatial domain where the structure tensor is calculated allows 

the estimation of the local orientation θ within the neighbourhood N(ρ). The structure tensor is defined by a 

symmetric matrix and the local orientation θ is given by the orientation of the eigenvector e that corresponds to the 

smallest eigenvalue, ( )Te )sin(),cos( θθ= . The local orientation θ is calculated for each pixel in the image and the pre-

processed image is obtained by convolving the input image with a bank of directional filters as follows, 
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where u is the input image, v is the enhanced image, σx, σy are the scale parameters that parameterize the shape of the 

directional filter and Ω is the image domain. To implement a anisotropic kernel with orientation θ we need to 

constrain yx σσ << .  

 

   
                                      (a)                                                        (b)                                                            (c) 

   
                                                        (d)                                         (e)                                         (f) 
 

Fig. 3. Data pre-processing results. (a) Original EM image. (b) Image enhancement using our directional filtering method that is 

described in Section II.A (parameters ρ=4.0, σ=1.0, σx=0.5, σy=4.0). (c) Image enhancement using coherence enhancing 

anisotropic diffusion [18] (parameters: ρ=4.0, σ=1.0, ∆t=0.15, t=3). (d-f). Close-up details corresponding to images (a-c). Note 

that the proposed data enhancement scheme avoids the introduction of artificial flow-like structures in the enhanced image that is 

one of the drawbacks associated with the coherence enhancing anisotropic diffusion algorithm. 

 

       An example that illustrates the application of the pre-processing step is depicted in Fig. 3. To highlight the 

advantages associated with the proposed algorithm when applied to the enhancement of EM mitochondria data 

shown in Fig. 3 we also include the enhanced image obtained by the coherence enhancing anisotropic diffusion 

(CEAD) algorithm detailed in [18]. In Fig. 3 it can be observed that both algorithms succeed in enhancing the 

oriented features in the image but the CEAD algorithm achieves this advantage at the expense of inserting artificial 

flow-like structures in the output image. These extraneous structural artefacts are caused in part by the image noise 

but more frequently by regularization errors that are caused by the limited spatial domain that is processed by the 

coherence-enhancing diffusion around each pixel in the image. As shown in Fig. 3(e), the proposed algorithm avoids 
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the insertion of undesired flow-like structures and this advantage is motivated by two factors. Firstly, the proposed 

algorithm involves a non-iterative scheme which avoids error propagations that occur in the presence of noise and 

weak contours, and secondly the directional filters implement a more accurate filtering process when compared to 

the anisotropic diffusion process. To allow a direct comparison between the image enhancement strategy discussed 

in this section and the CEAD algorithm the parameters used in the calculation of the structure tensor Jρ are set to the 

same values ρ=4.0 and σ=1.0 for both algorithms.  

B. Over-segmentation Step 

One difficult issue that restricts the application of graph partitioning algorithms to large scale segmentation 

problems is the complexity of the input data. Encoding all pixel relationships in the input data using graph 

representations leads to very large data structures that are not feasible to be used for practical segmentation tasks. To 

circumvent this computational bottleneck, the input data is either downscaled or tiled into equally sized subsections 

on which the developed algorithm is sequentially applied. There is no doubt that these solutions are not effective 

when applied to complex segmentation tasks due to the difficulty of imposing coherent shape and intensity 

constraints. An alternative to this approach is the development of over-segmentation algorithms that generate a 

primary partition of the input data into regions or image patches with similar intensity characteristics. In this regard, 

a large range of over-segmentation algorithms have been proposed to date [17,21,22] where the main quest was 

obtaining image regions or superpixels with uniform texture or intensity properties. In this paper we have applied the 

SLIC algorithm proposed in [17] which generalize the k-means algorithm. This method starts with an initial number 

of seed locations which are iteratively enlarged into superpixels with respect to connectivity and a priori size 

constraints until a convergence criterion is met. Full details about this algorithm are provided in [17]. 

       The main advantage of this algorithm over alternative implementations based on the watershed transform [23] is 

the regularized tessellation of the input image that is given by the lattice of superpixels. An illustration of the output 

of this algorithm when applied to a selection of mitochondria images is presented in Fig. 4. These primary 

segmentation results provide a substantial reduction in the complexity of the input image and they facilitate the 

application of the computationally demanding processes related to spectral clustering and graph partitioning. These 

steps relate to the major contributions that emerge from this investigation and will be detailed in Section II.C. 
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Fig. 4. Results detailing the application of the over-segmentation procedure on a selection of mitochondria images. (Top row) 

Input images. (Bottom row) Over-segmented images showing the borders of the superpixels. 

 

C. Segmentation Process 

The proposed segmentation process entails three distinct computational strands. The first step implements a primary 

segmentation and operates on the lattice of superpixels that are determined in the over-segmentation stage. The aim 

of this computational step is to implement a foreground cut algorithm which is based on the concept of pairwise 

affinity [24]. More precisely, the goal is to obtain an affinity factorization by computing the affinity matrix which 

encapsulates the relationships between all pairs of superpixels in the image with respect to predefined grouping 

criteria such as closeness in the intensity and spatial domains. Then, from the affinity matrix the global salient and 

non-salient structures can be determined by means of spectral clustering (which implies the evaluation of the eigen 

spectrum of the affinity matrix). To facilitate the calculation of the affinity matrix for all superpixels we need to 

calculate their mean intensity values and their centroids. After this, we need to define similarity or affinity 

function(s) that will be applied in the calculation of pairwise relationships that are entries in the affinity matrix A, 
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where Aij represents the similarity between the superpixels ( ) Ω∈ji, . For the purpose of grouping the superpixels 

into a saliency structure that approximates the mitochondria contours, we define the following affinity functions:  
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where I(i) and ci are the mean intensity and the centroid of the superpixel with index i. These three functions return 

values in the interval (0,1] and they implement low level properties that encode the intensity and spatial constraints 

that are characteristic for mitochondria contours. In this regard, the function F1 implements the constraint that the 

superpixels associated with mitochondria contours are defined by low intensity values, the function F2 enforces an 

intensity continuity constraint (i.e. F2 returns values closer to 1.0 when the mean intensity values of the superpixels i 

and j are similar) and finally the function F3 implements a spatial continuity constraint that assigns larger values for 

superpixels whose distance between their centroids ci and cj is small. The parameters a1, a2 and a3 are parameters 

that weigh the strength of each constraint in the calculation of the affinity matrix A and the intensity values and 

superpixel distances are normalised in the range [0,1]. If the number of superpixels in the image is N then the 

affinity matrix is N×N and is calculated as follows,   

 

Ω∈== ),(   1,   ),,(),(),( 321 jiAjiFjiFjiFA iiij                                                      (4) 

 

It can be observed that the affinity matrix A calculated in (4) is symmetric and its entries have large values for pairs 

of superpixels that respond strongly to the conditions implemented by the three affinity functions shown in (3). 

Since the number of superpixels in the over-segmented image is N, which is a value substantially smaller than the 

number of pixels in the input image, the calculation of the eigenvectors for A represents a computationally tractable 

eigen-decomposition problem, TPPA Λ= where ]...,[ 21 NpppP = is the eigenvectors matrix and Λ is the matrix that 

contains the eigenvalues λi (λ1>λ2…>λN) corresponding to eigenvectors pi| ],1[ Ni∈ . Since the best L2 approximation 

of the affinity matrix A is given by the multiplication of the most significant eigenvector p1 with the squared value of 

the largest eigenvalue λ1 [24], the extraction of global salient features that are consistent with the properties encoded 
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by the three affinity functions entails the application of a standard data partitioning process to p1 using either k-

means or multi-class thresholding. As A is symmetric, the elements of the eigenvector p1 take values in the interval 

(0,1] and the salient superpixels with respect to (3) correspond to the largest values in p1. Based on experimentation 

we discovered that the superpixels associated with complete (closed) mitochondria contours are situated in the 

highest quartile of the values of the eigenvector p1 and the partition of p1 has been carried out using the multi-level 

Otsu classification [25].  Results of the spectral clustering algorithm when applied to the mithocondria images 

shown in Fig. 4 are presented in Fig. 5. 

 

    
 

    
 

 

Fig. 5. Spectral clustering results obtained when the algorithm has been applied to the images depicted in Fig. 4. (Top row) The 

most significant eigenvector p1 that is calculated from the affinity matrix A (for visualization purposes the values of the elements 

of p1 are mapped using 256 grayscale levels).  (Bottom row) Spectral clustering results obtained from the Otsu classification. The 

superpixels that form the preliminary segmentation map are highlighted in light blue. The affinity matrix is calculated using the 

saliency rules detailed in (3) and the parameters a1, a2 and a3 are set to the following values, 0.8,1.0 and 1.0 respectively. 

 

 

 

 

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

13

The application of the spectral clustering process, as illustrated in Fig. 5, generates primary segmentation results that 

incorporate intensity and shape continuity constraints, but these results do not provide precise segmentations as they 

embed only global saliency rules. In spite of these imperfections, the use of spectral clustering is opportune as it 

further reduces the complexity of the input data by dramatically reducing the number of superpixels that require 

further analysis. This fact allows the application of graph partitioning methods that can be employed to identify the 

cycles in an undirected graph that correspond to mitochondria membranes. To this end, the cycles in the undirected 

graph (whose nodes are the superpixels contained in the primary segmentation results) are detected using the 

breadth-first search algorithm (BFS) [26] using the following pseudocode sequence:  
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The algorithm described synthetically in (5) identifies all cycles in the graph G(V,E) where V = {vi} denotes the S 

nodes associated with the salient superpixels determined by the spectral clustering algorithm and E are the edges that 

are two-element subsets of V that encode the links between the connected nodes in G. The BFS algorithm is applied 

to pairs of nodes (vi,vk) for which an edge Em= {vi, vk} exists. If the BFS algorithm returns a non-trivial path (i.e. 

different than the set {vi,vk}) it is included in the path list Ψ. From all the paths (cycles) in the list Ψ, the 

mitochondrion path ml is given by the path that minimizes an intensity constraint with respect to the cardinality (the 

number of nodes) of the paths ql  in Ψ. The superpixels contained in the output path ml  allow the extraction of the 

mitochondria contours. These contours are post-processed using the GAC active contour method [27,28] to 

compensate for the boundary errors associated with the superpixels in areas with low contrast between the 

mitochondria contours and background.  
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Fig. 6. Mitochondria segmentation results for images depicted in Fig. 4. (Top row) Results after the application of the graph 

searching process (see equation 5 for details). (Bottom Row) Final segmentation results (The mitochondria contours resulting 

from the graph searching process are displayed in red. In green are shown the post-processed mitochondria contours obtained 

after the application of the GAC algorithm). This diagram is best viewed in color.   

III. EXPERIMENTAL RESULTS 

The experiments were conducted using two mitochondria EM datasets. The first database of EM images has been 

provided by the American Society of Cell Biology (ASCB). This database consists of 20 images detailing 

mitochondria in ductulus efferens of the ground squirrel cells [29]. The second dataset comprises 30 serial section 

transmission EM images of the Drosophila first instar larva ventral nerve cord (VNC) [35,36].  Mitochondria in both 

cell lines have a wide selection of shapes varying from elongated to circular and inhomogeneous cristae structures. 

In addition to these changes in the morphology of mitochondria, a predominant characteristic of these images is the 

substantial variation in the intensity signal between the mitochondria membranes and the background and the 

occurrence of shadow effects that are caused by the limited resolution of the EM images. The parameters for the 
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proposed algorithm were presented in Section II and they have been used unchanged in all experiments presented in 

this section. The two datasets that were used in the experimental analysis have been constructed by extracting sub-

images from the original data that comprise complete mitochondria structures.  

 
TABLE I. PERFORMANCE METRICS THAT WERE USED TO VALIDATE THE PROPOSED SEGMENTATION ALGORITHM. 

 

Performance 

measures 

Mathematical expression 

Accuracy (TP+TN)/(TP+TN+FP+FN) 

Precision TP/(TP+FP) 

Recall TP/(TP+FN) 

F-score 2.0*Precision*Recall/(Precision + Recall) 

VOC TP/(TP+FP+FN) 

  

 

      The accuracy of the proposed method has been tested against manual annotations that were validated by an 

experienced biologist and in this process we employed a range of performance metrics to evaluate the agreement 

between the manual segmentations and the results returned by the proposed method. The first set of experimental 

results are reported for Drosophila VNC data due to the fact that this dataset is publicly available and consequently 

it provides an ideal point of comparison between our method and other segmentation approaches. To quantify the 

performance of the segmentation process we calculated a set of performance metrics such as Accuracy, Precision, 

Recall, F-score and VOC (see Table I) that were previously used in the evaluation of other mitochondria 

segmentation algorithms. Table II includes the experimental results for our approach and three segmentation 

methods that were also evaluated using the Drosophila VNC data (Seyedhosseini et al [7], RLF [31] and Giuly et al 

[13]).  

 

TABLE II. SEGMENTATION RESULTS OBTAINED FOR OUR METHOD AND OTHER MITOCHONDRIA SEGMENTATION TECHNIQUES THAT 

WERE EVALUATED USING THE DROSOPHILA VNC DATASET. 

 Accuracy Precision Recall F-score VOC 

Seyedhosseini et al [7]  - 0.78 0.68 0.72 - 

RLF [31] - 0.46 0.57 0.51 - 

Giuly et al [13] - 0.64 0.57 0.60 - 

Proposed method  0.95 ± 0.02 0.95 ± 0.05 0.85 ± 0.08 0.89 ± 0.05 0.81 ± 0.07 

 
 

The quantitative results presented in Table II show the better performance obtained by the proposed algorithm when 

compared to alternative methods based on curve propagation and patch classification. While these experimental 
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results are important as they sample in detail the performance obtained by our method when applied to challenging 

EM data, we feel that a more inclusive comparison with other mitochondria segmentation approaches that are 

evaluated on EM data acquired from different cell lines would allow us not only to broaden the scope of this 

investigation but also to help us to analyze the proposed algorithm in the wider context of mitochondria 

segmentation. In this regard, experimental results for additional mitochondria segmentation algorithms including the 

works of Lucchi et al [1], Nguyen and Ji [16], Seyedhosseini et al [7], Fulkerson [30], RLF [31] and TextonBoost 

[32] are reported in Table III.  

 
TABLE III. ADDITIONAL MITOCHONDRIA SEGMENTATION RESULTS REPORTED FOR EM DATA ACQUIRED FROM DIFFERENT CELL 

LINES.  

 Cell line Accuracy Precision Recall F-score VOC 

TextonBoost [32] hippocampus 0.95 - - - 0.61 

Fulkerson [30] hippocampus 0.96 - - - 0.69 

Learned-f [1] hippocampus 0.98 - - - 0.82 

Learned-f [14] striatum - - - - 0.74 

Nguyen and Ji [16]  frozen-hydrated 

rat liver 

- 0.95 0.70 - - 

RLF [31] mouse neuropil - 0.78 0.82 0.80 - 

Seyedhosseini et al [7]  mouse neuropil - 0.82 0.82 0.82 - 

Proposed method 

ASCB dataset 

ductulus efferens 0.97 ± 0.01 0.94 ± 0.03 0.96 ± 0.01 0.95 ± 0.01 0.91 ± 0.02 

 

While a direct compassion between the results presented in Table III is difficult, as they were reported for data 

captured from different cells lines using different image acquisition protocols, they are convergent on the fact that 

the current range of mitochondria segmentation methods are well able to achieve high levels of true positives (TP) 

but this is generally obtained at the expense of relative large numbers of false positives (FP) and false negatives 

(FN). While also achieving comparable TP rates in line with the best performing mitochondria segmentation 

methods, the proposed approach detailed in Section II returns low rates of FP and FN (this is emphasized by the 

VOC results which indicates that the highest scores are achieved by the proposed method and the Learned-f 

segmentation approach that is described in [1,14]). To complement the numerical results presented in Tables II and 

III with visual results, segmentation examples obtained by the proposed algorithm when applied to the ASCB and 

Drosophila VNC datasets are presented in Fig. 7 and Fig. 8, respectively.  

      The last element of this experimental study addresses the computational complexity of the proposed 

mitochondria segmentation algorithm. Computational times for each component of the processing pipeline (please 
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refer to Section II for details) are reported in Table IV and it can be observed that the most computationally intensive 

parts of the algorithm are associated with data pre-processing, spectral clustering and the GAC contour post-

processing step (the algorithm was executed on a computer with a single core Intel 1.7GHz processor).   

 

TABLE IV. AVERAGE COMPUTATIONAL COST FOR EACH COMPONENT OF THE PROPOSED ALGORITHM. 
 

 Drosophila VNC ASCB 

Data pre-processing 3.89s 25.09s 

SLIC superpixels 0.35s 2.76s 

Spectral clustering 5.06s 7.46s 

Graph searching 0.015s 0.15s 

GAC post-processing 3.90s 14.76s 

 

 

   
 

     
 

   
 
 

Fig. 7. Sample mitochondria segmentation results (ASCB dataset). 
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Fig. 8. Sample mitochondria segmentation results (Drosophila VNC dataset). 

 
 

IV. CONCLUSIONS 

 The major objective of this paper was to introduce a new image processing pipeline that has been designed to adapt 

to the challenging scenario associated with the identification of mitochondria membranes in EM data. The proposed 

approach involves a multi-step segmentation scheme which couples the pairwise affinity factorization with a graph 

searching method that is applied to find the cycles in an undirected graph. To circumvent the computational 

bottleneck associated with the calculation of the eigen spectrum of the affinity matrix and the computational 

requirements associated with the construction of the undirected graph that encodes the pairwise relationships 

between all pixels in the input image, the first step of the algorithm applies a pre-segmentation steps that involves 

the identification of the regions in the image with similar intensity characteristics. This facilitates the application of 

the proposed technique to large segmentation problems and we have demonstrated the accuracy of our method when 

applied to mitochondria segmentation in EM data. Our experiments highlighted one distinct advantage associated 

with our method when compared to related mitochondria segmentation techniques, the low levels of false positive 

and false negatives in the final results. This advantageous property is motivated by the absence of complex training 

procedures that are typically applied to construct a priori models for mitochondria shapes or textures and/or the 

derivation of customized energy functionals that are able to guide the contour propagation process when dealing 

with the complex nature of the EM data. The largely unsupervised characteristic of the proposed segmentation 

technique presents another important advantage and our future studies will explore the application of the 
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segmentation method described in this paper to other medical imaging tasks. Another area of future work will 

address the generalization of this technique to adapt to multi-contour segmentation problems.   
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