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Abstract— Histogram transformation defines a class of image 
processing operations that are widely applied in the 

implementation of data normalisation algorithms. In this paper 

we present a new variational approach for image enhancement 

that has been constructed to alleviate the intensity saturation 

effects that are introduced by standard contrast enhancement 

methods based on histogram equalisation. In our work we 

initially apply total variation (TV) minimisation with a L1 fidelity 

term to decompose the input image with respect to cartoon and 

texture components. Contrary to previous works that rely solely 

on the information encompassed in the distribution of the 

intensity information, in our approach the texture information is 

also employed to emphasize the contribution of the local textural 

features in the contrast enhancement process. This is achieved by 

implementing a non-linear histogram warping contrast 

enhancement strategy that is able to maximise the information 

content in the transformed image. Our experimental study 

addressed the contrast enhancement of a wide variety of image 

data and comparative evaluations are provided to illustrate that 

our method produces better results than conventional contrast 

enhancement strategies.   

Index Terms—Contrast enhancement, TV-L1, image 

decomposition, histogram warping, entropy maximisation. 

I. INTRODUCTION 

HE optical and sensing limitations that are associated with

standard digital image acquisition systems prompted the 

demand for flexible image processing strategies that are able to 

maximise the visual transitions between objects that are 

present in the image data. Thus, among many low-level image 

processing tasks, the development of automatic contrast 

enhancement (ACE) strategies forms one distinct direction of 

research. The main reason behind this considerable interest is 

motivated by the fact that ACE techniques are often used as 

precursors to higher level image analysis tasks such as image 

segmentation, feature extraction and pattern recognition and 
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their application substantially enhances the performance of the 

overall computer vision systems. The main principle behind 

ACE is to accentuate the intensity transitions between the 

objects captured in the image data and this process usually 

involves a range of linear or non-linear histogram 

transformations. More specifically, to maximise the image 

information, the histogram transformation needs to redistribute 

the probability of occurrence for each intensity level Mi∈ (M

being the range of intensity values) in the output image to 

attain a uniform distribution (when the probability for each 

intensity level in the contrast enhanced image is the same) [1]. 

Based on this approach, several contrast enhancement (CE) 

algorithms have been proposed either in the Fourier/wavelet 

[2,3,4] domain or in the image (spatial) domain 

[5,6,7,8,9,10,11]. Among these techniques the latter proved 

more popular when applied to consumer images captured by 

standard digital cameras, and the major objective resides in the 

identification of a intensity mapping function g(.) that allows 

the maximisation of the image contrast: Oij= g(Iij), where O is 

the output (contrast enhanced image), I is the input image and 

(i,j) denotes the pixel position in the image grid. To achieve 

contrast enhancement and maintain the appearance of the 

enhanced image similar to that of the original image, the 

intensity mapping function g(.) has to be monotonically 

increasing over the domain K that covers the range of intensity 

values in the input image I, ,MK ⊆ where M is the complete

range of intensity values (for monochrome images M=[0,255]). 

In this way, a wide spectrum of linear and non-linear functions 

can be theoretically employed for contrast enhancement where 

the most simplistic formulations are those that implement 

contrast stretching and gamma correction. It is useful to note 

that these basic contrast enhancement approaches return 

acceptable results only in situations where the intensity domain 

K is strictly a sub-domain of M, i.e. MK ⊂ . To answer this

limitation several related approaches based on random spatial 

sampling or local statistics have been actively explored 

[7,12,13,14], but the improvement in contrast enhancement has 

been obtained at the expense of inserting undesirable intensity 

artefacts (such as staircase effects) due to abrupt 

discontinuities in the local image content.  

To circumvent the complications associated with the 

implementation of subjective spatially constrained strategies 

and the occurrence of staircase effects, the contrast 

enhancement has been approached as a global histogram 

warping process, and among many potential implementations 
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the contrast enhancement techniques based on global 

histogram equalization (GHE) proved most common [6,7,15]. 

While the application of GHE methods maximises the 

information content (entropy) in the transformed image, it is 

important to mention that this global transformation introduces 

saturation effects and over-enhancement. Alleviation of these 

problems has attracted substantial research interest and several 

approaches based on multi-objective optimisation [7], contrast 

limited adaptive histogram equalisation [16,17,18] and on the 

adaptive combination of global and local contrast enhancement 

[19,20] have been intensively explored. In this paper we 

propose to address the side effects introduced by GHE using a 

multi-stage TV-L
1
 contrast enhancement approach and we will 

experimentally demonstrate that our approach, as opposed to 

more conventional GHE techniques, substantially reduces the 

over-enhancement and the intensity saturation effects. 

Additional practical advantages that are associated with the 

proposed contrast enhancement algorithm are also 

demonstrated in the context of edge detection and cartoon 

rendering. This paper is organised as follows. Section II 

briefly review the theoretical and practical issues related to the 

selection of the histogram transformation for contrast 

enhancement. In Section III the proposed variational approach 

for contrast enhancement is introduced, which is followed in 

Section IV by a detailed analysis of the experimental results. 

Section V concludes the paper with a summary of the main 

findings resulting from our study.

II. HISTOGRAM TRANSFORMATION-BASED CONTRAST 

ENHANCEMENT 

The vast majority of contrast enhancement procedures are 

based on various histogram transformations that attempt to 

maximise the information content in the input image via 

intensity mapping. If we assume that the input image is defined 

as a discrete signal Iij:Ω→K, where 2Ω Z⊂  denotes the

discrete image domain and MK ⊆ is the domain covered by

the intensity values of the pixels in the input image, then the 

contrast enhancement resides in the identification of the 

function g(.) that implements the intensity mapping as follows: 

MK, qssgq ∈∈=   ),(  (1) 

where s = Iij| Ω∈),( ji  represents the intensity values of the

pixels in the input image and q is the corresponding intensity 

value in the contrast enhanced image. As indicated in [8] this 

problem can be formulated as a general variational 

minimisation model and the intensity mapping function g(s) 

can be implemented using a family of functions w(s) as 

follows: 

∫
∫

=
s

N
drrw

dssw

L
sg

0

0
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)(  (2) 

where N and L are the right bounds of the intensity domains K 

and M, respectively (i.e. N = sup(K), L = sup(M)). Hence, the 

contrast enhancement can be reformulated as the problem of 

finding the function w(s) that is able to maximise the 

information content in the output image. In this regard, if we 

replace w(s)=1 in (2) we obtain the standard minimum-

maximum intensity stretch operation s
N

L
sg =)( , ],0[ Ns∈ and 

if we replace w(s) with the histogram of the input image 

h(s), ],0[ Ns∈  we end up with the standard histogram 

equalisation process ∫Ω
=

s
drrh

card

L
sg

0
)(

)(
)( (where

)(Ωcard  denotes the cardinality of the image domain Ω where 

the input image I is defined), which is the most common 

approach applied for global contrast enhancement. Although 

many formulations for w(s) can be devised, the use of 

histogram equalisation in the context of contrast enhancement 

is motivated by two main reasons. Firstly, the histogram 

equalisation process redistributes the intensity information in 

such a way that the inter-histogram bar spacing is minimised. 

Secondly, this histogram transformation approach is able to 

(theoretically) maximise the information content in the contrast 

enhanced image. While these properties are opportune for 

contrast enhancement, it is important to highlight that 

histogram equalisation exhibits several limitations such as the 

incidence of intensity saturation and over-enhancement. 

 (a)  (b) 

 (c)  (d) 

Fig. 1. Global histogram equalisation contrast enhancement. (a) Input image. 

(b) GHE contrast enhanced image. Close-up details taken from the input (c) 

and contrast-enhanced (d) images to illustrate the intensity saturation and 

over-enhancement artefacts that are introduced by the application of the 

histogram equalisation process. 

These problems are clearly illustrated in Fig. 1 where the 

histogram equalisation process has been applied to the 

standard “Cameraman” test image. For visualization purposes, 

close-up details are provided to highlight the intensity artefacts 

that are introduced during the contrast enhancement process. 

To redress these undesirable contrast enhancement problems 

that are introduced by histogram equalisation, in this work we 
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propose a multi-stage variational-based contrast enhancement 

algorithm that will be detailed in the next section of the paper. 

III. PROPOSED CONTRAST ENHANCEMENT METHOD

The proposed contrast enhancement approach involves a 

multi-step algorithm that initially applies the TV-L
1
 model to 

attain the cartoon-texture decomposition of the input image. 

After the extraction of the cartoon-texture image components, 

contrast enhancement is achieved by applying a non-linear 

histogram warping process that emphasises the contribution of 

the texture information in the intensity distribution of the 

contrast enhanced image. An overview that details the 

proposed contrast enhancement algorithm is depicted in Fig. 2 

and full details about each computational component will be 

provided in the remainder of this section. 

Fig. 2. Overview of the proposed contrast enhancement algorithm. 

A. TV-L
1
 Cartoon-Texture Decomposition 

     An important component of the proposed contrast 

enhancement strategy is represented by the process relating to 

the cartoon-texture decomposition. The main objective of this 

process (in the context of the proposed application) is to 

extract the texture component, as this information emphasises 

the meaningful patterns contained in the input image and 

rejects the undesirable intensity transitions that are caused by 

variations in illumination conditions. The problem of cartoon-

texture decomposition can be efficiently solved as a global 

variational model [21,22,23,24]. Total variation (TV) models 

have been widely employed for data denoising [25,26,27] and 

recently have found other interesting applications in the fields 

of face recognition [20], texture enhancement [28], inpainting 

[29,30] and blind deconvolution  [31]. Using this variational 

approach, the input image can be decomposed as follows: I = c 

+  t, where c and t denote the cartoon and texture components, 

respectively. The cartoon image c, which contains the de-

textured objects (or non-oscillatory components) from the 

input image I, can be determined by minimising the following 

expression: 

Ω−+∇∫Ω dcIc
Lc
1min λ  (3) 

where 2Ω Z⊂  denotes the image domain and the symbol

1.
L

 defines the L
1
 norm. The TV-L

1
 model depicted in (3) 

consists of two distinct terms that are calculated over the 

image domain Ω. The first term in (3) implements a PDE-

based de-texturing process (i.e. the total variation of the 

cartoon component c), while the second term defines a fidelity 

term that forces the intensity values in c to remain close to 

those in the original image I. The TV-L
1
 variational model is 

controlled by the Lagrange multiplier +∈Rλ , which is

inversely proportional to the strength of the data smoothing 

process. Using the calculus of variations (see Appendix A) we 

can derive the Euler-Lagrange equation of (3) and the steady 

state solution can be iteratively obtained by artificial time 

discretization as follows: 

cI
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c
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where ct is the partial derivative of c with respect to the time 

variable t, ⋅∇  is the divergence and ∇ denotes the gradient

operator. The implementation of (4) in the discrete image 

domain requires the approximation of the partial derivatives 

with central differences where the solution is found by the 

steepest gradient descent as indicated in (5). 
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where (i,j) denotes the position of the pixel in the image, 
+∇

and 
−∇  are the forward and backward discrete gradients,

respectively, ijc∇ is the magnitude of the gradient, t∆ is the

time step, n is the iteration index, and x∆  and y∆ are the

discrete spatial distances of the image grid. The expression in 

(5) implements the mean curvature with the fidelity 

(constraint) term 
cI

cI

−

−
λ and is convergent if the CFL 

condition is upheld ( c
yx

t
∇≤

∆∆
∆

α , 
+∈Rα [31]). As 

mentioned in [22], the TV-L
1 

variational model excels when 

applied to image decomposition and in this process the optimal 

selection of the parameter +∈Rλ plays an important role.

While this parameter is usually selected in conjunction with 

the level of noise present in the image or based on specific 

geometrical constrains associated with the image 

decomposition process (for more details refer to [22,31]), in 

the proposed implementation the optimisation of this 

parameter will be conducted to maximise the image content 

(entropy) in the contrast enhanced image. This will be 

explained later in the paper. In the proposed contrast 

enhancement algorithm, the TV-L
1
 model is applied to 

perform cartoon-texture decomposition and the cartoon 

image λc  is obtained by applying (5) to the input image. If we 

assume that the input image is noise-free, the texture 

component can be determined by simply subtracting the 

cartoon component λc  from the input image I as follows:
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λλ cIt −= , D∈λ  (6) 

where D is the interval of variation for the parameter λ, λc and 

λt are the cartoon and texture images, respectively, that are 

obtained for a value D∈λ . Fig. 3 illustrates the results

obtained when the cartoon-texture decomposition is applied to 

the “Cameraman” image shown in Fig. 1.

λ=0.1 

λ=0.5 

                                
λ=0.9 

Fig. 3. Cartoon-texture decomposition ( t∆ =0.1) for different values of the 

parameter λ. Left: Cartoon images. Right: Texture images. Note that the 

strength of the texture decreases with the increase in the value of λ. 

B. Texture-Enhanced Histogram Equalisation 

After cartoon-texture decomposition, the next component of 

the proposed algorithm addresses the calculation of the 

histogram transformation that is applied for contrast 

enhancement. As indicated in Section II our aim is to construct 

a continuous monotonic increasing transformation that is able 

to avoid the intensity and over-saturation effects that are 

introduced by the standard histogram equalisation process. The 

main idea behind this approach is to implement a local 

intensity mapping process that alters the shape of the 

histogram calculated from the cartoon image with respect to 

the information contained in the texture component. In this 

regard, the first step is to identify the pixels that are associated 

with strong textures after the application of the cartoon-texture 

decomposition. The binary texture map is obtained by 

applying (7). 

 




 >−

=
Otherwise         0

      1 ρijijb
ij

cIif
t , +∈ Rρ  (7) 

where t
b
 is the binary texture map and ρ is a small positive 

value. (The parameter ρ controls the strength of the texture 

information that will be used in the contrast enhancement 

process and in our implementation ρ has been set to 1.0). Once 

the identification of the texture pixels that are associated with 

the input image is finalised, the next step implies the 

evaluation of the neighbourhood Г around each texture pixel. 

Since the neighbourhood Г encompasses the local texture, 

which is usually defined by a heterogeneous local distribution, 

our aim is to identify the extreme intensity values within the 

neighbourhood Г that will be used to alter the intensity 

distribution Hc that is calculated from the cartoon component 

λc . The aim of this histogram transformation is to 

overemphasise the contribution of the local texture in the 

calculation of the histogram Hc and the result of this process is 

illustrated in Fig. 4. As illustrated in Fig. 4, it can be observed 

that the application of the texture-enhanced histogram 

transformation generates a more uniform distribution than the 

distribution calculated from the original (input) image, and this 

not only allows the preservation of the textural features during 

the contrast enhancement process, but also avoids the 

introduction of saturation effects. All operations associated 

with the proposed texture-enhanced histogram transformation 

are shown in equation (8) and in the pseudocode sequence 

depicted in (9).  
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Texture–enhanced histogram transformation: 
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where Hc is the intensity distribution (histogram) calculated 

from the cartoon image cλ, Ω is the image domain, 
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]255,0[⊂M defines the intensity domain, 
b
ijt  is a texture pixel 

at location (i,j) in the image,  Гij is the 3×3 neighbourhood 

around 
b
ijt , inf(.) and sup(.) are the infimum and supremum 

operators, l and h are the lowest and highest intensity values 

within Гij in the cartoon image cλ,. 

Histogram transformation
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Fig. 4. Texture-enhanced histogram transformation. Note the more uniform 

distribution of the intensity information in the transformed histogram. Blue-

circled line – histogram calculated from the “Cameraman” cartoon image 

(λ=0.1) - see Fig. 3. Red-barbed line – transformed histogram. 

After the calculation of the texture-enhanced distribution Hc 

(using 8 and 9), the next step involves the construction of the 

cumulative distribution g(s) that will be used as a look-up-

table in the histogram equalisation process.  

∫=
s

c drrHsg
0

)()( κ , Ω∈= ),()( jiIgO ijij  (10) 

where )sup( ,
)(

0

ML
drrH

L
L

c

==
∫

κ is a scaling factor that 

maps the intensity transformation within the interval M and 

Ω∈),( jiOij  is the contrast enhanced image.

C. Parameter Selection 

As indicated in Section III.A, the TV-L
1
-based image 

decomposition is controlled by the parameter +∈Rλ , which is

inversely proportional to the level of smoothing in the cartoon 

image cλ. Since the accurate decomposition of the input image 

into cartoon and texture components plays the central role in 

the proposed contrast enhancement strategy, the optimisation 

of the parameter λ should be conducted with the aim of 

maximising the information content in the contrast enhanced 

image. Since entropy [32] is a measure of the average 

information content present in the image, our objective is to 

maximise the expression of the entropy E(.) shown in (11), 

when the value of the parameter λ is varied within the range 

[0,1].  

))((log)()( 2 sHsHHE n
Ms

nn ∑
∈

−= , ∑
∈

=
Ms

n sH 1)(   (11) 

)]([maxarg
]1,0[

O
nopt HE

∈
=

λ
λ   (12) 

where E is the entropy measure, Hn is the normalised version 

of the distribution H, i.e. 
∑ ∈

=
Mr

n
rH

sH
sH

)(

)(
)( , λopt is the 

value of λ for which the entropy measure is maximised and 
O
nH denotes the normalised histogram of the contrast 

enhanced image Ω∈),( jiOij (see equation 10).

IV. EXPERIMENTAL RESULTS

In this experimental study we analyse the performance of 

the proposed algorithm when compared to performances 

offered by other relevant histogram specification/equalisation 

contrast enhancement (CE) techniques. In this regard, four 

representative contrast enhancement algorithms were selected 

for comparative purposes: conventional global histogram 

equalisation (GHE) [1], brightness preserving bi-histogram 

equalisation (BP-BHE) [17], minimum mean brightness error 

bi-histogram equalisation (MMBE-BHE) [15] and dynamic 

histogram equalisation (DHE) [18].  

Table I. Numerical results obtained by the proposed TV-L1 TE-HE and other 

related histogram equalisation (HE)-based contrast enhancement strategies. 

Image Method Entropy EPI α 

GHE 6.76 0.533 

BP-BHE 6.79 0.556 

MMBE-BHE 6.75 0.537 

DHE 6.77 0.558 

Cameraman 

image 

TV-L1 TE-HE 6.86 0.779 

GHE 6.69 0.350 

BP-BHE 6.66 0.347 

MMBE-BHE 6.68 0.398 

DHE 6.64 0.531 

Berkeley image 

TV-L1 TE-HE 6.70 0.542 

GHE 6.35 0.259 

BP-BHE 6.37 0.373 

MMBE-BHE 6.29 0.429 

DHE 6.29 0.455 

Couple image 

TV-L1 TE-HE 6.47 0.475 

GHE 6.84 0.378 

BP-BHE 6.86 0.372 

MMBE-BHE 6.81 0.341 

DHE 6.77 0.447 

Kodak image 

TV-L1 TE-HE 6.90 0.581 

GHE 6.31 0.562 

BP-BHE 6.28 0.546 

MMBE-BHE 6.26 0.523 

DHE 6.24 0.558 

Aerial image 

TV-L1 TE-HE 6.34 0.574 

GHE 7.18 0.601 

BP-BHE 7.22 0.641 

MMBE-BHE 7.19 0.623 

DHE 7.16 0.693 

Lighthouse image 

TV-L1 TE-HE 7.30 0.796 

The BP-BHE, MMBE-BHE and DHE contrast enhancement 

algorithms were designed to circumvent the saturation and 

over-enhancement effects that are introduced by GHE by 

partitioning the histogram of the input image into two [15,17] 

and multiple components [18] prior to the application of the 
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histogram equalisation process. Since the objectives of the BP-

BHE, MMBE-BHE and DHE algorithms are similar to those 

associated with the proposed variational approach, these 

contrast enhancement schemes are particularly suitable to be 

included in this experimental study.    

As indicated in Section II, the main objective of this paper 

is to propose a new CE algorithm based on TV-L
1
 texture-

enhanced histogram equalisation (TV-L
1
 TE-HE). To allow for 

a direct comparison between the performances obtained by our 

algorithm and GHE, BP-BHE, MMBE-BHE and DHE 

contrast enhancement algorithms, the first experiments are 

conducted on benchmark images (‘Cameraman’, ‘Couple’, 

‘Lighthouse’, ‘Aerial’ and other standard images included in 

the Kodak and Berkeley databases) and the algorithm 

performance will be sampled by metrics such as entropy and 

edge enhancement. The experimental results depicted in Figs. 

5 to 8 augment the numerical data reported in Table I (in this 

table additional results are also reported for images depicted in 

Fig. 9) and they illustrate that the proposed algorithm is able to 

outperform the other CE techniques investigated in this study 

with respect to the avoidance of intensity saturation and over-

enhancement. As indicated earlier, edge enhancement is 

another metric that is commonly used in the assessment of CE 

techniques and the results reported in Figs. 10 and 11 show 

that the proposed algorithm outperforms the GHE, BP-BHE, 

MMBE-BHE and DHE with respect to both edge localisation 

and edge enhancement (the edge attenuation generated by 

MMBE-BHE and the noticeable edge distortions introduced 

by GHE and BP-BHE can be clearly observed in Fig. 11).  

 (a)  (b)  (c) 

     (d)                                                          (e)                                                          (f) 

Fig. 5. Contrast enhancement results – ‘Cameraman’ image. (a) Input image. (b) GHE. (c) BP-BHE. (d) MMBE-BHE. (e) DHE. (f) Proposed TV-L1 TE-HE. 

Fig. 6. Close-up details from images depicted in Fig. 5. (Left-right): input image, GHE, BP-BHE, MMBE-BHE, DHE, TV-L1 TE-HE. Note the avoidance of the 

intensity saturation effects and over-enhancement that is achieved by the proposed TV-L1 TE-HE when compared to GHE and other HE-based contrast 

enhancement strategies.   
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 (a)  (b)  (c) 

     (d)                                                          (e)                                                          (f) 

Fig. 7. Contrast enhancement results – ‘Couple’ image. (a) Input image. (b) GHE. (c) BP-BHE. (d) MMBE-BHE. (e) DHE. (f) Proposed TV-L1 TE-HE. 

Fig. 8. Close-up details from images depicted in Fig. 5. (Left-right): input image, GHE, BP-BHE, MMBE-BHE, DHE, TV-L1 TE-HE. Note the avoidance of the 

intensity saturation effects and over-enhancement that is achieved by the proposed TV-L1 TE-HE when compared to GHE and other HE-based contrast 

enhancement strategies.   

     (a)                                                               (b)                                                                   (c) 

Fig. 9. Additional standard test images used in the experimental evaluation. (a) Kodak database. (b) Aerial image. (c) Lighthouse image. 

PREPRINT 



8

 (a)  (b) 

 (c)  (d) 

 (e)  (f) 

Fig. 10. Contrast enhancement results – Berkeley database [33] image. (a) Input image. (b) GHE. (c) BP-BHE. (d) MMBE-BHE. (e) DHE. (f) Proposed TV-L1 

TE-HE. Note the crisper edge enhancement obtained by the proposed TV-L1 TE-HE when compared to GHE and other HE-based contrast enhancement 

strategies (for additional details please refer to Fig. 8). 
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Fig. 11. Edge enhancement – Berkeley database image. Pixel intensities plotted for the highlighted line depicted in image Fig. 10(a). 

Another useful aspect associated with the proposed TV-L
1
 

TE-HE contrast enhancement strategy is its potential to be 

applied to image data corrupted by noise, as the cartoon-

texture decomposition has the ability to reject the noisy signal 

from the input image data. This useful property can be 

obtained by simply replacing the input image I in (10) with the 

cartoon component cλ that maximises the expression shown in 

(12). To quantify the improved performance associated with 

the proposed algorithm we have applied all contrast 

enhancement schemes that are investigated in this study to the 

‘Cameraman’ image that has been corrupted with Gaussian 

noise (zero mean, standard deviation 10 grey-levels, N(0,10)). 

Experimental results are presented in Fig. 12 and the 

efficiency of the contrast enhancement process is validated in 

the context of edge extraction (see Fig. 13).  
To complement the visual results presented in Fig. 13, 

numerical data are presented in the last column of Table I, 

where the accuracy of the contrast enhancement is evaluated 

with respect to edge preservation. In this regard, the contrast 

enhancement algorithms were applied to image data that has 

been corrupted with Gaussian noise (zero mean, standard 

deviation 10 grey-levels, N(0,10)) and the accuracy of the edge 

preservation is measured with respect to the strength of the 

edge information in the noiseless image I using the correlation 

index α that has been suggested in [34].   

) ,() ,(

),(

OOOOIIII

OOII

∆−∆∆−∆Λ∆−∆∆−∆Λ

∆−∆∆−∆Λ
=α  (13) 

In (13) ∆ is the Laplacian operator, I is the original image, 

)( nIgO = is the output image that is obtained after the

application of the contrast enhancement to the noisy image 

In=I + N(0,10), I∆ , O∆  are the mean values calculated after

the application of the Laplacian operator to images I and O, 

respectively, and the function (.)Λ is defined as follows,

∑
Ω∈

∆×∆=∆∆Λ
),(

),(),(),(
ji

jiOjiIOI  (14) 

The edge preservation index α takes values in the range [0,1] 

and the higher its value the more accurate the edge 

preservation. The edge preservation results reported in Table I 

indicate that our TV-L
1
 TE-HE contrast enhancement 

algorithm produces better numerical results than the GHE, BP-

BHE, MMBE-BHE and DHE contrast enhancement strategies 

when applied to data corrupted by noise, and they further 

demonstrate the appropriateness of the cartoon-texture 

decomposition in the context of contrast enhancement.    
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 (a)  (b)  (c) 

     (d)                                                         (e)                                                        (f) 

Fig. 12. Contrast enhancement results - ‘Cameraman’ image corrupted with Gaussian noise, N(0,10). (a) Input image. (b) GHE.  (c) BP-BHE. (d) MMBE-BHE. 

(e) DHE. (f) TV-L1 TE-HE. 

Fig. 13. Edge information extracted using the Canny edge detector corresponding to the images (b-f) shown in Fig. 9. 

     The last set of results is reported in the context of cartoon 

rendering of color portrait images. In this regard, we have 

applied the cartoon rendering algorithm detailed in [35] to the 

color contrast enhanced images that are obtained using the 
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proposed and the HE-based methods (generalisation to color 

was achieved by converting the input image to the Lab color 

space and the CE algorithms were applied to the L component) 

and experimental results are reported in Fig. 14. These 

additional results clearly indicate that the cartoon rendering in 

conjunction with the proposed TV-L
1
 TE-HE algorithm returns 

better results (note the more coherent rendering that is 

achieved in areas defined by skin, which are consistent with 

the ambient illumination, and the natural enhancement of the 

highly textured regions such as the eyes and the scarf areas) 

and they further demonstrate that the inclusion of the proposed 

contrast enhancement algorithm in the development of more 

complex image processing tasks leads to improved 

performance. 

V. CONCLUSIONS 

The major aim of this paper was to introduce a new 

variational approach for histogram equalisation which involves 

the application of the TV-L
1
 model to achieve cartoon-texture 

decomposition. To avoid the occurrence of undesired artefacts 

such as intensity saturation and over-enhancement that are 

characteristic for conventional histogram equalisation 

methods, our approach formulates the histogram 

transformation as a non-linear histogram warping which has 

been designed to emphasise the texture features during the 

image contrast enhancement process. The reported 

experimental results demonstrate that the proposed TV-L
1
 TE-

HE strategy is an effective approach for contrast enhancement 

and they also reveal that the algorithm detailed in this paper 

offers a flexible formulation that is able to outperform other 

histogram equalisation-based methods when applied to image 

data corrupted by noise. Our future studies will focus on the 

extension of the proposed variational algorithm to attain inter-

frame consistent contrast enhancement when applied to low 

SNR video data and to examine the potential of applying local 

restoration models that are able to address the image 

enhancement of medical data that are corrupted by multi-

modal noise models. 

APPENDIX A 

As indicated in Section III.A the cartoon image (or de-textured 

component) c of the input image I can be obtained by 

minimising the functional Ω−+∇=Ψ ∫Ω dcIcc
L1

)( λ , 

where +∈Rλ is the Lagrange multiplier, Ω is the image

domain and the symbol 1.
L

 denotes the L
1
 norm. The 

functional )(cΨ can be re-written in the differential form

),,,,( yx cccyxF = 1L
cIc −+∇ λ and its solution can be 

obtained by applying the Euler-Lagrange equation as 

illustrated in (A2).  

dxdycccyxFc
yx yx∫∫ Ω∈

=Ψ
),(

),,,,()(  (A1) 

0=
∂
∂

∂
∂

−
∂
∂

∂
∂

−
∂
∂

yx c

F

yc

F

xc

F
 (A2) 

where cx,cy are the partial derivatives of the cartoon image c 

(i.e. 
y

c
c

x

c
c yx ∂

∂
=

∂
∂

= , ). If we calculate the partial derivatives

in (A2) and we consider that cIcI
L

−=− 1 we obtain the 

following expression: 

0=










∇

∇
⋅∇−

−

−
−

c

c

cI

cI
λ  (A3) 

This equation approximates the mean curvature flow when 
+∈Rλ [36]. In (A3) the first term implements a fidelity term

with respect to the intensity values of the input image I and the 

second term defines the mean curvature of c ( ⋅∇  denotes the

divergence operator). If we assume that the cartoon image c is 

a function of the time variable t, then the expression shown in 

(A3) is a first-order Hamilton-Jacobi equation that can be 

solved using steepest gradient descent, 

cI

cI

c

c

t

c

−

−
+











∇

∇
⋅∇=

∂
∂

λ  (A4) 

If we use in (A4) the notation 
t

c
ct ∂

∂
=  and we express the 

mean curvature in terms of the partial derivatives, 










∇

∇
⋅∇

c

c
= 

( ) ( ) 









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








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∂

2/1222/122
yx

y

yx

x

cc

c

ycc

c

x
, then (A3) becomes, 

( ) ( ) cI

cI

cc

c

ycc

c

x
c

yx

y

yx

x
t −

−
+






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


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
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
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2/1222/122

 (A5) 

where the stationary solution for c is obtained for ∞→t . The

implementation of (A5) in the discrete domain is obtained by 

approximating the partial derivatives
tyx ∂
∂

∂
∂

∂
∂

,,  with central 

differences as indicated in (5) (see Section III.A). 
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