
Cost-Effective HPC Clustering For Computer Vision Applications

Julia Dietlmeier, Seán Begley and Paul F. Whelan
Centre for Image Processing and Applications

RINCE, Dublin City University
Dublin, Ireland

{julia.dietlmeier, sean.begley, paul.whelan}@eeng.dcu.ie

Abstract

We will present a cost-effective and flexible realization
of High Performance Computing (HPC) clustering and its
potential in solving computationally intensive problems in
computer vision. The featured software foundation to sup-
port the parallel programming is the GNU Parallel Knop-
pix package with Message Passing Interface (MPI) based
Octave, Python and C interface capabilities. The imple-
mentation is especially of interest in applications where the
main objective is to reuse the existing hardware infrastruc-
ture and to maintain the overall budget cost. We will present
the benchmark results and compare and contrast the perfor-
mances of Octave and MATLAB.

1. Introduction

Filtering, data-transforms, image segmentation, track-
ing and target recognition algorithms are among the ap-
plications in computer vision which are challenged by the
size of the data sets, number of parameters to estimate and
the need for real-time processing. The idea of replacing
a single workstation by a cluster of machines, connected
through a high-speed network, has been proven to be an ef-
ficient solution for accelerating time consuming batch pro-
cessing, which could span over several hours, days or even
weeks [1]. Many numerical algorithms can be equally im-
plemented using either task or data parallelism.

The first category of task parallel problems includes
applications such as multi-slice MRI scan processing and
pattern search. A task parallel algorithm can easily be
segmented into parts, each solved independently and syn-
chronously on a separate compute node with very little
communication in between. The second category embraces
data parallel models which are best described by high-level
vector and matrix operations on large data sets, shared
among various compute nodes. Fourier transform and pixel-
based image operations on the data array, therefore, can be

performed separately for each element of the array. The
HPC implementation of data parallelism results in addi-
tional communication overhead and requires an intercon-
nect medium with high-bandwidth and low-latency proper-
ties.

In both cases, algorithm developers can clearly benefit
from the emerging multicore processor market. The slow-
down of Moore’s Law and the growing demand for power-
ful computing have driven the hardware industry to de-
velop processor chips that contain multiple computation
cores [2,4]. Multicore CPU technology and the persistent
price decline of personal computers facilitate the use of dis-
tributed and parallel computing on HPC clusters as an at-
tractive cost option when compared to expensive integrated
mainframe solutions. Many academic and research institu-
tions can utilize the existing computing facilities in setting
up an HPC cluster which can spread across different labs
and buildings.

The distinct feature of HPC clustering is its excellent
scalability that allows a user to resize a cluster by adding
more compute nodes on demand. In addition, distributed
HPC presents a robust and redundancy free solution to
power supply failure. If not designed properly, however,
the HPC performance can be limited by the CPU through-
put, storage resources and the network efficiency. In addi-
tion, such factors as the structure of the algorithm, size of
the data set, choice of the operating system and the reliable
middleware will determine the degree of success in paral-
lelizing an application [3]. In this paper, we present our
experiences with building, configuring and testing an HPC
cluster and discuss the performance results.

2. Software Survey

For our HPC project we identified the main design con-
straint as the reuse of the existing hardware infrastructure
and approached the problem of selecting the appropriate
software from the perspective of a vision researcher and
therefore with the emphasis on the numerical data analy-



sis and processing. As a result we focused on the very
high-level interpreted languages (VHLL), which also of-
fer a more intuitive way of programming in comparison to
the compiled languages. Ideally, an HPC software package
should be an all-in-one product and provide not only job
and resource management but also cluster configuration and
administration options. Addressing our priorities in the se-
lection of HPC software, we defined the additional criteria
as: support for heterogenous hardware platforms, support
for multiple VHLLs, user-friendly GUI and low cost main-
tenance.

Parallel programming tools, which use low-level con-
structs, such as a Message Passing Interface (MPI), a Pa-
rallel Virtual Machine (PVM) and parallel communication
libraries (ScaLAPACK), form the class of back-end support
products. An abstraction layer on top of the middleware is
used by the front-end support tools to hide the technicalities
of parallel programming from the user.

From the broad range of commercially available paral-
lel programming tools we took a closer look at front-end
products, such as Star-P from Interactive Supercomputing
(ISC) and Distributed Computing Engine (DCE) and Dis-
tributed Computing Toolbox (DCT) from MathWorks. Both
products offer a user-friendly way of parallel programming
in the sense that the developer does not need to maintain
master-slave communication between different cluster ma-
chines.

Star-P supports MATLAB, Python and R VHLLs and
features the Software Development Kit (SDK) which en-
ables a user to plug-in existing Java and C++ applications.
ISC, a former start-up from the MIT Lincoln Laboratory,
has developed and commercialized Star-P in response to
MathWorks’s initial reluctancy to invest in the field of pa-
rallel programming [10].

Published testimonials and case studies on the ISC web-
site list numerous high-profile and well-funded research
institutions such as the Air Force Research Lab (AFRL),
NASA and the National Cancer Institute (NIC) among their
customers [11]. Though acknowledging its capabilities we
admit, that the only limitation of Star-P, when applied to our
case, is its primary compatibility with expensive commer-
cial platforms such as the SGI Altix 8-P server and therefore
the associated costs. As a stand-alone product, Star-P does
not explicitly support parallel computing on distributed he-
terogenous platforms.

To the contrary, DCT and DCE tools from MathWorks
which were subsequently introduced in 2004 to fill-in the
overlooked gap, are specifically tailored to support dis-
tributed computing. Despite its popularity and the vast
availability of toolboxes, the downside of using MATLAB
in HPC clustering is the MathWorks’s licensing policy. The
cost factor is directly proportional to the cluster size as each
compute node requires an individual MATLAB license for

the DCT toolbox.
For the reasons above we changed the direction towards

the open source alternatives to MATLAB in search of a
tradeoff between the cost and the flexibility.

2.1. ParallelKnoppix

There are two main open source alternatives to MAT-
LAB: Scilab developed by INRIA with ENPC and GNU
Octave developed by John W. Eaton at University of
Texas. Both run on different platforms and support paral-
lel programming through PVM-based ProActive Interface
for Scilab and MPI Toolbox (MPITB) for Octave. To de-
cide between both we have prioritized the asynchronous
message passing and data-parallel capabilities of MPI over
the dynamic process spawning feature of PVM and conse-
quently arrived at the ParallelKnoppix (PK) software fea-
turing MPITB for Octave [5,7,8].

ParallelKnoppix is a Debian based Linux distribution
which runs from a Live-CD and supports ad hoc HPC clus-
ters. Ad hoc implies that software does not access the hard
disk and after the shutdown leaves the machines in their
original state [5]. Developed by Michael Creel at the Uni-
versitat Autònoma de Barcelona, ParallelKnoppix is the all-
in-one product which is aimed at the easy creation, confi-
guration and maintenance of an HPC cluster. That is, the
user of a cluster is also its system administrator. Parallel-
Knoppix offers a parallel programmer the choice of using
Octave, Python and C environments to develop applications
and supports up to 200 node clusters.

3. Cluster Architecture

The cluster can be used as well for production as for pro-
totyping of a parallel application. This experimental setup is
composed of one Master Node and seven Compute Nodes,
connected by a high speed Gigabit network. Table 1 sum-
marizes the details of the HPC hardware platform.

Table 1. HPC Cluster Hardware Platform.
Component Details

Machine 8 x Dell 490 Precision workstation
Processor Intel Xeon E5320, Quad Core 1.86 GHz

64-bit Technology Intel EM64T
RAM 4GB

L2 Cache 8MB
Default OS Windows XP

PXE Broadcom UNDI PXE-2.1 v8.3.8
PCI PCI 2.3, PCI Express 1.0A, PCI-X 2.0A

Interconnect Gigabit Ethernet GigE



When HPC operation is required, boot settings in BIOS
menu can be changed to determine the location of Linux
OS. The Master Node is set to boot a Linux kernel from
the internal CD-ROM drive. Compute Nodes are set to boot
the Linux OS from the boot server (Master Node) over the
cluster network using the Preboot Execution Environment
(PXE) protocol [5,13].

Figure 1. HPC Cluster Configuration.

We anticipated that the user can develop and prototype
an application on the local desktop and use the HPC cluster
mainly for production. Therefore, we defined two systems
Desktop and Cluster, as illustrated in Fig. 1.

3.1. Desktop

This is considered to be a 32-bit based desktop, which
can be used to develop and prototype an application and
to remotely access the cluster. A desktop with any oper-
ating system, with the exception of Linux, requires virtu-
alization software such as VMware or QEMU for the de-
ployment of ParallelKnoppix. We used the freely available
VMware Server 1.0 and designed a desktop-based, shared-
memory, completely virtual cluster which runs on the local
Windows Host and is composed of multiple Linux-based
virtual Compute Nodes. This configuration offers a virtual
model to test the MPI communication but naturally does not
yield any computational gain. A second option is to cluster
several virtual machines across several physical hosts [13].
Therefore, the configuration of a desktop PC and a laptop
provides a simple platform to test the real-time communi-
cation. For the cluster-desktop interconnect we used the
Virtual Network Computing (VNC) service with a secure
ssh link.

3.2. Cluster

We refrained from using virtualization software on the
Master Node as it considerably limits the overall system
throughput. The software platform is the 64-bit version,
v2.8, of ParallelKnoppix featuring Linux kernel 2.6.23.8,
KDE 3.5.8, openMPI 1.2.4, Octave 2.9.14, parallelpython
2.5rc, scipy 0.60 and numpi 1.0.3.1.

During the setup process of ParallelKnoppix, the Master
node enables its own Dynamic Host Configuration Protocol
(DHCP) service and supplies dynamic IP addresses to any-
one present on the subnet. The presence of an additional
DHCP server on the subnet will trigger a conflict in assign-
ing IP addresses.

Failure-free cluster networking is therefore only possible
with the physical presence of two network controllers on the
Master Node. The integrated Broadcom NetExtreme 57xx
controller with Tigon3 chip will be used for the Gigabit
cluster subnet. The PCI v2.3 compliant RealTek RTL-8139
plug-in card will enable the external LAN connection. Once
the DHCP enabled, the network structure will be a simple
C-class network where all nodes included in the cluster will
reside within this network. The Master Node will be the
only workstation within the cluster connected to the exter-
nal LAN [13].

4. Applications

Of the two types of parallel processing, we concentrated
on task parallelism, where a user can repeatedly run an ex-
periment in a for-loop or in nested for-loops. The overall
loop can be subdivided into segments and sent to compute
nodes for processing. Loop index variables enable the user
to trace back the correct location of the processed segment
to assemble the global result.

Data parallelism is a far more complex and time-
consuming approach. The time investment required to write
the code may outweigh the time savings in the parallel exe-
cution of an algorithm unless the parallel functions will be
used extensively over a long period of time.

Our experimental setup aims to outline both, perfor-
mance gain and bounds on HPC performance and involves
different aspects of computer vision. To demonstrate a suit-
able application of task parallelism we selected the two di-
mensional Fast Fourier Transform (2D-FFT), the Continu-
ous Wavelet Transform (CWT) and the Perspective Image
Transform algorithms along with two types of matrix cre-
ation approaches, such as the random array generation and
the vector-by-vector multiplication. Our design of experi-
ments consists of running multiple (n = 100) trials of a
user function and recording the total execution time which
contains a communication latency due to the message pass-
ing constructs. In the multi-node HPC configuration, we



divided the n trials evenly among the cluster and calculated
the execution time according to the arithmetic mean defi-
nition. For the best possible and objective comparison be-
tween Linux based Octave and Windows XP based MAT-
LAB we did not utilize quad core capabilities of Intel Xeon
E5320 CPU and let each operating system determine the
available resources.

Figure 2. Benchmark test pattern used for im-
age transform tests.

For the design of data transform experiments, we cre-
ated a test image such as a synthesized texture composed of
linear combination of pure sine waves of different random
orientations as shown in Fig. 2.

4.1. Matrix Creation

In this experiment we generated a random square matrix
with Gaussian {µ = 0, σ = 1} distributed entries and raised
each of the elements to the power of 1000 [15]. This is a
standard benchmark experiment that tests both, the speed
at which matrices are created and the speed of the internal
element by element processing.

Table 2. Mean execution time required to ge-
nerate a random matrix and raise each ele-
ment to the power of 1000 (seconds · 10−3).

Matrix MATLAB Octave with n Nodes
Size 1 2 3 4 5 6 7 8
2002 22.18 10.8 16.1 13.1 12.2 11.7 11.4 11.2 11.2
3002 49.53 23.4 22.7 17.6 15.8 14.5 13.8 13.3 12.8
4002 87.97 41.2 31.9 23.9 20.4 18.4 17.1 16.2 15.3
5002 137.2 64.5 44.2 32.4 27.2 23.9 21.9 20.2 19.2
6002 197.5 91.3 58.3 41.3 33.8 29.2 26.2 23.8 22.5
7002 268.6 125 76.9 53.5 46.4 37.1 35.0 30.2 27.8
8002 350.6 165 97.7 66.4 52.7 45.1 42.1 36.2 32.4

Data in Table 2 show that the single node Octave execu-
tion of the user function requires less time to perform a sin-

gle calculation in comparison to the single node MATLAB
execution. In addition, significant time saving is achieved
for cluster configurations of more than one compute node.

4.2. 2D-FFT

The second experiment demonstrates the increase in
computational speed achieved through the successive addi-
tion of compute nodes to the cluster. Although the imple-
mentation of the 2D-FFT differs between Octave and MAT-
LAB, the accuracies are comparable down to an error of
1 × 10−12, which for this work is considered negligible.
Data in Table 3 show that Octave outperforms Matlab in the
single node configuration.

Table 3. Mean execution time of a 2D Fast
Fourier Transform (seconds · 10−3).

Image MATLAB Octave with n Nodes
Size 1 2 3 4 5 6 7 8
162 0.780 .506 11.0 9.97 9.82 9.81 9.82 9.82 9.87
322 1.100 .559 11.3 9.90 9.83 9.80 9.79 9.81 9.87
642 1.400 .637 11.4 9.95 9.86 9.87 9.84 9.88 9.92
1282 2.500 .971 11.6 10.1 10.0 9.96 9.92 9.93 9.98
2562 7.190 2.35 12.5 10.8 10.5 10.3 10.9 10.8 10.8
5122 37.19 15.1 19.0 15.0 13.7 13.6 13.2 12.9 12.6
10242 465.5 85.2 54.4 38.4 31.6 27.5 24.9 23.0 21.3
20482 2042 400 214 146 113 92.1 79.8 71.5 63.8

Adding more compute nodes to the cluster significantly
reduces the total execution time, subject to the image size
being larger than 512 × 512. The execution time of 2D-
FFT of images smaller than 512× 512 is comparable to the
amount of time required to send messages.

4.3. Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) is com-
monly used for image compression and image filtering, and
as such forms a good benchmark test for any system. The
CWT produces a more accurate time-frequency spectrum
but as an algorithm is also more demanding in both, com-
puting power and memory resources when compared to
the 2D-FFT. Therefore, given the same number of nodes
and image sizes we expect the 2D-CWT processing to be
slower than that of 2D-FFT. Our two-dimensional CWT al-
gorithm is based on the 2D inverse FFT implementation of
the two-dimensional convolution of the data sequence with
the scaled and translated version of the mother wavelet. As
the computational load for the 2D-CWT considerably in-
creases with the number of scales, we limit the experiment
to single-scale computation.



Table 4. Mean execution time of a Continuous
Wavelet Transform at a single scale (se-
conds).

Image MATLAB Octave with n Nodes
Size 1 2 3 4 5 6 7 8
162 0.142 .022 .029 .023 .021 .020 .019 .019 .018
322 0.147 .022 .022 .018 .016 .015 .014 .014 .014
642 0.142 .026 .025 .019 .017 .016 .015 .015 .014
1282 0.240 .044 .034 .025 .021 .019 .018 .017 .017
2562 0.262 .140 .082 .057 .046 .039 .035 .032 .029
5122 1.607 .640 .333 .229 .171 .140 .120 .107 .093
10242 6.570 3.16 1.59 1.09 .802 .644 .548 .483 .422

Data in Table 4 show that Octave outperforms MATLAB
on a single node system and that the speed-up is enhanced
with the addition of extra compute nodes. This is particu-
larly true for images of larger sizes.

4.4. Perspective Image Transform

Perspective Image Transform, also called ”image warp”,
is the standard algorithm used in ordnance image rectifica-
tion or camera scene registration. For the parallelization,
we wrote a user function which transforms each 2D pixel
pI in the benchmark image I by the 3 × 3 perspective ho-
mography matrix

H3×3 =

 0.9 0.1 10
−0.05 1.05 −3
0.0001 −0.00012 1

 (1)

using the nearest neighbour backward transformation
method to obtain the warped output pixel pW as:

pW = H−1pI (2)

Data in Table 5 indicate that in this experiment, MAT-
LAB outperforms Octave on a one node system. Octave
catches up in HPC configurations with 3 or more compute
nodes.

5. Performance Limitations

This test implements vector-by-vector multiplication to
create a matrix in the form A = aT ∗ a and emphasizes
the additional messaging overhead associated with sending
and receiving MPI calls. The initial overhead linked to the
setting up of our parallel platform amounts to about one se-
cond in total. This can be seen in Fig. 3 as a significant jump
in the mean execution time when the tests are computed on
two compute nodes rather than one.

Table 5. Mean execution time of a function
that perspectively warps the benchmark im-
age (seconds).

Image MATLAB Octave with n Nodes
Size 1 2 3 4 5 6 7 8
642 0.008 .010 .016 .014 .013 .012 .012 .012 .012
1282 0.016 .027 .025 .019 .017 .016 .015 .014 .014
2562 0.066 .108 .064 .046 .037 .032 .029 .027 .025
5122 0.316 .466 .244 .167 .127 .104 .091 .081 .072
10242 1.350 2.04 1.04 .708 .525 .421 .359 .317 .276
20482 5.431 9.71 4.86 3.30 2.44 1.95 1.66 1.47 1.27

Figure 3. Mean execution time of an aT ∗ a
operation (seconds).

The time spent on MPI communication increases with
the number of compute nodes and eventually can become
larger than the time saved due to parallelization. This can be
observed in Fig. 3 as the gradual increase in the mean exe-
cution time for the number of compute nodes larger than 3.

6. Discussion

The experiment in Section 4.4, which was designed
to assess the Perspective Image Transformation, did not
demonstrate MATLAB’s full potential as the written ima-
ge transform function did not contain any nested for-loops.
Generally, an implementation of nested for-loops is slow for
all interpreted languages. MATLAB features a Just-In-Time
(JIT) compiler to speed-up computations [12]. Octave, at
present, doesn’t support JIT compilation, and so runs much
slower when for and nested for-loops are encountered.



7. Conclusion

Based on experimental results we verify that especially
for the case of processing large data sets our Octave based
HPC cluster yields significant time savings.

Moreover, 8-node Octave outperforms single node MAT-
LAB as illustrated in Table 6.

Table 6. Computational gain of the 8-node
ParallelKnoppix and Octave based HPC,
compared to the single node MATLAB.

Matrix creation tOCTAV E = tMATLAB \ 10
2D-FFT tOCTAV E = tMATLAB \ 32

CWT tOCTAV E = tMATLAB \ 15
Image warp tOCTAV E = tMATLAB \ 4

A prerequisite for writing parallel code under Parallel-
Knoppix is the knowledge of low-level MPI programming.
The developer tells the cluster machines how to communi-
cate, which part of the code to execute and how to assemble
the end result. It is a challenging but, according to our ex-
perience, also a straight forward and an intuitive approach
to parallelizing an application.

We prioritize the cost factor above the user-friendliness
of the GUI and conclude that a ParallelKnoppix based HPC
cluster provides a cost-effective and computationally effi-
cient platform to solve large-scale numerical problems.

The reader is referred to our Computing Cluster User’s
Guide [13] for a detailed description on configuration and
maintenance of the presented HPC ParallelKnoppix Cluster
and for a short tutorial on parallel Octave.

We also would like to advise the reader of the next gene-
ration PelicanHPC project [14], which is aimed to substitute
ParallelKnoppix in the future.
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