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Abstract. This paper describes a method of initialising an Active-Mesh that is 
to be automatically created and configured directly from a single frame of an im-
age sequence. The aim of this approach is to use the derived mesh to perform 
visual tracking in unconstrained motion environments, allowing movement of the 
camera, the scene and even the inclusion of background-independent moving ob-
jects. The problem in initialising this mesh comes from the fact that there is no a 
priori information about the scene available.  The paper will discuss met hods 
that are currently available for determining the initial position of active contour 
models within images, then suggesting a method of initialising an active mesh. 

1.  Introduction 

Active Contour Models are a popular method for tracking ‘regions’ as features 
through image sequences. Developed largely by Kass et al  (1), snakes are active con-
tour models, using an energy-minimising spline that can help solve numerous com-
puter vision problems, such as the analysis of dynamic image data, image segmenta-
tion and image understanding. The model is described as active since it is always at-
tempting to minimise its energy function, hence showing dynamic behaviour. Snakes 
are an example of the generalised technique of matching a deformable model to an 
image using energy minimisation techniques. The shape of the contour determines its 
internal energy and its external energy is determined by the spatial location of the 
contour within the image. External forces may be used to attract these contours to-
wards or away from salient image features, such as edges, lines and corners. 
 
There are several models of deformable contours that may be used, such as the snake 
model suggested by Kass et al (1) that ‘wraps around’ image features, or the balloon 
model introduced by Cohen (2) that expands to locate desired image features. Staib 
and Duncan (3) deal with other methods such as elliptic Fourier decomposition for 
objects with shape irregularities. They use a Fourier shape model that represents a 
closed boundary as a sum of trigonometric functions of various frequencies. They 
then use an iterative energy minimisation technique to fit the model within the image. 
This technique is limited to closed boundaries and does not always provide an appro-
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priate basis for capturing shape variability. Some of these methods deal with different 
pro blems, for example, Kass et al  (1) deal only with local deformations while Staib and 
Duncan (3) deal only with global deformations, such as those that might be described 
by scaling, rotation, stretching or dilation of a contour (rigid motion). However, local 
deformations might be caused by some higher level complex motion, such as the 
movement of human lips, living cell deformation and other deformations related to the 
shape of the feature and not just its location in space. There are indeed two separa te 
problems to be examined, global deformations of rigid objects are too varied to be 
described adequately by single shape attributes such as bending energy or elasticity, 
while these descriptions may be adequate for local deformations in deformable objects. 

2.  Formulisation 

Active Contour Models were proposed initially as an approach to the ill-posed edge 
detection problem. It was proposed that the low-level process of edge detection 
should provide sets of possible alternate solutions for the higher-level process of edge 
linking, rather than forcing forward a single unique solution. An energy minimisation 
framework was developed as a solution, designing energy functions with local minima 
that provide alternate solutions for the higher-level edge linking, resulting in an active 
model that minimises to the desired solution when placed spatially near that solution. 
 

The structure of a snake is an ordered set of control points (or snaxels 1) of the form 
[ ]nvvvV ,,, 21 K=  where each snaxel { }),(,),,(),,( 21 yxiyxiyxi ni K=∈ Iv  and 

Myx ,,2,1, K= , allowing every snaxel to have a 2-D coordinate position on the image 
plane. Alterations to the location or shape of the snake are possible by moving the 
positions of the individual snaxels. The number of snaxels is chosen by sele cting an 
appropriate internal distance h. This value is chosen on an application specific basis, 
where the coarsness of the fit of the snake to the object is the defining factor. The 
smaller the value of h, the greater the number of snaxels that are required and the more 
tightly defined the minimised snake will be to the desired contour.  
 
A snake can either be open or closed, with a closed snake having the end points 
connected, so vn is connected to v1. Allowing the snake to be open leads to difficulties 
in determining the desired energy at the first and last snaxels. Sometimes however, for 
specific vision applications, it may be necessary to require the end points to remain at 
specific predefined spatial locations. 
  

                                                                 
1 For the rest of this paper ‘snaxel’ will be used to refer to such points or elements of the snake. 

The term is derived from a contraction of the term “snake elements”. 



3. Initialisation 

Many methods for developing active contour models have emerged in recent years, 
since the introduction of snakes by Kass et al  (1), with many applications including 
Staib and Duncan (3) and Leymarie and Levine (4). However, in most of these 
applications it is assumed that the initial position of the snake is relatively close to the 
desired solution, in fact often initialised by a human operator. While this might be a 
suitable assumption, on a frame by frame basis in the motion tracking problem, it is not 
always acceptable when initialising the active contour.  

 
The initialisation of the snake is a difficult problem that has a significant impact on the 
outcome of the snake minimisation. If the snakes initial position is far from the desired 
solution it is quite common for the snake to become trapped in local energy minima, 
due to irrelevant edge information or noise. The snake is also limited in spatial 
movement since the snakes own potential energy prevents the snake from moving far 
from its current position (Neuenschwander et al (5)). Many methods require the user 
or other mechanisims to place the initial snaxels near the desired boundaries of the 
object to be tracked. If the snake is placed close to an intended contour, its energy 
minimisation will force the correct solution. Snakes do not attempt to solve the problem 
of detecting prominent image contours, but rely on other methods to place the snake 
near the desired contour. Some of these methods include: (i) The Hough transform is a 
common method for the extraction of the initial estimates of the contour position for 
rigid objects. These rigid templates cannot account for deformations that may occur, 
thus a rigid template chosen a priori cannot produce satisfactory results in all cases. 
Lai (6) shows that performance actually degrades with deformation, so using the 
generalised Hough transform to provide the initial contours when substantial prior 
knowledge is available. (ii) Short snakes may be initialised at strong edges and allowed 
to expand and even overlap until the entire boundary is covered. (iii) If enough 
computational power is available thousands of randomly initialised snakes may be 
placed on the image, until a suitable solution is found, however this is rarely practical.  
 

 

Fig. 1. The Balloon Active Contour Model (Cohen and Cohen (1992)). 

 



Cohen and Cohen (8) suggested another approach to the energy minimisation problem 
(see Fig. 1.) based on the Galerkin solution of the Finite Element Method. This ap-
proach is applied to the closed contour case and finds remarkably good stability. An 
additional pressure force is added to the contour, in which they consider the contour 
as a balloon. The balloon is inflated from the inside and expands, overcoming isolated 
valleys and noise giving better results than possible with snakes in particular cases. 
This approach allows a less accurately defined initial position to expand to the correct 
shape, without becoming trapped on local discontinuities; however, it cannot be used 
in all applications. 

 

Fig. 2. The method of Neuenschwander et al (5) begins by placing the snaxels at each end of the 
snake, as close to the desired object as possible, then allowing each successive pair of snaxels to 
converge in an ordered fashion towards the center snaxel of the snake. When the two active 
snaxels meet at the same snaxel location the optimisation method is complete. All snaxels are 
frozen in place except for the two active snaxels. 

 

Fig. 3. An example algorithm for noise reduction in the snake. 

 

Has himoto et al (9), suggest a quick technique for the reduction of noise in the snake 
structure, by ‘cutting off’ sections of the snake that are not useful to the snake. In 
Fig.3, we see that when non-neighbour snaxels are within a small pre-determined dis-
tance we have a method of determining a noisy condition. By removing the snaxels 
that are between these two snaxels we are removing noise from the snake, hopefully 
allowing the snake to converge more closely. This removes noise from the initialis ation 
of the initial snake description. 



4. IMPLEMENTATION  

The method presented here initialises the mesh using feature points extracted from the 
initial image frame to provide the initial node locations of the mesh. Not only is it nec-
essary to place the snake in its initial position, the energy equations must be initialised 
such that the mesh is created in equilibrium. A fundamental stage in computer vision is 
the generation of descriptions of images, more useful than a large set of pixels. The 
main aim of this feature extraction is to reduce this set of pixels to a list of features that 
are distinct from surrounding portions of the image so that the information available in 
the scene becomes more manageable. For example, in the case of feature matching, the 
distinctiv eness of these points limits the potential matches in the following frames. 
These points more than likely correspond to significant features in the real-world 
scene, such as ‘real corners’, ‘real boundaries or edges’ or textured areas. Most ‘image 
segmentation’ techniques are based on the search for local discontinuities or on the 
detection of regions in the image with homogeneous properties.  

 

Fig. 4. A Standard Template used for the test initialisation, showing the corners clearly detected 
by the SUSAN algorithm. 

The trajectories derived from locating particular feature points on an object, through 
time, are popular because they are relatively simple to extract. The generation of mo-
tion trajectories from a sequence of images typically involves the detection of tokens 
in each frame, and the correspondence of such tokens from one frame to another. 
These tokens need to be distinct enough for detection and stable enough to be found 
in each frame. Tokens may include edges, corners, interest points, and regions.   
 
The Smallest Univalue Segment Assimilating Nucleus (SUSAN) corner detector as 
introduced by Smith (7) is used with varying thres holds to provide feature points that 
are suitable, such that the extracted features are: (i) Consistent; in that features to be 
used as tokens for motion analysis must be detected consistently through image 
frames, if they are to be used as the basis for subsequent higher level processing. (ii) 



Accurate, in that features must be located precisely from frame -to-frame. (iii) Non-
complex, in that computational speed is a very important issue, where this primary 
stage of corner detection must be performed at each iteration of the algorithm.   
  
In Fig. 5, the SUSAN corner detection algorithm is applied to the same image with 
differing thresholds to show how this has an effect on the number of corners detected. 
In (b) the standard values are used of a threshold value of 16 and a distance value of 
16. In this case 570 corners are detected. When these values are reduced to 8 and 8 the 
number of corners increases to 930 as in (c) and when this value is increased to 32 the 
number of corners reduces down to 305 as in (a). The general quality of the corners 
detected at lower thresholds is poorer as the intensity difference that is required to 
classify as a corner is reduced, becoming more affected by lighting conditions and 
noise. The determination of these values for the brightness and distance thresholds 
for the active mesh can be related directly to the determination of the internal spacing 
value, h for active contours, as discussed previously. 

 

Fig. 5. The SUSAN algorithm applied to the same image using different threshold values.  In (a) 
Distance = 32, Thr = 32, (b) Dist = 16, Thr = 16, and in (c) Dist = 8, Thr = 8. 

The corners that are detected with the highest difference are the strongest, i.e. they 
have a large gradient on the corner and so are possibly the best corners for matching, 
in that with the exception of occlusion they are likely to be consistent from one frame 
to the next.  



 
The system should provide a reasonable number of corners for feature matching. The 
larger the number of tokens, the more computationally intensive the matching be-
comes, and the weaker the tokens become, in terms of consistently and reliably detect-
able tokens. Corners detected from texture information, or image quantisation effects 
are likely to be unreliable. An insufficient number of corners will cause regions in the 
image to contain no tokens for the feature -matching algorithm, resulting in sparse 
motion information. However, having no tokens detected in a region of uniform inten-
sity may not be too much of a problem, as the features surrounding this area will allow 
an estimation to propagate towards the centre of the uniform region. A specific number 
of corners could be chosen, say 1000, however this would not be suitable in many 
cases, again the corners could suffer from the two problems above. The number of 
corners may be forced to be too high, giving poor tokens, or too low, giving a non-
uniform image description. Filtering and other methods are being examined to provide a 
more dynamic and consistent choice of threshold values. 
 
The interconnecting physical structure of the mesh is then created using a modified 
iterative Delaunay triangulation algorithm.  

 

Fig. 6. The creation of the Delaunay Triangulation using the Incremental Algorithm.  

Given a set of data points, the Delaunay triangulation produces a set of lines connect-
ing each point to its natural neighbours. A Delaunay triangulation is desirable for 
approximation applications because of its general property that most of the triangles 
are almost equiangular and also because there is a unique triangulation for a given set 



of points. Unlike many other alg orithms for determining the Delaunay Triangulation, 
the incremental algorithm has the main advantage of keeping the triangular network as 
a Delaunay triangular network during the actual triangulation process. In the case of 
the active-mesh being described, cases can arise where mesh nodes become occluded, 
leave the scene, or become unreliable. In this case, or in the case where nodes new 
nodes can appear, the incremental Delaunay Triangulation algorithm allows the addi-
tion or subtraction of mesh nodes. Fig.7 shows an example test scene, in which this 
initialisation has been performed. It can be seen from this figure that the feature corner 
points are detected accurately and the mesh is well constructed by the Delaunay alg o-
rithm. 

 

Fig. 7. The mesh created using the modified Delaunay triangulation on random shapes with the 
detected corners as the node points (The image background on the right is from (7)) 

5. Formulisation of the Energy Equations 

Once the mesh structure is available the internal and external energies within the mesh 
are established at each node and mesh line, so that the mesh is initially in equilibrium 
with no internal or external forces being applied. The mesh will then remain in equilib-
rium until a change in the underlying image structure occurs as the ‘active-mesh’ is 
designed so that it deforms in response to salient image features.  
 
To allow for the complexities involved in dealing with ‘active-meshes’ as opposed to 
the more simple contours, the mesh algorithm must allow for varying numbers of line 
connections to each node and provide an algorithm for dealing with the numerous 
forces that will be applied at each node. 



 

Fig. 8. Multiple forces being applied to a single node, the combination of which is performed 
using the force strength and the distance of the forcing nodes from the centre node. 

An algorithm was developed to deal with the varying number of connected nodes, 
resulting from the initialisation algorithm, with a method of combining the effects of the 
forces from the connected nodes on a particular node. It was determined experimen-
tally that the closer a connected node was, the more likely that this node would be 
present on the same real-world object.  So examining centre node ),(0 yxn  with con-
nected nodes Nnnn K,, 21  the combination is of the form: 
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The larger the distance of the node applying the force from the current node, the 
smaller the effect it has on the movement of the current node. These forces being a p-
plied from the surrounding nodes can be due to those nodes being pulled away from 
or towards salient image features. 

5.1 The Internal Energy 

For the internal energy an elastic form is used, where every node pulled or pushed by 
the connected nodes.  
 
The mesh-lines have elastic properties so that the mesh can deform when required 
over a number of time iterations, to track deformations in the scene, the scene objects 



or deformations due to scaling. The elastic properties give the mesh its flexibility while 
the rigid properties give the mesh structure. The rigid properties of the mesh lines 
cause the lines to attempt to return to their determined length. This determined length 
is permitted to expand or contract slowly over a time period, and is influenced by the 
elastic properties of lines. In other words, if the mesh is stretched by a number of con-
sistent external forces for a significant number of iterations then the mesh will slowly 
assume a new default shape. This default shape is now the rigid shape of the mesh and 
will remain so, until similar forcing conditions arise.  
 
For each line in the mesh:  
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where L(x), L(y) represent the x and y components of the mesh line lengths. The inter-
nal forces are determined by the current-length of each individual mesh line in com-
parison to the set-length of that mesh line. The mesh line has two 
nodes 1n and 2n where, 
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At each iteration: 
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Fig. 9. An example of a mesh line deformity in (a) how a rigid mesh would react and in (b) how 
a deformable mesh might react. 



5.2 The External Energies 

The external forces are applied to the mesh nodes independent of the mesh lines and 
are derived from the image data. These image forces pull the mesh nodes towards suit-
able feature match points that are found within the circular image search space of the 
mesh nodes. If a suitable match feature appears within the circular search space then 
the node is pulled towards that feature point by a force magnitude determined by the 
suitability of the match feature. This in turn pulls the connected mesh nodes (due to 
the internal forces of the interconnecting mesh lines) in the direction of the new fe a-
ture.  
 
The best match corner is found by comparing the 3x3 area surrounding the current 
node n0 with the 3x3 area surrounding the possible match corners cn detected within 
the circular search space of radius Sα . So, ),( yxcn∀ where the distance from 0n  the 
current mesh node,  
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is less than the search space of radius Sα , the total intensity difference is: 
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The corner point nc is chosen that minimises the value of TI in the range 0 to 2295(i.e. 
255x9). 
 
Based on this intensity difference, match strength is established. The larger this value 
the weaker the match strength and a factor is established: 
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TI  is larger the smaller the difference, averaged over 9 pixels and over the maximum 

intensity value 255,  so MS = 1 for the best match and 0 for the worst match. 
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Where Eα  is a user-defined factor to allow the external forces to have a larger or smaller 
effect on the mesh. The last term weights the distance of the force as weaker the larger 
the distance from the examined node. 
 
 



The active mesh allows constrained feature matching to take place on a frame-by-frame 
basis in an image sequence. Once the features have been correctly matched the real-
motion of the image of selected points in the image plane are available as vectors.  

6. Initialisation and Tracking Results  

A specialised software application (written in Java) was developed to implement the 
‘active-mesh’ algorithm. A number of sequences with both artificial and real-world 
scenes are shown here with the algorithm providing initialisation information and 
tracking information of the objects in the scene. Results are available and very encour-
aging, with the extracted vector fields being displayed. 
 

 

Fig. 10.  Showing a more complex Active Mesh initialised on a real-world image frame having 
tracked image features through several frames. 

Fig.11(a), shows the resulting vector field from the rotation of the mesh in Fig.7(a), by 
about 2° clockwise around the centre of the image. Only two frames were used and the 
results were taken after 60 iterations. As can be seen the results are very accurate 
except for some noise at the very centre of the image. The structure of the mesh is 
perfectly preserved through the rotation. 



     

Fig. 11. (a) Shows results from the rotation of the scene as given in Fig.7(a). (b) Shows the 
results from a substantial distortion of the image, causing non-rigid mesh motion.  

The top left corner has been pulled out of shape slightly but this would converge if 
more than 60 iterations were allowed. In this case the results are derived from a rotation 
of a rigid  mesh, but one of the strengths of this method is that the mesh need not be 
rigid on a frame -to-frame basis.  The method is applied to a distorted image, in which 
many corners appear and disappear due to the distortion or occlusion. 

 

Fig. 12 Vector results from a standard real-world image stereo pair. 

This is shown in Fig.11(b), the distortion that is applied is substantial throughout the 
entire image but the only area that returns slightly problematic results is the object in 
the bottom left of the image. The extra corners that are detected in the distorted image, 
along with the fact that the intensity values at these new corners are very similar to the 



‘correct’ corner matches at these points. It is unlikely that such uniform intensity le v-
els (to exact pixel value) exist in real-world scenes. The vector field shown in Fig. 11(b), 
gives a clear indication of the real motion of the scene, nearly like a ‘black-hole’ effect 
in the top right hand corner, with all objects being ‘sucked in’. 

7. Conclusions 

This method shows the use of a self-initialising ‘active-mesh’, that functions with 
promising results. It has primary application in scenes where no a priori knowledge is 
available, or where unknown motion events can occur in subsequent image frames. 
The initialisation of the mesh location is based on an incremental Delaunay triangula-
tion so that node points may be added and removed dynamically as  they appear and 
disappear on a frame -by-frame basis. The SUSAN algorithm was used for choosing 
mesh nodes, however the active mesh was designed to initialise using and track any 
form of strong motion features. The energy equations that were used were specifically 
designed for the initialisation technique developed. The technique provides promising 
tracking results, providing information about the 'real' motion in the scene, which can 
be difficult for techniques such as optical flow. Improvements are being made to the 
algorithm on an on-going basis and this method is currently being applied to the 3D 
scene analysis problem. 
 
For more information on this work and for an interactive Java Applet see:  

http://www.eeng.dcu.ie/~molloyd/phd/ 
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