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Real time 3-D estimation using depth from defocus 

Abstract. In the recent times a great amount of interest has been shown in the 
area of range data acquisition for supporting 3-D scene interpretation. This 
paper presents an interesting approach to obtain depth information using 
defocusing techniques. This method involves calculating distance to points in a 
scene using the relative blurring between two images detected with different 
focal settings. These images are obtaining by splitting the image of the scene 
captured with two CCD sensors with a known physical distance between sensor 
planes. The proposed algorithm uses only simple filters and operators to 
compute the amount of defocus according to the optical settings. Nevertheless, 
textureless images might introduce significant errors and in order to minimise 
this problem a practical solution is to project a structured light on the scene. 
Magnification is maintained invariant to changes in focal settings because in 
this implementation a telecentric lens is used. Compared to other methods (e.g. 
stereo and motion parallax) which require solving the correspondences between 
different features and also suffer from occlusions or missing parts, this 
approach has many advantages such as reliable accuracy at low computational 
cost and provides easy camera calibration. This approach has been implemented 
and successfully tested on several real world scenes. 

Keywords: depth from defocus, image blurring model, active illumination, 
inverse filtering, real- time. 

1 Introduction 

Recovering the depth information of the scene is one of the most important tasks in 
machine vision. Depth information plays a key role in machine vision and has a 
strong relationship with the real world in robotic applications. The 3-D information 
can be obtained in various ways. Several 3-D vision systems have been developed to 
solve a specific task while others are more general and consequently more complex. 
Among other approaches for 3-D recovery, depth from defocus (DFD) techniques has 
recently attracted a great amount of interest. Originally developed by Pentland [1987], 
the depth from defocus method uses the direct relationship between the depth, 
cameras parameters, and the degree of blurring in several images (in the current 
implementation only two are used).  In contrast with other techniques such as stereo 
or motion parallax where solving the correspondences between different features is a 
major disadvantage, depth from defocus relies only on simple local algorithms. 
However, these methods are complementary. Stereo and motion parallax is used for 
outdoor scenes where the depth discontinuities are important while depth from 
defocus performs better for indoor scenes where the target is situated nearby. Another 
popular method used in 3-D estimation is based on triangulation. In terms of precision 



methods based on triangulation appear to perform better but the major drawback is the 
amount of computation involved. Some speed improvements have been obtained 
using grey or colour-coded patterns. Ideally the number of independent coloured 
stripes should be large and geometrically very dense but in this case the colour-
structured pattern is very difficult to be manufactured. Also, different reflection 
properties of the object surface can introduce some errors in 3-D estimation (i.e. when 
the colour of the stripe is the same as the colour of the object’s surface). An 
interesting method to generate colour-structured pattern is proposed by Chen et al. 
[1997]. The main idea here is to design a pattern that have strong contrast at the 
borders of any two adjacent stripes and the correlation between any two segments of a 
consecutive sequence of light stripes should be as small as possible in order to 
minimise the mismatch. Despite these achievements a real-time sensor based on 
triangulation has not yet been implemented. 

This paper addresses the implementation of a real-time 3-D sensor based on depth 
from defocusing. As we mentioned before this method requires only two images 
acquired using different focal settings. This method performs badly in case if the 
scene does not provides high frequency textures. A practical solution for this problem 
is to project a structured light on the scene while the scene will have in this case a 
dominant frequency for texture (Nayar et al.[1995]). Furthermore, using active 
illumination minimises the shadows when all surfaces are visible.  Xiong and Shafer 
[1995] propose a novel approach to determine dense and accurate depth estimation 
based on maximal resemblance estimation. This implementation uses a large bank of 
filters with a different window size tuned for all dominant texture’s frequency. Using 
a large bank of filters makes this approach unsuitable for a real-time implementation. 
Subbarao and Surya [1994] proposed the Spatial-Domain Convolution/Deconvolution 
Transform (S Transform) when they try to estimate the depth using an analysis in 
frequency domain.  

This implementation does not perform as well as those mentioned previously. 
Watanabe and Nayar [1995] proposed a small bank of broadband rational filters able 
to handle arbitrary textures. This implementation is simple and performs reasonable 
well even in case of weak textures. This approach represents a certain improvement 
but still fails when the scene is textureless. Therefore, considering these aspects for 
this present implementation the optimal solution is using structured (active) 
illumination. An important problem is determining the illumination pattern. Nayar et 
al. [1995] proposed a method for optimisation in the Fourier domain.  The optimal 
pattern maximises the sensitivity of the focus measure in order to enhance the high 
spatial resolution. Keeping in mind that the CCD sensor can be approximated with an 
array of square elements (cells), thus the optimal pattern is a rectangular spatial grid 
(chessboard).  The next step is tuning this filter with the CCD parameters (distance 
between two adjacent cells). Another advantage given by using active illumination is 
minimising the shadows.  

Asada et al. [1998] using the reversed projection blurring (RPB) model. The RPB 
model is a technique used by ray tracing algorithms widely used in computer 
graphics. This model uses photometric properties of occluding edges when the 
object’s surface behind nearer object is partially observed. Therefore the blurring 



model using convolution becomes inconsistent around the occluding edges.  To 
compensate this problem they use the radiance of the near and far surfaces and then is 
mapped the occluded region. In this implementation the occluded region is assign to 
be equal to that from a nearer side of the depth discontinuity that in most of the 
situations is a correct assumption. 

2 Theoretical approach of depth from defocus 

The depth from defocus method uses the relationship between the depth, camera 
parameters, and the degree of blurring between near and far focused images. In other 
words, depth from defocus means calculating the depth of the scene in the image from 
the degree of image blurring. 

Let P be a point that belongs to an object’s surface and p the focused point 
refracted by the lens. The relationship between the object distance u, focal length f 
and image formation distance v is given by the lens law. 

 

 
The Figure 1 shows the optical settings and the basic image formation geometry 

for convex lens. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure1:  The camera geometry and the image formation. 
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If the CCD sensor is not placed in the focal plane the image is distributed over a 
circular patch on the sensing element. The diameter of the blur circle d is given by use 
of similar triangles: 

 

 
The blurring effect is seen as a convolution between the focused image and the 

blurring function 

 
where I0 is the focused image and h is the blurring function.  

The blurring function also called as the Point Spread Function (PSF) has the 
following expression: 

 
where hp is called the pillbox function and can be seen as a cone of light emerging 
from the lens with the point of the cone in focal plane. If the sensor plane is shifted 
from the focal plane then, cuts the cone in a circle with the diameter d.  

If within this circle the brightness is not uniform the PSF is better approximated by 
a two dimensional Gaussian function (Pentland [1987]): 
 

 
where σ is the standard deviation of the distribution of the two-dimensional Gaussian. 

In practice we can assume that the brightness is constant over a region of the image 
projected onto CCD element, the result is an invariant shift from the focal plane. The 
blurring is better modelled by the two-dimensional Gaussian than the blur circle 
(another advantage is that the Fourier transform of a Gaussian is also a Gaussian). If 
the brightness is uniform over a small region of the image (this assumption 
approximate very well the practical case) σ is proportional to d 
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where k is constant of proportionality characteristic for every camera and can be 
determined from a previous camera calibration. 

Unless we know a-priori information about the scene one image is not enough to 
estimate the depth (see equation (2) where d and u are unknown). Therefore, 
minimum two images acquired with different camera settings are necessary. Clearly, 
are two distinct options, either the aperture D is maintained constant and the sensor 
position s is modified (Nayar et al. [1995]) or the sensor is fixed and the aperture is 
changing when the images are taken (Pentland [1987], Subbarao and Surya [1994]). 
The first case has an important advantage, because it does not require any user 
intervention while the images are acquired but unfortunately have different 
magnification caused by focusing.  

An elegant and effective solution was proposed by Watanabe and Nayar [1995] by 
using telecentric lens. They suggest an optical solution to obtain constant 
magnification. It is well known that using telecentric optics magnification remains 
constant despite the focus changes. Most of the popular commercial lenses can be 
transformed to telecentric only by adding a small extra aperture. The aperture will be 
placed in the front focal plane of the lens. Using telecentric lens, they demonstrate 
that the magnification changes can be reduced to as low as 0.03%.  Because the 
aperture has to be small the only drawback of this approach is the severe reduction in 
brightness. Therefore, to compensate this issue is necessary to use a brighter source of 
illumination.  

The second possible implementation is not hampered by this issue but the depth 
estimation by far is not as precise. Certainly, a third possibility can consider the 
modification of both parameters but the depth estimation is not significantly 
improved.  

3 Estimating the depth of the scene 

As we mentioned above, the depth can be estimated by taking a small number of 
images (usually two) under different camera or optical settings. Subbarao and Surya 
[1994] proposed the Spatial-Domain Convolution/Deconvolution Transform (S 
Transform). They modelled an image as a cubic polynomial in spatial domain and the 
image is developed in a Taylor series. Since the PSF is a circularly symmetrical 
function therefore, the final expression is greatly simplified 
 

 
where f is the focused image, g is the defocused image, σ is the standard deviation for 
PSF and ∇2 the Laplacian operator. The equation (7) represents the deconvolution 
formula. If are taken two images g1 and g2 under different camera settings and the 
term f (x,y) from the first equation  is replaced in the second equation, the result is a 
simple expression: 
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      From equation (8) can be observed that no terms depend on scene’s texture 
frequency. Furthermore the depth can be estimated using the difference between the 
standard deviation of the near focused image (g1) and far focused image (g2). The use 
of the Laplacian as a focus operator is very convenient because has a simple kernel 
but the depth map resulted by using equation (8) is accurate only if the depth 
discontinuities in the scene are important. Also, if the scene has only weak texture the 
depth estimation is poor.  Certainly, in order to obtain a dense and robust depth map a 
more sophisticated approach for modelling PSF has to be involved.  
     Nevertheless, the focus operator plays an important role in depth estimation stage. 
Therefore, this goal of this paper is to study the accuracy of depth estimation when 
are used different operators. Because the defocus function (PSF) acts like a low pass 
filter therefore the focus operator has to perform inverse filtering.   
       The next step is determining depth from two images. The simplest solution is to 
use the ratio between the defocus function of the near focused image and far focused 
image. Nayar et al. [1995] proposed a normalised ratio M/P that is a monotonic and 
bounded function. 
 

 
where H is the Fourier transform of the PSF and σ1 is the standard deviation of near 
focused image (σ2 is the standard deviation for far focused image).  

Now, the depth can be determined by mapping the M/P ratio into a look-up table 
that returns directly the depth.  

4 Active illumination 

If the scene is highly textured the depth estimation will be precise and reliable. 
Unfortunately, if the scene has a weak texture or is textureless (like a blank sheet of 
plain paper) the depth recovery is very far from accurate. An effective and relatively 
simple solution is based on the use of structured (active) light. Initially, suggested by 
Pentland et al. [1994], then Nayar et al.[1995] developed an symmetrical pattern as a 
rectangular spatial grid optimised for a specific type of camera. Therefore, the 
illumination pattern has a single dominant frequency in direct correlation with the 
pattern’s arrangement for transparent and opaque regions. When the structured light is 
projected onto scene the spectrum will have the same dominant frequency.  
      The resulting pattern is very dense and rotational symmetrical in order to obtain 
spatial invariance. A problem caused by using a dense spatial pattern is the reduction 
in illumination caused by the filter’s opaque regions, thus a very powerful source of 
light is required. Nevertheless, a very precise pattern is difficult to fabricate and in our 
testing we discovered that this issue is not as very restrictive as it seems. For the 
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current implementation a simple stripes grid (10 lines/mm) used in Moire contour 
detection was used.  

5 The focus operator 

The goal of this operator is determining the defocus function (σ) by inverse 
filtering near and far focused images. Our efforts in this paper were concentrated in 
evaluating the efficiency of different focus operators. Because the blur circle is 
uniform only for small regions, the kernel of focus operator has to be small in order to 
preserve locality but on the other hand the windowing introduces supplementary 
errors. Xiong and Shafer [1994] proposed a solution to select the window size for 
Gabor filters. They used a simple criterion when the window size is selected to be as 
small as possible while the error caused by noise and windowing is smaller than a 
preset value. Aside from window size every focus operator must be rotationally 
symmetric and must not respond to any DC component (a DC component can be a 
change in image brightness).  This condition is satisfied if the sum of all elements of 
the focus operator is equal to zero.  
      Watanabe and Nayar [1995] suggested an approach based on the use of rational 
filters. They proposed a method to compute a set of broadband rational operators. The 
first operator performs prefiltering (for removing DC components) and then another 
three operators are involved in depth estimation. Finally, the depth errors caused by 
spurious frequencies are minimised by applying a smoothing operator.  
      This paper investigates the performance of Laplacian (4 and 8 neighbourhood) 
and rational operators (3x3 and 7x7 kernels). The 3 by 3 operators are shown in 
Figure 2 and followed by the 7 by 7 operator in Figure 3. 
 

                      
                          (a)                                   (b)                                      (c)  

 
Figure 2:  Focus operator kernels. (a) Laplacian (4), (b) Laplacian (8) and  

(c) rational operator (3x3) 
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Figure 3:  Focus operator kernel of an rational operator (7x7). 

 
      Because the image is discrete the focus operator will introduce errors (apart those 
caused by windowing). Furthermore, supplementary errors are caused by 
misalignment between the cells of the CCD sensor and the illumination pattern. In 
order to minimise the problems mentioned above, a post-filtering operator is used 
after the focus operator is applied to near and far focused images. 

6 Physical implementation 

The main goal of this implementation is to build a real-time depth estimator. 
Therefore, the near and far focused images have to be acquired in the same time. For 
this purpose were used two OFG VISIONplus – AT frame grabbers. The scene is 
imaged using an AF MICRO NIKKOR 60mm F 2.8 (Nikon). Between the NIKKOR 
lens and the sensing equipment (CCD sensors) is placed a 22mm beam splitter cube. 
Then, the near and far focused images are acquired using two low cost 256 by 256 
CCD sensors VVL 1011C (VLSI Vision Ltd.). These sensors are precisely fixed to 
ensure that one will acquire the near focused image and the other the far focused 
image. The physical displacement between these sensors is approximately 0.8mm.  

The structured light is projected onto scene using MP-1000 Moire Projector with 
MGP-10 Moire gratings (stripes grid with density of 10 lines/mm). The lens attached 
to the projector is the same type that one used to image the scene. All the sensing 
equipment required by this implementation is at low cost (except lenses) and 
furthermore the calibration procedure is relatively simple. The set up involved in this 
present implementation is described in Figure 4. 

When the images are acquired are necessary few operations to determine the 
scene’s depth map. For sake of computation efficiency the depth is estimated directly 
from g1 and g2 using a pre-computed look-up table (Figure 5). 
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Figure 4:  The 3-D sensor and its principal components. 
 
 
 
 
 
 
 
 
 
 
 
    
 
 

 
 

Figure 5:  The defocus function. 
 

      Unfortunately, this function is not bounded but this is not a major drawback 
because the extreme values cannot be reached. Is well known that with a real aperture 
is almost impossible to obtain a perfect focused image (more details in Krotkov 
[1989]). A simple solution of avoiding the case g2 to be equal with zero, a simple 
solution is to add a small constant value to g1 and g2. As we mentioned before this 
function can be evaluated using the ratio (g1-g2) / (g1+g2), the defocus function being 
bounded in this case but for this implementation while the depth is investigated only 
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within a small range (0-9 cm) was proven not being sensitive enough. Certainly, the 
defocus function illustrated in Figure 4 is more sensitive to external noise, therefore 
the depth was smoothed by using a 3 by 3 smoothing operator. 
   The flowchart illustrated in Figure 6 describes these operations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6:  Data flow during the computation process. 
 
      Like any other range sensor, apart from main operations required by depth 
estimation, a key step is represented by gain calibration and minimising the errors 
caused by the imperfection of optical equipment. The implementation presented 
above computes the depth map (256 by 256) in approximately 95 ms on a Pentium 
133 MHz (the time required by graphical interface is not included). 
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7 Experiments and results 

In order to verify the efficiency of this range sensor it was tested on several indoor 
scenes. Firstly, this sensor was tested on simple targets like planar surfaces, then on 
scenes with complex scenario. The accuracy and linearity of this sensor is estimated 
for a distance within one cubic meter workspace. Figure 7 shows the depth recovery 
for two planar objects situated at different distances in front of the sensor. 

 

 
Figure 7:  Near and far focused image and the depth estimation for two planar objects 

situated at different distance from sensor.  



Figure 8 shows the depth map for a slanted planar object and Figure 9 shows a 
more complex scene containing LEGO objects with different shape and a large scale 
of colours. 

 
Figure 8:  Near and far focused images and depth recovery for a scene containing a 

slanted planar object 



 

 
Figure 9: Near and far focused images and depth recovery for a scene containing 

various LEGO objects. 



The accuracy of this sensor is estimated for a distance within one cubic meter 
workspace. For these scenes the lowest accuracy is 3.4% normalised in agreement 
with the distance from sensor. This accuracy is reported for both textured and 
textureless non-specular objects. We tried to identify an optimal solution for focused 
operator. As we mentioned in section 5 four focus operator were used. The best 
results in respect with the gain were obtained for a 7 by 7 rational operator but the 
depth estimation is not very linear. The results were more linear when the Laplacian 
(4) and the 3 by 3 rational were used as focus operator but the discontinuities in depth 
were not as well recovered. A trade-off between gain and linearity was given by 
Laplacian (8). 

8 Conclusions 

      This paper presented the implementation of a real-time depth sensor. In 
comparison with stereo technique, the DFD method does not suffer from the 
correspondence problem. Furthermore, the DFD approach is not affected by occlusion 
or missing parts, therefore it can be used as a ranging method for various applications. 
The consistency between theory and experimental results has indicated that our 
implementation is an attractive solution to estimating the depth fast and accurate.  

In contrast to other implementations based on defocusing where the depth range is 
relatively large, we proposed a solution to estimate depth within a small range 
(between 0 and 9cm). Furthermore, this present approach has another advantage over 
other implementations suggested by Pentland et al. [1994], Nayar et al. [1995] 
because does not contain any sensitive equipment to movements or vibrations, 
therefore can be easily involved in robotics applications.  

Because DFD methods perform badly for textureless objects, hence the active 
illumination was identified as being the key issue for this implementation.  The depth 
estimation can be further improved by using a camera with higher resolution and re-
designing the illumination pattern and the focus operator.  
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