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Abstract—This paper details a novel approach to specifying
the optimal pose of planar targets in camera calibration that
both reduces the number of images required, and improves
the parameter estimates. This is accomplished within a semi-
supervised strategy where virtual images of planar calibration
targets are generated and displayed. These virtual targets are
then replicated by the user to generate an image network with
optimal geometry for the recovery of the camera parameters.
Optimal planar pose is specified by enforcing maximum in-
dependence within the calibration constraints offered by each
image within the network. This solution space is further refined
to ensure that the generated target pose is suitable for easy
acquisition and subsequent feature extraction processes. The
results on simulated and real data demonstrate that proper
consideration of image network geometry directly leads to more
accurate camera parameter estimates.

I. INTRODUCTION

The calibration of cameras is an area which has received
much attention in the computer vision community over the
last 25 years. The drive towards increased resolution with
smaller sensor sizes has seen a continued growth in the digital
camera market and contributed to the need for flexibility
when calibrating a camera. In recent years, the mobile phone
camera market has become the largest market for digital
sensor suppliers with forecasts for sales to reach one billion
units for the first time in 2011 [1]. The emergence of the
smartphone has led to increased onboard processing power and
high resolution displays, which, coupled with a high resolution
camera, is allowing these devices to become more accessible
to computer vision researchers.

Camera calibration is emerging as a key factor for computer
vision researchers in this area for a number of reasons.
The lenses used in camera modules manufactured for mobile
phones are of a lesser quality (and cost) than a conventional
point and shoot digital camera. As a result, lens distortion
and aberrations are increased in the images. The increase
in demand for mobile phone applications that make use of
augmented reality and metric depth information have also
contributed to the renewed interest in camera calibration as
it is a fundamental step to solving these problems.

Planar camera calibration [2], [3] is the preferred technique
of the community due to the reduction of input require-
ments compared to the traditional approaches [4]–[7]. Readily

available implementations of planar approaches123 have also
contributed to its popularity. The input requirements of planar
approaches simply involve imaging a planar target. Planar
calibration targets such as a chessboard or circular dot patterns
are commonly used to specify the planar feature points [8].
The stability of these planar calibration methods has been
well studied in the literature. González et al. [9] compares the
camera parameter estimates of different methods by comparing
the distance between the real 3D position of points to the 3D
position from their 2D projections. Similarly, Salvi et al. [10]
assess the stability of the internal parameters by examining
the relationship between the position of 2D image points and
projection of the 3D object points on the image plane. Sun [11]
provides an empirical evaluation of the algorithms proposed in
[2], [5], [6]. The accuracy is characterised by the reprojection
error. In order to increase accuracy of the calibration, the
number of control points per image is increased. However,
it is noted that as the control point data set increases con-
siderably, it has little effect on the results. In all cases, the
findings indicate that planar calibration achieves a good level
of accuracy compared to the traditional methods, without the
methodical setup.

The accuracy of planar calibration parameter estimates can
deteriorate based on the orientation of the planar targets.
Planar target poses which cause this deterioration are known
as critical configurations. Sturm and Zhang [2], [3] have
identified poses which consist of pure rotation and/or trans-
lation between targets as critical. Configurations which are
close to critical also lead to inaccurate parameter estimates.
These configurations are more difficult to identify. Wang et. al
[12] suggest a set of orientations for the planar targets but
without any justification, and also limits the flexibility of
the input requirements. Byrne et. al [13] devise an image
selection strategy in which the algorithm selects the most
suitable images from a database of captured calibration images
(forming an image network) to estimate the camera parameters.
The selection process is based on geometric properties of the
planar target configuration. Since the image network is formed
from a large database of calibration images, the problem of
excessive input requirements and the possibility that the image

1http://research.microsoft.com/˜zhang/Calib
2http://www.vision.caltech.edu/bouguetj/calib
3http://www.opencv.willowgarage.com



database does not contain ideal geometry remains.
This paper aims to address the issue of image network

geometry for planar camera calibration by providing fool-
proof, semi-automatic guidance for obtaining an optimal image
network geometry. As outlined, at present the general practi-
tioner has no clear indication of how the planar calibration
grids should be orientated for the calibration images. We
remove this ambiguity by providing synthetic planar poses
via a display, which the user can replicate. We define this
as the Generated Image Network (GIN). Our experiments
clearly show that GINs directly lead to improved calibration
estimations with reduced number of input images.

The main contribution of this work is the proposed method
of generating optimal image networks. The approach requires
one input image of the planar target captured by the user.
Subsequently, this is used to generate synthetic optimal images
of the calibration target. These synthetic images are then
replicated by the user to form the optimal image network.
Calibration with optimal image networks ensures that the
precision of calibrations performed by general practitioners
is increased with less input requirements.

The underlying theory of the method builds on the al-
ternative geometric approach to planar calibration originally
proposed by Gurdjos et al. [14]. Gurdjos et al. make use
of Poncelet’s theorem (see Figure 1). A closer examination
of Figure 1 reveals that a world plane intersects the image
plane in a line. If this intersection line is taken as an axis,
about which the world plane may rotate freely, there is an
infinite number of world planes which remain in homographic
correspondence with the generated image on the image plane.
Thus a planar homography H represents the transformation.
Each world plane has a unique centre of projection through
which it remains in homographic correspondence with the
image. The locus of these centres of projection forms the
Centre Circle (CC). The orthogonal projection of the CC
onto the image plane forms a line, the Centre Line (CL).
Thus, for each projected centre of projection onto the image
plane, there is an associated principal point on the CL. It is
from this perception of the problem that we formulate our
approach to generating optimal image networks. In the case
of planar camera calibration, when two or more images are
used, multiple CL’s are formed in which their intersection
is the principal point of the camera. This allows the camera
calibration to be recovered.

Generation of optimal image networks is accomplished by
manipulating properties of the CLs. Byrne et al. [13] based
their image selection algorithm solely on the slope of the CLs.
By ensuring equal angle between image CLs, independence in
the planar calibration equations is increased. Our method uses
the slope constraint and two additional constraints to generate
optimal image networks. The first is an additional constraint
on the CL in which its y-intercept is manipulated to ensure
that the generated image has similar camera properties to that
of the initial captured image. The second additional constraint
is based on the compression and expansion of pixels in the
generated image. This constraint ensures that a practical image
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Fig. 1. Poncelet’s Theorem [14]

is generated for the end user to capture. For an n image
network, we need only generate (n− 1) CLs.

The remainder of the paper is organised as follows: Section
II describes in detail the necessary steps in the formation of the
optimal image networks. Section III presents the experiments
conducted with real and synthetic data. The benefits of GINs
in comparison to conventional image networks are highlighted.
Section IV discusses applications of the developed theory and
method. Section V concludes with a summary of the main
contribution made in this paper.

The most significant findings were that by using GINs, bet-
ter calibration results can be achieved with less images in the
network. This has important implications for the practitioner
in the field of planar calibration.

II. OPTIMAL CALIBRATION NETWORKS

Optimal image networks are formulated based on a two stage
approach. Firstly, planar target poses are generated from an
initial image, with non fronto parallel orientation 4, supplied
by the user. Then, images of the generated targets are captured
(via replication) to complete the GIN.

The replication process is performed using one display. The
optimal target pose is displayed to the user along with a rough
estimate for angular orientation. An optimal image is captured
when the target pose on the camera live-view and the optimal
pose display, provided to the user, visually match. Section IV
proposes an augmented reality approach using a single display
for capturing and visualising optimal images.

Generation of valid optimal pose deems it necessary to
approximate properties of the camera used for the initial
image captured. Ideally this requires the construction of a
planar homagraphy matrix (H), which encodes the internal
parameters (K) of the camera and the new pose of the target
(R). Estimating (u0, v0) at the centre of the image allows an
approximate calculation for the camera focal length (f ). This
gives K̂ for the camera which reduces the problem to the
construction of the pose R̂.

The homography for the synthetic pose Ĥ is formed by K̂
and R̂ (detailed in Section II-A). R̂ is decomposed into the
pitch (R̂α), yaw (R̂β) and roll (R̂γ) angles, which are used

4to avoid degeneracy [2]



to estimate the new pose of the planar target. Constraints are
imposed reducing the solution space and ensuring a valid pose
is determined (detailed in Section II-B).

A. Forming Ĥ

The relationship between the image of the absolute conic
(IAC) and a point homography is well known [2]. Coupled
with the knowledge of the principal point and use of H
from the initial image, Ĥ can be partially formed. For a
complete formation, the target pose being generated (R̂) must
be considered. A general planar homography matrix H can be
decomposed as,

H = K[R12 |t], (1)

where R12 represents the first two columns of the rotation
matrix. Image generation of the planar target is obtained
by applying Ĥ to an image of the calibration target in its
canonical position. A valid Ĥ is constructed similarly to
(1). The first step of the formation takes advantage of the
assumption of u0 and v0 (at the image centre) by eliminating
these terms in expression (1). This is done by pre multiplying
H by the matrix U where Ĥ = UH with U = [I | − c]
and c = (u0, v0, 1)T . This leaves an expression containing the
focal length (f ) and the scaling factor (s) of the H matrix,

Ĥ =




fr11
s

fr12
s ..

fr21
s

fr22
s ..

r31
s

r32
s ..


 (2)

The third column which contains the translation does not affect
the forming of f . By manipulation of the calibration equations
in [2], the parameter f can be estimated from Ĥ as,

f =

√
−ĥ11ĥ12 − ĥ21ĥ22

ĥ31ĥ32

(3)

which can now be used to find the scaling factor in expression
(2). Calculating the scaling factor is straightforward, since it
is well known that the columns of R form an orthornormal
basis [15].

With the ability to decompose the planar homography
matrix from the first image (H) into a calibration matrix K̂
and scaling factor s, the planar homography matrix for the
optimal generated image (Ĥ) can be constructed via these
parameters coupled with the optimisation parameters R̂α, R̂β

and R̂γ which form the estimated rotation matrix R̂.

Ĥ = sK̂R̂ (4)

B. Constraints on Ĥ

The criteria for generating a valid Ĥ have been identified.
The assumption of the principal point at the image centre
recovers an approximated K̂ which, in turn, recovers the scale
from the original image homography H . Therefore, the key to
determining the GIN is the estimation of the pose (R̂). Forming
a Ĥ which yields a correct solution requires constraints to be
imposed on Ĥ while R̂ is estimated. These constraints are
based on geometric properties of the image.

The CL of an image can be derived from its homography
matrix. In [12] an expression for the CL is given as,

v0 = Γu0 + Λ (5)

where Γ is the slope of the CL given by,

Γ =
h11h32 − h12h32

h22h31 − h21h32
(6)

and Λ is the y-intercept given by,

Λ =
h21h31 + h22h32

h2
31 + h2

32

− h11h31 + h12h32

h2
31 + h2

32

Γ (7)

The first constraint applied to Ĥ is on the slope of its CL. As
previously discussed, equal angle between CLs is necessary to
generate the optimal image networks. The slope (m1) of the
initial CL (provided by user via initial image) is calculated
using equation (6). Depending on the number of images in
the network to be generated (k), the optimal slope (Γi) is
calculated as Mi such that Mi|i=1:k = tan(tan−1(m1) +
(i + 1)απ/180) where α, the angle between the CLs, is
calculated as 180/(k + 1). To generate the synthetic image
for the network, the slope being estimated (Γ̂i) must equal
the optimal slope. As the slope is nonlinear in the parameters
of Ĥ , we develop a cost function to estimate the optimal
slope value. The cost function Ci(1, R̂) for this constraint is
expressed as,

Ci(1, R̂) = (Γ̂i − Γi)2 (8)

The implications of Ci(1, R̂) lead to multiple solutions of
equal angle between CLs which are determined by the y-
intercept (Λ̂i). Thus a second constraint is imposed on Ĥ
with the aim of generating the correct CL. This is enforced
by ensuring the generated CL passes through the assumed
principal point. The optimal intercept value (Λi) is calculated
as,

Λi = v0 − Γiu0 (9)

The cost function Ci(2, R̂) is formed similarly to Ci(1, R̂).

Ci(2, R̂) = (Λ̂i − Λi)2 (10)

The minimisation of Ci(1, R̂) and Ci(2, R̂) yields a mani-
fold of possible solutions. In order to select poses that are
realisable, a third constraint is applied on the solution space
which examines the extent of compression/expansion in the
generated synthetic images. This prevents the generation of
GIN images that would be practically unattainable eg. a
severely perspectively distorted image.

When a transformation (Ĥ) is applied to an image, it can
result in the expansion and compression of pixels in the image.
This compression and expansion can be measured locally in
the image by examining the singular values of the Jacobian
[16]. The Jacobian of a single point p = (xu, xv) in the image
is defined as:

Gp ⇒ J(Ĥ, p) =

[
δx̂u

δxu

δx̂u

δxv
δx̂v

δxu

δx̂v

δxv

]
(11)



Each point (p) in the image has two corresponding singular
values σ1(G) and σ2(G). For a transformation Ĥ , if σ > 1
there is an expansion of pixels and if it is less, the overall
effect is compression. It is desirable to ensure that the singular
values of the Jacobian at each point in the image are as close
as possible to 1. This limits perspective distortion and ensures
realisable images. The Jacobian can be calculated at each point
in the image, or alternatively over a grid of points in the image.
This constraint is expressed as,

Ci(3, R̂) =
l∑

i=1

[
(σ1(Gi)− 1)2 + (σ2(Gi)− 1)2

]
(12)

where l is the number of points in the grid used. The total
cost function (T) which incorporates all the constraints is,

T(R̂) =
k∑

i=1

[
Ci(1, R̂) + Ci(2, R̂) + Ci(3, R̂)

]
(13)

where k is the number of images to be generated in the
image network. Initial estimates of R̂α, R̂β and R̂γ for the
optimisation are taken from the inverse orientation of the target
in the original image. The minimisation of T(R̂) will generate
the synthetic target poses for the GIN through the formation
of optimal Ĥs. The Levenberg-Marquardt algorithm is used
for this purpose. The algorithm generally converges within 15
to 20 iterations.

C. Network orientation and sensitivity

Given that the rotational parameters are being estimated for
the GIN optimisation, the sensitivity of R̂ is examined.

The characteristics of the CL were investigated in [12] and it
was noted that Rγ has no effect on the CL orientation. There-
fore Rγ does not influence Ci(1, R̂) and Ci(2, R̂). However,
it does influence the image grid constraint Ci(3, R̂). If the roll
angle is large in a perspectively distorted image, the feature
extraction process is complicated. By including the Rγ in the
optimisation, it counteracts this and yields better results than
when it is not estimated.

The sensitivity of the R̂ parameters to random perturbations
is tested. These perturbations result from the practitioner
being unable to reproduce the synthetic pose exactly, and are
modelled as random variations (R̂err) of ±15◦ in R̂α and R̂β .
Typically the user error is within ±5◦ of the optimum angle
as shown in Section III-C.

The variations of R̂ are then used to form the perturbed
planar homography matrix Hper which gives a perturbed CL.
Hper is formed similarly to Ĥ in Section II-A using equation
(1).

R̂ = (Rα + R̂err1, Rβ + R̂err2, Rγ)

Hper = K̂R̂ (14)

Simulated testing was performed for 1000 instances of
random perturbations in the R̂ of a homography describing a
CL with known angle relative to another CL. Figure 2 shows
the relationship between the perturbed error on R̂ and the
corresponding induced angle error between the CLs.
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Fig. 2. Effects of perturbations when estimating the ideal image via the
planar homography H and the rotational parameters R

In Figure 2, it can be seen that for small perturbations of R̂,
the induced angle error between CLs remains bounded. This
is an important result as it ensures that small error in the R̂
estimation will not dramatically affect the calibration results.

III. TESTING

Experiments are performed with real and synthetic data to il-
lustrate the advantages of GINs over the conventional Random
Image Networks (RINs). The planar calibration target used for
the real tests is a checkerboard pattern as shown in Figure 4.
For simulated tests, a synthetic grid of control points is used.

Synthetic testing is conducted to highlight the main benefit
of GINs, which is that less images are needed in the net-
work to achieve better calibration accuracy (Section III-A).
Real images are used in the remaining tests. Section III-B
examines the effects of variation of the angle between CLs
on the parameter estimation accuracy. Section III-C examines
the implications of the angle between the CLs in terms of
parameter estimation accuracy, and the general users capability
of capturing the synthetic images. Section III-D aims to
verify the simulated results in section III-A by investigating
the calibration accuracy/performance of three and four image
networks (GINs v RINs). The comparison is conducted by
analysing the uncertainties of the parameter estimates. Note:
The calibration method of Zhang [2] is used in all testing
sections.

A. Synthetic testing

A synthetic camera was formed with internal parameters as
shown in equation (15). Synthetic grids (of control points)
were simulated in P3 and subsequently projected onto the
image plane in P2. Each grid formed an image of 400× 600
pixels. A two parameter lens distortion model was applied to
the image and random noise with standard deviation 0.5 pixels
was added, to the grid point locations, to simulate image noise.

K =




500 0 200
0 500 300
0 0 1


 (15)

The test set consists of 50 trials of each image network
instance from 2 to 25 images. For the RINs, each network



TABLE I
RESULTS FOR CALIBRATION WITH IMAGE NETWORKS WITH

NON-OPTIMUM ANGLE BETWEEN CLS. PARAMETER ESTIMATIONS
AND SD GIVEN IN PIXELS

Angle (deg) u0 v0 fu fv
5 808.2 617.4 1796.5 1794.1
10 806.9 607.7 1789.4 1787.9
15 812.2 638.6 1808.5 1798.0
20 804.85 609.8 1791.4 1790.3
25 792.1 620.9 1801.2 1803.7
SD 7.6159 12.2738 7.7210 6.2809

TABLE II
RESULTS FOR CALIBRATION WITH IMAGE NETWORKS WITH

OPTIMUM ANGLE AND CLOSE TO OPTIMUM ANGLE BETWEEN
CLS. PARAMETER ESTIMATIONS AND SD GIVEN IN PIXELS

Angle (deg) u0 v0 fu fv
80 802.4 617.6 1800.2 1797.8
85 801.2 619.3 1798.8 1795
90 804.1 620.9 1803.5 1801.7
95 802.6 619.6 1805.5 1802.7
100 803.5 620.1 1803.5 1801.4
SD 1.1104 1.2227 2.7285 3.2244

was drawn randomly from the range [−40◦ 40◦] on Rα

and Rβ . GINs were formed by taking one image from each
RIN and then generating the optimal image networks from
these images. The metric used to compare image network
configurations is the mean of the absolute error between the
ground truth data and the RIN/GIN parameter estimates for
each network trial.

The results presented in Figure 3 reveal that the GIN
estimates are more accurate than the RIN estimates for each
intrinsic parameter. The number of images needed in a GIN to
achieve better calibration accuracy than RINs is significantly
reduced. The results also indicate that three and four image
GINs yield better estimates than the 25 image RINs. However
it is noted that as the number of input images increases beyond
5 for the GINs and 7 for RINs, there is little improvement in
the overall accuracy of the parameter estimates.

B. Angle between CLs in image network

Two image networks are used for this test, thus the optimal
angle between the CLs is 90◦. The initial images used for the
calibration networks are represented by the 15◦ and 90◦ angle
entries in Table 1 and Table 2 respectively.

The results presented in Table 1 and Table 2 highlight the
importance of the CLs in obtaining stable calibration results.
The networks with non-optimum angle between their CLs have
a Standard Deviation (SD) significantly larger than the results
obtained with the optimal angle networks. This verifies that
manipulating CLs of image networks is beneficial in achieving
good calibration results. For the networks with an angle
between their CLs within ±10◦ of the optimal angle, the SD of
the parameters estimated is small indicating stable results. This
also confirms that the sensitivity of R̂ to small perturbations
is insignificant on the results (discussed in Section II-C).

These results demonstrate the importance of the angle be-
tween CLs of an image network when calculating the camera
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Fig. 3. Intrinsic parameter estimation results for RINs and GINs for 2 to 25
image newtorks

Fig. 4. Image network with an angle of 5o between the CL’s

parameters. It was found that as long as the generated image
can be captured having an angle between CLs within the accu-
racy shown in Table II (±10◦), the calibration results will be
good. Figure 4 presents a situation where a general practitioner
may be under the impression that the network captured is in
a non critical configuration. However, the angle between the
CLs for this network is 5◦ thus the image network will produce
unreliable results. This highlights another benefit of GINs in
that the practitioner will avoid critical configurations in the
formed image network.

C. Image reproducibility

The accuracy needed to reproduce images from the GINs
successfully (discussed in Section III-B) was within ±10◦ of
the optimal CL angle. This level of accuracy ensures good
calibration results.

An indicative test was performed were four non-expert
practitioners were given 25 optimal images to reproduce. The
orientation of the calibration target in the generated image
was given as a guideline. Each practitioner captured only one
image per generated image, thus the results presented are
worst case scenario. The experimental setup is as discussed
in Section II.

The results in Table III indicate that the non-expert prac-
titioners were capable of reproducing the generated images
with sufficient accuracy and thus capable of achieving better
calibration results for the GINs rather than the RINs. This also
validates the assumptions made of f , uo and vo in forming Ĥ



TABLE III
NON-EXPERT PRACTITIONER RESULTS FOR OPTIMAL IMAGE

REPRODUCIBILITY (NOTE: OPTIMAL ANGLE IS 90◦)

Practitioner Average Angle (SD) Average Angle Err (SD)
1 88.45 (11.41) 8.61 (7.45)
2 89.22 (3.18) 2.53 (2.01)
3 90.23 (6.35) 4.74 (4.12)
4 88.50 (8.67) 6.73 (5.50)

for optimal image networks (see Section II-A) as the replicated
images are producing the expected angles between CLs.

D. Benefit of generated vs random positions

The aim of this section is to examine the precision of the
results obtained with three and four image networks. With
real images there is no ground truth data available, therefore
the measurement used to quantify the results is the estimated
parameter uncertainties. This can be calculated from an es-
timate of the Fisher information matrix (F) which is formed
upon convergence of the non-linear estimation process [17].

F(R̂) =
1
σ2

i

n∑

i=1

δeT (ci, R̂k)
δR̂

δe(ci, R̂k)
δR̂T

(16)

where σ2, the unknown noise variance can be approximated
as

σ2 =
1

nt − np

nt∑

i=1

e2
i (17)

with nt being the number of measurement points and np

the number of parameters being estimated. e2
i is the norm

of the residuals from the estimation algorithm. With the
approximation of F, we use F−1(R̂) to find the uncertainty in
the parameters by taking an estimate of the SD as the square
root of each diagonal element in F−1(R̂),

SD(R̂i) =
√

diagi(F−1(R̂)) (18)

1) Three and four image networks: This section compares
three and four image networks. Three image networks have
an optimal angle between CLs of 60◦, whilst for four image
networks, the angle is calculated as 45◦. 27 and 19 RINs and
GINs were captured for three and four image network testing
respectively. The accuracy of the calibration is given by the SD
associated with the uncertainty of the parameters estimated.
Figure 5(a) illustrates the results for three image networks. The
uncertainty of the GIN parameters is significantly less than the
RIN results. In some cases, the RINs have produced parameter
estimates with SD as high as 20 pixels whereas the GINs are
consistently below 5. Table IV presents the average of the SD
across all image network instances. Four image network results
are illustrated in Figure 5(b). Although the RIN uncertainty
has decreased in comparison to the 3 image networks, the
estimates remain unreliable with SD in some instances of 15
pixels. In comparison, the precision of the GINs estimates are
stable with little uncertainty. The GINs are seen to significantly
outperform RINs in terms of the accuracy of the parameter
estimates both for three and four image networks.

TABLE IV
PARAMETER UNCERTAINTY FOR THREE AND FOUR IMAGE
NETWORKS. NOTE: RESULTS GIVEN IN TERMS OF SD (IN

PIXELS)

fu fv u0 v0 ϕ k1 k2

3 RIN 6.88 5.67 5.50 7.74 2.02 0.008 0.050
3 GIN 1.79 1.59 1.76 1.99 0.84 0.005 0.040
4 RIN 3.09 3.31 3.31 3.39 0.85 0.007 0.037
4 GIN 1.55 1.48 1.51 1.85 0.74 0.005 0.036
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Fig. 5. Stability of intrinsic parameters for three & four image RINs and
GINs for 2 to 25 image networks

IV. APPLICATIONS

The primary focus of this paper has been to enable non-
expert practitioners determine precise camera parameters when
calibrating a camera. An indicative experiment is performed
(in Section III) in which the non-expert’s ability to reproduce
the generated images was tested. It was found that non-



experts were capable of reproducing the generated images
with sufficient accuracy to achieve accurate calibration results.
These results were achieved by using an auxiliary monitor to
display the generated image. One proposed application of the
method developed in this paper is to aid smartphone users to
calibrate the camera on their phone. An Augmented Reality
(AR) application in which the optimal generated image is
superimposed in a semi-transparent manner onto the current
camera view would be suitable for this task. Thus the image
capturing process is reduced to simply visually aligning the
semi-transparent synthetic image to the current image of the
planar grid. This ensures that users will achieve accurate
calibration results with little input to the calibration process.
With accurate calibration parameters, image quality can be
improved by removing lens distortions in addition to enabling
better quality AR applications for mobile phones.

V. CONCLUSION

This paper presents a new, semi-automatic approach to aid
planar camera calibration practitioners obtain more accurate
results. This is achieved by using optimal image networks,
which are generated based on geometric properties of the
image, that are represented by the Centre Line (CL). The
proposed procedure manipulates characteristics of an initial
image supplied by the user to generate optimal image networks
which are subsequently captured by the practitioner.

Experimental results have shown that the relationship be-
tween CLs of images can be manipulated to achieve improved
calibration results. Synthetic results illustrate that less images
are needed in GINs than in RINs to achieve accurate calibra-
tion results. In addition, indicative tests with real data show
that GINs are easily reproduced by the practitioner. Tests with
real images were performed that demonstrate the improved
accuracy of GINs over RINs for the cases of three and four
image networks. The main benefits of using GINs are the
significant reduction of images needed in an image network
and the improved calibration precision. Our results show that
an accurate calibration can be achieved with five image GINs
in comparison to 25 image RINs. This is of major benefit to
any planar camera calibration practitioner.
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