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Abstract The aim of the paper is to conduct a performance
evaluation where several texture descriptors such as Local
Binary Patterns (LBP), Coordinated Clusters Representation
(CCR) and (Improved Local Binary Patterns) ILBP are ap-
plied for granite texture classification. In our work we were
particularly interested to assess the robustness of the analysed
texture descriptors to image rotation when they were imple-
mented in both the standard and rotation-invariant forms. In
order to attain this goal, we have generated a database of gran-
ite textures that were rotated using hardware and software
procedures. The experimental data indicate that the ILBP
features return improved performance when compared with
those achieved by the LBP and CCR descriptors. Another
important finding resulting from this investigation reveals
that the classification results obtained when the texture anal-
ysis techniques were applied to granite image data rotated
by software procedures are inconsistent with those achieved
when the hardware-rotated data are used for classification
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purposes. This discovery is surprising and suggests that the
results obtained when the texture analysis techniques are
evaluated on synthetically rotated data need to be interpreted
with care, as the principal characteristics of the texture are
altered by the data interpolation that is applied during the
image rotation process.
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1 Introduction

Texture analysis is an area of active research in machine vi-
sion. Five canonical problems related to texture analysis are
segmentation, classification, synthesis, shape from texture
and image retrieval. Texture classification techniques find
one of their most important industrial applications in grading
products according to their visual appearance. In many indus-
trial sectors, e.g. paper [47], ceramic tiles [17], wood [44],
leather [14], marble [31], fabric [3], painted slates [12], etc.,
there is a growing interest in systems that perform this task
automatically. In recent years, great effort has been put into
developing laboratory prototypes. However, to the best of
our knowledge, commercial systems suitable to grade these
products in an industrial environment are not yet available.

Granite industry is also concerned in the development
of an automated machine vision system for sorting granite
plates in lots that exhibit similar visual characteristics. Due
to its combination of strength, beauty and affordable price,
granite has become increasingly popular in façade cladding
and pavement covering. The price of granite, just like other
ornamental materials, is mainly determined by its aestheti-
cal value (i.e. visual appearance) rather than its mechanical
properties. There is a wide range of commercially available
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granite varieties, with different predominant colours (green,
pink, black, red, etc.) and textures (veined, speckled, homo-
geneous, etc.). Existing standards for granite inspection focus
on geometrical specifications, such as longitudinal dimen-
sions of blocks, flatness of slabs or straightness of tile edges.
However, the specification of visual appearance is imprecise
[43]. Granites have been usually designated by a generic
name beside the predominant colour, for example “Baltic
Brown”, “Emerald Pearl” or “Imperial Pink”. It should be
pointed out that this terminology varies from one country to
another. Globalization has increased the need for a standard
denomination of granites. The solution adopted is to give
a product name and to specify the place of origin for any
particular rock, in addition to the traditional name and typ-
ical colour [45]. This nomenclature is useful when viewed
from a commercial perspective, but is not so relevant in the
process of grading automatically the granite plates. The prob-
lem is not solved by using more sophisticated petrographical
descriptions, because the visual appearance of granites with
the same mineralogical nature may differ significantly. The
lack of precision in the specification of visual appearance of-
ten leads to controversial situations between customers and
suppliers. In many cases, the customer refuses a lot of gran-
ite plates arguing that it does not resemble the sample that
served as basis for the purchase. Another frequent source of
complaint is the lack of uniformity in the visual appearance
of the plates that make up the lot. As a result of these conflicts,
granite companies can incur heavy losses due to, on the one
hand, costly shipping charges, and on the other hand, penal-
ties established in the contract to compensate for delays in
building works owing to late delivery. In order to overcome
these issues, granite industry has implemented quality con-
trol procedures, consisting of a visual inspection performed
by a skilled operator. Although this qualitative assessment
prevents lot rejection to a great extent, it is not a satisfactory
solution because the decisions made by the human operator
are subjective (being highly biased by the experience of the
skilled operator) and non-repetitive.

A number of papers on automatic classification of granite
textures have been published in the past few years. Former
approaches to granite texture modeling were based on col-
our features, such as colour histogram [46] or chromaticity
moments [37]. Later, better results were obtained through
gray-scale texture classification approaches, such as co-
occurrence matrices [35,36], Gabor filter banks [4,23] and
Coordinated Clusters Representation (CCR) [13,19,41]. This
is motivated by the fact that the granite plates are defined by
strong crystalline structures while the color information is
less pronounced. Most recently, classification accuracy has
been further improved by considering colour and texture fea-
tures jointly [7,21]. In all these works the granite images
were recorded under controlled environmental conditions.
Achieved recognition rate ranges from ≈70 to 100%. This

spread in the classification accuracy may be partly explained
by the different performance of the features and classifiers
used, and the intrinsic difficulty of the dataset, but it is useful
to note that factors related to the image acquisition procedure
may have an important effect on the classification results.
Additional factors that may affect the classification accuracy
include parameters such as image size, noise, quantization
level and the degree of similarity between granite textures.
Furthermore, the lowest values of misclassification rate were
obtained when the train and test images were overlapped
subimages of a texture image. This is a frequent solution
when few texture images are available to train the classifier.
However, using overlapped texture images invariably leads
to underestimation of the generalization error. Nowadays,
there is a trend in the granite texture classification research
community of pooling the output of several classifiers de-
signed in different feature spaces [24–26] in order to attain
increased ensemble success rate.

Sensitivity to rotation is a major issue in certain applica-
tions of texture classification. The overall performance of a
texture classifier may be totally degraded if the unknown
patterns to be classified are slightly rotated with respect to
the training samples. Provided that real-world textures can
occur at any orientation, a large emphasis has been put in the
development of rotation-invariant texture descriptors. Rota-
tion invariance has been often accomplished by modifying
well-known non-invariant approaches, such as wavelets,
Markov random fields and Gabor filtering [38]. The same
happened in the case of local binary patterns (LBP), which
were first defined for a 3 × 3 pixels squared neighbour-
hood, and were later generalized for circular domains [33] to
remove sensitivity to rotation.

The main goal of the paper is to evaluate LBP, CCR and
ILBP features when applied to the classification of granite
images in order to determine which descriptor is most effec-
tive. The reason why we chose this family of texture descrip-
tors among the vast plethora of features currently available
is multiple-fold. First, these techniques offer an excellent
approach to analyse the texture at micro level by analys-
ing the distribution of the local texture elements (i.e. local
binary patterns), and in addition they entail a low compu-
tational overhead, a fact that makes them attractive when
applied in the implementation of real-time industrial appli-
cations. Thus, by using these techniques one could achieve
real-time processing in a manufacturing plant, since cur-
rent hardware allows feature extraction from granite plates
at a higher rate than the operational speed of the conveyor.
Second, the local binary pattern related techniques are param-
eter-free and as a result they do not require complex optimisa-
tion procedures, as many other methods do. Third, the LBP,
CCR and ILBP texture descriptors are intrinsically invari-
ant to changes in illumination intensity and monotonic im-
age transforms. Fourth, these features have been proven to
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be effective and accurate in discriminating texture. Due to
the advantageous characteristics just mentioned, the binary
pattern is a well-known approach to texture analysis (with
the main focus being placed on the LBP model) and it has
received substantial attention from image analysis practitio-
ners. In this study, we evaluate two different approaches to
achieve rotation invariance: grouping circularly symmetric
patterns and computing the DFT of features. These methods
were applied to all the features considered. In our experi-
ments we employed one database of granite texture images
recorded in the lab by means of a portable acquisition sys-
tem, formed by a still camera and a special illumination
set-up. To quantitatively assess the robustness against rota-
tion of LBP, CCR and ILBP we have performed classifica-
tion trials for different relative orientations of the test sam-
ples with respect to training samples. Our results confirmed
previous findings on these texture descriptors [7,32,40] by
showing that (a) their basic versions are very efficient in
recognizing unrotated textures and, (b) the rotation-invari-
ant versions are, to a great extent, robust against rotation.
However, we surprisingly found that the performance of the
supposed rotation-invariant versions of LBP, CCR and ILBP
strongly depends on the method through which the rotated
textures are obtained (either hardware or software). We also
found that the degree of immunity against rotation also de-
pends on the methods employed to make features rotation
invariant.

The remainder of the paper is organized as follows: LBP,
CCR and ILBP features are reviewed in Sect. 2. The meth-
ods for achieving rotation invariance are explained in Sect. 3.
The prototype for granite image acquisition is described in
Sect. 4. Quantitative assessment of sensitivity to rotation of
the considered texture descriptors is presented in Sect. 5, and
Sect. 6 concludes the paper.

2 LBP and CCR texture models

A key issue in texture classification is the choice of a suit-
able model to represent texture. There exists a great number
of approaches, which are commonly divided into four catego-
ries: statistical, structural, model-based and signal processing
methods [50]. Statistical approaches describe the texture in
terms of the spatial distribution of the pixel intensities, while
structural methods regard the texture as the hierarchical dis-
tribution of certain image primitives. LBP, CCR and ILBP
are closely related texture descriptors that lie between both
approaches. In fact, LBP has been proposed as the unifying
approach to the traditionally divergent statistical and struc-
tural methods [30].

LBP, CCR and ILBP are inspired in the texture spec-
trum approach, which exploits the occurrence of certain ele-
mentary patterns, called texture units [48]. A texture unit is

defined by the local distribution of the intensities of adja-
cent pixels in a 3 × 3 neighbourhood, each of which can
take three possible values. All these features may be con-
sidered two-level particularizations of the texture spectrum.
The underlying idea is that a texture can be represented
through a histogram which quantifies how frequently binary
patterns appear in it. The remainder of this section is de-
voted to describe these texture models in their basic ver-
sions.

2.1 LBP

The basic version of the LBP texture operator, denoted by
LBP3×3, works with the eight neighbours of a pixel, using
the grey level of the central pixel as a binarization thresh-
old. To produce a LBP3×3 code for a neighbourhood, binary
values are weighted with different powers of two, and the
result is summed up [30]. Since the binary pattern is formed
by 8 bits, there are 28 different binary patterns, and hence,
the LBP3×3 histogram has 256 bins (Fig. 1a). A number of
extensions to the basic LBP operator have been developed
[33]: (a) rotation-invariant, (b) multiple resolutions and, (c)
contrast complementary measure. In this paper we focus on
rotation invariance.

2.2 CCR

The CCR texture descriptor was first proposed by Kurmy-
shev and Cervantes [18]. This model, which was originally
intended for binary textures, relies on the histogram of occur-
rence of the elemental patterns of binary texture, called
texels, that can be defined in a square window. The dimen-
sion of these elementary patterns is usually set to 3 × 3 pix-
els, since this size provides good discriminative power at a
reasonable cost in terms of both computational speed and
memory usage.

The CCR model was later applied to grey-scale texture
images through global image thresholding. A thorough lit-
erature review revealed that very similar approaches were
proposed almost at the same time by different authors who
worked independently. A research group from Krasnoyarsk
State Technical University, Russia, presented in 2002 a tech-
nique for the analysis of anisotropy of digital images that,
when particularized to binary images, closely resembles the
CCR concept [16]. In this case, the key elements of their
method, namely frequency mosaic and smalts, play the role
of CCR histogram and texels, respectively. The natural exten-
sion of the former CCR features to grey-scale texture clas-
sification was reported in 2003 by a group from the Center
for Research on Optics, Mexico [40,41]. In the same year,
a group from the Yuan-Ze University, Taiwan, proposed the
local edge pattern (LEP) texture model [51]. The basic idea is
to obtain an edge image by applying the Sobel edge detector
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Fig. 1 Feature histograms corresponding to the granite texture Azul Platino (Fig. 5), obtained with the following operators: a LBP3×3, b LBPri
8,1,

c LBPDFT
8,1 , d CCR3×3, e CCRri

8,1, f CCRDFT
8,1 , g ILBP3×3, h ILBPri

8,1 and i ILBPDFT
8,1

to the intensity channel of colour images, and then to binarize
the edge image by using a heuristic threshold (150 in their
implementation). The spatial structure of the resulting binary
image is described by the histogram of LEP patterns, which
are actually the texels of the CCR model.

In principle, thresholding can cause significant loss of
information in the original image and, as a consequence,
some textures could become indistinguishable. Threshold
should be judiciously chosen in order to preserve textural
information. A great variety of image thresholding techniques
have been proposed in literature [42]. So far, two thres-
holding methods have been applied to CCR, namely fuzzy
C-means clustering [40] and isoentropic partition [5].

A major drawback of the fuzzy C-means algorithm is its
intrinsic randomness. This means that different executions
could yield different thresholds for the same image. To avoid
this issue, in this work we used the isoentropic quantization
approach. Briefly, in this method the binarization threshold
is the grey level which splits the entropy of the gray-level
histogram of an image into two equal parts.

The procedure to assign a CCR3×3 code to a texel is anal-
ogous to the LBP3×3 case. The main difference with respect
to LBP3×3 is that the threshold used to binarize the texture
image is global rather than local. Consequently, texels are
formed by 9 bits, and therefore the CCR3×3 histogram has
29 = 512 bins (Fig. 1d).
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2.3 ILBP

The ILBP (Improved Local Binary Patterns) [15] can be con-
sidered a hybrid between the CCR and the LBP: on the one
hand, the ILBP resembles the CCR model in that all the pix-
els of the 3×3 window are used (while in the case of the LBP
the central pixel is discarded); on the other hand, the ILBP
resembles the LBP in that local thresholding is used (while
in the case of the CCR thresholding is global). The local
threshold is computed by averaging the grey-level values of
the 3×3 neighbouring pixels. The number of different ILBP
patterns is 29 −1 = 511, since, by definition, it is impossible
that all the pixels of the neighbourhood are lower than the
average value.

2.4 Considerations about LBP, CCR and ILBP

The above-described models characterize texture by means
of a histogram which quantifies the relative occurrence of
certain binary patterns. The only difference is that LBP and
ILBP use a local binarization threshold, while CCR uses a
global one. Strictly speaking, the LBP and ILBP are models
to characterize grey-scale textures, whereas the CCR model
is intended to describe binary textures. Thus, when the CCR
approach is applied to grey-scale textures, a pre-processing
step that involves the binarisation of the input image has to
be applied prior to the calculation of the binary texture units.

Let us now consider a finely defined texture, like those
shown in Fig. 5. There is a high probability that all the pixels
of a 3 × 3 neighbourhood have grey levels below or above
a global threshold. In contrast, the probability that all the
outer pixels have grey levels below or above the grey level
of the central pixel is quite low. Accordingly, the relative fre-
quency of the binary patterns formed by all 0s or 1s (from
now on these patterns will be referred to as constant pat-
terns) is low when the LBP3×3 operator is used, while in the
CCR3×3 model these patterns are the majority. Regarding
the ILBP constant patterns, the one formed by all 1s is very
unlikely, while the one formed by all 0s cannot occur at all
by definition. Such considerations explain why the CCR3×3

histograms present two pronounced peaks located at bins 1
and 512 (of Fig. 1d), which correspond to completely black
texels and completely white texels, respectively. These peaks
are less pronounced in the case of the LBP (Fig. 1a) and van-
ish in the case of the ILBP (Fig. 1g). It should be noticed that
in Figs. 1a–i the histogram bins have been labelled using cor-
relative numbers from 1 to the dimension of the feature space,
rather than assigning a bin to the decimal code representative
of the corresponding binary pattern.

The last point worth discussing is the theoretical foun-
dation of these texture models. The aptitude of the LBP
and ILBP models to characterize grey-scale textures relies
solely on the excellent results obtained in texture classifica-

tion experiments. In contrast, the effectiveness of the CCR
model in discriminating binary textures is supported by cer-
tain underlying statistical principles. The fundamental prop-
erties of CCR3×3 features were stated in two theorems [18]:
the first theorem establishes the structure of the CCR of peri-
odic binary images, and the second one establishes the rela-
tion between the CCR histogram and the correlation moments
of nth order of a binary image. It is widely recognized that
the second- and higher-order joint probability density func-
tions provide structural information about a grey-scale tex-
ture. If the grey-scale texture to be classified is thresholded
in a way that keeps sufficiently enough structural informa-
tion, the arguments above demonstrate that the CCR model
is highly suitable for recognition and classification of grey-
scale texture images.

3 Rotation invariance

We considered two approaches to obtain rotation-invariant
versions of the above described texture models. The first one
is based on rotation-invariant patterns and the second one
uses the Discrete Fourier Transform. The two methods are
described in the following subsections. The first step of both
methods consists in replacing the original 3×3 window by a
circular one. The values of neighbours that do not lie exactly
on the original pixels positions are estimated through bilinear
interpolation [30]. The resulting feature spaces are referred
to as LBP8,1, ILBP8,1, and CCR8,1.

3.1 Rotation-invariant patterns

The rotation-invariant LBP operator, denoted by LBPri
8,1, is

straightforwardly achieved by considering that the differ-
ent patterns obtained by rotating a particular pattern in 45◦
steps are actually the same pattern, and therefore they can be
grouped together [33]. In this manner, the descriptor becomes
more compact since the number of bins of the histogram re-
duces to 36 (Fig. 1b). This situation is illustrated in Fig. 2a for
the pattern coded 167. This pattern and its rotated versions
(namely 61, 79, 122, 158, 211, 233 and 244) are merged in
bin number 26 of the LBPri

8,1 histogram. The constant pat-
terns, those binary patterns in which all the pixels take the
same value 0 or 1 (e.g. patterns 0 and 255) remain the same
when rotated. Rotation invariance of CCR and ILBP features
can be obtained in a similar way [7]. In these cases the result-
ing number of bins of the histogram is 72 and 71 (Fig. 1e, h),
respectively. An example is shown in Fig. 2b, where the pat-
tern coded 102 is represented together with its rotated ver-
sions (namely 105, 135, 204, 267, 300, 417 and 450). These
eight patterns are merged in the bin with the index 35 of the
CCRri

8,1 and ILBPri
8,1 histograms.
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Fig. 2 Rotated versions of a binary pattern, which are merged in the
same bin of the a LBPri

8,1 and b CCRri
8,1 histograms. Pattern codes are

indicated underneath

It is useful to notice that the rotation-invariant patterns
may be approached from the standpoint of abstract algebra.
Indeed, an important result from combinatorial group the-
ory, the Cauchy–Frobenius lemma [49], is a suitable tool to
determine in a formal fashion the number of groups of rota-
tionally equivalent patterns. For the sake of simplicity we will
use instead a more concise statement, known as the Burnside
theorem [2]. Let G be a permutation group (in this context
the term group denotes an algebraic structure) that acts on
a set S. The theorem says that the number of equivalence
classes into which S is divided by the equivalence relation
induced by G is given by:

#{S/G} = 1

#{G}
∑

π∈G

#{Sπ } (1)

where #{·} stands for “cardinality of” and Sπ is the set formed
by the elements of S that are invariant under permutation
π . For the purpose of particularizing the general statement
of the theorem to the case of circular binary patterns, it
is insightful to translate the mathematical jargon to com-
mon language as well as to identify the different terms in
Eq. (1). Thus, the cardinality of the quotient set S/G is sim-
ply the number of different rotation-invariant circular binary
patterns, i.e. the number of histogram bins of the texture
model considered. The permutation group G is the set of
all the rotations that a circular pattern can undergo, namely
π0, π45, π90, π135, π180, π225, π270 and π315, corresponding
to rotation angles of 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦ and
315◦, respectively. Hence, #{G} = 8. To alleviate notation
we write pα to denote #{Sπα }, i.e. the number of circular bi-
nary patterns that remain unchanged after a rotation by α◦.
The dimensionalities of the LBP, CCR and ILBP rotation-
invariant feature spaces can be obtained through the follow-
ing formula:

(p0 + p45 + p90 + p135 + p180 + p225 + p225 + p270)

8
(2)

Let us first consider the LBP model. Trivially, p0 = 28,
since there are 256 different LBP patterns, and all of them

remain the same after a 0◦ rotation. Also trivially, p45 =
p135 = p225 = p315 = 2, since the only invariant patterns
against rotation by 45◦, 135◦, 225◦ and 315◦ are the constant
patterns. Let us now unwrap the circular binary patterns to
form binary strings. A counter-clockwise rotation of the cir-
cular pattern by an angle of 45 × n degrees is equivalent to
a circular shift of n positions leftwards to the string, where
n being a natural number. Taking this into account, one can
readily ascertain that 01010101, 10101010 and the constant
patterns are the only patterns that remain unchanged after
rotation by either 90◦ or 270◦, and hence, p90 = p270 = 4.
Let b7b6b5b4b3b2b1b0 be a generic 8-bit binary pattern, with
b j ∈ {0, 1} ∀ j , and let b3b2b1b0b7b6b5b4 the same pattern
after a 180◦ rotation. The original pattern is invariant against
180◦ rotation if and only if the following conditions are
simultaneously fulfilled: b7 = b3, b6 = b2, b5 = b1 and
b4 = b0. There are obviously 24 solutions for this binary-
valued system of four parametric equations, and therefore
p180 = 16. Introducing all these values in Eq. (2) yields:

#
{

LBPri
8,1

}
= (256+2+4+2+16+2+4+2)

8
=36 (3)

Considering that if we enhance an 8-bit LBP circular pat-
terns by adding the central pixel we get two 9-bit CCR cir-
cular patterns, and following a reasoning analogous to the
one exposed in the preceding paragraph, one can derive the
number of rotation-invariant circular patterns corresponding
to the CCR texture model:

#
{

CCRri
8,1

}
= (512+4+8+4+32+4+8+4)

8
=72 (4)

Finally, it is convenient to recall that the constant pattern
formed by all 0s is—by definition—impossible in the ILBP
model, and as a result the dimensionality of the ILBPri

8,1 fea-
ture space is:

#
{

ILBPri
8,1

}
= (511+3+7+3+31+3+7+3)

8
=71 (5)

A side effect of the above-described rotation-invariant
operators is an increase of the frequency of constant pat-
terns. If we consider, for instance, the texture Azul Platino,
the occurrence of such patterns represents 58.9% and 8.4%
of the CCR3×3 and LBP3×3 histograms, respectively
(Fig. 1a, d). In the case of the CCRri

8,1 and LBPri
8,1 these

proportions rise to 67.0 and 10.4%, respectively (Fig. 1b, e).
We believe that such a discrepancy between the basic and the
rotation-invariant versions is due to the conversion of squared
neighbourhoods into circular neighbourhoods through bilin-
ear interpolation, that might convert a number of non-con-
stant square patterns into constant circular patterns.

The dimension of the feature space can be further reduced
by introducing the concept of uniformity. A local binary pat-
tern is considered uniform when the number of transitions
in the circular bitwise presentation of the LBP code is at
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most two [29]. The term refers to the uniform appearance
of such patterns, which arises from the limited number of
black–white or white–black transitions. Researchers at the
University of Oulu, Finland, found that the uniform patterns
represent the vast majority of the 3 × 3 local binary patterns
in surface textures [32]. Although the use of uniform patterns
provides the beneficial advantage of a low-dimensional fea-
ture space, recent results suggest that this approach has some
significant shortcomings, since it discards some important
texture information and it is sensitive to noise [53]. It has also
been reported that in those textures whose edges and shapes
are not regular (like granite texture) the dominant patterns
are not mainly the uniform ones [27,28], and therefore it is
recommendable, in such cases, to use all the LBP patterns.
Based on these considerations we decided not to use uniform
patterns in our experimental activity.

3.2 Discrete Fourier Transform

The Discrete Fourier Transform is a common method to
obtain rotation-invariant texture features. It can be virtu-
ally applied to any feature space that holds the circular shift
property, that is a rotation of the texture results in a circular
shift of the feature vector. This method has been successfully
used within many texture descriptors, such as Gabor filters
[6,20], Markov Random Fields [10], ridgelet features [9],
and Radon transform [52]. A DFT-based approach for rota-
tion-invariant LBP features has been recently presented in
[1]. Unfortunately, this method computes rotation-invariant
features from the histogram of uniform LBP patterns, which
are not adequate to the application studied in this paper, due to
the considerations presented in the previous section. There-
fore, we adopted a generalization of the method presented
in [1], with the difference that rotation-invariant features are
obtained through DFT normalization of the original LBP8,1

histogram. We also extend this method to the other feature
spaces considered, namely ILBP and CCR. The approach is
described below.

Let us begin with the case of LBP. Let us consider a circu-
lar binary pattern, its rotated versions and the probability of
occurrence of the pattern itself and its rotated versions. We
can observe that, as the texture rotates by 45◦, the correspond-
ing histogram bins undergo a circular shift by one position
(Fig. 3). Thus, if xθ = {x1, . . . , xN } is the set of values of
the probability of occurrence of a pattern and its rotated ver-
sions at a given texture angle θ , after a texture rotation by
45◦ this set of bins becomes xθ+45◦ = {xN , x1, . . . , xN−1}.
As a consequence a rotation-invariant version of the vector x
can be obtained by taking the discrete Fourier transform. If
X = [X0, X1, . . . , X N−1] is the DFT of x, the moduli of the
transformed coefficients |Xk | are independent of any circular
shift of the input vector x. In addition, knowing that the DFT
output is half redundant, we get the complete information by

Fig. 3 Texture rotation introduces a circular shift in each subset of bins
which represent rotationally equivalent patterns

looking at the first [(N/2) + 1] elements of the transformed
vector [6], where [·] denotes “integer part of”. In summary,
the algorithm to obtain the rotational invariant LBP involves
the following operations:

1. Compute the original LBP8,1 histogram:

h = {h1, . . . , h256} (6)

2. Remove the first and the last bins of the histogram (they
represent the all-black and all-white constant patterns):

h′ = {h2, . . . , h255} (7)

3. Rearrange the resulting LBP histogram in blocks of bins
so that each block refers to rotationally equivalent pat-
terns:

h′ = {h1, . . . , hM } (8)

where, hi = {hi1, . . . , hi N } and M = 34. It should
be observed that this value results of borrowing 2 from
Eq. (3). We can imagine each group of rotation-invariant
patterns as formed by a basic pattern and all its rotated
versions. In addition, for the circular shift property to be
satisfied, we order each group of bins which refers to a
group of rotation-invariant patterns in such a way that if
the hi1 bin refers to the basic pattern, the hi2 bin refers
to the pattern obtained through a single rotation of 45◦
from the basic pattern, and so on. In general each group is
composed of eight different rotationally equivalent pat-
terns (therefore N = 8). But, as discussed in Sect. 3.1,
in some cases the number of different patterns for group
is less than eight. This occurs when a rotated version of a
pattern coincides with the unrotated version: if the basic
pattern has the form 00010001, 00110011 or 01110111
then N = 4; if it has the form 01010101 then N = 2.

4. Compute the DFT Hi of each hi and retain only the mod-
uli of the first [(N/2) + 1] elements of each Hi .

5. Normalize the elements of each Hi so that the energy
of the transformed coefficients equals the energy of the
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original bin values:

Hi = ci Hi (9)

where

ci =
∑N

k=1 hik
∑[(N/2)+1]

k=1 Hik

(10)

6. Obtain the rotation-invariant feature vector: H =
{H1, . . . , HM };

7. Add to the above feature vector the first and last ele-
ments of the histogram that were previously removed in
step (2).

The resulting feature space is denoted by LBPDFT
8,1 . The

method can be immediately extended to the CCR and ILBP
models if we consider that a CCR histogram can be split
into two LBP histograms: one that accounts for all the texels
whose central pixel value is 0, and the other that accounts for
all the texels whose central pixel value is 1. The correspond-
ing feature spaces are denoted by ILBPDFT

8,1 and CCRDFT
8,1 ,

respectively.
It is worth mentioning that the DFT-based method can be

considered as a generalization of the method based on rota-
tion-invariant patterns, which has been presented in Sect. 3.1.
This is motivated by the following observation: by only
retaining the DC component of the DFT-transformed bins
we obtain the texture-based approach based on rotationally
invariant patterns.

4 Overview of the image acquisition set-up

The visual appearance of a particular granite strongly de-
pends on the surface roughness. Common finishes include
sawn, flamed, bush-hammered, honed and polished, which is
the most extended one and dominates the market. The usual
procedure to obtain a polished finish involves two operations:
first, the granite slab is subject to the action of a rotating disc
impregnated with abrasive powder, and second, the remain-
ing pores and scratches are sealed with polish wax. As a result
of it, the full colour and crystal structure of the stone become
visible, and the surface acquires a glossy appearance. This
mirror-like finish is a major issue for a machine vision sys-
tem. To tackle the problem of specular reflections, special
care has to be taken in recording images. The stone surface
has to be optically shielded in order to avoid, on the one
hand, the influence of environmental light fluctuations, and
on the other hand, overlapping between the granite texture
and the reflected image of the scene in front of the granite
slab. In addition, completely diffuse illumination is required

Fig. 4 a Illumination system inside the dome. b The dome together
with the support that makes it possible to take images of the granite
tiles at different rotation angles

to ensure that light intensity is uniformly distributed all over
the field of view, and thus the image is free of shadows and
specular reflections.

The imaging system used to capture the granite image
data consists of a LED ring light mounted on the base of
an opaque, hemispherical dome of 46.5 cm diameter (see
Fig. 4a) whose inner wall is coated with a material that
approximates to the ideal Lambertian scatterer. The light
rays incident on any point of the stone surface are, by mul-
tiple scattering reflections, distributed equally to all other
such points, and therefore provide even illumination on the
granite slab. The dome has a through hole on top which
allows observation of the specimen. Colour texture images
were recorded using a consumer digital still camera
(Samsung S850), which is rigidly attached to the dome in
order to keep constant the distance from the camera to the
stone surface, and therefore the image scale, during the im-
age acquisition process. The dome is mounted on a special
support (see Fig. 4b) that makes it possible to change the
relative rotation between the camera and the granite tile to
be acquired. The mounting device supports the same set of
rotation angles used in [34]: 0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦,
75◦ and 90◦.
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Moreover, in order to ensure that all the images were
recorded under the same conditions, we disabled the auto-
matic gain control of the camera, and manually set the resolu-
tion, the shutter speed, the f-stop and the ISO to the following
values: 1024 × 768, 1/30 s, 7.4 and 50, respectively.

5 Assessment of robustness

5.1 Benchmark data

Experimental evaluation of texture classification accuracy
has been performed over a set of 12 types of commercial
varieties of granite (Fig. 5), namely: Acquamarina, Azul
Capixaba, Azul Platino, Bianco Cristal, Bianco Sardo,
Giallo Napoletano, Giallo Ornamentale, Giallo Santa Ce-
cilia, Giallo Veneziano, Rosa Beta, Rosa Porriño A, Rosa
Porriño B. The granite tiles comes from a stone manufac-
turing company Mondial Marmi SpA (Perugia, Italy). The
overall dataset is composed of 48 images, 4 for each class.
It should be noted that such granite classes represent a chal-
lenging dataset, since many of them exhibit similar visual
characteristics.

The texture images were acquired under controlled con-
ditions using the system described in the preceding section.
To assess robustness against rotation we used both hardware-
and software-rotated images. Hardware-rotated images have
been acquired using all the rotation angles provided by the
mounting system, namely: 0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦,
75◦ and 90◦. This results in a database of 432 images (48
for each rotation angle). Software-rotated images have been
obtained by rotating the 0◦ image by the same angles. Two
approaches have been used to image rotation by software:
bilinear and bicubic interpolation. In both cases we used the
function imrotate of the Matlab package. Finally, in con-
sideration of the fact that, as the granite surface rotates, only
the central part of the image captures the same portion of
the surface, we only retained the central part of the original
images. If W and H are the width and height of the original
image, the area to be retained is a centered square the dimen-
sion of which is min(W, H)/

√
2. This gives an image size

of 544 × 544 pixels.

5.2 Procedure

The index considered here to assess feature robustness against
rotation is the percentage of correctly classified textures in
a supervised learning task. The classification experiments
were based on the nearest neighbour rule [11] with the L1

norm, also called Manhattan distance [39]. Classification er-
ror has been evaluated by split-half validation with strati-
fied sampling [8]. This means that the dataset was randomly
subdivided into two subsets, one used for training (training

Fig. 5 The dataset of granite textures used in the experiments (un-
rotated images). From the top: Acquamarina, Azul Capixaba, Bianco
Cristal, Bianco Sardo, Rosa Beta, Azul Platino, Giallo Ornamen-
tale, Giallo Napoletano, Giallo Santa Cecilia, Giallo Veneziano, Rosa
Porriño A, Rosa Porriño B

set), and the other for testing (validation set). Moreover, the
proportion of examples of each class in the training set is
maintained the same to avoid class biasing in the classifica-
tion process. In order to assess robustness against rotation,
the training set is always composed of textures picked from
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Table 1 Results of the experimental activity. Accuracies are expressed as percentages

Feature space Dim Rotation Mean St_dev A0◦ A5◦ A10◦ A15◦ A30◦ A45◦ A60◦ A75◦ A90◦

Hardware 69.4 18.2 87.5 90.6 87.4 85.0 68.4 53.8 50.9 51.5 49.6

LBP3×3 256 Bilinear 36.5 20.5 87.5 31.7 30.2 27.9 26.5 25.4 25.6 25.0 49.0

Bicubic 44.7 17.9 87.5 46.5 47.2 44.0 38.6 30.8 30.9 28.1 49.0

Hardware 80.7 1.8 80.6 84.2 79.8 80.2 79.0 78.7 82.2 79.2 82.1

LBPri
8,1 36 Bilinear 37.4 24.5 80.6 25.0 25.0 25.0 25.0 25.0 25.0 25.0 80.6

Bicubic 41.5 22.2 80.6 29.0 28.9 28.9 31.7 31.9 33.0 28.9 80.6

Hardware 88.5 4.3 93.1 94.0 91.8 90.3 85.6 81.5 85.9 84.1 90.0

LBPDFT
8,1 163 Bilinear 41.6 29.2 93.1 27.0 28.7 27.6 25.5 25.8 26.1 27.1 93.1

Bicubic 56.8 20.7 93.1 45.0 45.3 45.5 45.2 46.5 48.5 48.7 93.1

Hardware 74.8 16.4 93.9 92.6 91.0 86.7 75.2 58.5 58.2 59.0 58.5

ILBP3×3 511 Bilinear 48.7 18.9 93.9 48.5 48.9 45.0 38.4 39.4 34.8 30.7 58.4

Bicubic 60.3 15.8 93.9 69.2 67.4 63.1 55.7 47.5 45.3 42.5 58.4

Hardware 92.4 1.8 92.1 93.7 92.7 94.0 91.5 88.5 91.8 92.5 94.9

ILBPri
8,1 71 Bilinear 51.3 23.2 92.1 38.7 39.2 40.0 39.3 41.7 39.8 38.8 92.1

Bicubic 59.0 18.8 92.1 47.1 47.9 48.5 51.7 51.2 51.3 49.3 92.1

Hardware 94.7 3.9 97.4 98.6 96.0 96.8 89.7 87.3 92.8 96.9 97.2

ILBPDFT
8,1 325 Bilinear 58.9 22.0 97.4 49.0 50.5 50.7 44.0 42.5 47.9 51.0 97.4

Bicubic 72.1 15.5 97.4 70.7 70.3 69.1 59.3 54.1 61.0 69.5 97.4

Hardware 79.7 9.6 88.8 87.6 89.3 88.1 84.8 69.3 70.0 70.3 69.5

CCR3×3 512 Bilinear 48.2 17.6 88.8 43.0 44.2 43.6 43.0 40.0 34.7 32.5 63.7

Bicubic 68.5 12.6 88.8 75.2 77.8 77.1 71.7 55.6 53.9 53.1 63.7

Hardware 81.5 2.5 79.6 78.8 81.0 81.6 85.8 79.5 85.2 81.1 80.6

CCRri
8,1 72 Bilinear 50.4 16.6 79.6 41.4 43.6 43.9 43.4 41.1 40.8 39.9 79.6

Bicubic 66.6 7.6 79.6 61.3 60.0 64.1 64.6 62.5 66.4 61.4 79.6

Hardware 86.3 1.7 88.0 85.7 85.5 86.1 87.4 82.6 86.9 87.9 87.0

CCRDFT
8,1 326 Bilinear 53.2 19.7 88.0 42.3 44.0 44.3 44.2 42.4 42.5 43.2 88.0

Bicubic 75.3 7.3 88.0 72.0 73.2 72.3 71.7 69.3 73.0 70.6 88.0

the 0◦ group, while the validation set is composed of ro-
tated versions of textures taken from the θ◦ group, with θ ∈
{0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}. For each rotation
angle we averaged the results obtained over 100 different
random partitions into training and validation set to have a
stable estimation of the generalization error. To make things
clearer, the per-unit version of the index we use to assess the
classification accuracy obtained for a texture rotation of θ◦
can be formalized as follows:

Aθ =
∑100

j=1
Aθ, j
24

100
(11)

where Aθ, j denotes the number of correct classifications
achieved for a rotation angle θ by using the j th random par-
tition of the 48 images that compose the dataset, that is to
say, when the classifier is trained with 24 unrotated images
(2 samples per granite class) and the validation is perfomed

over the remaining 24 images (also 2 samples per granite
class) after being rotated by θ◦.

5.3 Experimental results and discussion

The results of the experimental activity are summarized in
Table 1. The table is organized as follows: the first column
reports the feature space, the second column the dimension of
the feature space, the third column the method used to rotate
textures; the columns from A0◦ to A90◦ the percentage of
correct classification obtained when the rotation angle of the
textures of the validation set varies from 0◦ to 90◦. Finally the
column Mean reports the mean classification accuracy over
the nine rotation angles considered, and the column St_dev
the standard deviation of the accuracy over the nine rotation
angles.
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Fig. 6 Plots of Aθ (expressed in %) corresponding to hardware-rotated textures: a LBP, b ILBP and c CCR

In order to draw meaningful conclusions from the exper-
imental activity, it is convenient to separately analyse the
results obtained with hardware-rotated images and those ob-
tained with software-rotated images. In the first case we can
conclude the following: the original (non rotation-invariant)
versions of the methods (namely: LBP3×3, ILBP3×3, and
CCR3×3) are not invariant against rotation, as one would
expect. On the contrary, all the rotation-invariant versions
of the analysed features proved to be robust against rota-
tion and they should theoretically return similar performance
irrespective of the orientation angle. However, it is useful to
note that the CCD or CMOS sensors are defined by an or-
dered structure of either rectangular or square pixels. Since
the pixels that form the sensing element do not have circu-
larly symmetric shapes, small aliasing effects are inserted
during the image acquisition process if the image is rotated
with angles that are not orthogonal to the original position
(0◦). Based on this observation, it is expected that the clas-
sification errors peak when the images are rotated by 45◦
since the aliasing effects are maximised for this orientation
(Fig. 6).

A different scenario emerges if we use software-rotated
textures. In this case the experimental results show that not
only the original versions of the methods but also their rota-
tion-invariant versions are not robust against rotation. At
a first glance these results could appear somewhat surpris-
ing. However, we have to consider that rotation by software
attenuates high-frequency components of the image [22],
and therefore some information is lost in the process. Such
smoothing considerably alters the intrinsic texture structure,
since it wipes out the micro-textural data. This observation
is supported by the experimental results depicted in Table 1,
where it can be observed that the classification results achi-
eved by the rotationally invariant descriptors (ri and DFT) for
90◦ synthetically rotated data closely match the classifica-
tion results obtained at 0◦. These results are motivated by the
fact that no interpolation is required for orthogonal rotations
(90◦, 180◦, 270◦), since the image rotation for these orienta-
tions involves one-to-one pixel mapping. Figure 7 gives an
example of the changes which may suffer a grey-scale pat-

Fig. 7 An example of the effects of software rotation through bilinear
interpolation on the texture structure. Even a small rotation angle may
induce changes in the LBP code of a gray-scale pattern

tern when rotated by 5◦ through bilinear interpolation. As
we can see, even a small rotation angle can induce changes
in the corresponding local binary pattern, which are likely to
degrade the classification accuracy.

The last point worth commenting on is that experimen-
tal results show that CCR3×3 model is more robust against
rotation than LBP3×3, while the opposite holds true for the
rotation-invariant versions of these descriptors. We believe
that the intrinsic robustness of the basic CCR3×3 is motivated
by the conspicuous peaks located at both extremes of the his-
togram (see Fig. 1d), which indicate that the vast majority
of the binary patterns are constituted by all 0s and all 1s,
i.e. are constant patterns. This means that classification is
strongly dominated by the occurrence frequency of the con-
stant patterns, which is fairly independent of rotation. The use
of rotation-invariant versions, namely CCRri

8,1 and CCRDFT
8,1 ,

attenuates the relative weight of the constant patterns on the
overall histogram, and as a result of it, the average perfor-
mances of both LBP and CCR models become comparable.
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6 Conclusions

In this work we evaluated the robustness against rotation
of the LBP, ILBP and CCR texture models in the context of
granite texture classification. Granite texture is traditionally
considered hard to classify, due to its highly stochastic and
irregular nature. To this end, we carried out a large num-
ber of experiments using a dataset of hardware- and
software-rotated granite textures acquired under controlled
conditions. We assessed the robustness against rotation of
LBP, ILBP and CCR features, in their basic forms as well
as their rotation-invariant versions. Rotation invariance has
been obtained in two different ways: through rotation-invari-
ant patterns, as proposed in [30], and through the Discrete
Fourier Transform. We provided a description of this new
method in Sect. 3.2.

Among the three texture models, the ILBP provided sig-
nificantly higher results, whereas the performances obtained
with the LBP and the CCR are comparable. The analysis
of robustness against rotation generated different outcomes,
depending on the method used to rotate the images. With
hardware-rotated images the rotation-invariant methods show
good robustness against rotation. A comparison of the two
approaches shows that the DFT performs better. This result is
logical, since this method can be considered an extension of
the approach based on rotationally invariant patterns. On the
contrary, the robustness against rotation is poor when con-
sidering software-rotated images. We gave an explanation of
this result in the previous section. This suggests that experi-
mental results obtained using software-rotated images should
be carefully considered, since they may lead to misleading
conclusions.
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