
NeatVision 2.1

Developers Guide
Vision Systems Laboratory, Dublin City University

info@neatvision.com

1. Introduction

NeatVision was originally designed so that it could be easily extended by building on previously
developed algorithms. This feature has been finalised with the release of version 2.x of the
NeatVision visual programming environment. This document outlines how to:

• develop new NeatVision components that can ultimately be reused by other NeatVision
developers

• reuse the core NeatVision components in new user defined components
• submit your component or library of components to wider NeatVision community.

The following sections assume a basic level of familiarity with the Java programming language
from Sun Microsystems and the NeatVision developers plug-in. Additional details on the design
concepts behind NeatVision along with detailed explanations of many of the its algorithms can be
found in P.F. Whelan and D. Molloy (2000), Machine Vision Algorithms in Java: Techniques
and Implementation, Springer (London), 298 Pages [ISBN 1-85233-218-2] .

This document relates to the NeatVision components neatvision.jar (version 2.1) and
developer.jar (version 2.0) used in conjunction with SUNs J2SDK (version: 1.3.1.07) and JAI
(version: 1.1.2.beta).

Note to developers:
The default set-up for NeatVision is to stop detailed messages been sent to the start-up DOS
window (this speeds up the user interaction). When developing code it is useful to enable
messaging to allow developers to view all internal messages. This requires the –verbose flag to be
set. For example:

C:\...\java.exe -classpath d:\..\neatvision.jar;d\..\developer.jar NeatVision -verbose

To send messages to this window from your NeatVision program use the following:

int cc=10;
System.out.println("cc"+cc);

2. Developing for Reuse

The skeleton code for a new NeatVision component is generated using the component
development wizard (see Example 1). In the previous version of NeatVision (version 1.0) the entry
point for a component was the main() method and the programmer was responsible for
interfacing directly with component inputs and outputs to read and write the associated data
values. In NeatVision 2.x the main() method is replaced by the create() method. This revised

© 2003, VSG, DCU. www.NeatVision.com

mailto:info@neatvision.com

NeatVision 2.1

approach makes the development of new NeatVision components more straightforward and
facilitates component reuse.

The programmer is no longer required to interface directly with the component inputs and outputs.
Instead, when a component becomes active, NeatVision automatically reads the data values at the
inputs to a component and passes the associated data to the create() method in the form of a
populated DataBlock object. Each entry in the DataBlock object corresponds to the data at the
input with the corresponding index (0, 1, 2, etc. 0 being the topmost input). After the input data has
been processed the results must be stored in a new DataBlock object which is returned from the
create() method upon completion1. Each entry in the returned DataBlock object is then
passed to the output with the corresponding index (0, 1, 2, etc. 0 being the topmost output).

2.1 The DataBlock class

The DataBlock class is used to represent the input and output data values associated with a
particular NeatVision component. The data associated with a DataBlock object is represented as
an array of objects. This means that the DataBlock class is future proof and will deal with any
type of data that may be supported either by the core NeatVision components or any custom
components developed by NeatVision users. The specification for the DataBlock class is listed
below in sections 2.1.1 and 2.2.2.

2.1.1 The get Methods of the DataBlock class

The methods provided by the DataBlock class for reading the data values that it stores. Support
is provided for primitive data types and images. Any other data values are treated as objects.

 int getInteger(int index)

Get the integer value at the input with the specified index.
 long getLong(int index)
 Get the long primitive value at the input with the specified index.
 float getFloat(int index)
 Get the float primitive value at the input with the specified index.
 double getDouble(int index)
 Get the double primitive value at the input with the specified index.
 boolean getBoolean(int index)
 Get the Boolean primitive value at the input with the specified index.
 String getString(int index)
 Get the String object at the input with the specified index.
 Image getImage(int index)

Get the java.awt.Image object at the input with the specified index. This object
can be used for operations that require an image of this class i.e AWT imaging
operations.

 GrayImage getGrayImage(int index)
Get the GrayImage object at the input with the specified index. This object can be
used for getting direct access to the pixel data for a greyscale image

 RenderedOp getRenderedOp(int index)
Get the javax.media.jai.RenderedOp object with the specified index. This
object can be used in conjunction with Java Advanced Imaging (JAI) operators.

 public RGBImage getRGBImage(int index)
Get the RGBImage object at the input with the specified index. This object can be
used for getting direct access to the pixel data for a colour image.

1 Note: If only one object is being returned from the create() method (i.e. if the block has only one output)
then it is not necessary to encapsulate this within a DataBlock object. Instead, it can be returned directly
and NeatVision will pass the returned object to the single output of the component.

© 2003, VSG, DCU. www.NeatVision.com

NeatVision 2.1

 Object get(int index)
Get the object at the input with the specified index. This method can be used for
reading data not supported by any of the methods listed above.

2.1.1 The set Methods of the DataBlock class
The methods provided by the DataBlock class for adding new data. Support is provided for
primitives. Any other data values are treated as objects.

 void add(int value)
 Add the integer primitive argument at the next available index.
 void add(long value)
 Add the long primitive argument at the next available index.
 void add(float value)
 Add the float primitive argument at the next available index.
 void add(double value)
 Add the double primitive argument at the next available index.
 void add(boolean value)
 Add the Boolean primitive argument at the next available index.
 void add(Object object)
 Add the object argument at the next available index. This method should be
 used for adding any data that is not a primitive to a DataBlock object.

Note that the values stored in a DataBlock object can be retrieved in any order, however they
must be stored in the same order that they appear at the output of the relevant component.

3. How to Reuse

The functionality provided by any of the core NeatVision classes can be called from within custom
user defined classes that are developed using the NeatVision developers plug-in. This is achieved
by calling the static create() method of the NeatVision class.

 Object NeatVision.create(String class, DataBlock args)

The parameters of the create() method are a String object and DataBlock object. The
String object represents the class name of the desired component and the DataBlock object
represents the parameters that will be passed to an off-screen instantiation of the desired
component. The DataBlock argument must have the same number of entries as the number of
inputs connected to the desired component and each entry must represent the data required by the
associated input (0, 1, 2, etc.). The create() method then returns a new DataBlock object that
represents the outputs that were generated after the requested component processed the specified
inputs. The create() method can also handle up to four arguments that are not encapsulated
within a DataBlock object, for example:

 Object NeatVision.create(String class, Object arg0)
 Call the create method of the single input component with name ‘class’.
 Object NeatVision.create(String class, Object arg0, Object arg1)
 Call the create method of the dual input component with the name ‘class’.

All arguments must be represented as objects when using this approach. This means that any
primitives must be wrapped before being passed to the create() method. Take the integer
arguments for the dual threshold operation as an example:

© 2003, VSG, DCU. www.NeatVision.com

NeatVision 2.1

 int hiThresh = 100;
 int loThresh = 100;

 Integer hiThreshObj = new Integer(hiThresh);
 Integer loThreshObj = new Integer(loThresh);

 GreyImage output = (GreyImage)NeatVision.create(“DualThreshold”,input,hiThreshObj,loThreshObj);

There are special wrapper classes available for converting all primitive types (boolean, byte,
short, int, long, double and float) into objects (Boolean, Byte, Short,
Integer, Long, Double and Float). Objects of these classes can be constructed by simply
passing the relevant primitive to the constructor of the relevant class (see int to Integer
example above). The static create() method of the NeatVision class routes the specified
DataBlock object to the create() method of the specified class and returns the resulting output
DataBlock object.

import DataBlock;
import CoreInterface;

public class testComponent extends CoreInterface
{
 public testComponent()
 {
 name = "test";
 inputs = 2;
 outputs = 1;
 width = 30;
 height = 20;
 }

 public void setup()
 {
 Input[0].setConnectionType(UNDEFINED);
 Input[0].setConnectionMode(NORMAL);
 Input[0].shortDescription = "";
 Input[0].setConnectionDescription(new String[]{
 "No connection description available" });

 Input[1].setConnectionType(UNDEFINED);
 Input[1].setConnectionMode(NORMAL);
 Input[1].shortDescription = "";
 Input[1].setConnectionDescription(new String[]{
 "No connection description available" });

 Output[0].setConnectionType(UNDEFINED);
 Output[0].setConnectionMode(NORMAL);
 Output[0].shortDescription = "";
 Output[0].setConnectionDescription(new String[]{
 "No connection description available" });
 }

 public void doubleClick()
 {

 }

 public Object create(DataBlock args)
 {
 return null;
 }
}

Example 1: The skeleton code for a double input/single output component. Note that the entry
point is the create() method. This is called whenever the block receives a full complement of

input data.

© 2003, VSG, DCU. www.NeatVision.com

NeatVision 2.1

import DataBlock;
import CoreInterface;
import NeatVision;

public class testComponent extends CoreInterface
{
 public testComponent()
 {
 name = "test";
 inputs = 1;
 outputs = 1;
 width = 30;
 height = 20;
 }

 public void setup()
 {
 Input[0].setConnectionType(UNDEFINED);
 Input[0].setConnectionMode(NORMAL);
 Input[0].shortDescription = "";
 Input[0].setConnectionDescription(new String[]{
 "No connection description available" });

 Output[0].setConnectionType(UNDEFINED);
 Output[0].setConnectionMode(NORMAL);
 Output[0].shortDescription = "";
 Output[0].setConnectionDescription(new String[]{
 "No connection description available" });
 }

 public void doubleClick()
 {

 }

 public Object create(DataBlock args)
 {
 GrayImage input = (GrayImage)args.get(0);
 GrayImage output = (GrayImage)NeatVision.create("Not",input);
 return output;
 }
}

Example 2: A simple example of reuse, calling the Not operation from inside a custom user

defined class.

Additional detailed examples of component reuse can be found in Appendix A. The list of core
NeatVision classes available for reuse are listed in Appendix B.

3.1 Practical programming issues:

One typical problem that can occur with other versions of the JDK involves the failure of the
NeatVision block to be updated once the new component has compiled correctly. This can be
overcome by deleting it from your visual programme and reloaded prior to use (this does not effect
the other block elements in you visual workspace). Failure to do so may cause the class loader to
ignore your changes and in turn may lock the system. Also avoid reusing variable names
automatically generated by the wizard e.g. width/height as this may cause conflicts within your own
code segment declarations.

© 2003, VSG, DCU. www.NeatVision.com

NeatVision 2.1

4. Component/Library Submission

If you feel that you would like to make your components or libraries to be available to the wider
NeatVision community then please submit:

• The relevant component/library class files and package information for all components
• Sample images / data for evaluating your component/library
• Appropriate documentation
• User details and licence information for your submission

This information to be sent to tech@neatvision.com using the subject header “Submission”. Your
libraries and support information will placed on the NeatVision web site for general access.

5. Conditions of Use

If you have found this software useful and/or used it as part of your research work, you are
requested to cite the following

• P.F. Whelan and D. Molloy (2000), Machine Vision Algorithms in Java: Techniques and
Implementation, Springer (London)

6. Terms and Conditions

All downloads are subject to the following NeatVision License And Terms and Conditions.

NeatVision (Version 2.1) and its associated materials Copyright (c) 2003, Paul F. Whelan, Vision
Systems Group, Dublin City University (the "Software").

The Software remains the property of the Paul F. Whelan, Vision Systems Group, Dublin City
University ("the University").

The Software is distributed "AS IS" under this Licence solely for non-commercial use in the hope
that it will be useful, but in order that the University protects its assets for the benefit of its
educational and research purposes, the University makes clear that no condition is made or to be
implied, nor is any warranty given or to be implied, as to the accuracy of the Software, or that it
will be suitable for any particular purpose or for use under any specific conditions. Furthermore,
the University disclaims all responsibility for the use which is made of the Software. It further
disclaims any liability for the outcomes arising from using the Software.

The Licensee agrees to indemnify the University and hold the University harmless from and against
any and all claims, damages and liabilities asserted by third parties (including claims for
negligence), which arise directly, or indirectly from the use of the Software or the sale of any
products based on the Software.

No part of the Software may be reproduced, modified, transmitted or transferred in any form or by
any means, electronic or mechanical, without the express permission of the University. The
permission of the University is not required if the said reproduction, modification, transmission or
transference is done without financial return, the conditions of this Licence are imposed upon the
receiver of the product, and all original and amended source code is included in any transmitted
product. You may be held legally responsible for any copyright infringement that is caused or
encouraged by your failure to abide by these terms and conditions.

You are not permitted under this Licence to use this Software commercially. Use for which any
financial return is received shall be defined as commercial use, and includes (1) integration of
all or part of the source code or the Software into a product for sale or license by or on behalf of
Licensee to third parties or (2) use of the Software or any derivative of it for research with the
final aim of developing software products for sale or license to a third party or (3) use of the
Software or any derivative of it for research with the final aim of developing non-software products
for sale or license to a third party, or (4) use of the Software to provide any service to an
external organisation for which payment is received. If you are interested in using the Software
commercially, please contact the Vision Systems Group, Dublin City University, Ireland. Contact
details are: vsg@eeng.dcu.ie

Terms and Conditions: (1) Systematic or multiple-copy reproduction or republication; electronic
retransmission to another location; print or electronic duplication of any NeatVision material

© 2003, VSG, DCU. www.NeatVision.com

mailto:tech@neatvision.com
mailto:vsg@eeng.dcu.ie

NeatVision 2.1

supplied for a fee or for commercial purposes; or altering or recompiling any contents of NeatVision
and its associated materials are not permitted. (2) This software cannot be sold without written
authorization from Paul F. Whelan. You may not decompile, disassemble, reverse engineer or modify
this software in any way. (3) By choosing to view, download, NeatVision and its associated
materials, you agree to all the provisions of the copyright law protecting it and to the terms and
conditions established by the copyright holder.

Vision Systems Group
16 September 2003

Notes:

Delete “package User;” from wizard generated file

© 2003, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Appendix A

© 2003, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Appendix A.1: TestDevPixelLevel.java

// TestDevPixelLevel.java

// Project Name: NeatVision (Ver 2.0)
// Written by: Paul Whelan
// Initial Version: 03/03/03
// Latest Revision:
// Description: Sample file to illustrate NeatVision pixel manipulation
//**
// Copyright (C) 2003, Paul F Whelan, Vision Systems Group, DCU
// This library is distributed in WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

import DataBlock;
import CoreInterface;

public class TestDevPixelLevel extends CoreInterface
{
 public TestDevPixelLevel()
 {
 name = "TestDevPixelLevel";
 inputs = 2;
 outputs = 3;
 width = 30;
 height = 30;
 }

 public void setup()
 {
 Input[0].setConnectionType(IMAGE);
 Input[0].setConnectionMode(NORMAL);
 Input[0].shortDescription = "";
 Input[0].setConnectionDescription(new String[]{
 "Input GS image" });

 Input[1].setConnectionType(INTEGER);
 Input[1].setConnectionMode(NORMAL);
 Input[1].setDefaultValue(new Integer(100)); // Setup an input default value
 Input[1].shortDescription = "[Integer] [Default = 100]";
 Input[1].setConnectionDescription(new String[]{
 "Grey scale offset" });

 Output[0].setConnectionType(IMAGE);
 Output[0].setConnectionMode(NORMAL);
 Output[0].shortDescription = "";
 Output[0].setConnectionDescription(new String[]{
 "Processed Image" });

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

 Output[1].setConnectionType(INTEGER);
 Output[1].setConnectionMode(NORMAL);
 Output[1].shortDescription = "";
 Output[1].setConnectionDescription(new String[]{
 "Processed Image Width" });

 Output[2].setConnectionType(INTEGER);
 Output[2].setConnectionMode(NORMAL);
 Output[2].shortDescription = "";
 Output[2].setConnectionDescription(new String[]{
 "Processed Image Height" });
 }

 public void doubleClick()
 {
 }

 public Object create(DataBlock arguments)
 {
 GrayImage argument0 = arguments.getGrayImage(0);
 int argument1 = arguments.getInteger(1);

 DataBlock return0 = pixel_offset(argument0,argument1);
 return(return0);
 }

 private DataBlock pixel_offset(GrayImage inp1,int offset)
 {
 // do not use "width" "height" variables as this conflicts
 // with the block "width" "height" definitions
 int image_width = inp1.getWidth();
 int image_height= inp1.getHeight();

 GrayImage output = new GrayImage(image_width,image_height);

 // wrap variables
 Integer widthw = new Integer(image_width);
 Integer heightw = new Integer(image_height);

 // add offset and divide by two to keep in range.
 for (int y=0; y<image_height; y++)
 for (int x=0; x<image_width; x++)
 {output.setxy(x,y,(offset+inp1.getxy(x,y))>>1);}

 // Make the data available to other library functions.
 DataBlock returns = new DataBlock();
 returns.add(output);
 returns.add(widthw);
 returns.add(heightw);
 return(returns);
 }
}

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Figure 1. Development of the TestDevPixelLevel class. This example illustrates how to manipulate images at the pixel level within the NeatVision
environment. The greyscale offset input value has a default setting of 100. This can be overwritten by the user input as illustrated above.

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Appendix A.2: conv_test.java

// conv_test.java

// Project Name: NeatVision (Ver 2.0)
// Written by: Paul Whelan
// Initial Version: 03/03/03
// Latest Revision:
// Description: Convolution example
//***
// Copyright (C) 2003, Paul F Whelan, Vision Systems Group, DCU
// This library is distributed in WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

import DataBlock;
import CoreInterface;

public class conv_test extends CoreInterface
{
 public conv_test()
 {
 name = "conv_test";
 inputs = 1;
 outputs = 1;
 width = 30;
 height = 20;
 }

 public void setup()
 {
 Input[0].setConnectionType(IMAGE);
 Input[0].setConnectionMode(NORMAL);
 Input[0].shortDescription = "";
 Input[0].setConnectionDescription(new String[]{
 "Input image" });

 Output[0].setConnectionType(IMAGE);
 Output[0].setConnectionMode(NORMAL);
 Output[0].shortDescription = "";
 Output[0].setConnectionDescription(new String[]{
 " Output image" });
 }

 public void doubleClick()
 {

 }

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

 public Object create(DataBlock arguments)
 {
 // setup input variables
 GrayImage argument0 = arguments.getGrayImage(0);

 // setup return variables
 DataBlock return0 = conv_test_dev(argument0);
 return(return0);
 }

 private DataBlock conv_test_dev(GrayImage inp1)
 {
 // We must wrap all primitive classes e.g. wrap the integer class
 GrayImage output_a = new GrayImage(width,height);

 Integer [] mask = new Integer[9];

 // mask enteries default to null
 mask[0]= null; // dont care = null
 mask[1]= new Integer(1);
 mask[2]= new Integer(1);
 mask[3]= new Integer(1);
 mask[4]= new Integer(1);
 mask[5]= new Integer(1);
 mask[6]= new Integer(1);
 mask[7]= new Integer(1);
 mask[8]= null; // dont care = null

 // Apply convolution
 output_a = (GrayImage)NeatVision.create("Convolution",inp1, mask);

 // Make the data available to other library functions.
 DataBlock returns = new DataBlock();
 returns.add(output_a);
 return(returns);
 }
}

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Appendix A.3: TestDev.java

// TestDev.java

// Project Name: NeatVision (Ver 2.0)
// Written by: Paul Whelan
// Initial Version: 03/03/03
// Latest Revision:
// Description: Sample file to illustrate the NeatVision Development environment
//***
// Copyright (C) 2003, Paul F Whelan, Vision Systems Group, DCU
// This library is distributed in WITHOUT ANY WARRANTY; without even the implied warranty
// of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

import DataBlock;
import CoreInterface;

public class TestDev extends CoreInterface
{
// This is the constructor for the block, the fields below must be filled in.
// This will create a container into which the functionallity of the block can be built.
 public TestDev()
 {
 name = "TestDev";
 inputs = 3;
 outputs = 3;
 width = 30;
 height = 30;
 }

// As the constructor above was used to generate the physical skeleton of the
// block, we must add substance this is done through the addition of three
// methods, the first of which setup() specifies the data type of the input
// and output connectors which were generated in the constructor

 public void setup()
 {
 Input[0].setConnectionType(IMAGE);
 Input[0].setConnectionMode(NORMAL);
 Input[0].shortDescription = "";
 Input[0].setConnectionDescription(new String[]{
 "Input GS image" });

 Input[1].setConnectionType(INTEGER);
 Input[1].setConnectionMode(NORMAL);
 Input[1].setDefaultValue(new Integer(4));
 Input[1].shortDescription = "[Integer] Clusters [Default = 4]";
 Input[1].setConnectionDescription(new String[]{
 "Number of clusters required" });

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

 Input[2].setConnectionType(INTEGER);
 Input[2].setConnectionMode(NORMAL);
 Input[2].setDefaultValue(new Integer(150));
 Input[2].shortDescription = "[Integer] Loop count [Default = 150]";
 Input[2].setConnectionDescription(new String[]{
 "Reconstruction Loop Count" });

 Output[0].setConnectionType(IMAGE);
 Output[0].setConnectionMode(NORMAL);
 Output[0].shortDescription = "";
 Output[0].setConnectionDescription(new String[]{
 "Boundary removal and K-Means clustering" });

 Output[1].setConnectionType(IMAGE);
 Output[1].setConnectionMode(NORMAL);
 Output[1].shortDescription = "";
 Output[1].setConnectionDescription(new String[]{
 "Closed structures" });

 Output[2].setConnectionType(INTEGER);
 Output[2].setConnectionMode(NORMAL);
 Output[2].shortDescription = "";
 Output[2].setConnectionDescription(new String[]{
 "Approx perimeter of the strong edges" });
 }

// The second method is called whenever a double click event occurs over this block,
// double clicks are useful for generating frames or dialogs for viewing or
// altering images or for entering processing parameters, e.g. thresholding
 public void doubleClick()
 {
 }

// The next method is called whenever the block has new inputs which need to be
// processed. Basically what you need to do inside this method is read the new
// data in from the sockets, process images using the java image processing libraries
// then setting the output image and finally but most importantly signal the new
// state of the block as being WAITING_TO_SEND, i.e. the image has been sent to
// the plug and awaits transmission to the next block.

 public Object create(DataBlock arguments)
 {
 // setup input variables
 GrayImage argument0 = arguments.getGrayImage(0);
 int argument1 = arguments.getInteger(1);
 int argument2 = arguments.getInteger(2);

 // setup return variables
 DataBlock return0 = blob_test_dev(argument0,argument1,argument2);
 return(return0);
 }

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

// The sample program reads in a greyscale image and two integer variables representing
// number of clusters required and the loop count for the reconstruction by dilation
// operation. The block return the k-means clusters after all edge data has been removed
// from the image. It also returns the fitting of closed curves to the strong features
// in the input image. The pixel count of this edge data is also returned.

 private DataBlock blob_test_dev(GrayImage inp1,int clus, int loop_count)
 {
 int inp1_width = inp1.getWidth();
 int inp1_height = inp1.getHeight();

 // We must wrap all primitive classes e.g. wrap the integer class
 Integer clus_wrap = new Integer(clus);
 GrayImage output_a = new GrayImage(inp1_width,inp1_height);
 GrayImage output_b = new GrayImage(inp1_width,inp1_height);

 // remove boundary regions using reconstruction by dilation
 output_a = (GrayImage)NeatVision.create("SingleThreshold",inp1, new Integer(0));
 output_a = (GrayImage)NeatVision.create("Mask",output_a, new Integer(3));

output_a = (GrayImage)NeatVision.create("Not",output_a);
 output_a = (GrayImage)NeatVision.create("Minimum",inp1, output_a);
 for(int lc=0;lc<loop_count;lc++)
 {
 output_a = (GrayImage)NeatVision.create("Dilation",output_a, new Integer(8));
 output_a = (GrayImage)NeatVision.create("Minimum",inp1, output_a);
 }
 output_a = (GrayImage)NeatVision.create("Subtract",inp1,output_a);
 output_a = (GrayImage)NeatVision.create("Median",output_a);

 // Apply K-Means clustering
 output_a = (GrayImage)NeatVision.create("GrayScaleCluster",output_a,clus_wrap);

 // Load the canny magnitude image
 DataBlock temp = (DataBlock)NeatVision.create("Canny", inp1, new Double(1.9),new Integer(20),new Integer(230));
 output_b = (GrayImage)temp.getGrayImage(0);
 output_b = (GrayImage)NeatVision.create("SingleThreshold",output_b, new Integer(127));

 // keep only closed structures and find approx perimeter of the strong edges
 output_b = (GrayImage)NeatVision.create("EdgeLabel",output_b,new Boolean(true));
 output_b = (GrayImage)NeatVision.create("SingleThreshold",output_b, new Integer(1));
 Integer area_1 = (Integer)NeatVision.create("WhitePixelCounter",output_b);
 output_b = (GrayImage)NeatVision.create("Add",output_b,inp1);

 // Make the data available to other library functions.
 DataBlock returns = new DataBlock();
 returns.add(output_a);
 returns.add(output_b);
 returns.add(area_1);
 return(returns);
 }
}

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

(a)

(b)

(c)

Figure 2. Development of the TestDev class. (a) The associated class file tag in the user area. (b) A sample program illustrating the operation of this block. (c)
Sample images (left to right): Input image, K-Mean clustered image and the closed structure overlay image.

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Appendix B

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Appendix B: Main NeatVision 2.1 Methods

The following list summarises some of the main NeatVision methods users may wish to interface too. Many of these are fairly self-explanatory, but if the method you require is
not listed or does not have enough information to enable you to use it drop us an email at tech@neatvision.com with “NeatVision Methods” in the subject line. Additional help can
be found in the input/output tags for each block in the NeatVision visual programming interface.. Also refer to P.F. Whelan and D. Molloy (2000), Machine Vision Algorithms in
Java: Techniques and Implementation, Springer (London), 298 Pages [ISBN 1-85233-218-2] for additional details.

Normalization of greyscale image operations occurs to keep the output image within greyscale range 0-255.

Method Description Inputs
(Index #: data type [descriptor])

Outputs
(Index #: data type [descriptor])

DATA Image, Integer, Double, Boolean, String, Array (of integers) and 3D (DICOM, Analyze, Vol, Sequence)
FLOW CONTROL SplitterX2,SplitterX3, SplitterX4, Feedback, If, Else, For and Terminate
UTILITIES
HalveImageSize A grey-scale image whose size is halved 0:GrayImage 0:GrayImage
DoubleImageSize A grey-scale image whose size is doubled 0:GrayImage 0:GrayImage
PointToSquare A grey-scale image whose white pixels are

represented by white squares.
0:GrayImage 0:GrayImage

PointToCross A grey-scale image whose white pixels are
represented by white crosses.

0:GrayImage 0:GrayImage

Rotate A grey-scale image is rotated in a clockwise
direction by a user specified amount

0:GrayImage
1: Integer [user specified
rotation (degrees)]

0:GrayImage

RotatePlus90 A grey-scale image is rotated in a clockwise
direction by 90 degrees

0:GrayImage 0:GrayImage

RotateMinus90 A grey-scale image is rotated in an
anticlockwise direction by 90 degrees.

0:GrayImage 0:GrayImage

ROI2 A grey-scale image from which a rectangular
region of interest is extracted by the user via
the GUI.

0:GrayImage 0:GrayImage

PolyROI3 A grey-scale image from which a polygon
region of interest is extracted by the user via
the GUI.

0:GrayImage [User interaction] 0:GrayImage

2 Left click and hold to draw the ROI, then release when complete.
3 The user inputs a polygon by left-clicking a series of points (marked in red). When the user clicks a point within 4 pixels of the start point or alternatively right-click to finalize
and close the polygon. Once closed the polygon will be displayed in green. To begin a new polygon use shift-click.

© 2004, VSG, DCU. www.NeatVision.com

http://www.eeng.dcu.ie/%7Ewhelanp/vsg/papers/book2000.html

NeatVision 2.1

EnhancePolyROI2 A grey-scale image from which a polygon
region of interest shall be emphasised. User
defined input region.

0:GrayImage [User interaction] 0:GrayImage

Measure_Line An image from which the Euclidean distance
between two user-selected points is
calculated. Must rerun programme to
generate new line length.

0:GrayImage [User interaction] 0:Double [Euclidean distance]

Scale A grey-scale image is scaled by user defined
dimensions

0:GrayImage
1: Integer [width of the scaled
image]
2: Integer [height of the scaled
image]

0:GrayImage

Mask A grey-scale image whose border is masked
by a user specified amount.

0:GrayImage
1: Integer [Mask size in pixels,
Default =3]

0:GrayImage

Centroid

Replace the greyscale shapes (Range 0-255)
in the original image by their respective
centroids (commonly used after the 8-bit
labelling operators)

0:GrayImage 0:GrayImage [Binary]

Centroid_16

Replace the greyscale shapes (Range 0-
65535) in the original image by their
respective centroids (commonly used after the
Label_16 operators)

0:GrayImage 0:GrayImage [Binary]

BinaryToGreyscale Convert WHITE pixels in a binary image to a
given greyscale.

0:GrayImage [Binary]
1:Integer [greyscale (0-255)]

0:GrayImage

GreyScalePixelSum Generates an integer which is the sum of all
pixels contained in the input image

0:GrayImage 0:Integer

FirstWhitePixelLocator Coordinate point representing the location of
the first white pixel in the image input image.

0:GrayImage 0:Coordinate

RemoveIsolatedWhitePixels Remove isolate white pixels (3x3) region) 0:GrayImage 0:GrayImage
SaltnPepperGenerator Add salt and pepper noise to the input image 0:GrayImage

1:Double (0-1.0)
0:GrayImage

AdditiveWhiteNoiseGenerator Add a user defined level of white noise to the
input image

0:GrayImage
1:Integer (0-1024)

0:GrayImage

GaussianNoiseGenerator Add a user defined quantity of Gaussian noise
to the input image

0:GrayImage
1:Double (0-255.0)

0:GrayImage

RayleighNoiseGenerator Add a user defined quantity of Rayleigh noise
to the input image

0:GrayImage
1:Double (1.0-255.0)

0:GrayImage

PoissonNoiseGenerator Add a user defined quantity of Poisson noise
to the input image

0:GrayImage
1:Double (0-511.0)

0:GrayImage

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

HTTPSendScript Send arguments to a URL 0:String [URL]
1:String [Arguments]

0:String [Return values]

HTTPGetImage Retrieve image from a URL 0:String [URL]
1:String [Arguments]

0:GrayImage [Retrieved Image]

ARITHIMETIC
Add Image addition 0:GrayImage [A]

1:GrayImage [B]
0:GrayImage [C = A+B]

Subtract Image subtraction 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = A-B]

Multiply Image multiply 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = A*B]

Divide Image division 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = A/B]

And Boolean AND operation 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = AND(A,B)]

Or Boolean OR operation 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = OR(A,B)]

Not Boolean NOT operation 0:GrayImage [A] 0:GrayImage [C = NOT(A)]
Xor Boolean Exclusive OR operation 0:GrayImage [A]

1:GrayImage [B]
0:GrayImage [C = XOR(A,B)]

Minimum Minimum of two images 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = Min(A,B)]

Maximum Maximum of two images 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = Max(A,B)]

HISTOGRAM
HighestGreyLevelCalculator Compute the highest grey level from the input

image
0:GrayImage 0:Integer [highest grey level]

LowestGreyLevelCalculator Compute the lowest grey level from the input
image

0:GrayImage 0:Integer [lowest grey level]

MeanSquareError Compare the input images using the mean
square error operation

0:GrayImage
1:GrayImage

0:Double [mean square error]

AverageIntensityCalculator Compute the average intensity of the input
image

0:GrayImage 0:Double [average intensity]

EntropyCalculator Compute the entropy of the input image 0:GrayImage 0:Double [entropy]
VarienceCalculator Compute the variance of the input image 0:GrayImage 0:Double [varience]
KurtosisCalculator Compute the kurtosis of the input image 0:GrayImage 0:Double [kurtosis]
StandardDeviationCalculator Compute the standard deviation of the input

image
0:GrayImage 0:Double [standard deviation]

SkewnessCalculator Compute the skewness deviation of the input
image

0:GrayImage 0:Double [skewness]

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

LocalEqualisation3x3 Local histogram equalisation using a 3x3
region

0:GrayImage 0:GrayImage

LocalEqualisation5x5 Local histogram equalisation using a 5x5
region

0:GrayImage 0:GrayImage

PROCESSING
Inverse Inverse the LUT of the input image 0:GrayImage 0:GrayImage
Logarithm Transform the linear LUT into logarithmic 0:GrayImage 0:GrayImage
Exponential Transform the linear LUT into exponential 0:GrayImage 0:GrayImage
Power The linear LUT is raised to a user specified

double value
0:GrayImage
1:Integer [power, default=3.0]

0:GrayImage

Square The linear LUT is raised to power of 2. 0:GrayImage 0:GrayImage
SingleThreshold Single threshold operation 0:GrayImage

1:Integer [(1-255): Default =
128]

0:GrayImage [Binary]

MidlevelThreshold Single threshold operation: threshold level =
MIDGREY (127)

0:GrayImage 0:GrayImage [Binary]

DualThreshold Dual threshold operation. All pixels between
the upper and lower thresholds are marked in
WHITE.

0:GrayImage
1:Integer [upper value, default
=128]
2:Integer [lower value, default
=1]

0:GrayImage [Binary]

TripleThreshold This operation produces an LUT in which all
pixels below the user specified lower level
appear black, all pixels between the user
specified lower level and the user specified
upper level inclusively appear grey and all
pixels above the user specified upper level
appear white.

0:GrayImage
1:Integer [upper value, default
=128]
2:Integer [lower value, default
=1]

0:GrayImage

EntropicThreshold Compute the entropy based threshold. Relies
on maximising the total entropy of both the
object and background regions to find the
appropriate threshold

0:GrayImage 0:Integer

Threshold3x3 Adaptive threshold in a 3x3 region. 0:GrayImage
1:Integer [constant offset,
default=0]]

0:GrayImage

Threshold5x5 Adaptive threshold in a 5x5 region. 0:GrayImage
1:Integer [constant offset,
default=0]]

0:GrayImage

IntensityRangeEnhancer Stretch the LUT in order to occupy the entire
range between BLACK (0) and WHITE (255)

0:GrayImage 0:GrayImage

HistorgramEqualiser Histogram equalisation 0:GrayImage 0:GrayImage

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

IntensityRangeStrecher Stretch the LUT between the lower and upper
threshold to occupy the entire range between
BLACK (0) and WHITE (255)

0:GrayImage
1:Integer [lower grey level,
default=0]
2:Integer [upper grey level,
default=255]

0:GrayImage

IntegrateImageRows Integrate image rows 0:GrayImage 0:GrayImage
IntegrateImageColumns Integrate Image columns 0:GrayImage 0:GrayImage
LeftToRightSum Pixel summation along the line 0:GrayImage 0:GrayImage
LeftToRightWashFunction Left To Right wash function (once a white

pixel is found, all pixels to its right are also set
to white)

0:GrayImage 0:GrayImage

RightToLeftWashFunction Right To Left wash function (once a white
pixel is found, all pixels to its left are also set
to white)

0:GrayImage 0:GrayImage

TopToBottomWashFunction Top To Bottom wash function (once a white
pixel is found, all pixels to its below are also
set to white)

0:GrayImage 0:GrayImage

BottomToTopWashFunction Bottom To Top wash function (once a white
pixel is found, all pixels to its above are also
set to white)

0:GrayImage 0:GrayImage

FILTER
Convolution Convolution. This operation requires

coefficients to be specified in the form of a
square, odd sized integer array, “null”
represents “don’t cares”. See Appendix A.2
for an example.

0:GrayImage
1:Integer [] [Array of mask
values. No entry default to null.
“Don’t Care” = null statement]

0:GrayImage

DOLPS DOLPS – Difference of low pass 3x3 filters.
Image A results from applying 3 iterations of
the low pass filter. Image B results from
applying 6 iterations of the low pass filter.
DOLPS = A-B.

0:GrayImage 0:GrayImage

LowPass Low pass 3x3 filter 0:GrayImage 0:GrayImage
Sharpen High pass 3x3 filter 0:GrayImage 0:GrayImage
Median Median 3x3 filter 0:GrayImage 0:GrayImage
Midpoint Midpoint 3x3 filter 0:GrayImage 0:GrayImage
RectangularAverageFilter Rectangular Average Filter operation. Size of

filter is user defined
0:GrayImage
1:Integer [filter size, default = 5]

0:GrayImage

SmallestIntensityNeighbour Replace the central pixel of the 3x3 mask with
the minimum value

0:GrayImage 0:GrayImage

LargestIntensityNeighbour Replace the central pixel of the 3x3 mask with
the maximum value

0:GrayImage 0:GrayImage

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

AdaptiveSmooth Adaptive smoothing of grey scale images. In
order to apply it to colour images, the input
image has to be split into RGB components
and adaptive smooth has to be applied to
each channel. If the colour image is applied
directly the algorithm will smooth the average
intensity image. (Slow process)

0:GrayImage
1:Integer [number of iterations:
possible values: 1 to 10, default
= 5]
2:Double [variance strength:
possible values: 0.1 -> 0.9,
default = 0.2]
3:Double [Diffusion parameter:
possible values: 1.0 -> 20.0,
default = 10.0]

0:GrayImage

EDGES
Roberts Roberts edge detector 0:GrayImage 0:GrayImage
Sobel Sobel edge detector 0:GrayImage 0:GrayImage
Laplacian Laplacian edge detector. User defined 4-

connected or 8-connected neighbourhood
0:GrayImage
1:Integer [possible values: 4 or
8, default = 8]

0:GrayImage

Prewitt Prewitt edge detector 0:GrayImage 0:GrayImage
FreiChen FreiChen edge detector 0:GrayImage 0:GrayImage
BinaryBorder Binary Border edge detector 0:GrayImage [Binary] 0:GrayImage [Binary]
NonMaxima Edge detection using non maxima

suppression
0:GrayImage 0:GrayImage

IntensityGradientDirection Compute the 3x3 intensity gradient direction.
Gradients range from 1 to 8.

0:GrayImage 0:GrayImage [pixel values from 1-
8]

ZeroCrossingsDetector Zero crossings edge detector 0:GrayImage 0:GrayImage
Canny Canny edge detector 0:GrayImage

1:Double [standard deviation or
spread parameter, possible
values: 0.2 -> 20.0, default =
1.0]
2:Integer [lower threshold,
default = 1]
3:Integer [upper threshold,
default = 255]

0:GrayImage [edge magnitudes]
1:GrayImage [edge directions]

EdgeLabel Edge labelling operation. Expects a binary
image resulting from the application of the
Canny edge detector.

0:GrayImage
1:Boolean [Set True if you want
closed structures]

0:GrayImage [A binary image
whose edge pixels are grouped into
polygonal shapes]

LineFitting Line fitting in the edge structure. Expects a
binary image resulting from the application of
the Canny edge detector.

0:GrayImage
1:Boolean [Set True if you want
closed structures]

0:GrayImage [A binary image
whose edge pixels are grouped into
polygonal shapes]

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

ArcFitting Arc fitting in the edge structure. Expects a
binary image resulting from the application of
the Canny edge detector.

0:GrayImage
1:Boolean [Set True if you want
closed structures]
2:Boolean [Set True if you want
display the circles associated
with detected arcs]
3:Boolean [Set True if you want
display the lines that are not
grouped into arcs segments]

0:GrayImage [A binary image
whose edge pixels are grouped into
polygonal shapes]

EdgeLinking4 Edge linking (scanning window is user
defined). Expects a binary image resulting
from the application of the Canny edge
detector.

0:GrayImage
1:Integer [The size of scanning
window. (5-11)]

0:GrayImage [Edge linked image]

ANALYSIS
ThinOnce Full application of the thinning algorithm. Thin

till completion resulting in a skeleton image.
0:GrayImage [Binary] 0:GrayImage [Binary]

Thin The input binary image is thinned N times as
specified by the user

0:GrayImage [Binary]
1:Integer [N – number of
iterations]

0:GrayImage [Binary]

CornerPointDetector Skeleton corner detection from a binary image
based on a 3x3 region

0:GrayImage [Binary] 0:GrayImage [Binary]

JunctionDetector Skeleton junction detection from a binary
image based on a 3x3 region

0:GrayImage [Binary] 0:GrayImage [Binary]

LimbEndDetector Skeleton limb end detection from a binary
image based on a 3x3 region

0:GrayImage [Binary] 0:GrayImage [Binary]

BiggestBlob Extract the biggest white blob from a binary
image

0:GrayImage [Binary] 0:GrayImage [Binary]

SmallestBlob Extract the smallest white blob from a binary
image

0:GrayImage [Binary] 0:GrayImage [Binary]

BlobFill Fill the holes in a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
Labeller Label by location unconnected shapes in a

binary image (Range 0-255)
0:GrayImage [Binary] 0:GrayImage

LabelByArea Label the unconnected shapes in a binary
image in relation to their size (Range 0-255)

0:GrayImage [Binary] 0:GrayImage

MeasureLabelledObjects Measure the N (user specified) largest objects
in a binary image (Range 0-255)

0:GrayImage [Binary]
1:Integer [limit on the number of
labelled objects measured,
default=5]

0:String [contains data describing
the measured objects: (Grey Scale,
Area, Centroid)]

4 O. Ghita and P.F. Whelan (2002), “A computationally efficient method for edge thinning and linking using endpoints”, Journal of Electronic Imaging, 11(4), Oct. 2002, pp 479-
485.

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

WhiteBlobCount Count the number of white bobs in a binary
image (Range 0-255)

0:GrayImage [Binary] 0:Integer [Range 0-255]
1:GrayImage [A white cross is
overlaid on each blob found.]

Label_16 Label by location the unconnected shapes in
a binary image (Range 0-65535). Note: This is
outside the 8-bit display range. Slow process.

0:GrayImage [Binary] 0:GrayImage

WhiteBlobCount_16 Count the number of white bobs in a binary
image (Range 0-65535). Slow process.

0:GrayImage [Binary] 0:Integer [Range 0-65535]
1:GrayImage [A white cross is
overlaid on each blob found.]

ConvexHull Compute the convex hull boundary 0:GrayImage [Binary] 0:GrayImage [Binary]
FilledConvexHull Compute the filled convex hull 0:GrayImage [Binary] 0:GrayImage [Binary]
CrackDetector Highlight cracks in the input image 0:GrayImage 0:GrayImage
EulerNumberCalculator Compute the Euler number from a binary

image
0:GrayImage [Binary] 0:Integer [Euler number]

WhitePixelCounter Compute the number of white pixels 0:GrayImage 0:Integer [pixel count]
IsolateHoles Isolate holes in a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
IsolateBays Isolate bays in a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
ConnectivityDetector Connectivity detection in a thinned skeleton

binary image. Mark points critical for
connectivity in a 3x3 region.

0:GrayImage [Binary] 0:GrayImage

BoundingBox Minimum area bounding rectangle 0:GrayImage 0:GrayImage
FilledBoundingBox Filled minimum area bounding rectangle 0:GrayImage 0:GrayImage
BoundingBoxTopCoordinate Compute the top left coordinate of the

minimum area bounding rectangle
0:GrayImage 0:Coordinate [top left]

BoundingBoxBottomCoordinate Compute the bottom right coordinate of the
minimum area bounding rectangle

0:GrayImage 0:Coordinate [bottom right]

CornerDetector Grey Scale (SUSAN) corner detector 0:GrayImage
1:Integer [Brightness threshold]
2:Integer [Geometric threshold]

0:GrayImage [Corner points]

K-MEANS CLUSTERING
GrayScaleCluster Cluster a grey scale image (number of

clusters are user defined) using the k-means
algorithm.

0:GrayImage
1:Integer [Number of clusters]

0:GrayImage [Gray-scale]

ColorCluster Cluster a colour image (number of clusters
are user defined) using the k-means
algorithm.

0:Image [Color Image Input]
1:Integer [Number of clusters]

0:GrayImage [Gray-scale]

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Un_ColorCluster Unsupervised colour clustering using the k-
means algorithm.

0:Image
1:Double [Low threshold
(possible values 0.5-1.0),
default=0.6]
2:Double [High threshold
(possible values 1.0-1.5),
default=1.2]

0:GrayImage [Gray-scale]
1:Image [Colour]
2:Integer [Number of clusters]

PseudoColor Pseudo-colour operation 0:Image [grey-scale or colour
image]

0:Image [false colour image]

TRANSFORM#
MedialAxisTransform Medial axis transform operation. Binary image

showing the simple skeleton
0:Image [binary] 0:Image [binary]

MedialAxisTransform_GS Medial axis transform operation. GS image
where each point on the skeleton has an
intensity which represents its distance to a
boundary in the original object

0:Image [binary] 0:GrayImage [grey scale]

FFT Fast Fourier Transform: FFT 0:GrayImage [Input image
dimension must be a power of
2]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

IFFT Inverse Fourier Transform 0:File [A Fourier data file which
shall be interpreted as an
image.]

0:GrayImage [The resulting gray-
scale image which represents the
interpreted Fourier data]

FFTLowpass Low pass frequency filter 0:File [Fourier Data File]
1:Double [cut-off value (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTHighpass High pass frequency filter 0:File
1:Double [cut-off value (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTAdaptiveLowpass FFT adaptive lowpass filter 0:File
1:Double [limit (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

Some of these functions use data types / variables that are for internal NeatVision use only. Access to such data (e.g. pixel access) is can be done directly in Java, see
example in Appendix A.1

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

FFTBandpass FFT band-pass filter 0:File [Fourier Data File]
1:Double [inner limit (0-1.0)]
2:Double [outer limit (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTBandstop FFT band-stop filter 0:File [Fourier Data File]
1:Double [inner limit (0-1.0)]
2:Double [outer limit (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTMultiply Multiply two Fourier data files 0:File [Fourier Data File]
1:File [Fourier Data File]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTDivide Divide one Fourier data file by another 0:File [Fourier Data File]
1:File [Fourier Data File]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTGaussian FFT Gaussian filter. Input 0 requires an
integer value that = 2^n where n is a +ve
integer. Note: size = width = height

0:Integer [size of a new Fourier
data file which contains
Gaussian coefficients]
1:Double [Standard deviation of
the Gaussian coefficients (0.1-
5.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTSelectivePass FFT selective frequency filter 0:File [Fourier Data File]
1:Double [The cutoff value of
the filter (0-1.0)]
2:Double [The x-offset of the
symmetric selective filter (0-
1.0)]
3:Double [The y-offset of the
symmetric selective filter (0-
1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

FFTSymmetricSelectivePass FFT selective symmetric frequency filter 0:File [Fourier Data File]
1:Double [The cutoff value of
the filter (0-1.0)]
2:Double [The x-offset of the
symmetric selective filter (0-
1.0)]
3:Double [The y-offset of the
symmetric selective filter (0-
1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image
transformed to its Fourier
coefficients]

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

DCT2D Direct Cosine Transform operation 0:GrayImage [Input image
dimension must be a power of
2]

0:GrayImage [Real Part]
1:GrayImage [DCT Magnitude]

IDCT2D Inverse DCT (filtering factor is user defined) 0:GrayImage
1:Double [DCT quality
coefficient (0-2.0)]

0:GrayImage [IDCT image]

Hough Line Hough Transform 0:GrayImage [Binary] 0:GrayImage
InverseHough Inverse Hough Transform. The integer input

specifies how many of the brightest pixels
shall be taken into account when performing
the Inverse Hough operation.

0:GrayImage
1:Integer [Number of bright
points to be considered,
default=10]

0:GrayImage

CircHough Circular Hough Transform 0:GrayImage [binary image to
be subjected to the circular
Hough transform]

0:GrayImage [Image]
1:GrayImage [Transform space]

CooccurrenceMatrixGenerator Compute the co-occurrence matrix 0:GrayImage 0:GrayImage
CooccurrenceMatrixEnergyCalculator Compute the energy of the co-occurrence

matrix
0:GrayImage 0:Double

CooccurrenceMatrixEntropyCalculator Compute the entropy of the co-occurrence
matrix

0:GrayImage 0:Double

CooccurrenceMatrixContrastCalculator Compute the contrast of the co-occurrence
matrix

0:GrayImage 0:Double

CooccurrenceMatrixHomogenityCalculator Compute the homogeneity of the co-
occurrence matrix

0:GrayImage 0:Double

DistanceTransform3x3 Compute the distance transform in a 3x3
window (input binary image)

0:GrayImage [Binary] 0:GrayImage

DistanceTransform5x5 Compute the distance transform in a 5x5
window (input binary image)

0:GrayImage [Binary] 0:GrayImage

LeftToRightDistanceTransform Left to right distance transform (input binary
image)

0:GrayImage [Binary] 0:GrayImage

RightToLeftDistanceTransform Right to left distance transform (input binary
image)

0:GrayImage [Binary] 0:GrayImage

TopToBottomDistanceTransform Top to bottom distance transform (input binary
image)

0:GrayImage [Binary] 0:GrayImage

BottomToTopDistanceTransform Bottom to top distance transform (input binary
image)

0:GrayImage [Binary] 0:GrayImage

GrassFireTransform Grass fire transform (input binary image) [8-
connected]

0:Image [Binary] 0:Image [grey-scale]

MORPHOLOGY
Dilation Dilation operation (user specify connectivity of

the structured element 4 or 8)
0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Erosion Erosion operation (user specify connectivity of
the structured element 4 or 8)

0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

Open Opening operation (user specify connectivity
of the structured element 4 or 8)

0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

Close Closing operation (user specify connectivity of
the structured element 4 or 8)

0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

ErodeNxN Erosion operation with a user defined NxN
structuring element (X or null = don’t cares)

0:GrayImage
1:Integer [Array]

0:GrayImage

DilateNxN Dilation operation with a user defined NxN
structuring element (X or null = don’t cares)

0:GrayImage
1:Integer [Array]

0:GrayImage

MorphologicalValley Morphological valley operation (user specify
connectivity of the structured element 4 or 8)
[Default=8]

0:GrayImage
1:Integer (4 or 8)

0:GrayImage

MorphologicalTophat Morphological top hat operation (user specify
connectivity of the structured element 4 or 8)
[Default=8]

0:GrayImage
1:Integer (4 or 8)

0:GrayImage

HitAndMiss Hit and miss transformation. Hit and miss
array masks must not overlap.

0:GrayImage
1:Integer [user defined hit array,
blanks correspond to DON'T
CARE)]
2:Integer [user defined miss
array]

0:GrayImage

MorphGradient Morphological Gradient (user specify
connectivity of the structured element 4 or 8)
[Default=8]

0:GrayImage
1:Integer

0:GrayImage

ReconByDil Reconstruction by dilation 0:GrayImage
1:GrayImage [Seed]
2:Integer [SE size]

0:GrayImage [Reconstructed]
1:GrayImage [Elements removed]

ReconByDil_UI Reconstruction by dilation via a user selected
seed point (8-connected).

0:GrayImage [User interaction]

0:GrayImage [Reconstructed]
1:GrayImage [Elements removed]

DBLT Double [Hysteresis] Threshold based
reconstruction. Binary Outputs. Seed
threshold to reduce noise Mask threshold to
maximise signal

0:GrayImage
1:Integer [seed threshold]
2:Integer [mask threshold]

0:GrayImage [Reconstructed]
1:GrayImage [Seed Image]
2:GrayImage [Seed Image]

Watershed Watershed transform (return the watershed
image and the region boundaries image)

0:GrayImage 0:GrayImage [Watershed Image]
1:GrayImage [Binary, Watershed
boundaries]

COLOUR
GreyScaler Average three colour planes 0:Image [colour] 0:GrayImage

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

ColourToRGB Extract the RGB color planes 0:Image [colour] 0:GrayImage [R]
1:GrayImage [G]
2:GrayImage [B]

RGBToColour Create an image from individual RGB
channels

0:GrayImage [R]
1:GrayImage [G]
2:GrayImage [B]

0:Image [colour]

ColourToHSI Extract the HSI colour planes 0:Image [colour] 0:GrayImage [H]
1:GrayImage [S]
2:GrayImage [I]

HSIToColour Create an image from individual HSI planes 0:GrayImage [H]
1:GrayImage [S]
2:GrayImage [I]

0:Image [colour]

ColourToOpponent Extract the opponent process colour
representation

0:Image [colour] 0:GrayImage [Red_Green]
1:GrayImage [Blue_Yellow]
2:GrayImage [White_Black]

ViewOpponent Normalize (0-255) opponent process colour
channels. Used to view the normalized colour
(unsaturated) channels

0:GrayImage [Red_Green]
1:GrayImage [Blue_Yellow]
2:GrayImage [White_Black]

0:GrayImage [Red_Green]
1:GrayImage [Blue_Yellow]
2:GrayImage [White_Black]

ColourToCMY Extract the CMY (Cyan, Magenta, Yellow)
colour planes

0:Image [colour] 0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

CMYToColour Create an image from individual CMY (Cyan,
Magenta, Yellow) planes

0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

0:Image [colour]

ViewCMY Normalize (0-255) CMY channels. Used to
view the normalized colour (unsaturated)
channels

0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

ColourToYUV Extract the YUV colour planes 0:Image [colour] 0:GrayImage [Y]
1:GrayImage [U]
2:GrayImage [V]

YUVToColour Create an image from individual YUV planes 0:GrayImage [Y]
1:GrayImage [U]
2:GrayImage [V]

0:Image [colour]

ViewYUV Normalize (0-255) YUV channels. Used to
view the normalized colour (unsaturated)
channels

0:GrayImage [Y]
1:GrayImage [U]
2:GrayImage [V]

0:GrayImage [Y]
1:GrayImage [U]
2:GrayImage [V]

ColourToYIQ Extract the YIQ colour planes. 0:Image [colour] 0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

YIQToColour Create an image from individual YIQ planes 0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

0:Image [colour]

ViewYIQ Normalize (0-255) YIQ channels. Used to
view the normalized colour (unsaturated)
channels

0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

ColourToXYZ Extract the XYZ colour planes 0:Image [colour] 0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

XYZToColour Create an image from individual XYZ planes 0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

0:Image [colour]

ViewXYZ Normalize (0-255) XYZ channels. Used to
view the normalized colour (unsaturated)
channels

0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

ColourToLAB Extract the Lab colour planes. 0:Image [colour] 0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

LABToColour Create an image from individual Lab planes 0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

0:Image [colour]

ViewLAB Normalize (0-255) Lab channels. Used to view
the normalized colour (unsaturated) channels.

0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

3D VOLUME
DicomSave A grey-scale volume image whose pixels shall

be saved into DICOM format (*.dcm) (Double-
click to activate). Requires the DICOM header
file generated by DicomRead.

0:VolumeImage
1:String [Path of the original
DICOM header file]

DicomRead Extract the grey-scale volume image data
from a DICOM image. The header information
is also made available to be passed to
DicomSave

 0:VolumeImage
1:String [Path of the original
DICOM header file]
2:String [DICOM header]

XYZviewer Slices in a grey-scale 3D image are viewed
from their X, Y and Z directions

0:VolumeImage

IMGfrom3D Get a slice from a 3D data set (slice is
specified by user). Returns the min max pixel
values from within the slice.

0:VolumeImage
1:Integer [Range: 1 to the
number of slices in the volume,
default=1]

0:GrayImage
1:Integer [minimum pixel value
within slice]
2:Integer [maximum value within
slice]

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

Scale3dData Scale pixel values in a 3D grey-scale image to
the range 0 – integer input

0:VolumeImage
1:Integer [Scale range required,
(default=255)]

0:VolumeImage

Thres3D Threshold the 3D data 0:VolumeImage [Grey-scale]
1:Integer [Threshold value,
default=200]

0:VolumeImage [Binary]

Mask3D Generate a 3D mask. Zeros a user-defined
number of rows, columns and slices.

0:VolumeImage [Grey-scale]
1:Integer [size of 3D mask,
default=1]

0:VolumeImage [Grey-scale]

Sobel3D 3D Sobel 3x3x1 (18-neighbourhood) edge
detector

0:VolumeImage [Grey-scale] 0:VolumeImage [Grey-scale]

Blob3D Extract the 3D blobs from binary 3D image.
Each blob is assigned a grey scale value.

0:VolumeImage [Binary] 0:VolumeImage [Binary]

BigestBlob3D Extract the N (user defined) biggest 3D blobs
from 3D binary image.

0:VolumeImage [Binary]
1:Integer [Number of large
blobs required, range 0-255,
default=1]

0:VolumeImage [Binary]

Thinning3D 3D thinning operation of a binary 3D data set 0:VolumeImage [Binary] 0:VolumeImage [Binary]
MIP Maximum intensity projection transform 0:VolumeImage 0:GrayImage
AIP Average intensity projection transform 0:VolumeImage 0:GrayImage
PushSlice Push (insert) an image slice into the 3D data

set
0:VolumeImage
1: GrayImage [Image to be
inserted]
2:Integer [slice number -
between 1 and depth
(default=1)]
3:Integer [minimum pixel value
within slice (default=1)]
4:Integer [maximum pixel value
within slice (default=255)]

0:VolumeImage

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

RenderEngine Surface rendering of a binary image. Image
can be displayed as a cloud of points, wire
frame, flat shading, Gouraund shading and
Phong shading. (Double-click to activate).
Allows user to translate, scale and rotate
image.

0:VolumeImage 0:VolumeImage

LOW LEVEL#
GetPixel A grey-scale image from which a pixel

intensity at a certain coordinate is obtained.

NB: See Appendix A.1 for a more efficient
way to directly manipulate pixel data.
NeatVision low level methods are not
recommend for such low level pixel
operations.

0:GrayImage
1: Coordinate [coordinate of the
pixel in question]

0: Integer [intensity of the pixel at
the specified coordinate]

SetPixel A grey-scale image from which a pixel at a
certain coordinate is replaced with one of a
user defined intensity.

0:GrayImage
1: Integer [grey-scale intensity
of the replacement pixel]
2: Coordinate [coordinate of the
pixel in question]

0:GrayImage

RemovePixel A grey-scale image from which a pixel at a
certain coordinate is removed (removing a
pixels sets that pixel to black).

0:GrayImage
1: Coordinate [coordinate of the
pixel in question]

0:GrayImage

DrawLine Draw a line in the grey-scale image 0:GrayImage
1: Coordinate [starting
coordinate of the line]
2: Coordinate [finishing
coordinate of the line]
3: Integer [gray-scale intensity
of the line]

0:GrayImage

DrawBox Draw a hollow box in the grey-scale image 0:GrayImage
1: Coordinate [upper top left]
2: Coordinate [lower bottom
right]
3: Integer [grey-scale intensity]

0:GrayImage

Some of these functions use data types / variables that are for internal NeatVision use only. Access to such data (e.g. pixel access) is can be done directly in Java, see
example in Appendix A.1

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

FillBox Draw a filled box in the grey-scale image 0:GrayImage
1: Coordinate [upper top left]
2: Coordinate [lower bottom
right]
3: Integer [fill grey-scale
intensity]

0:GrayImage

DrawCircle Draw a white hollow circle in the grey-scale
image

0:GrayImage
1: Coordinate [coordinate of the
centre of the circle]
2: Integer [radius]

0:GrayImage

FillCircle Draw a white filled circle in the grey-scale
image

0:GrayImage
1: Coordinate [coordinate of the
centre of the circle]
2: Integer [radius]

0:GrayImage

GetImageWidth Width of the input grey-scale image 0:GrayImage 0: Integer [width of the input grey-
scale image]

GetImageHeight Height of the input grey-scale image 0:GrayImage 0: Integer [height of the input grey-
scale image]

GenerateCoordinate Generate the coordinate value from the (x,y)
components.

0: Integer [x]
1: Integer [y]

0: Coordinate

GeneratePoints Generate the (x,y) components of a given
coordinate.

0: Coordinate 0: Integer [x]
1: Integer [y]

STRING
StringAdd Combine two strings (objects) 0: Undefined [first of two strings

(objects) which are to be
added]
1: Undefined [second of two
strings (objects) which are to be
added]
2:

0: String [The resulting string which
is made up from the two input
strings]

StringToLowerCase A string which shall be converted to lower
case

0: String 0: String

StringToUpperCase A string which shall be converted to upper
case

0: String 0: String

MATH# Library of standard mathematical operators.
JAIColour See the JavaTM Advanced Imaging website: http://java.sun.com/products/java-media/jai/

Some of these functions use data types / variables that are for internal NeatVision use only. Access to such data (e.g. pixel access) is can be done directly in Java, see
example in Appendix A.1

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

OSMIA – Tina 5 Interface5
NemaReader Read a Nema image

Path of the file through the
graphical interface

0: GrayImage
1: Double [minimum pixel value]
2: Double [maximum pixel value]

AiffReader Read an Aiff image Path of the file through the
graphical interface

0: GrayImage
1: Double [minimum pixel value]
2: Double [maximum pixel value]

RenderEngineN Render a binary volume image 0: VolumeImage [binary]
1: Integer [Thickness factor:
 Values: 1 to n]

Ej_Frac Compute the ejection fraction from two
volume images.

0: VolumeImage [systole]
1: VolumeImage [diastole]

0: VolumeImage [binary]
1: VolumeImage [binary]
2: Double [Ejection fraction value]

Flow2D Compute the 2D optical flow (Horn-Schunck
or Lucas-Kanade). Original code by Prof.
John Barron, UWO, Canada

0: String [Directory path for
optical flow RAS sequence]
1: String [Stem name of the
sequence]
2: Boolean [Swap data: PC
should be TRUE]
3: Boolean [Method: TRUE :
Horn-Schunck. FALSE: Lucas-
Kanade]
4: Integer [Flow number: middle
index of the sequence]
5: Double [Tau parameter,
Default value: 0.5]
6: Double [Alpha parameter,
Default value: 1.0]
7: Integer [Number of iterations,
Default value: 50]
8: Integer [Offset parameter,
Default value: 6]
9: Double [Scale parameter,
Default value 12.0]

0: GrayImage [Output image
illustrating the flow vectors]

5 See http://www.eeng.dcu.ie/~whelanp/osmia/ for details on interfacing NeatVision with Tina 5.0

© 2004, VSG, DCU. www.NeatVision.com

http://www.eeng.dcu.ie/%7Ewhelanp/osmia/

NeatVision 2.1

Aorta_n Detect the aorta outline in a greyscale image. 0: GrayImage [Input image]
1: String [Path of the model
data]
2: String [Path of the
pca_model data]
3: Double [minimum pixel value]
4: Double [maximum pixel
value]

0: Image [RGB image highlighting
the aorta outline]

TSmooth Tangential smooth operator 0: GrayImage [Input image]
1: Integer [Number of iterations]

0: GrayImage [Output image]

XY_Norm Coil correction algorithm 0: GrayImage [Input image]
1: Double [Standard deviation]

0: GrayImage [Output image]

st_rec Stereo rectification algorithm 0: String [Path of left image –
aiff format]
1: String [Path of right image –
aiff format]
2: String [Path of left cam file]
3: String [Path of right cam file]

0: GrayImage [Input left image]
1: GrayImage [Input right image]
2: GrayImage [Output left image]
3: GrayImage [Output right image]

Pairwise Pairwise geometric histograms 2D object
recognition

0: String [Directory path]
1: String [Filename – scene
data]
2: String [Filename – model
data]

0: Image [RGB image: Scene data]
1: Image [RGB image: Model data]
2: Image [RGB image: Recognised
model superimposed on the input
scene data]

© 2004, VSG, DCU. www.NeatVision.com

NeatVision 2.1

References:

1. Paul F. Whelan, Robert J. T. Sadleir, and Ovidiu Ghita, (2004) "Informatics in Radiology (infoRAD): NeatVision: Visual Programming for Computer-aided Diagnostic
Applications", Radiographics; 24(6):1779-1789

2. Robert J. T. Sadleir, Paul F. Whelan, Padraic MacMathuna, and Helen M. Fenlon (2004) "Informatics in Radiology (infoRAD): A Portable Toolkit for Providing

Straightforward Access to Medical Image Data" Radiographics. 2004 Jul-Aug:24(4):1193-1202

3. Paul F. Whelan and R.J.T. Sadleir (2004), "A Visual Programming Environment for Machine Vision Engineers", Sensor Review, 24(3):265-270

4. Paul F. Whelan (2004), Neatvision 2.1 Users Guide.

5. Paul F. Whelan (2003), "Automated cutting of natural products: A practical packing strategy", Chapter 11 in Machine Vision for the Inspection of Natural Products. Mark
Graves and Bruce Batchelor (Eds.), Springer (London). , ISBN: 1-85233-525-4, pp 307-329

6. Paul F. Whelan (2001), "Visual programming for machine vision", Chapter 8 in Intelligent Machine Vision: Techniques, Implementation & Interfacing B.G. Batchelor and

F. Waltz, Springer-Verlag UK, 448 pages, ISBN: 3-540-762248, pp 229-320

7. Paul F. Whelan and D. Molloy (2000), Machine Vision Algorithms in Java: Techniques and Implementation, Springer (London), 298 Pages. ISBN 1-85233-218-2.

8. B.G. Batchelor and Paul F. Whelan (1997), Intelligent Vision Systems for Industry, Springer-Verlag (London), 457 pages, ISBN 3-540-19969-1.

9. Paul F. Whelan (1997), "Remote access to continuing engineering education - RACeE", IEE Engineering Science and Education Journal, 6(5), pp 205-211. Also
published in the IEE Computer Forum.

10. Paul F. Whelan, B.G. Batchelor, M.R.F. Lewis and R. Hack (1997), "Machine vision and the World Wide Web: Design and training aids", Proceedings of the SPIE - The

International Society for Optical Engineering, Vol. 3205 - Machine Vision Applications, Architectures, and Systems Integration VI, Pittsburgh (USA), pp 284-294.

11. B.G. Batchelor and Paul F. Whelan (1995), "Real-time colour recognition in symbolic programming for machine vision systems", Machine Vision and Applications;
8(6):385-398

12. B.G. Batchelor and Paul F. Whelan (Eds) (1994), Selected Papers on Industrial Machine Vision Systems, SPIE Milestone Series MS 97, SPIE Optical Engineering Press,

629 pages

© 2004, VSG, DCU. www.NeatVision.com

	Appendix A
	Appendix A.1: TestDevPixelLevel.java
	Appendix A.3: TestDev.java
	Appendix B: Main NeatVision 2.1 Methods
	DATA
	FLOW CONTROL
	UTILITIES
	ARITHIMETIC
	HISTOGRAM
	PROCESSING
	FILTER
	EDGES
	ANALYSIS
	K-MEANS CLUSTERING
	TRANSFORM#
	MORPHOLOGY
	COLOUR
	3D VOLUME
	STRING
	JAIColour

