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Abstract 

 
Data smoothing and feature enhancement are two important precursors to many higher-level 

computer vision applications such as image segmentation and scene understanding. Total 

variation (TV) flow algorithms are a distinct subcategory of diffusion-based filtering techniques 

that have been widely applied to reduce the level of noise in the image but not at the expense of 

poor feature preservation. In this paper we address a number of numerical aspects associated 

with the TV flow and in particular we are interested to redefine the TV flow regularization in 

order to reduce the effect of oscillations and improve the convergence of the implementations in 

the discrete domain. TV flow algorithms are implemented using iterative schemes and one 

difficult problem is the selection of appropriate criteria to identify the optimal number of 

iterations. In this paper we show that the application of a time-ageing procedure leads to an 

elegant formulation were the TV flow algorithms converge naturally to the optimal solution. To 

evaluate the performance of the proposed algorithm (referred in this paper to as time-controlled 

(TC)-TV flow), a large number of experiments on various types of natural images were 

conducted. 
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1. Introduction 

 
One important step in the process of image segmentation is to reduce the errors caused by the 

image noise and local in-homogeneities. Typically, the image noise is reduced by the application 

of local averaging operators such as the Gaussian, but this approach leads to the introduction of 

image blur and the attenuation of important contextual features in the image such as edges. To 

compensate for these undesirable effects associated with linear smoothing strategies, non-linear 

approaches have been developed to achieve better feature preservation (Grahs et al., 2002; 

Keeling and Stollberger, 2002; Sonka et al., 1998). Among non-linear techniques, the seminal 

work detailed in the paper by Perona and Malik (Perona and Malik, 1990) received a special 

attention from the vision community (Ghita et al., 2005; Ilea and Whelan, 2007; Smolka and 

Plataniotis, 2002; Weickert et al., 1998). Total variation (TV) flow algorithms have been viewed 

by many authors as a special case of the geometrical-driven anisotropic diffusion (Dibos and 

Koepfler, 1999; Gothandaraman et al., 2001; Petrovic et al., 2004; Rudin et al., 1992; Strong and 

Chan, 2003). The TV flow formulation has been evaluated from a numerical perspective by 

Breuβ et al., 2006 and they concluded that this data smoothing feature preserving technique is 

well-posed and it leads to constant signals in finite times. However, in their paper they stressed 

that the discrete representations of the standard TV flow show instability in areas defined by zero 

gradients and the implementations in the discrete (image) domain should be approached with 

care.  

       In this paper we follow the work detailed in (Breuβ et al., 2006) and we focus on a number 

of numerical aspects associated with the TV flow formulation with a view of improving the 

numerical stability and the convergence time. Also in line with other non-linear smoothing 

strategies such as anisotropic diffusion (Ilea and Whelan, 2007; Smolka and Plataniotis, 2002; 

Weickert, 1998), the TV flow formulation is implemented as an iterative scheme where the 

number of iterations is typically a user defined parameter (Andreu et al., 2001; Breuβ et al., 



2006; Petrovic et al., 2004). In this paper we show that the application of a time-ageing 

procedure to the time step size parameter, implements a data smoothing framework where the 

evolution in time of the TV flow becomes predictable and the algorithm will converge naturally 

to the optimal result. This paper is organised as follows. In Section 2 the mathematical 

background behind the TV flow formulation is discussed. Section 3 details the numerical 

implementation of the TV flow and we approach the algorithmic solutions applied to improve 

the numerical stability. In Section 4 a number of experimental results are analysed while Section 

5 concludes this paper.    

 

2. TV Flow. Mathematical background 

 

As it was mentioned in the previous section, the TV flow is a special case of the anisotropic 

diffusion function that has been first proposed by Perona and Malik, 1990 (PM).  
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where u(x,y,t) is the processed data at time t and ∇  is the gradient operator. In the PM 

formulation the diffusion function g is designed to control the smoothing based on the strength of 

the gradient. In the original paper (Perona and Malik, 1990), this function is implemented using 

exponential or reciprocal forms and the value of g is bounded in the interval (0, 1], g →0 when 

∇ u →∞.  In the TV flow formulation, the functional g(∇ u) is replaced with ∇ u and this simple 

modification leads to a process where the data is diffused more in image areas with small 

discontinuities in the intensity data and the diffusive process is stopped in image locations where 

the gradients have large values. 
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In the one-dimensional (1D) case, this process can be formulated as the minimisation of the 

following functional called TV regularization (Breuβ et al., 2006; Grahs et al., 2002; Strong and 

Chan, 2003),  
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where f is the initial data, t is a time parameter and Ω is the image domain. The main property of 

the function illustrated in equation (3) is that it does not penalise the image discontinuities and 

the smoothing is modulated by the descent of the gradient magnitude. In equation (2) it is 

noticeable that the TV flow formulation becomes unstable when ∇ u → 0 and to circumvent this 

problem Breuβ et al., 2006 proposed a numerical implementation using the following 

regularization, 
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where β is a small positive regularization term.   

  

3. Numerical implementation of the TV flow 

 
The implementation of the TV flow in the discrete domain would require a simple approximation 

of the partial derivatives with the central differences in the (x,y,t) space. In this study, we have 

extended the approach detailed in Breuβ et al. 2006 to the two-dimensional (2D) grid G as 

follows, 
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where n is the iteration index, x∆  and y∆ are the discrete spatial distances of the image grid, t∆  

is the time size step parameter and β is the regularization term. If we consider that the datapoint 

jiu ,  is a local maxima or minima, we can demonstrate that the discrete implementation of the 

TV flow is stable (for more details refer to Breuβ et al., 2006) if equation (8) is upheld. This 

equation indicates that the parameters β and t∆  are not mutually independent and they need to 

be carefully selected.   
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3.1. Time-controlled TV flow formulation 

From the two parameters that control the smoothing process (β and t∆ ), the time size t∆  has a 

larger influence on the intensity of the smoothing process and this observation is motivated by 

the fact that this parameter has a multiplicative effect. Surprisingly, in the original 

implementation (Breuβ et al., 2006) this parameter is kept constant during the iterative process 

and as a result with the increase in the number of iterations the amplitude of oscillations does not 



decrease monotonically. This can be demonstrated if we consider again that a datapoint jiu ,  is a 

local maxima or minima and we set the regularization parameter β to a value closer to zero. 

Thus, the maximal value that is applied to update the value of the datapoint 1
,
+n
jiu  in equations (6) 

and (7) is,  
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      Equation (9) indicates that the oscillations are bounded to a finite value (for the sake of 

simplicity we assume that x∆ = y∆ ), but there is no guarantee that they will follow a monotonic 

decrease. In fact, in our experiments we found that the amplitude of oscillations starts to decrease 

only after the TV flow process is applied for a large number of iterations. Nonetheless, this 

approach is not appropriate for two reasons. Firstly, with the increase in the number of iterations 

the computational load required to smooth the image data is high. Secondly, this precludes the 

application of numerical solutions to identify the optimal number of iterations.  

       To address these problems we propose an elegant solution where a time controlled (TC) 

ageing procedure is applied to decrease the value of the parameter t∆ after each iteration (this 

approach is referred to as TC-TV flow). The time controlled ageing procedure has the role of 

cooling the smoothing process with the increase in the number of iterations and this can be 

implemented using either the linear (equation (10)) or exponential (equation (11)) function,  
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where 0t∆ is the initial value of the time size parameter (at iteration zero).  In our experiments the 

implementation detailed in equation (10) proved to be more stable with respect to the selection of 

the γ parameter and in this paper the reported results are obtained when the ageing procedure is 

implemented using the linear form. Figure 1 illustrates the results when the standard TV (S-TV) 

flow and our TC-TV flow algorithms were applied to a 1D noisy test signal. For clarity purposes, 

the results obtained after the application of the TV flow algorithms were superimposed on the 

original noiseless signal. 
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     (c)                                                                             (d) 
 

Figure 1. Results of the TV flow. (a) Original signal and the noisy signal. (b,c) The results from 

the standard S-TV flow when applied to 100 and 500 iterations respectively. (d) The result from 

our TC-TV algorithm (number of iterations detected automatically using equation 12). 

 

       In equations (10) and (11) the parameter γ controls to what extent the smoothing procedure 

is cooled and it has the effect of lowering the amplitude of the oscillations at each iteration (see 

equation (9)). This process is illustrated in Figure 2.   
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Figure 2. Convergence of the TV flow algorithm. (a) Original image (BSDB, 2001). (b) The 

result obtained after the application of the S-TV flow procedure (300 iterations). (c) The result 

obtained after the application of the S-TV flow procedure (1500 iterations). (d) The result 

obtained after the application of our TC-TV flow algorithm (1500 iterations). (e) The amplitude 

of oscillations with respect to the number of iterations (in blue/dark – S-TV flow 

implementation, in red/gray – TC-TV flow implementation). In this experiment the TV flow 

parameters are set to the following values: t∆ =0.1, γ = 0.995, β = 0.1. Note that all illustrations 

in this paper are best viewed in colour.    



The application of the ageing procedure has another beneficial contribution, namely it allows us 

to derive a numerical solution for the identification of the optimal number of iterations. In 

equation (9) it can be observed that the absolute maximal updating value is bounded to 2 t∆ 0/ x∆ , 

thus, taking in consideration that the oscillations can be either positive or negative we can set the 

convergence criteria in the following way,  
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where Ω is the image domain. The selection of the parameters 0t∆ , β and γ is usually carried out 

based on experimentation.  
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Figure 3. Results of the TV flow when applied to the image depicted in Figure 2-a. (a-c) The 

results after the application of the S-TV flow procedure for 50, 300 and 1500 iterations 

respectively. (d,e) The results after the application of our TC-TV flow algorithm for 1500 

iterations and for the number of iterations calculated using equation (12) respectively. In this 

experiment the TV flow parameters are set to the following values: t∆ =0.05, γ = 0.995, β = 0.1. 



       For instance, if the parameter 0t∆ is set to a large value, the algorithm will converge faster 

but the results returned by the TV flow will show a significant amount of blur. Conversely, if the 

parameter 0t∆ is set to a low value such as 0.05 or lower then the algorithm will preserve better 

the features in the image, but this advantage is obtained at the expense of a high computational 

cost since the algorithm will require a large number of iterations to converge. Figure 3 illustrates 

the results obtained when the S-TV and TC-TV flow algorithms were applied to the image 

depicted in Figure 2-a and the time size parameter ( 0t∆ ) is set to 0.05.  From the experimental 

results depicted in Figures 2 and 3 it can be observed that the selection of the time size parameter 

plays an important role for the S-TV algorithm while the results returned by the TC-TV flow are 

virtually unaffected by the selection of this parameter (see the results depicted in Figures 2-d and 

3-d). Figure 3 also illustrates the results obtained after the TC-TV flow is applied for 1500 

iterations and for the number of iterations calculated automatically using equation (12).  It can be 

observed that the results depicted in Figures 3-d and 3-e show similar levels of smoothing and 

this is motivated by the fact that due to the monotonic descent of the ageing function illustrated 

in equation (10) the smoothing effect has a negligible effect after the algorithm reaches the 

number of iterations calculated using equation (12).  

       The regularization parameter β has a lower influence on the performance of the TV flow and 

is typically set to a low value in the interval [0.05, 0.2]. The parameter γ controls the descent of 

the time size parameter and to avoid a step decrease of t∆  that will result in a premature 

termination of the TC-TV flow it has to be set to a positive value close to 1 (γ≤1).  Figure 4 

shows a number of results after the application of the TC-TV flow to the image depicted in 

Figure 2-a when the ageing parameter γ is varied. The results depicted in Figure 4 indicate that a 

selection of the ageing parameter γ close to 1 (see Figure 4-c) would generate a smoothing 

framework that is similar with the S-TV flow (the monotonic descent of the ageing function is 

very slow). On the other hand, a selection of the ageing parameter γ to a value lower than 0.99 



would force the TC-TV flow algorithm to a premature termination as illustrated in Figure 4-a. In 

our experiments we have observed that the optimal values for the ageing parameter γ are in the 

interval [0.991, 0.999].   

 

    

Figure 4. Performance of the TC-TV flow when the ageing parameter γ is varied. (a) γ = 0.99. 

(b) γ = 0.995. (c) γ = 0.9995. To isolate the effect of the ageing parameter γ on the performance 

of the TC-TV flow in this experiment the time size and regularization parameters were 

maintained constant and set to the following values: 0t∆ =0.1, β = 0.1. 

 

 

4. Experiments and Results 

 

In this study we focus our investigation on the adaptive smoothing of colour images. To achieve 

this we have extended the smoothing model depicted in equations (6) and (7) to cover data where 

each datapoint is formed by a three-dimensional (3D) vector whose elements are defined by the 

colour components. One of the main issues associated with the formulation detailed in Section 2 

is the poor convergence of the standard TV flow algorithms and to compensate for this problem 

we have implemented a cooling procedure that acts upon the time size parameter to force the 

amplitude of oscillations to follow a monotonic descent with the increase in the number of 

iterations. As indicated in Section 3 the introduction of this ageing procedure allows us to 

identify numerically the number of iterations (see equation (12)) and in our experiments we 

evaluate the effectiveness of this procedure. Figures 5 to 7 depict a number of experimental 



results when the standard S-TV and our TC-TV flow implementations were applied both to 

noiseless data and to images that are artificially corrupted with noise (Gaussian noise with a 

standard deviation of 20 gray-levels on each colour channel). In the experimental results shown 

in Figures 5 to 8 the number of iteration for TC-TV flow is determined automatically using 

equation (12). 

       The results depicted in Figures 5 and 6 indicate that the standard S-TV flow introduces an 

undesired level of blur while our TC-TV flow algorithm is able to achieve superior results. This 

undesired blur is obvious in image regions defined by the cart’s wheel (see Figures 5-f (S-TV 

flow) and 5-g (TC-TV flow)) and in the image areas representing the fur in Figure 6 (see the 

close up details shown in Figures 6-f (S-TV flow) and 6-g (TC-TV flow)). The improved 

performance of the TC-TV flow algorithm when compared with the standard algorithm was 

expected since the strength of the smoothing process is decreasing with the increase in the 

number of iterations. We have also found in our experiments that the TV flow algorithms 

produce robust results even in cases when they are applied to images corrupted with a high level 

of image noise. Figure 7 depicts the results returned by the standard and TC-TV flow 

implementations when applied to an image corrupted with Gaussian noise with standard 

deviation of 20 gray-levels on each colour channel. Another set of experiments was conducted to 

evaluate the computational overhead associated with the TV flow algorithms analysed in this 

study and the results are depicted in Table 1. While the computational time required to compute 

the standard S-TV flow for one iteration is constant, the computational load when the algorithm 

is executed for 250 and 1000 iterations can be obtained by multiplying the computational time 

required to execute the algorithm for 500 iteration with a factor of 0.5 and 2 respectively. The 

experiments have been conducted using a Pentium 1.7 GHz PC, 500 MB RAM memory and 

running Windows 2000.  

 



 
 
 

Table 1. Computational overhead associated with the standard (S-TV) and proposed TC-TV flow 

algorithms. 

Image Size S-TV flow (500 iteration) 
(sec) 

TC-TV flow 
(sec) 

Figure 2-a 256 ×171 51.58 39.53  
Figure 6-a 256 ×256 80.30 62.68  
Figure 7-a 256 ×171 51.80 38.84  
Figure 8-a1 256 ×171 52.18 34.43  
Figure 8-a2 256 ×171 51.74 39.14 
Figure 8-a3 257 ×269 82.74 62.50 
Figure 8-a4 256 ×171 51.80 40.45 

 

 

       Figure 8 presents some additional results that illustrate the performance of our TC-TV flow 

algorithm when compared with that offered by the mean shift filtering (Comaniciu and Meer, 

2002). These experiments were conducted on a set of standard test images from Berkeley 

database (BSDB, 2001). In all experiments the TC-TV flow parameters 0t∆ , β and γ were set to 

0.1, 0.1 and 0.995 respectively. The parameters that select the space (σs) and the range (σr) 

resolutions of the mean shift filtering were set to 8 and 4 respectively as recommended in 

Comaniciu and Meer, 2002. The experimental results depicted in Figure 8 indicate that the TC-

TV flow algorithm outperforms the mean shift filtering when the results are analysed with 

respect to noise reduction and feature preservation.   
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                         (d)                                                    (e)                                 (f)                   (g) 

 

Figure 5. TV flow results.  (a) Original image (BSDB, 2001). (b-d) Results returned by the S-TV 

flow algorithm when executed for 250, 500 and 1000 iterations respectively. (e) Result returned 

by the TC-TV flow algorithm (the number of iterations selected automatically using equation 

12). (f, g) Close-up details from (b) S-TV flow (250 iterations) and (e) TC-TV flow respectively. 

 

 

 

 

 



 

 

 

   

                         (a)                                                (b)                                             (c) 

    

                      (d)                                              (e)                                   (f)                       (g) 

 

Figure 6. TV flow results.  (a) Original image. (b-d) Results returned by the S-TV flow algorithm 

when executed for 250, 500 and 1000 iterations respectively. (e) Result returned by the TC-TV 

flow algorithm. (f, g) Close-up details from (b) S-TV flow (250 iterations) and (e) TC-TV flow 

respectively.  

 

 

 

 



 

 

 

   

                      (a)                                                 (b)                                               (c) 

  

(d) (e) 

 

Figure 7. TV flow results.  (a) Natural image corrupted with Gaussian noise (standard deviation 

20 gray-levels on each colour channel). (b-d) Results returned by the S-TV flow algorithm when 

executed for 250, 500 and 1000 iterations respectively. (e) Result returned by the TC-TV flow 

algorithm.  

 

 

 



   
 

   
 

   
 

   
                       (a)                                                 (b)                                               (c) 
 
Figure 8. Additional results.  Column (a) - Original images (BSDB, 2001). Column (b) - Results 

returned by the TC-TV flow algorithm. Column (c) Results returned by the mean shift filtering 

algorithm (σs, σr) = (8,4). 

 



5. Conclusions 

 

The aim of this paper was to address some numerical aspects related to the stability of the 

discrete TV flow implementations. In this sense, we briefly detailed the methodology to 

implement the TV flow algorithms in the discrete domain and we have devised a number of 

improvements that increased the overall stability of the TV flow scheme. As indicated in other 

papers that have addressed the numerical stability of the TV flow algorithms (Andreu et al., 

2001; Breuβ et al., 2006; Grahs et al., 2002), the most difficult problems associated with the 

implementation in the discrete domain is to control the level of oscillations and to select the 

optimal set of parameters. In this paper we demonstrated that the application of an ageing 

procedure that adjusts the value of the time size parameter with the increase in the number of 

iterations, leads to an efficient computational framework where the amplitude of oscillations 

decrease monotonically. We have also demonstrated that the application of the ageing procedure 

allows the development of  a numerical solution to identify the optimal number of iterations. The 

experimental data indicated that the TV flow formulations are robust pre-processing schemes 

that can be successfully included in the development of a large number of algorithms ranging 

from adaptive data compression to image segmentation.  
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