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a b s t r a c t

The adaptive integration of the colour and texture attributes in the development of complex image

descriptors is one of the most investigated topics of research in computer vision. The substantial

interest shown by the research community in colour–texture-based segmentation is mainly motivated

by two factors. The first is related to the observation that the imaged objects are often described at

perceptual level by distinctive colour and texture characteristics, while the second is motivated by the

large spectrum of possible applications that can be addressed by the colour–texture integration in the

segmentation process. Over the past three decades a substantial number of techniques in the field of

colour–texture segmentation have been reported and it is the aim of this article to thoroughly evaluate

and categorise the most relevant algorithms with respect to the modality behind the integration of

these two fundamental image attributes. In this paper we also provide a detailed discussion about data

collections, evaluation metrics and we review the performance attained by state of the art implemen-

tations. We conclude with a discussion that samples our views on the field of colour–texture image

segmentation and this is complemented with an examination of the potential future directions of

research.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The use of colour and texture information collectively has strong
links with the human perception and in many practical scenarios
the colour-alone or texture-alone image information is not suffi-
ciently robust to accurately describe the image content. An example
is provided by the segmentation of natural images that exhibit both
colour and texture characteristics. This intuitive psychophysical
observation prompted the computer vision researchers to investi-
gate a large spectrum of mathematical models with the aim of
sampling the local and global properties of these two fundamental
image descriptors. Nonetheless, the robust integration of colour and
texture attributes is far from a trivial objective and this is motivated,
in part, by the difficulty in extracting precise colour and texture
models that can locally adapt to the variations in the image content.
In particular the segmentation of natural images proved to be
a challenging task, since these images exhibit significant inhomo-
geneities in colour and texture and in addition they are often
characterised by a high degree of complexity, randomness and
irregularity. Moreover, the strength of texture and colour attributes

can vary considerably from image to image and complications
added by the uneven illumination, image noise, perspective and
scale distortions make the process of identifying the homogenous
image regions extremely difficult. All these challenges attracted
substantial interest from the vision researchers, as the robust
integration of the colour and texture descriptors in the segmentation
process has major implications in the development of higher-level
image analysis tasks such as object recognition, scene understand-
ing, image indexing and retrieval, etc.

Over the past three decades, the field of image segmentation
based on the integration of colour and texture descriptors has
developed extensively, peaking with an abundance of algorithms
published between the years 2007 and 2009. It is useful to note
that in the period covered between 1984 and 2009 more than
1000 papers have been published in the literature and this figure
acknowledges the fact that colour–texture analysis has positioned
itself as one of the most researched areas in the field of image
processing and computer vision. The statistics that evaluate the
number of algorithms published on the topic of colour–texture
analysis in the last three years (2007–2009) clearly indicate that
this field of research has reached maturity and, as a result, distinct
patterns or categories of approaches that sample either the nature
of the feature extraction process or the methodologies employed
for feature integration can be identified. The aim of this paper is
to analyse from a theoretical perspective the main directions of
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research in the field of colour–texture analysis and to review the
concepts and strategies that have been investigated in the process
of colour–texture integration with a view of attaining robust
image segmentation. Although several surveys have addressed
the evaluation of colour-alone [1–3] or texture-alone [4–9]
segmentation algorithms, we are not aware of any work in the
literature that was concerned with the systematic analysis of the
concepts and methodologies that were employed in the develop-
ment of colour–texture image segmentation algorithms. We
would like to emphasise that in this review we are particularly
concerned with the analysis and categorisation of the published
works with respect to the integration of colour and texture
information in the segmentation process, which, in our opinion,
is the only logical approach that can lead to a meaningful insight
into this important field of research. There are mainly two reasons
that justify the adopted approach. Firstly, such analysis facilitates
a precise categorisation of the published algorithm based on the
principles behind data fusion (feature integration) process, which
is the central issue in the development of colour–texture seg-
mentation schemes, and secondly such line of investigation will
further allow the identification of generic colour–texture integra-
tion patterns that are decoupled from the application context that
is the prevalent characteristic of the colour and texture feature
extraction techniques. Thus, the foremost objectives of this paper
are: (a) to categorise the main trends in colour–texture integra-
tion, (b) to sample the application context of the proposed
implementations (whenever such discussion is appropriate),
(c) to discuss the evaluation metrics that are currently used to
assess the performance of the segmentation techniques, (d) to
review the publicly available data collections (image databases)
and (e) to analyse the performance of well-established state of the
art implementations. It is useful to note that this review is
primarily concerned with the analysis of algorithms that have
been designed for the segmentation of still digital images and we
will indicate when the evaluated approaches have been applied to
the segmentation of video data.

To provide a comprehensive insight into the work in the field
of colour–texture segmentation, we analysed a substantial num-
ber of papers published in journals and conference proceedings.
To broaden the scope of this paper, we will not restrict ourselves
only to the technical assessment of the investigated algorithms,
but we will also try to provide an ample discussion where the
ideas that emerged in the field of colour–texture integration over

the past three decades are systematically categorised and we will
examine the practical context of the investigated methods when-
ever such discussion is possible. Also, we will place an important
emphasis on the quantitative evaluation of the state of the art
implementations in the field of colour–texture analysis. In this
regard, we will present the numerical results achieved by the
analysed state of the art methods and we will indicate the
conditions and the type of data used in the evaluation process.

In the following subsections we will present the timeline and
the tendency of development of published research in the area of
colour–texture segmentation and then we will briefly discuss and
cite representative early works. In Section 2 we will review the
main trends with respect to the modality employed to combine
the colour and texture information in the segmentation process.
In Section 3 we will provide a detailed discussion about evalua-
tion metrics and data collections and we will assess the perfor-
mance obtained by state of the art implementations when applied
to image segmentation. Section 4 of the paper provides a discus-
sion that samples our views on the field of colour–texture
analysis.

1.1. Colour–texture segmentation: timeline and trend of growth

During the period 1984–2008 the research in the area of
colour–texture segmentation has witnessed a substantial growth.
To illustrate this fact we have generated a graph where the
records of published research works in the field analysed in our
paper are plotted for each year until the end of December 2008. In
this process we searched the information provided by the Com-
pendex [10], Inspec [10] and IEEEXplore [11] databases and we
have collated the results into a graph that is depicted in Fig. 1. The
year 2009 was not included in the diagram shown in Fig. 1. This is
motivated by the fact that a substantial number of research
papers published in the last months of the year 2009 are not
yet available in these online public databases and as a result the
statistics for this year would be incomplete. However, based on
the information we collected so far, we expect that the total
number of papers on colour–texture analysis that will appear in
conference proceedings and journals by the end of the year 2009
to match or even exceed the records generated for the year 2008.

As illustrated in Fig. 1, the period covered between 1984 and
1992 witnessed a small number of contributions that addressed the
topic of colour–texture analysis. Nonetheless, there are objective
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Fig. 1. The timeline and the number of the published research works on colour–texture segmentation from 1984 until 2008. These records were collected in

November 2009.
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factors that explain this relative small increase in research during
the early years and this is primarily motivated by the technological
limitations in computing and sensing devices. But with the pro-
liferation of colour digital cameras and the widespread availability
of modern computers, this area of research experienced a consider-
able interest from the computer vision community. This is clearly
reflected by the substantial increase in the number of publications
during the period 1993–2000. In the year 2001 we have noticed a
small decrease in the number of published papers, but this trend
was quickly reversed in the following years with the steepest
growth being noticed between 2005 and 2008. To further illustrate
the increased interest in the field of colour–texture analysis we
have also plotted the trend line in Fig. 1 (see the thick solid line)
that samples the rate of growth experienced in the period 1984–
2008. The trend line clearly shows that this area of research has
reached maturity and it is useful to note that the current studies in
the field of colour–texture analysis are not only focused on
theoretical advances related to feature extraction and integration
but start to find a large spectrum of applications including medical
imaging, image retrieval and indexing, image enhancement, pattern
recognition, motion estimation, etc.

1.2. Early approaches (1984–1992)

Returning to the early years covered by the period between
1984 and 1992, in this section we will provide a short description
of the first approaches that addressed the colour–texture seg-
mentation. We have deliberately chosen to discuss the early
works in the field of colour–texture segmentation at the begin-
ning of the paper to allow the reader to sample the whole range of
reasons that motivated the transition from the application
domain that is characteristic for early colour–texture segmenta-
tion methods, to the algorithmic sophistication of the more recent
approaches. This observation will become more apparent as we
progress with the categorisation of the colour–texture segmenta-
tion algorithms in Section 2, where the most relevant directions of
research are examined.

As indicated before, the early colour–texture segmentation
approaches were developed in the context of a given application
with the main focus being placed on the identification of the
coherent regions in biomedical data. Some representative early
papers include the work of Funakubo [12] where a region-based
colour–texture segmentation method was introduced for the
purpose of biomedical tissue segmentation and Harms et al.
[13] where the colour information has been employed in the
computation of texton values for blood cell analysis. Celenk and
Smith [14] proposed an algorithm that integrates the spatial and
spectral information for the segmentation of colour images
detailing natural scenes, while Garbay discussed in [15] a number
of methods that were developed for the segmentation of colour
bone marrow cell images. Following the same feature integration
principles, Katz et al. [16] introduced an algorithm for the
automatic retina diagnosis where a combination of features
including colour and edge patterns were employed to identify
the vascular structures in the input image. One apparent limita-
tion associated with these early colour–texture segmentation
schemes resides in the lack of generality of the texture models
that were used to sample the structural characteristics of the
objects contained in digital images. Nonetheless substantial
research efforts were devoted to answer this shortcoming and
as a result the research community started to reassess the role of
texture in the development of more generic colour–texture image
analysis algorithms. Thus, texture analysis is explicitly addressed
in [17], where the authors proposed to model ‘‘physically mean-
ingful’’ textures such as foliage, grass, or road in outdoor scenes as
a coloured Gaussian Markov Random Field (GMRF). However it is

useful to recall that most of the early approaches have been
developed in the context of well-defined application domains and
the integration of the colour and texture features has been
approached in an opportunistic manner based on the strength
of the features in the image. In this sense, Healey [18] includes the
edge information to guide the colour segmentation process, while
in [19] the authors combine the texture features extracted from
each sub-band of the colour space with the colour features using
heuristic merging rules. In [20], the authors discuss a method that
employs the colour–texture information for the model-based
coding of human images, while Shigenaga [21] adds the spatial-
frequency texture features sampled by Gabor filters to comple-
ment the CIE Lab (CIE is the acronym for the Commission
Internationale d’Eclairage) colour image information. In order to
capture the colour–texture content, Rosenfeld et al. [22] calcu-
lated the absolute difference distributions of pixels in multi-band
images, while Hild et al. [23] proposed a bottom-up segmentation
framework where the colour and texture feature vectors were
separately extracted and then combined for knowledge indexing.

From this short overview of early colour–texture analysis tech-
niques we can conclude that although the majority of approaches
were developed to address practical problems, a large spectrum of
ideas and concepts were advanced in regard to issues related to
feature extraction and feature integration. In particular it is useful to
note that the main focus of the early works on colour–texture
analysis was placed on feature extraction whereas studies on the
complementary properties of the colour and texture attributes were
less numerous. However, once the field of colour–texture analysis
departed from the purely application driven context, the optimal
integration of the colour and texture features started to be one of the
main topics of research, a topic that continues to be an open
research issue. Consequently, one important goal of our study is to
review the work in the field of colour–texture segmentation based
on the modality applied for feature integration and the representa-
tive directions of research will be examined in the next section of
the paper.

2. Colour–texture segmentation: main directions of research

In this section we will present a comprehensive review of the
existent colour–texture segmentation approaches based on the
methodology behind their integration in the segmentation process.
Each approach will be first described from a theoretical standpoint
and then representative works belonging to each category will be
summarised and discussed. Based on the approach used in the
extraction and integration of the colour and texture features, we
have identified three major trends in colour–texture analysis.

(1) Implicit colour–texture feature integration [24–30,44]: the
algorithms that belong to this category extract the texture
features from single or multiple colour channels and the
segmentation process is typically embedded into a coarse-
to-fine strategy.

(2) Approaches that extract colour and texture in succession, i.e.
the segmentation task is formulated as a sequence of serial
processes [31,33–40,45,46,50,51].

(3) Approaches that extract the colour and texture features on
separate channels and then combine them in the segmenta-
tion process. These approaches can be further sub-categorised
with respect to the strategy employed in the feature integra-
tion step as follows:
(3.1) Region-based approaches that include: (a) split and

merge [55–58]; (b) region growing [59,62–66] and
(c) energy minimisation and active contours approaches
[67–70,73,75,77].
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(3.2) Feature-based approaches that include statistical
[78–86,88–90,92,95,97] and probabilistic segmentation
schemes [98–102,105–113].

2.1. Implicit colour–texture integration

The main assumption behind approaches included in this cate-
gory of colour–texture segmentation techniques is that the colour
and texture are mutually dependent image attributes and their
extraction should be accomplished from individual colour channels,
from correlated pairs of colour channels or from the colour compo-
nents that are combined into a vectorial representation.

In this regard, the algorithm proposed by Panjwani and Healey
[24] is one of the representative works that belongs to this
category. In their paper, the authors suggest a region-based
approach that uses colour Gaussian Markov Random Field (GMRF)
models which take into consideration not only the spatial inter-
actions within each of the spectral bands but also the interactions
between colour planes. The parameters of the GMRF are esti-
mated using maximum likelihood methods and the segmentation
algorithm is divided into two main steps. The first step of the
algorithm performs region splitting that is applied to recursively
divide the image into square regions until a uniformity criterion is
upheld. The second step implements an agglomerative clustering
which merges regions with similar characteristics in order to
form texture boundaries. Experiments were performed on natural
images and the authors conclude that the use of joint colour–
texture models for unsupervised segmentation improves the
segmented result when compared to colour-alone or texture-
alone methods. Still they remark that the availability of a priori

image knowledge would improve the effectiveness of the random
field models when used in the context of unsupervised segmenta-
tion. A more detailed study that evaluated the importance of the
chromatic content has been conducted by Paschos and Valavanis
[25]. In this work the authors were mostly concerned with
investigating the optimal approach to integrate the colour–
texture features. The colour space used in their study is the xyY,
where Y represents the luminance component that is separated
from the chrominance values xy. The algorithm initially estimates
a colour measure in a form of xy chromaticity maps and in the
next step the combined colour–texture features are determined
using the autocorrelation of the chromaticity maps that are
calculated for orientations that span the 0–901 angle spectrum
with a resolution of 51. To produce a compact representation they
define the global colour–texture descriptors as peaks in the
directional histograms that are calculated for each orientation.
The main aim of this paper was to emphasise the importance of
the chromatic content when evaluated in conjunction with
texture description but its main disadvantage is that it captures
only the global colour–texture characteristics in the image, an
information that may be useful in the implementation of image
retrieval algorithms but too generic to be directly used in the
construction of accurate segmentation schemes.

As opposed to the work by Paschos and Valavanis [25] where
the feature integration has been approached from a conceptual

perspective, Shafarenko et al. [26] explored the practical pro-
blems associated with the implicit colour–texture integration by
proposing a bottom-up segmentation approach that has been
developed for the segmentation of randomly textured colour
images. In this approach the segmentation process is implemen-
ted using a watershed transform that is applied to the image data
converted to the CIE Luv colour representation. Nonetheless, the
application of the watershed transform results in over-segmenta-
tion and to compensate for this problem the resulting regions are
merged according to a colour contrast measure until a termina-
tion criterion is met. Although the authors assert that the
proposed technique is completely automatic and returns accurate
segmentation results, the experimental data indicates that the
method has been specifically designed for processing granite and
blob like images.

Hoang et al. [27] proposed a different approach to include the
colour and texture information in the segmentation process and they
applied the resulting algorithm to the segmentation of synthetic and
natural images. Their approach proceeds with the conversion of the
RGB image into a Gaussian colour model and this is followed by the
extraction of the primary colour–texture features from each colour
channel using a set of Gabor filters. Since the local colour–texture
properties were sampled with a large number of filters, they applied
Principal Component Analysis (PCA) to reduce the dimension of the
feature space from sixty to four. The resulting feature vectors are
used as inputs for a K-means algorithm that is employed to provide
the initial segmentation that is further refined by a region-merging
procedure. The main advantage of this algorithm resides in the
application of the standard multi-band filtering approach to sample
the local colour–texture attributes and the representation of the
colour image in the wavelength Fourier space. Throughout their
paper, the authors underline that the use of colour and texture
features in combination provides far better discrimination than in
cases when these features are individually used. Several segmenta-
tion results returned by the Hoang et al. [27] method when applied
to a set of images from Berkeley database [52] are shown in Fig. 2.
These results were obtained using the application made publicly
available by the authors at the following web address: http://staff.
science.uva.nl/~mark/downloads.html#texture.

A more involved colour–texture integration scheme (that is
referred to as CTM—Compression-based Texture Merging) was
proposed by Yang et al. [44]. In this approach the authors
simultaneously extract the colour–texture features at pixel level
by stacking the intensity values within a 7�7 window for each
band of the CIE Lab converted image. As the segmentation is
formulated as a data clustering process, for computational pur-
poses the dimension of the colour–texture vectors is reduced to
eight using Principal Component Analysis. The authors argue that
often the colour–texture information cannot be described with
normal distributions, and to compensate for this issue they
employed a coding-based clustering algorithm which is able to
accommodate input data defined by degenerate Gaussian mix-
tures. The proposed algorithm has been evaluated on images from
Berkeley database and the authors were particularly interested in
analysing the performance of the proposed segmentation

Fig. 2. Results obtained using the colour–texture segmentation algorithm proposed by Hoang et al. [27], when applied to a set of images sampled from Berkeley database

[52]. For visualisation purposes, the borders between regions are superimposed on the original image.
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technique when the internal parameters of the coding-based
clustering technique were varied. Comparative results were
reported when the CTM algorithm was evaluated against three
state of the art implementations (mean-shift [41], Normalised
Cuts [42] and Felzenszwalb and Huttenlocker (FH) [43]) and
numerical results are provided in Table 3. A set of experimental
results is depicted in Fig. 3 where the parameter g that controls
the coding data length is varied.

A conceptually related feature integration approach has been
explored in the paper by Shi and Funt [28]. The major idea behind
this approach is to provide a compact representation where the
components of the RGB colour space are converted into a quaternion
form that can be written as q¼R � iþG � jþB � k. The proposed
algorithm consists of three computational stages. The first stage
implements a training procedure where compressed feature vectors
are generated by applying a Quaternion Principal Component Ana-
lysis (Q-PCA) to the training data obtained from a set of sub-
windows taken from the input image. In the second step the input
data is projected on the Q-PCA subspace and the resulting vectors are
clustered using a K-means algorithm. To avoid issues related to over-
segmentation, the final stage of the algorithm applies a merging
process to join the adjacent regions with similar texture character-
istics. The authors state that the use of a quaternion representation
to sample the RGB colour–texture attributes is advantageous as both
intra- and inter-channel relationships between neighbouring pixels
are simultaneously taken into consideration. Although conceptually
interesting, the performance of this colour–texture segmentation
scheme is highly dependent on the appropriate selection of the size
of the sub-windows that sample the local colour–texture content
and also on several user-defined parameters such as the merge
threshold and the number of clusters required by the K-means
procedure. A similar idea has been employed by Wang et al. [29]
where quaternion Gabor filters were proposed to sample the colour–
texture properties in the image. In their approach the input image is
initially converted to the Intensity Hue Saturation (IHS) colour space
and then transformed into a reduced biquaternion representation.
The segmentation task is implemented using a multi-stage process
that includes the following computational steps: multi-channel
Gabor filtering, feature space dimensionality reduction using Princi-
pal Component Analysis, K-Means clustering, mean-shift smoothing
and post-processing refinements. The experiments were conducted
using several images from the MIT VisTex database (Vision
Texture—Massachusetts Institute of Technology) [76] and the

segmentation results were visually compared against those
returned by JSEG (J-image SEGmentation) proposed by Deng and
Manjunath [34].

Multi-scale implementations have been widely investigated in
the context of texture analysis and due to their intrinsic advantages
these approaches have been further generalised to cover the colour–
texture domain. In this regard, we would like to draw attention to
the paper by Jain and Healey [30] where a multi-scale classification
scheme in the colour–texture domain has been investigated. In this
work the authors applied a bank of circularly symmetric Gabor
filters to extract unichrome and opponent image features that
describe the local colour–texture information. Thus, the unichrome
features capture the spatial structure of the texture and are
independently extracted from each spectral band, while the oppo-
nent image features capture the spatial correlation between spectral
bands in a multi-scale sense. The performance of the proposed
algorithm was analysed in conjunction with classification tasks and
the authors demonstrate that substantially improved results are
obtained when both unichrome and opponent image features are
used in the classification process, as opposed to situations when the
primary features were analysed alone.

The implicit integration of colour and textural features was a
characteristic of the early approaches in the field of colour–
texture analysis and this observation is justified in part since
texture analysis was predominantly evaluated in the context of
greyscale images. Thus, the extension of the monochrome tex-
ture-based segmentation algorithms to colour data has been
approached as the extraction of the texture features on each
component of the colour representation and often the feature
integration has been achieved using simplistic approaches. How-
ever the recent trend in colour–texture analysis departed from
the principles behind implicit colour–texture feature extraction
and more sophisticated models were adopted to attain improved
segmentation accuracy.

2.2. Approaches that extract colour and texture in succession

To alleviate the limitations associated with the implicit inte-
gration of the colour–texture features in the segmentation pro-
cess, alternative methodologies have been actively explored.
Among various feature integration strategies, the evaluation of
the colour and texture attributes in succession was one of the
most popular directions of research. The main idea behind

Fig. 3. 1st row: original colour–texture images from Berkeley database [52]; 2nd row: segmentation results obtained using the CTM (Compression-based Texture Merging)

algorithm [44] when gamma¼0.1; 3rd row: segmentation results obtained using the CTM algorithm when gamma¼0.2.
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approaches that belong to this category stems from the intuitive
observation that there are not explicit rules (or analytical models)
that fully describe the dependency between colour and texture
during the image formation process and as a consequence their
extraction should entail a serial process. Building on this concept,
the image segmentation can be formulated as a multi-phase
approach based on a coarse-to-fine image partitioning procedure.
While this feature integration strategy proved quite successful
when applied to practical scenarios, one of its major drawbacks is
that it cannot be generalised since the features that are first
extracted have the highest weight in the overall segmentation
process. In addition, since the integration of the colour–texture
features is performed in succession, there are limited algorithmic
solutions that can be applied to compensate for the local inho-
mogeneities in colour distribution and to accommodate problems
related to the complexity and irregularity of textural patterns that
often occur in natural images. Also, it is worth mentioning that
the colour–texture image segmentation schemes based on this
feature integration approach involve the optimisation of a relative
large number of parameters, a fact that limits their application to
unsupervised segmentation tasks.

A representative segmentation algorithm that belongs to this
category has been proposed by Mirmehdi and Petrou [31]. In this
paper the authors introduced a colour–texture segmentation
scheme where the feature integration is approached from a
perceptual point of view. To accommodate local distortions in
the colour–texture content the authors extract a multi-scale
perceptual image tower that emulates the human perception
when looking at the input image from different distances. In this
process, convolution matrices are calculated using a weighted
sum of Gaussian kernels and are applied to each colour plane of
the opponent colour space O1O2O3 (intensity, red–green and
blue–yellow planes, respectively) to obtain the image data that
make-up the perceptual tower. The result of this filtering process
is used to characterise the texture present in the image in the
multi-scale sense. The next stage of their approach deals with the
extraction of the core colour clusters and the subsequent seg-
mentation task is defined as a probabilistic process that hier-
archically reassigns the non-core pixels starting from the coarsest
image in the tower to the image with the highest resolution. This
stage is performed after the input colour image is converted to the
perceptually uniform CIE Luv colour space. The experiments were
conducted using a number of colour–texture images and the
evaluation is performed by comparing the segmentation result
with the manual ground-truth data. The first set of tests was
carried out on 27 images that were generated using natural
textures from the VisTex database [76] and the performance of
the algorithm is assessed using statistical measurements such as
the mean error, mode error and median value of the error when
several parameters of the algorithm are varied. The performance
of the proposed approach is also compared against that attained
by the colour–texture segmentation method proposed by Ma and
Manjunath [32] and the reported results indicate that Mirhmedi
and Petrou’s method outperforms the Edge-Flow technique due to
its better preservation of the objects’ boundaries during the
segmentation process. Additional visual results are presented
when both algorithms are applied to four natural images. The
main limitation of the algorithm developed by Mirmehdi and
Petrou [31] is that the colour and texture features are not
explicitly used in the proposed segmentation strategy and this
may cause problems if one would like to optimise their contribu-
tion in the segmentation process. A related coarse-to-fine seg-
mentation approach was proposed by Huang et al. [33]. In this
paper the authors applied Scale Space Filters (SSF) to partition the
image histogram into regions that are bordered by salient peaks
and valleys. This histogram partitioning process represents the

coarse stage of the proposed image segmentation technique while
the fine stage implements a Markov Random Field process that is
applied to obtain the final result.

Another widely employed segmentation scenario that belongs to
this trend starts with the extraction of the dominant colour
features, a process which is typically achieved by employing a
colour quantisation procedure that is followed by the extraction of
the spatial information based on various texture analysis
approaches. A well-known technique that follows this sequential
colour–texture feature integration approach was proposed by Deng
and Manjunath [34] and this algorithm is widely regarded as a
benchmark by the computer vision community. The proposed
method is referred to as JSEG and consists of two computational
stages that are applied in succession, namely colour quantisation
and spatial segmentation. During the first stage, the colour infor-
mation of the input image is sampled by a reduced set of significant
colours (between 10 to 20 prototypes) that are obtained after the
application of a peer-group filtering colour quantisation technique.
This step is performed in the CIE Luv colour space without enforcing
the spatial relationship between pixels. The aim of this process is to
map the image into a structure where each pixel is assigned a class
label. The next stage of the algorithm enforces the spatial composi-
tion of the class labels using a segmentation criterion (J value) that
samples the local homogeneity. By adopting a coarse-to-fine
approach, the segmentation process is defined as a multi-scale
region growing strategy that is applied to the J-images, where the
initial seeds required by the region growing procedure correspond
to minima of local J values. This multi-scale region growing process
often generates an over-segmented result, and to address this
problem, a post-processing technique is applied to merge the
adjacent regions based on colour similarity and the Euclidian
distance in the CIE Luv colour space. An important point made by
this paper consists in the use of colour and texture information in
succession and the authors argue that this approach is beneficial
since it is difficult to analyse the colour similarity and spatial
relationships between the neighbouring pixels at the same time. In
general the overall performance of the JSEG algorithm is very good
and to illustrate this fact a number of segmentation results are
displayed in Fig. 4. However it is useful to mention that the
obtained results depend on the optimal selection of three para-
meters that have to be a priori specified by the user: the colour
quantisation threshold, the number of scales and the merge thresh-
old. In the experimental section of their paper, the authors
presented the results obtained by the proposed algorithm when
applied to several natural images and video data and a large
discussion was devoted to analyse the influence of the number of
scales on the overall performance of the segmentation process. The
authors also reported good results when the JSEG algorithm was
applied to 2500 images from Corel photo database without any
parameter tuning. Although the concepts behind the implementa-
tion of the JSEG algorithm are intuitive, this colour–texture seg-
mentation approach has several limitations. These include the over-
segmentation of images characterised by uneven illumination,
instability in distinguishing adjacent regions with similar textural
patterns and problems in identifying small and narrow details.
While the former problem is caused by the rigid quantisation
procedure that is applied to extract the colour prototypes in the
coarse stage of the algorithm, the latter issues are mainly caused by
two factors. The first is generated by the fact that the seed
expansion in the region growing process evaluates only the J values
(that are able to sample the texture complexity rather than a
precise texture model) and in addition the spatial continuity is
evaluated in relative large neighbourhoods. The second factor is
related to the procedure applied to determine the initial seeds for
the region growing algorithm. In the implementation proposed by
Deng and Manjunath [34] a size criterion is imposed in the process
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of generating the candidate seed region and this is mainly used to
prevent the algorithm to be trapped in local minima. While this
requirement is beneficial as it reduces the level of over-segmenta-
tion, on the other hand it has a detrimental effect since the small
and narrow objects are eliminated from the final segmented result.

To address the abovementioned limitations associated with
the original JSEG implementation, different approaches based on
the strategy introduced by Deng and Manjunath [34] have been
proposed. In this regard, Wang et al. [35] suggested the integra-
tion of directional measures into the calculation of the J values
and they evaluated the performances of the new JSEG-based
algorithm and the original JSEG implementation when applied
to 150 images randomly chosen from the Berkeley database [52].
The average percentages of pixels that are differently labelled by
the analysed algorithms when compared to the manual segmen-
tations have been reported as 33.1 for JSEG and 24.1 for the
algorithm proposed by Wang et al. [35]. In [36,37] the authors
replaced the colour quantisation phase of the JSEG algorithm with
an adaptive Mean Shift clustering method, while Zheng et al. [38]
followed the same idea and combined the quantisation phase of
the JSEG algorithm with fuzzy connectedness. Yu et al. [39]
attempted to address the over-segmentation problems associated
with the standard JSEG algorithm by evaluating an additional
measure that samples the colour–texture homogeneity using the
photometric invariant edge information. The authors validated
the proposed algorithm on 200 images from the Berkeley data-
base [52] and they reported that the Local Consistency Error (LCE)
[116] obtained for their method is 24.3% and that attained by JSEG
is 36.1%. Following a detailed examination of the JSEG-related
implementations, we can conclude that all these algorithmic
modifications led to an increase in the number of user-defined
parameters that have to be a priori optimised and moreover the
overall performances of these algorithms were only marginally
better when compared to the original implementation proposed
by Deng and Manjunath.

Following similar feature integration principles, Krinidis and
Pitas [40] introduced an approach called MIS (Modal Image
Segmentation) where the multi-scale region growing stage used
in the implementation by Deng and Manjunath [34] has been
replaced with a deformable model energy function whose external
forces combine the intensity of the image pixels with the local
spatial image information. Similar to JSEG [34], this algorithm
consists of two computational components. The first stage implies
a coarse image representation that is obtained by applying a
colour quantisation procedure. The main goal of the quantisation
stage is to sample the local smoothness in the colour domain, a
process that is quantified by a weight value that is assigned to
each pixel in the image. During the second stage, the output of the
quantisation phase is used to extract the local spatial image
information by applying external forces that control the evolution
of the Deformable Surface Model (DSM). This process involves
calculating an energy functional that measures the smoothness
characteristics in the region around each pixel. The final stage of
the algorithm implements an agglomerative merging procedure
that is applied to alleviate over-segmentation problems. The MIS
algorithm was evaluated on all 300 images contained in the
Berkeley database [52] using measures such as the Probabilistic
Rand (PR) [119], Boundary Displacement Error (BDE) [117], Varia-
tion of Information (VI) [118] and Global Consistency Error (GCE)
[116]. The MIS colour–texture segmentation technique was com-
pared against four state of the art image segmentation algorithms
namely Mean-Shift [41], Normalised Cuts [42], Nearest Neighbour
Graphs [43] and Compression based Texture Merging [44] and the
reported results are shown in Table 3 (where we provide details in
regard to the performance attained by representative state of the
art implementations). It is important to note that the performance
of the MIS algorithm is highly dependent on the optimal selection
of the parameter l (a coefficient included in the denominator of
the Discrete Modal Transform equation) whose influence is
analysed in detail by the authors.

Fig. 4. Results obtained using the JSEG segmentation algorithm proposed by Deng and Manjunath [34] when applied to images sampled from the Berkeley database [52].

These results were obtained by setting the JSEG parameters to the following default values: colour quantisation threshold¼255, scale¼1 and the merge threshold¼0.4.
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The unsupervised segmentation of textured colour images has
been recently addressed in the paper by Hedjam and Mignotte
[50]. They proposed a hierarchical graph-based Markovian Clus-
tering (HMC) algorithm that consists of two steps. During the first
step, the input image is over-segmented into K pre-defined
classes using Markov Random Field models while during the
second step the resulting image map is modelled as a classical
Region Adjacency Graph (RAG) where each edge has associated
weights that sample the colour–texture similarity between adja-
cent regions. Clusters are obtained through edge linking and are
represented by dense regions of strongly connected nodes. In the
experimental section, the authors have conducted a comprehen-
sive quantitative performance evaluation of the proposed techni-
que when applied to the entire Berkeley Database [52] by
calculating performance metrics such as Probabilistic Rand Index
(PR) [119], Variation of Information (VI) [118], Global Consistency
Error (GCE) [116] and Border Displacement Error (BDE) [117]. A
related algorithm that also approached the integration of the
colour and texture features as a serial process has been described
in [51]. This segmentation technique consists of three computa-
tional steps. In the first step the input image is partitioned using a
tree structured Markov Random Field (TS-MRF) algorithm which
implements a recursive splitting procedure until the colour range
of the resulting regions is consistent with some uniformity
criteria. The second step of the algorithm evaluates the spatial
information within the regions obtained from the first step, while
the last step applies a region-merging process to identify the
image areas with homogenous texture characteristics. The pro-
posed algorithm has been tested on mosaic images from the
Prague Texture Segmentation Data-Generator and Benchmark
[134] (see Table 2) and the experimental results indicate that
this segmentation scheme shows limitations in identifying the
transitions between textures that are characterised by irregula-
rities in the spatial or colour domain.

A different feature integration approach was adopted by
Gevers [45] where a split and merge image segmentation techni-
que was developed for the retrieval of complex images that are
subjected to changes in viewpoint and illumination conditions. To
this end, the author extracted the histograms of the colour ratio
gradients from the original RGB image and the process applied to
partition the image into colour–texture homogenous regions is
based on a split and merge strategy. While the image resulting
after the application of the split and merge processes is often
over-segmented, to eliminate the small spurious regions a post-
processing step based on region growing is applied.

As opposed to previous approaches, in the early work by Jain
and Chen [46] the texture attributes were more elaborately
analysed when compared to the colour information. In this paper
the authors combined the colour and texture features in the
development of a multi-phase segmentation algorithm that has
been specifically designed to perform the automatic identification
of address blocks in colour magazines. The first stage of their
algorithm entails a colour thresholding technique to obtain a
binary image that is used in the process of extracting the texture
information using a multi-channel Gabor filtering strategy that
was earlier proposed in the paper by Jain and Farrokhnia [47].
This segmentation scheme involves a statistical data partitioning
process where each pixel in the image is mapped to a representa-
tion defined by the Gabor features that are augmented with the
pixel coordinates. Due to its simplicity, this approach proved to be
popular among vision researchers, as it offers an intuitive frame-
work to attain the integration of the colour and texture attributes
into the segmentation process. Since the texture analysis has
played a critical role in the development of various segmentation
schemes, we would like to draw attention to the paper by Randen
and Hussoy [48] where a large number of filtering-based texture

analysis schemes were contrasted and evaluated. This initial
study has been further advanced in the paper by Reyes-Aldasoro
and Bhalerao [49] where the authors focused on several issues
relating to feature selection, optimal distance metric and multi-
resolution classification. Based on the experimental results
reported for several well-known texture analysis techniques, the
authors conclude that the use of feature selection in conjunction
with multi-resolution classification can improve considerably the
classification results attained by the standard texture analysis
techniques.

2.3. Approaches that extract colour and texture features on

independent channels

As opposed to the segmentation techniques reviewed in the
previous section where the integration of the colour and texture
attributes is performed in a sequential manner, the methods that
comprise this category extract the colour and texture features on
independent channels. Approaches that belong to this trend are
developed based on the assumption that colour and texture are
differently modelled when analysed from a statistical point of
view and one obvious advantage associated with these methods
(when compared to the techniques discussed in the previous
subsection) is that their contributions can be optimised when
they are integrated in the segmentation process. Based on the
concepts behind this integration strategy, the methods belonging
to this category can be subdivided into two distinct groups. The
first sub-category combines the extracted colour and texture
features using region-based feature integration schemes such as
split and merge, region growing and active contours. The region-
based approaches are arguably the most investigated segmenta-
tion schemes in the field of colour–texture analysis and this is
motivated by the fact that the spatial coherence between adjacent
pixels (or image regions) is enforced during the segmentation
process. The second sub-category is defined by the feature
integration schemes based on statistical and probabilistic strate-
gies. In this latter category, boundary detection algorithms and
learning-based methods have also been investigated in the con-
text of colour–texture segmentation. In the next subsections of
the paper we will review several representative approaches that
are included in each sub-category that was introduced above.

2.3.1. Colour–texture segmentation using region-based integration

2.3.1.1. Colour and texture integration using split and merge

techniques. The split and merge methods start in general with an
inhomogeneous partition of the image and they agglomerate the
initial partitions into disjoint regions with uniform character-
istics. There are two distinct stages that characterise these tech-
niques. In the first phase (splitting) the image is hierarchically
divided into sub-blocks until a homogeneity criterion is upheld,
while in the second stage (merging) the adjacent regions that
have similar properties are joined, usually using a Region Adja-
cency Graph (RAG) data structure. An important limitation of the
split and merge techniques resides in the fact that the initial
partition resulting from the split stage is formed by rectangular
regions. Thus, the result obtained after the application of the
merge stage has a blocky structure that is not able to accurately
capture the shape of the imaged objects. To compensate for this
problem, the image resulting from the merge stage is further
post-processed by applying refinement techniques where the
pixels situated on the borders are re-classified using some simi-
larity criteria. Also, it is useful to mention that the minimum size
of the region resulting from the split process is an important
parameter that influences the overall performance of the seg-
mentation algorithm. In this regard, if the region size is too small,
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the features calculated in the region under analysis will have low
statistical relevance and this has a negative influence towards the
decisions that will be made in the merge stage. On the other hand,
if the region size is set to large values, the statistical relevance of
the features in the region is increased but this is achieved at the
expense of missing small and narrow objects in the input image.

Using the concepts discussed above, Ojala and Pietikainen
[53,54] proposed a split and merge segmentation algorithm
where the texture is locally sampled by the joint distribution of
the Local Binary Pattern (LBP) and Contrast (C) features. This
approach has been applied to the segmentation of greyscale
images and we discuss it in this review as it has attracted
substantial interest from the computer vision researchers. Thus,
building on Ojala and Pietikainens’ work, in [55] the colour
features are extracted from the smoothed input image using a
self-initialised Expectation-Maximisation (EM) algorithm and the
texture features are sampled from the luminance component
using the local LBP/C distributions. The segmentation process is
implemented using a split and merge strategy where the split and
merge phases are controlled by user-defined parameters. Similar
to the algorithm proposed in [53], during the merge stage, the
similarity between all pairs of adjacent regions resulting from the
split process is evaluated using a metric called Merging Impor-
tance (MI) and the adjacent regions with the smallest MI are
merged. Since the MI values sample the colour–texture charac-
teristics within the image, the authors devised a scheme that is
able to locally adapt to the image content by evaluating the
uniformity of the colour distribution. Thus, if the colour distribu-
tion is homogenous (it is defined by one dominant colour), the
weights w1 and w2, that control the contribution of the texture
and colour during the merge process are adjusted in order to give
the colour information more importance. Conversely, if the colour
distribution is heterogeneous it is assumed that the texture is the
dominant feature in the image and the algorithm allocates more
weight to texture in the calculation of the MI values. The merge
process is iteratively applied until the minimum value for MI is

higher than a pre-defined threshold. A typical splitting phase is
graphically displayed in Fig. 5(a), while the merging phase is
illustrated in Fig. 5(b). To compensate for the blocky structure of
the image resulting after the merge step, the authors applied a
post-processing step that implements a pixelwise classification
procedure. Fig. 6(e) displays the blocky segmentation resulting
after the merging step, while 6(f) presents the final segmentation
result obtained after pixelwise classification. Chen and Chen [56]
adopted a similar split and merge approach for colour–texture
segmentation. In this paper, the authors introduced an algorithm
that combines the colour and the Local Edge Patterns (LEP) using
feature distributions. In the first stage of the algorithm a colour
quantisation based on a cellular decomposition strategy was
applied in the HSV (Hue Saturation Value) colour space to extract
the dominant colours in the image. The next step involves the
extraction of two independent feature distributions from the
quantised colour image, namely the colour and local edge pattern
histograms. These distributions are used to partition the image
using a split and merge strategy where the weights that enforce
the contribution of colour and texture in the image partitioning
process were set to 0.6 for colour and 0.4 for texture. Nammalwar
et al. [57,58] presents a similar strategy where the colour and
texture are collectively integrated in a split and merge segmenta-
tion scheme. In their paper, the texture features are calculated
using the Local Binary Pattern technique, while the colour
features are extracted using the standard K-means clustering
procedure. The proposed method was tested on mosaic and
natural images and the experimental results demonstrate that
the inclusion of the colour distribution in the merge process
proved to be the key issue in achieving accurate segmentation.

2.3.1.2. Colour and texture integration using region growing. The
main drawback associated with the split and merge strategies
resides in the poor correlation between the regions resulting from
the merge step and the borders between contextually coherent

Fig. 5. (a) The split stage of the algorithm proposed in [55]. The hierarchical splitting recursively splits the input image into four sub-blocks if the ratio of the minimum and

maximum similarity (calculated using Modified Kolmogorov–Smirnov statistics (MKS) for the six pairwise values between the LBP/C distributions of the four sub-blocks) is

higher than a given threshold. (b) The merge phase of the image segmentation algorithm. The adjacent regions with the smallest MI are merged. This is highlighted in the

right hand side image. The image used in these diagrams belongs to Berkeley database [52].

Fig. 6. The segmentation process using the algorithm proposed in [55]: (a) original mosaic image [76], (b) the image resulting from the EM colour segmentation, (c) the

texture image information, (d) the image resulting from the split stage, (e) the image resulting from the merge stage and (f) The final segmentation result after pixelwise

classification.
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objects in the image. To circumvent the issues related to the poor
border localisation, region growing techniques have been inves-
tigated as an alternative option to split and merge strategies. In
general, the region growing methods start with a selection of
initial seeds that are iteratively expanded based on some homo-
geneity criteria. The main advantage of these techniques resides
in the fact that the contextual information is preserved during the
iterative seed growing process, but their performance is highly
dependent on the appropriate selection of the initial seeds. After
reviewing a number of relevant region growing colour–texture
segmentation techniques we conclude that these approaches
place a high level of confidence on the seed initialisation process
and on the optimal selection of a set of threshold parameters that
are employed to evaluate the local homogeneity in the colour–
texture domain. As a result, these segmentation techniques have
difficulty in adapting to problems caused by image noise, sha-
dows and uneven illumination.

Garcia Ugarriza et al. [59] proposed an automatic Gradient
SEGmentation algorithm (referred to as GSEG) for the segmenta-
tion of natural images, that combines the colour and texture
features using region growing and a multi-resolution merging. In
the first stage of the algorithm, smooth colour regions are
identified using colour edge-detection and histogram analysis in
the CIE Lab colour space. This information provides an initial
segmentation map, where smooth regions are involved in the seed
formation process. These seeds are further employed to initialise a
region growing procedure that is applied to achieve an initial
region growth map. On a different computational strand, the
texture information is extracted from the quantised CIE Lab input

data. In the implementation detailed in this paper, the texture
information is sampled by the local entropy information asso-
ciated with each seed. In the last step of the algorithm the texture
features, colour and the region growth map are integrated in a
region-merging procedure where the similarity of colour and
texture features is quantified by the Mahalanobis distance. The
main steps of this algorithm are displayed in Fig. 7, when the GSEG
algorithm is applied for the segmentation of a natural image [52].

The authors evaluated the proposed segmentation method on
the entire Berkeley database [52] using the Normalised Probabilistic
Rand (NPR) Index [61] and compared the obtained results against
two state of the art segmentation algorithms: JSEG proposed by
Deng and Manjunath [34] and the Gibbs Random Field based
method (GRF) proposed by Saber et al. [60]. The reported results
are as follows: NPR_GSEG¼0.8, NPR_JSEG¼0.7 and NPR_GRF¼0.55
(see Table 3). In Fig. 8 is illustrated a comparison of segmentation
results obtained when GSEG, the algorithm proposed in [63] and
JSEG are individually applied to a natural image from Berkeley
database.

A similar strategy to integrate the colour and texture informa-
tion has been adopted by Chen et al. [63] in the implementation of
an algorithm for the segmentation of natural images into percep-
tually distinct regions with application to content-based image
retrieval (CBIR). In their approach, the local colour features are
extracted using a spatially Adaptive Clustering Algorithm (ACA)
[62], while the texture features are computed on a different channel
using a multi-scale frequency decomposition procedure. The colour
and texture features are integrated using a region growing algo-
rithm that generates a primary segmentation that is further

Fig. 7. Intermediate steps of the GSEG algorithm proposed by Garcia Ugarriza et al. [59]: (a) original image from Berkeley database, (b) the CIE Lab colour converted image,

(c) gradient map. (d) Seed map obtained after region growth, (e) texture channel and (f) final segmentation map.

Images courtesy of IEEE (&[2009] IEEE).

Fig. 8. (a) Original natural image [52], (b) GSEG segmentation map [59], (c) segmentation result based on steerable filter decomposition proposed by Chen et al. [63] and

(d) segmentation result obtained using the JSEG algorithm [34] (colour quantisation threshold¼255, scale¼1 and merge threshold¼0.4).

Images (b) and (c) courtesy of IEEE (&[2009], [2005] IEEE).
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improved by the application of a post-processing step that imple-
ments a border refinement procedure. Although limited, the experi-
mental data reported in this paper indicate that this approach
returns accurate results, but its main disadvantage resides in its
substantial level of supervision since the number of classes required
by the clustering algorithm is a user-defined parameter. In [64],
Paschos and Valavanis proposed an improved version of their early
approach in [25] and chose to separately extract the colour and
texture features from the image converted to xyY colour space and
then combine them using a region growing procedure. Texture
information is extracted from the luminance channel Y using a set
of filters tuned to different sizes and orientations that will be
further smoothed and processed in order to obtain a boundary
image. Colour is separately extracted from the chrominance chan-
nels (xy) and homogenous regions are identified using a threshold-
driven process that partitions the chrominance histogram. For
image segmentation, the extracted boundary and colour-based
information are further combined using a region growing algo-
rithm. The authors tested the proposed segmentation methods on
aerial images of wetland scenes. Other approaches that belong to
this category include the works of Fondon et al. [65] where colour is
analysed in the CIE Lab space and combined with the texture
features using multi-step region growing and Grinias et al. [66] that
proposed a segmentation framework using K-Means clustering
followed by region growing in the spatial domain.

2.3.1.3. Colour and texture integration based on energy minimisa-

tion. Another strategy adopted by researchers to integrate the
colour and texture information is to approach the segmentation
problem in terms of energy minimisation. Active contours are a
distinct category of region-based segmentation techniques that aim
to iteratively deform an initial contour by minimising energies that
relate to the intrinsic properties of the contour and those dependent
on the image data. The techniques that are included in this category
achieve accurate performance, but their main drawback consists in
the high level of supervision required to select the initial contour. In
addition, active contours approaches consist of iterative procedures
that are computationally intensive and in general they are better
suited for applications where strong knowledge in regard to the
shape of the objects of interest is available. Graph-based mini-
misation techniques are also included in this category and their
major aim is focused on integrating the colour and texture features
with the purpose of finding the minimum cut in a weighted graph.

Freixenet et al. [67] proposed to combine the region and
boundary information for colour–texture segmentation. To achieve
this goal, they employed an energy minimisation approach where
the initial seeds are sampled from the regions obtained as a
combination of perceptual colour and texture edges. To this end,
the combined colour–texture properties of the image regions were
modelled by the union of non-parametric kernel density estimators
and classical co-occurrence matrices, where initial seeds compete
for feature points by minimising an energy function based on
hybrid active regions that takes both region and boundary

information into account. The boundary term of the energy func-
tion is given by the probability that the boundary pixels are edge
pixels, while the region term measures the homogeneity inside the
region. In Fig. 9 are displayed segmentation results of six mosaic
images, as presented by the authors in their paper.

A related approach has been recently proposed by Sail-Allili
and Ziou [68] where the colour–texture information is sampled by
compound Gaussian Mixture Models. Similar to the algorithm
proposed by Freixenet et al. [67], the colour–texture integration
task is defined in terms of minimising an energy function. Another
related technique was developed by Luis-Garcia et al. [69], where
the local structure tensors and the image colour components were
combined within an energy minimisation framework to accom-
plish colour–texture segmentation. In their paper, the parameter
that controls the influence of the image data in the energy
minimisation process was calculated as b1/(b1þb2), where b1

and b2 weight the contribution of the structure tensor and image
components, respectively. The authors propose an algorithmic
solution to adaptively select these two parameters. Thus, the
parameter b1 is selected based on a measure of overlap (Q)
between the two texture distributions that correspond to the
foreground and the background respectively. If the analysed
texture distributions are substantially dissimilar, then Q takes a
small value and the algorithm assigns a high weight (b1¼(1�Q))
to the texture information. The colour weight b2 is given by the
Euclidian distance between the mean values of the two regions.
The authors demonstrate through experimentation that substan-
tially better results are achieved when the weights that control the
contribution of the colour and texture in the energy minimisation
process are dynamically determined when compared to the
situation when the colour and texture are given equal weights,
i.e. b1¼b2.

A graph-based implementation has been recently proposed by
Han et al. [73], where they introduced a new segmentation
framework that was developed to identify the foreground object
in natural colour images. The colour features are extracted from
the CIE Lab converted colour image, while the texture features are
computed from the luminance component of the input image
using the multi-scale non-linear structure tensor (MSNST). The
MSNST is based on the generalisation of the classic structure
tensor and this feature extraction strategy resembles many
similarities to the Gabor wavelets by allowing the analysis of
the image orientation at different scales. To reduce the dimen-
sionality of the colour–texture feature space, the colour informa-
tion is clustered using a binary tree quantisation procedure while
the features in the texture domain are clustered using a K-means
algorithm. The resulting colour and texture features are modelled
by Gaussian Mixture Models (GMMs) and integrated into a
framework based on the GrabCut algorithm [74]. To further
improve the accuracy of the algorithm, the authors proposed an
adaptive feature integration strategy that consists in adjusting a
weighting factor for colour and texture in the segmentation
process. This was implemented by using an approximation of

Fig. 9. Colour–texture segmentation results obtained when the algorithm developed by Freixenet et al. [67] was applied to six mosaic images. The borders between objects

are marked in white. Images courtesy of Freixenet et al. [67].
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the Kullback–Leibler (KL) divergence to evaluate two probability
density functions that model the characteristics of the foreground
and background information in the image data. The authors
evaluated the performance attained by the algorithm discussed
in their paper on synthetic and natural images and they per-
formed side-by-side comparisons with the results returned by the
standard GrabCut algorithm [74]. An example when the segmen-
tation result obtained using the proposed MSNST algorithm is
compared against that obtained using the standard GrabCut is
illustrated in Fig. 10. One disadvantage associated with the
proposed algorithm is the substantial level of user interaction
that is required to place the initial contour around the object of
interest (see Fig. 10(a)). Also the algorithm is designed to segment
only the selected foreground object and its performance is
influenced by the optimisation of a large number of parameters.

Kim and Hong [75] also defined the colour–texture segmenta-
tion as the problem of finding the minimum cut in a weighted
graph. In their approach the colour information is represented by
the RGB feature vector, while texture features are characterised by
the textons that are determined by filtering the image with a
Gabor filter bank. In order to enforce a spatially coherent repre-
sentation, the extracted texture vectors are clustered using a
K-means algorithm, where the number of clusters is set to 12.
The original RGB image components and the normalised texton
feature vectors are concatenated in a multi-dimensional vector
and the unsupervised segmentation is formulated in terms of
energy minimisation of a weighted graph, where the minimum
cuts are found by applying a splitting approach. The performance
of the proposed algorithm called UGC (Unsupervised Graph Cuts)
is compared against JSEG [34] using standard metrics such as
precision and recall. The experiments were conducted using
images selected from the VisTex [76] and Berkeley databases
[52] (refer to Table 3 for detailed results).

Level sets approaches have also been evaluated in the context
of colour–texture analysis and we would like to draw attention to
the review presented by Cremers et al. [70]. The authors focused
on a thorough theoretical description of region-based level-set
segmentation methods where the image domain is partitioned by
integrating various features (colour, texture and shape) into a set
of cost functionals. The main conclusion that can be drawn from
their paper is that the methods that implement the segmentation
as an energy minimisation process have the advantage of enfor-
cing strong geometrical constraints during boundary propagation,
but it is useful to note that this advantage is achieved at the
expense of increasing the level of supervision, as several para-
meters need to be specified a priori to control the evolution of the
algorithm at each iteration. Recent studies that present improve-
ments of the active contours in capturing complex geometries
and dealing with difficult initialisations can be found in [71,72].

Brox et al. [77] propose to combine colour, texture and motion
in a level-set image segmentation framework. They first create a

joint feature vector composed of the three colour channels of the
CIE Lab colour space, three texture features given by the compo-
nents of the spatial structure tensor and two motion components
that are extracted using an optical flow algorithm. In the next step,
a coupled non-linear diffusion process is applied to improve the
spatial coherence between the feature channels and enhance the
edges between perceptually uniform regions in the image. Finally,
the smoothed features are modelled by a joint probability density
function and the final image segmentation is obtained by max-
imising the a posteriori probability using a level-set technique.

Colour and texture integration using active contours and
energy minimisation approaches have been intensively investi-
gated in recent years, mainly because they represent active image
models that tend to position themselves very close to the desired
object contours by minimising an energy functional. However, the
performance of the energy minimisation-based segmentation
schemes is strongly dependent on the user interaction – the more
prior image information, the better the performance of the
algorithm. Therefore, in spite of the usefulness and good perfor-
mance of these methods, the high level of supervision can be seen
as a drawback considering that the colour–texture segmentation
field is heading towards completely automatic approaches. To
answer this requirement, the feature-based approaches have
positioned as an attractive and viable alternative to energy
minimisation segmentation algorithms and these methods will
be analysed in the following subsection.

2.3.2. Colour–texture segmentation using feature-based integration

The feature-based colour–texture segmentation algorithms were
developed building on the assumption that the separately extracted
colour and texture features are locally homogeneous and the
segmentation task can be viewed as a statistical or probabilistic
image partitioning process. Consequently, these colour–texture
approaches can be broadly sub-categorised based on the nature of
the algorithm employed for feature integration. In this regard,
statistical data partitioning techniques include: generalised
K-means, fuzzy clustering, neural networks, multi-dimensional
clustering and learning-based approaches. The probabilistic
colour–texture integration schemes are based on Bayesian classifi-
cation, Expectation-Maximisation and Markov Random Fields.

2.3.2.1. Colour–texture integration using statistical approaches.

Zoller et al. [78] formulated the image segmentation as a data
clustering process where the colour and texture features were
combined using a parametric distributional clustering (PDC)
approach. In this implementation the colour features were given by
the three components of the HSV colour space, while the texture
features were extracted by convolving the V component of the
image with a set of Gabor filters with four orientations. The authors
applied the proposed algorithm to the segmentation of a small set of

Fig. 10. (a) The initial contour is placed around the object of interest in a natural image from Berkeley database [52], (b) the segmentation result obtained using the

standard GrabCut method [74] and (c) the result obtained using the MSNST segmentation algorithm proposed by Han et al. [73].

Images courtesy of IEEE (&[2009] IEEE).

D.E. Ilea, P.F. Whelan / Pattern Recognition 44 (2011) 2479–25012490



natural images and the results were compared against those
returned by the Normalised Cuts method [42]. The most interesting
aspect associated with this work is the parameter optimisation
procedure applied for model identification that was embedded in a
deterministic annealing framework. A related segmentation
approach to integrate the colour and texture features was proposed
by Ooi and Lim [79]. In their paper, the authors were in particular
concerned with issues related to the optimal selection of the colour
space and the extraction of the most representative texture
descriptors. Thus, eight colour spaces (RGB, XYZ, YIQ, YCbCr, I1I2I3,
HSV, HIS and CIE Lab) were empirically evaluated in their study and
the conclusion resulting from this investigation is that the best
segmentation results are obtained when the input image is con-
verted to the CIE Lab colour representation. The texture features
were extracted from the L component using the contrast and
entropy of the co-occurrence matrices that are calculated for each
pixel in the image. The fusion of colour (ab components) and texture
features (contrast-entropy features of the Grey Level Co-occurrence
Matrix—GLCM) is implemented using a fuzzy c-means clustering
strategy. The proposed algorithm was applied to content-based
image retrieval (using a database consisting of 4000 images) and the
performance of the retrieval process was assessed using the preci-
sion and recall metrics. One limitation of this approach resides in the
fact that the colour and texture information are integrated at pixel
level and this issue generates errors when dealing with local dis-
tortions in the local colour–texture content.

Although clustering methods [83] have been widely applied in
the development of colour–texture segmentation algorithms due to
their simplicity and low computational cost, it is useful to note that
the performance of these approaches is critically influenced by two
essential conditions: (a) the improper initialisation of the cluster
centres that will force the algorithm to converge to local minima
and produce erroneous results and (b) the difficulty in selecting the
optimal number of clusters (generally, this parameter is user
defined). Consequently, the colour–texture information is not opti-
mally evaluated during the space partitioning process if the cluster-
ing algorithms are initialised on outliers or the number of clusters is
incorrectly chosen. As a result, substantial research efforts have been
devoted to develop robust initialisation schemes and to evaluate

diverse algorithmic solutions to identify the optimal number of
clusters in the input image. These issues have been specifically
addressed in a recent colour–texture segmentation framework
(referred to as CTex) [80,81], where colour and texture are investi-
gated on separate channels. In this approach, the colour segmenta-
tion is the first major component of the proposed framework and
involves the statistical analysis of data using multi-space colour
representations. The first step of the colour segmentation involves
filtering the input data using a Gradient-Boosted Forward and
Backward (GB-FAB) anisotropic diffusion algorithm [82] that is
applied to eliminate the influence of the image noise and improve
the local colour coherence. The authors have identified the selection
of the number of clusters and the initial cluster centres as the most
difficult problems that have to be addressed in the implementation
of statistical data partitioning schemes. To tackle this problem, the
first stream of the colour segmentation algorithm extracts the
dominant colours and identifies the optimal number of clusters
from the first colour representation of the image using an unsuper-
vised procedure based on a Self Organising Map (SOM) network. The
second stream of the proposed colour segmentation scheme ana-
lyses the image in a complementary colour space where the number
of clusters calculated from the first colour representation performs
the synchronisation between the two computational streams of the
algorithm. In the final stage of the colour segmentation process, the
clustered results obtained for each colour space form the input for a
multi-space clustering process that outputs the final colour seg-
mented image. The second major component of the proposed CTex
framework involves the extraction of the texture features from the
luminance component of the original image using a multi-channel
texture decomposition technique based on Gabor filters. The colour
and texture features are integrated in an Adaptive Spatial K-Means
(ASKM) framework that partitions the data mapped into the colour–
texture space by adaptively sampling the local texture continuity
and the local colour smoothness in the image. Segmentation results
obtained using the CTex framework are illustrated in Fig. 11.

Campbell and Thomas [85] proposed a conceptually related
algorithm where the extracted colour and texture features are
concatenated into a feature vector and then clustered using a
randomly initialised Self Organising Map (SOM) network. In their

Fig. 11. Results obtained using the CTex colour–texture segmentation algorithm proposed in [80], when applied to images sampled from the Berkeley database [52]. For

visualisation purposes, the objects borders are superimposed on the original image.
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implementation the colour features are extracted using three low-
pass colour filters, while texture features are determined using 16
Gabor filters. The proposed segmentation technique was tested on
natural images taken from the Bristol Image Database [137] and the
segmentation results were compared against manually annotated
ground-truth data. The reported average segmentation accuracy is
as follows: 36.4% when using only texture features, 55.7% when
using only colour features and 62.2% when using combined colour–
texture features. Other related approaches that integrate colour and
texture features using clustering methods can be found in [86–92].

Liapis and Tziritas [93] proposed an algorithm for image retrieval
where the colour and texture are independently extracted and the
dissimilarity between images is evaluated using the Bhattacharya
distance. In their implementation, the texture features were
extracted using a Discrete Wavelet Frame analysis and modelled
using Laplacian distributions, while the colour features were defined
by the quantised 2D histograms of the chromaticity components of
the image converted to the CIE Lab colour representation. For the
validation of the proposed retrieval system and comparison with
other methods and implementations, Liapis and Tziritas’ first set of
tests were conducted using texture information alone on Brodatz
images [94], a database composed of 112 grayscale textures. This
database was used in the evaluation so that the authors could
benchmark their retrieval method against other similar works
published in literature based on texture analysis. In addition, the
authors also recorded retrieval results using colour-alone, texture-
alone and combined colour–texture features when using 55 colour
natural images from VisTex [76] and 210 colour images from Corel
Photo Gallery. The purpose of these tests was to demonstrate that
higher retrieval performance is obtained when colour and texture
features are combined, as a drop in performance is recoded when
using texture-alone or colour-alone information. In the experimen-
tal section the authors concluded that the developed technique was
able to return good performance for ‘‘quasiperiodic texture patterns
while poorer results for random or chaotic patterns’’.

Martin et al. [95] adopted a different approach for the boundary
identification of objects present in natural images. The authors
proposed a supervised learning procedure to combine colour,
texture and brightness features by training a classifier using the
manually generated ground-truth data taken from the Berkeley
segmentation dataset [52]. In the first stage of the algorithm, four
local features are independently extracted for each pixel in the
image: the colour gradient, the texture gradient, the oriented energy
and the brightness gradient. These features were employed to

measure the local variation in the luminance (L) and chrominance
(ab) channels of the input image and each feature has been
individually optimised with respect to the ground-truth data where
the objective is to search for high precision and recall values. In this
process 200 images were used to train the classifier, while 100
images were used for testing. The output of the classifier provides
the boundary posterior probability at each image location and
orientation. In order to evaluate their algorithm, the authors
demonstrated that the proposed technique outperforms two classi-
cal boundary detection algorithms (Canny edge detector [96] and
the spatially averaged second moment matrix) with respect to the
F-measure values [123]. In line with the substantial level of super-
vision, Hanbury and Marcotegui [97] identified another problem
associated with the approach proposed by Martin et al. [95], namely
the existence of gaps in the identified boundary lines. To address
this issue, they applied a distance transform to the greyscale
probability image and the resulting boundaries determined in the
colour–texture feature space were fused with those returned by a
hierarchical watershed procedure in order to obtain the final
segmentation result. The authors compared the performance of
the proposed method against that attained by the Normalised Cuts
segmentation algorithm [42] and the numerical evaluation was
carried out by computing the mean GCE [116], precision, recall
and F-measure values for all images in the Berkeley database [52].
The results reported by the authors are included in Table 3.

2.3.2.2. Colour and texture integration using probabilistic approa-

ches. Carson et al. [98] proposed a colour–texture segmentation
scheme (that is referred to as Blobworld) that was designed to
achieve the partition of the input image in perceptual coherent
regions. The central novelty associated with this work resides in the
inclusion of the anisotropy, polarity and contrast features in a multi-
scale texture model. The colour features are extracted on an inde-
pendent channel from the CIE Lab converted image that has been
filtered with a Gaussian operator. For automatic colour–texture image
segmentation, the authors proposed to jointly model the distribution
of the colour, texture and position features using Gaussian Mixture
Models (GMMs). The main advantage of the Blobworld algorithm
consists in its ability to segment the image into compact regions and
the authors evaluated its suitability in the development of a content-
based image retrieval system. Illustrative segmentation results
obtained using the Blobworld scheme are displayed in Fig. 12.

Another probabilistic scheme to integrate the colour and
texture information in the segmentation process has been

Fig. 12. Segmentation results (second row) obtained when the Blobworld technique proposed by Carson et al. [98] is applied to three images from Corel Photo gallery

(first row).
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proposed by Manduchi [99]. In this approach the author has
extracted the colour and texture features on independent chan-
nels, where the mixture models for each class were estimated
using an Expectation-Maximisation (EM) algorithm. The most
interesting aspect associated with this work is related to the
feature fusion process where a ‘‘Cartesian product’’ operator was
employed to merge the colour and texture models. One disadvan-
tage associated with this approach is the large number of classes
generated by the colour–texture integration process and to alle-
viate the over-segmentation issues the author applied a class
reduction technique based on a maximum descriptiveness criter-
ion. Jolly and Gupta [100] followed a similar approach where the
colour and texture features were extracted on separate channels.
In their algorithm the texture features are determined using
multi-resolution autoregressive models and the colour features
are defined by the chrominance components in two colour spaces.
In each separate feature space, the maximum likelihood is calcu-
lated and the final segmentation is obtained by combining the two
likelihoods using some pre-defined fusion criteria. The proposed
method was applied to the segmentation of mosaic and aerial
images and the experimental results demonstrate that the use of
combined colour–texture features significantly improves the seg-
mentation results. Based on the conclusions that arose from the
interpretation of the experimental results, the authors argued that
the independent extraction of the colour and texture features is
opportune since this approach allows the development of flexible
feature integration strategies. A similar combinational approach
was adopted by Khan et al. [101]. In their implementation, the
input image is converted to the CIE Lab colour space prior to the
calculation of the colour and texture features. The texture features
are extracted from the L image component using a standard image
decomposition scheme based on Gabor filtering. The colour
features are given by the chromatic ab image components. The
colour–texture feature vector is constructed by concatenating the
following components: intensity gradient and local energy content
of the L channel, three colour features (colour gradient and the
local energy content of the a and b components), three texture
features (intensity, phase divergence and homogeneity), and the
position (x, y) features of the pixel coordinates. The distribution of
these features is modelled using a mixture of Gaussians whose
parameters are estimated using an EM algorithm. In order to
initialise the number of mixture models, the authors used histo-
gram analysis and employed the Schwarz criterion to determine
the optimal number of clusters. The quantitative evaluation of the
proposed algorithm was carried out on a restricted set of images
from the Berkeley database by using the hit rate metric, which was
defined as the percentage of pixels that have been assigned the
same cluster label in the segmented and ground-truth data. The
reported hit rate values for all images evaluated in their study
were in the range [97%, 99.5%]. Because only a small number of
images were used in their experimental activity, it is difficult to
fully evaluate the performance of this technique when compared
to other implementations. A related approach was adopted by
Fukuda et al. [102] with the purpose of segmenting an object of
interest from the background information. The RGB colour fea-
tures are combined into a multi-dimensional feature vector with
the local texture features given by the wavelet coefficients. The
colour–texture integration is modelled using Gaussian Mixture
Models (GMMs) and the segmentation process is carried out in a
coarse-to-fine fashion using an iterative process to find a mini-
mum cost in a graph.

Approaches based on Markov Random Field (MRF) models
were often employed for texture analysis [103–105]. The main
motivation behind their popularity among vision researchers is
given by the fact that the MRF models are able to capture the
spatial dependence between pixels, since the probability of a pixel

taking a certain intensity value depends only on the intensity
values of the pixels situated in its neighbourhood. Using this
approach, Kato and Pong [105] adopted a MRF model-based
colour–texture segmentation strategy that is formulated as a
global optimisation technique using simulated annealing. In their
implementation the colour features are given by the CIE Luv
colour components, while the texture features are extracted using
a bank of even-symmetric Gabor filters. Similar to the approach
proposed by Khan et al. [101], the extracted features are modelled
using Gaussian distributions, where the mixture parameters are
estimated using an Expectation-Maximisation (EM) algorithm.
Another method that fits in this category was proposed in [106]
where an auto-binomial Gibbs Markov Random Field was used for
texture modelling, whereas a 2D Gaussian distribution was used
to sample the colour information. The colour and texture features
were fused by estimating their joint probability distribution
function at region level. Other approaches that employed MRF
models for colour–texture segmentation include the works
detailed in [107–113]. Although the MRF-based colour–texture
segmentation attracted some interest from vision researchers, the
main drawback of these methods consists in their inability to adapt
to local distortions in textures that are commonly encountered in
natural images and their onerous computational overhead.

3. Evaluation methodologies (measures, databases,
benchmarks and performance evaluation)

3.1. Evaluation measures

An essential aspect in the development of colour–texture seg-
mentation algorithms is the quantitative evaluation of the obtained
results. Since the segmentation of natural images involves a sub-
stantial level of subjectivity, the process required to evaluate the
segmentation accuracy is far from a trivial task. A survey of
segmentation evaluation methods that do not require manually
annotated ground-truth data is provided in [114,115]. These tech-
niques analyse the segmented result using metrics that measure the
intra-region uniformity and inter-region disparity and in general
they provide only global indicators that assess the quality of the
segmentation process. However, due to the complexity and sub-
jective interpretation of the images obtained by the colour–texture
segmentation algorithms, the evaluation methods that statistically
compare the segmentation results against ground-truth data gained
the largest acceptance from the computer vision community. In the
remainder of this section we will focus on summarising and
discussing the most relevant performance evaluation metrics that
are most commonly applied to quantify the accuracy of colour–
texture segmentation techniques with respect to the ground-truth
data. The performance evaluation metrics evaluated in this study are
listed in Table 1.

The accuracy of the segmentation process can be quantified by
measuring the degree of overlap between the clusters in the
segmented result and the ground-truth data. In this regard, the
Local Consistency Error (LCE) and the Global Consistency Error
(GCE) [116] are examples of area-based metrics that sample the
level of similarity between the segmented and ground-truth data
by summing the local inconsistencies for each pixel in the image.
The major drawback associated with the LCE and GCE is that they
return a meaningful evaluation result only when comparing two
images that have the same number of labels, a situation that
rarely occurs in practice, unless the number of clusters is a user-
defined parameter. Hence, in the case of unsupervised segmenta-
tion, the number of clusters is not known a priori, and as a result
the LCE and GCE cannot be directly applied to quantify the
segmented results.
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Another possibility to evaluate the accuracy of the segmenta-
tion algorithms is to measure the difference between two seg-
mentations by computing the Variation of Information (VI) metric
[118]. VI is defined in terms of the conditional entropies between
the class label distributions of the obtained result and the ground-
truth data, but its use proved problematic when applied to
evaluate the segmentation accuracy when more ground-truth
images are generated for each image in the database.

The Precision-Recall curves and their weighted harmonic mean
(F-measure) [123] evaluate the accuracy of the segmentation
algorithms by computing the percentage of matched boundary
pixels between the segmented result and the ground-truth image.
These measures are usually used in the context of image retrieval,
but Martin et al. [95] proposed to use them for the quantitative
evaluation of the segmentation algorithms. The Precision (P)
measure is given by the number of matched boundary pixels
between the segmented result and the ground-truth image,
divided by the total number of boundary pixels in the segmented
image. The Recall (R) is calculated as the fraction of boundary
pixels from the ground-truth data for which a match was found in
the segmented image. Higher values of P and R indicate higher
agreement between the boundary pixels in the segmented and
ground-truth data. The recall measure has also been used to assess
the level of under-segmentation [126]. One drawback in using the
precision-recall curves is that they are not tolerant to refinement
and it is possible that two segmentations that are good mutual
refinements of each other to have low precision and recall scores
[120]. Refinement occurs when two images are segmented in the
same manner where the only difference being that in one of the
images the objects are divided into smaller segments when
compared to the other [95].

Similar to the precision-recall curve is the ROC (Receiver
Operating Characteristics) curve [125] that plots the false alarm
rate or specificity (defined as the probability that a true negative
is labelled as a false positive) versus the recall values. However it
is useful to note that the ROC curves are seldom employed to
evaluate the performance of segmentation algorithms as they are

not appropriate measures to quantify a detected boundary [95].
As indicated in Table 1, other measures proposed in the literature
to evaluate the accuracy of the segmentation process include: the
Hamming Distance [122], Distance Distribution Signatures (DB)
[122], Earth Mover Distance (EMD) [121,126] and Boundary
Displacement Error (BDE) [117].

The majority of these measures were designed to compare the
segmented result against only one ground-truth image. But in the
case of natural and medical images the ground-truth generation
involves a subjective user-defined procedure and as a result
multiple ground-truth segmentations are obtained for each image
when multiple users are involved in the manual annotation
process. To adapt to this new performance evaluation scenario,
the Probabilistic Rand (PR) and Normalised Probabilistic Rand
(NPR) indexes were recently proposed to quantify the agreement
between a segmented result and a set of manually annotated
images. The PR Index [119] compares the segmented result
against multiple ground-truth images by calculating soft non-
uniform weights for each pair of pixels in the image as a function
of the variability in the ground-truth set. If we assume that S is
the segmented image that will be compared against the manually
labelled set of ground-truth images {GT1, GT2, y, GTQ}, where Q

denotes the total number of manually segmented images, the
segmentation result is quantified as appropriate if it correctly
identifies the pairwise relationships between the pixels as defined
in the ground-truth segmentations. In other words, the pairwise
labels lSi and lSj (corresponding to any pair of pixels xi, xj in the
segmented image S) are compared against the pairwise labels
l
GTQ

i and l
GTQ

j in the ground-truth segmentations and vice versa.
Since the PR index has been often employed to analyse the

performance of recently developed segmentation algorithms, we
will provide details about its mathematical formulation

PRðS, GT1,...,Q

� �
Þ ¼

1
N

2

� � X
i,j

ia j

½IðlSi ¼ lSj Þpijþ IðlSi a lSj Þð1�pijÞ� ð1Þ

Table 1
Summary of representative segmentation evaluation measures proposed in literature (GT¼ground-truth data and S¼segmented image).

Segmentation evaluation measure (and

corresponding reference paper)

Summary

Local Refinement Error (LRE) [116] LRE is calculated for each pixel xi in the image as the normalised difference between the cardinality of the region

that belongs to the pixel xi in the segmented image and the cardinality of the region that belongs to the pixel xi in

the GT image

Global Consistency Error (GCE) and Local

Consistency Error (LCE) [116]

These measures extend the LRE from pixel level to image level by summing up all local inconsistencies for each

pixel in the image. These are region-based measures of segmentation consistency based on the degree of region

overlap between clusters

Boundary Displacement Error (BDE) [117] Computes the average displacement error between the boundary pixels of a segmented image S and their closest

corresponding boundary pixels found in the GT image

Variation of Information (VI) [118] Computes the conditional entropies between the class label distributions of the result S and the GT data

Rand Index (R) [124] Calculates the normalised sum of the pairs of pixels that have the same label relationship in both the segmented

result and the GT image

Probabilistic Rand Index (PR) [119] The PR Index compares the segmented result against a set of GT images by evaluating the relationships between

pairs of pixels as a function of variability in the ground-truth set

Normalised Probabilistic Rand (NPR) [61,120] A modification of the PR Index that is normalised with respect to a baseline common to all images contained in the

data set

Earth Mover Distance (EMD) [121,126] EMD is given by the minimal cost needed to move all the individual points between the two evaluated

distributions

Distance distribution signatures (DB) [122] A discrete function whose distribution characterises the distance discrepancies between the segmented boundary

pixels and the GT boundary pixels. Statistics such as standard deviation, median or mean are calculated (e.g. small

standard deviation indicates high segmentation quality)

Hamming distance [122] The total area of overlap between all regions that belong to the GT and S. This measure is usually normalised

Precision (P) and recall (R) P¼fraction of boundary pixels from the segmented image that matches those in the GT data

R¼fraction of boundary pixels that belong to the GT data for which a match was found in the segmented image

F-measure [95,123] A weighted harmonic mean of combined precision and recall values. Higher precision, recall and F-measure values

indicate a better segmentation result

ROC curves [125] Similar to the precision-recall curve, the ROC curve depicts the trade-off between the hit rate (recall) and the false

alarm rate
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where N is the total number of pixels in the image, IðlSi ¼ lSj Þ

denotes the probability that the pair of pixels xi and xj have the
same label in S and pij represents the mean pixel pair relationship
between the ground-truth images that are calculated as follows:

pij ¼
1

Q

XQ

g ¼ 1

Iðl
GTg

i ¼ l
GTg

j Þ ð2Þ

As illustrated in Eq. (1), the PR index takes values in the interval
[0,1] and a higher PR value indicates a better match between the
segmented result and the ground-truth data (the PR index takes
the value 0 when there are no similarities between the segmented
result and the set of manual segmentations and it takes the value
1 when all segmentations are identical).

The NPR index [61,120] was designed with the purpose of
improving the PR measure by normalising its value with respect
to all images contained in the dataset, i.e. taking into considera-
tion the variability across all ground-truth segmentations. The
NPR index proved to be more sensitive when compared to the PR
index and it can take both positive and negative values where a
score higher than 0 is considered to be meaningful. One sub-
stantial disadvantage associated with the NPR index is the high
computational overhead and this is the main reason that rendered
this performance evaluation measure as impractical when dealing
with datasets that consist of a large number of images.

3.2. Colour–texture segmentation databases and benchmarks

Several databases have been proposed by the computer vision
community that consist of a large variety of colour–textured images
that can be employed in the quantification of colour–texture
segmentation algorithms.

In this regard, the McGill Calibrated Colour Image Database
[127] has over 850 natural scenes with strong colour–texture
characteristics that are divided into nine categories, namely flowers,
animals, foliage, textures, fruits, landscapes, winter, manmade and
shadows. Each of these categories contain between 48 and 304
images (resolution 786�576) that were captured with two Nikon
Coolpix 5700 digital cameras. The McGill database provides a
complex testing scenario for colour–texture segmentation, as it
contains a large range of images that are characterised by inhomo-
geneities with respect to the texture and colour content. However,
its drawback consists in the lack of ground-truth data which makes
the evaluation of the segmentation algorithms problematic. Griffin
et al. [128] from California Institute of Technology, proposed the
Caltech-256 Object Category Dataset that contains 30,607 images
that were acquired using Google and PicSearch web internet search
engines. This database contains a wide variety of natural and
artificial objects where each category has between 80 and 827
images. The Caltech-256 database has the same inconvenient as the
McGill database, the absence of ground-truth data.

Often employed for texture evaluation is the MIT VisTex
database [76] (Vision Texture – 1995, Massachusetts Institute of
Technology) that contains both complex natural scenes and more
than 100 real world individual textures. The VisTex textures
(image resolution: 128�128 and 512�512) are divided into
several categories including grass, water, canvas, brick, buildings
and clouds and these texture prototypes have been widely used in
research papers to build mosaic images that were employed to
evaluate the performance of colour–texture segmentation algo-
rithms. The use of VisTex texture prototypes to generate test data
is appealing as the construction of mosaic images implies the
existence of an objective ground-truth that facilitates the numer-
ical evaluation of the segmentation algorithms. The Outex Texture
Database [129] also proved popular with vision researchers as it
provides a large collection of colour–textures (canvas, carpet,

wood, sand, tiles, etc.) that can be used for the empirical evalua-
tion of both texture classification and segmentation algorithms.
A related dataset is the CUReT Database (Columbia-Utrecht
Reflectance and Texture Database) [130] that contains a collection
of 61 real-life complex colour–textures that are captured under
various viewing and illumination directions. Another large collec-
tion of textures (The Texture Library) is available online at http://
textures.forrest.cz and is divided into 17 categories of natural
colour–textures with up to 153 images belonging to each category.

Pascal VOC 2009 Dataset [131] contains a total of 14,743
annotated colour images. Among these images there is a set of
real-life scenes divided into 20 main categories including aeroplane,
bicycle, bird, boat, horse, car, cat, bus, dog, person, etc. Each image
in the set is provided with a manually labelled ground-truth
segmentation. A large image database was built to evaluate the
SIMPLIcity image retrieval system proposed by Wang et al. [132].
The freely available database is divided into 10 categories where
each category has 100 colour images describing different natural
scenes: Africa people and villages, beach, building, busses, dino-
saurs, elephants, flowers, horses, mountains and glaciers and food.
These images were sampled from Corel database and are 384�256
pixels in size. Minerva (Machine Intelligence for Natural Environ-
ment Recognition and Visual Analysis) Scene Analysis Benchmark
[133] contains 448 natural outdoor images in both colour and
greyscale format collected from the University of Exeter campus.
These images represent different natural scenes containing grass,
trees, sky, clouds, pebbles, road and brick. The main drawback
associated with this benchmark consists in the edge-detection
driven methodology chosen to construct the ground-truth data.

In order to produce a baseline for the objective quantitative
evaluation of different segmentation algorithms, Martin et al. [52]
introduced the Berkeley Segmentation Dataset and Benchmark
(BSDB). The freely available database contains 300 colour images
covering a large variety of natural scenes and for each image is
provided a set of ground-truth segmentations that were manually
produced by multiple subjects. The BSDB images are 481�321 in
size and were selected by the authors from the Corel Image
Database, where the main selection criterion is that in each image
there is at least one discernible object. The set of hand labelled
images correspond to the variation in human perception of the
scene under analysis. The Berkeley Dataset and Benchmark is
widely used by the computer vision community and this interest
is motivated by two reasons: (a) it consists of a large number of
colour images that provides a complex testing scenario and (b) for
each image between 5 and 8 ground-truth segmentations are
provided that facilitate the numerical evaluation of the developed
segmentation algorithms.

Recently, Haindl and Mikeš [134] introduced the Prague
Texture Segmentation Data Generator and Benchmark. The
authors noted that the manual annotations generated for natural
images are affected by the human subjectivity, thus they proposed
to construct synthetic (mosaic) scenes where the ground-truth
data is unambiguous. To assist the user in the process of generat-
ing the synthetic scenes, the authors developed an algorithm
based on the Voronoi polygon random generator that is employed
in the construction of the mosaic images. The Prague colour–
texture database consists of more than 1000 colour–textures and
the generated textured mosaics are of six main types: monospec-
tral, multispectral, BTF (Bidirectional Texture Function), rotation
invariant, scale invariant and illumination invariant. The Prague
dataset is freely available and allows the user to evaluate new
segmentation algorithms and compare their performance with
those obtained by the state of art algorithms using 27 different
evaluation measures including the F-measure, LCE, GCE and VI.

A summary of the databases that are commonly employed in
the process of evaluating the performance of colour–texture

D.E. Ilea, P.F. Whelan / Pattern Recognition 44 (2011) 2479–2501 2495



algorithms is provided in Table 2. In this table we have also
included the reference paper (whenever this is applicable) and
the web address where the colour–texture image databases and
benchmarks can be accessed.

3.3. Performance evaluation of the state of the art colour–texture

segmentation algorithms

In this section the performance of different state of the art
algorithms in the field of colour–texture segmentation will be
evaluated based on the results that were reported by the authors
when using colour images from publicly available datasets. It is useful
to note that the process of comparing different segmentation algo-
rithms is a challenging task since different evaluation scenarios are
often adopted by the authors. Such scenarios include the evaluation
of the proposed algorithms using different databases, different
metrics for performance assessment or different parameter tuning.

In Table 3 the performances of representative algorithms pub-
lished in the literature are quantified where details such as the
name of the database, the number of images employed in the
evaluation and the metric used for quantification are provided. This
table also summarises the purpose and application (where applic-
able) of each analysed algorithm and reveals the colour model
chosen by the authors for image analysis. In case the reported
results for a particular segmentation algorithm are evaluated based
only on a visual examination, we will advise the reader to consult
the original paper in order to obtain more details about the
methodology used in the experimental activity.

As mentioned earlier, several issues emerge when analysing the
results reported for different colour–texture segmentation algo-
rithms. The first issue consists in the selection of different databases
(sometimes chosen in conjunction with particular applications) and
the variation in the number of images used for experimentation. In
this regard, some authors preferred to use only selectively the
image data contained in publicly available databases during per-
formance evaluation. This scenario adds substantial complications
when the performance of these techniques is contrasted with that
achieved by other algorithms that were evaluated on the same
database. The second factor resides in the selection of different
performance measures for the numerical evaluation. In the past, the
percentage of misclassified pixels was the most common measure
employed to assess the performance of the developed algorithms,
but recently metrics such as PR Index [119], VI [118], GCE [116] and
BDE [117] have started to be used more widely to benchmark the
performance of the algorithms on standard databases. The third
factor is associated with the optimal selection of the parameters
that control the behaviour of the developed algorithms. While the

robust selection of these parameters is often an important issue
when the results of the research are reported, in Table 3 we have
collated only the best results that were reported by the authors.

As it can be observed in Table 3, the state of the art technique that
has been chosen by the majority of the authors for comparison
purposes is JSEG that has been developed by Deng and Manjunath
[34]. As indicated in [34], JSEG has three important parameters that
need to be set by the user: the quantisation threshold, the scale and
the merge parameter. When the segmentation algorithms proposed
by different authors were compared against JSEG, the JSEG para-
meters were not always set to the same values (for example Chen
et al. [63], adopted a ‘‘no merge’’ selection). Table 3 also indicates that
the most commonly employed database in the evaluation of colour–
texture segmentation algorithms is the Berkeley database [52],
followed by VisTex [76]. VisTex has one major drawback when used
to evaluate the performance of different algorithms. This is given by
the fact that authors usually generate different mosaic images to
evaluate the accuracy of the developed algorithms, thus the testing
scenario is changed and as a result the reported comparisons are less
relevant. While the survey provided in Table 3 is useful when
evaluating the performance of a large spectrum of colour–texture
segmentation algorithms, we should note that more efforts have to be
devoted to the development of standard evaluation frameworks
(databases and performance metrics) that should be used in the
process of quantifying the accuracy of novel techniques. Based on the
trends associated with the latest papers published in the field of
colour–texture segmentation, we can note that the Berkeley database
and the PR index are the most used dataset and performance metric
for the quantitative evaluations of recent colour–texture segmenta-
tion algorithms.

4. Discussion and conclusion

The major objective of this paper was to analyse the main
directions of research in the field of colour–texture segmentation
and to categorise the main approaches with respect to the
integration of the colour and texture descriptors in the segmenta-
tion process. After evaluating a large number of papers, we
identified three major trends in the development of colour–
texture segmentation, namely algorithms based on implicit fea-
ture integration, approaches that integrate the colour and texture
attributes in succession and finally methods that extract the
colour and texture features on independent channels and com-
bine them using various integration schemes. As we discussed in
Section 2 the methods that fall in the latter categories proved to
be more promising when viewed from algorithmic and practical

Table 2
Publicly available databases containing images with colour–texture characteristics.

Database Web address

Berkeley Segmentation Dataset and Benchmark (2001) [52] http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

McGill calibrated colour image database (2004) [127] http://tabby.vision.mcgill.ca

Outex database (2002) [129] http://www.outex.oulu.fi/

VisTex database (1995) [76] http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

Caltech-256 (2007) [128] http://www.vision.caltech.edu/Image_Datasets/Caltech256/

The Prague Texture Segmentation Data Generator and Benchmark (2008) [134] http://mosaic.utia.cas.cz/

Pascal VOC (updated 2009) [131] http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/#devkit

CUReT (1999) [130] http://www.cs.columbia.edu/CAVE/software/curet/

SIMPLIcity (2001) [132] http://wang.ist.psu.edu/docs/related/

Minerva (2001) [133] http://www.paaonline.net/benchmarks/minerva/

The Texture Library Database (updated 2009) http://textures.forrest.cz

BarkTex (1998) [135] ftp://ftphost.uni-koblenz.de/outgoing/vision/Lakmann/BarkTex

Corel Commercially available

VxC Tiles surface grading [136] http://miron.disca.upv.es/vision/vxctsg/

Benchmark datasets are marked in italics.
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perspectives. However, since the level of algorithmic sophistica-
tion and the application domain of the newly proposed algo-
rithms is constantly increasing it is very difficult to predict which
approach will dominate the field of colour–texture analysis in the
medium to long term but we believe that the next generation of
algorithms will attempt to bridge the gaps between approaches
based on sequential feature integration and those that extract the
colour–texture features on independent channels. Currently, the
main research area in the field of colour–texture segmentation is
focused on methods that integrate the features using statistic/
probabilistic schemes and methods based on energy minimisa-
tion. However in line with the development of new algorithms an
important emphasis should be placed on methodologies that are
applied to evaluate the performance of the image segmentation
algorithms. We feel that this issue had not received the attention
that it should deserve and as a result the lack of widely accepted
metrics by the computer vision community made the task of
evaluating the appropriateness of the developed algorithms
extremely difficult. Although substantial work needs to be done
in the area of performance evaluation, it is useful to mention that
most of the algorithms that have been recently published had
been evaluated on standard databases and using well-established
metrics. Also, it is fair to mention that the publicly available
datasets are not sufficiently generic to allow a comprehensive
evaluation, but with the emergence of benchmark suites such as
Berkeley database this issue starts to finally find an answer.

We believe that this review has thoroughly sampled the field
of colour–texture segmentation using a systematic evaluation of a
large number of representative approaches with respect to
feature integration and has also presented a useful overview
about past and contemporary directions of research. To further
broaden the scope of this review, we have also provided a detailed
discussion about the evaluation metrics, we examined the most
important data collections that are currently available to test the
image segmentation algorithms and we analysed the performance
attained by the state of the art implementations. Finally, we
cannot conclude this paper without mentioning the tremendous
development of this field of research during the past decade and
due to the vast spectrum of applications, we predict that colour–
texture analysis will remain one of the fundamental research
topics in the foreseeable future.
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region-boundary cooperation, Proceedings of the European Conference on
Computer Vision 2 (2004) 250–261.

[68] M. Saı̈d Allili, D. Ziou, Globally adaptive region information for automatic
colour–texture image segmentation, Pattern Recognition Letters 28 (15)
(2007) 1946–1956.

[69] R. Luis-Garcı́a, R. Deriche, C. Alberola-López, Texture and colour segmenta-
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