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3D Facial Landmark Localization with Asymmetry
Patterns and Shape Regression from Incomplete

Local Features
Federico M. Sukno, John L. Waddington, and Paul F. Whelan

Abstract—We present a method for the automatic localization
of facial landmarks that integrates non-rigid deformation with
the ability to handle missing points. The algorithm generates
sets of candidate locations from feature detectors and performs
combinatorial search constrained by a flexible shape model. A
key assumption of our approach is that for some landmarks
there might not be an accurate candidate in the input set. This
is tackled by detecting partial subsets of landmarks and inferring
those that are missing, so that the probability of the flexible model
is maximized. The ability of the model to work with incomplete
information makes it possible to limit the number of candidates
that need to be retained, drastically reducing the number of
combinations to be tested with respect to the alternative of trying
to always detect the complete set of landmarks.

We demonstrate the accuracy of the proposed method in the
Face Recognition Grand Challenge (FRGC) database, where we
obtain average errors of approximately 3.5 mm when targeting
14 prominent facial landmarks. For the majority of these our
method produces the most accurate results reported to date in
this database. Handling of occlusions and surfaces with missing
parts is demonstrated with tests on the Bosphorus database,
where we achieve an overall error of4.81 mm and 4.25 mm
for data with and without occlusions, respectively. To investigate
potential limits in the accuracy that could be reached, we also
report experiments on a database of144 facial scans acquired
in the context of clinical research, with manual annotations
performed by experts, where we obtain an overall error of
2.3 mm, with averages per landmark below3.4 mm for all 14

targeted points and within 2 mm for half of them. The coordinates
of automatically located landmarks are made available on-line.

Index Terms—3D Facial landmarks, Geometric features, Sta-
tistical shape models, Craniofacial anthropometry.

I. I NTRODUCTION

Accurate and automated detection of facial landmarks is
an important problem in computer vision, with wide appli-
cation to biometric identification [1]–[6] and medicine [7]–
[11]. Biometric applications are typically concerned withthe
robustness of the algorithm (e.g. to occlusions, expressions,
non-collaborative subjects) to achieve systems that can be
deployed in a wide variety of scenarios. In this context, state
of the art algorithms can detect the most prominent facial
landmarks with average errors typically between3 mm to
6 mm on large databases like the Face Recognition Grand
Challenge (FRGC) [12]. These include diverse acquisition

F. Sukno and P. Whelan are with the Centre for Image Processing &
Analysis, Dublin City University, Dublin 9, Ireland.

J. Waddington and F. Sukno are with Molecular & Cellular Therapeutics,
Royal College of Surgeons in Ireland, Dublin 2, Ireland.

artifacts (e.g. holes, spikes) that help assess performance in
challenging scenarios.

On the other hand, in medical applications such as facial
surgery [11], lip movement assessment [10] or craniofacial
dysmorphology [7], [8], the latter of which is the focus of
our research, there is a greater focus on the highly accurate
localization of landmarks, as they constitute the basis foranal-
ysis that is often aimed at detecting subtle shape differences.
Depending on the author, localization and repeatability errors
are considered clinically relevant when they exceed1 mm [13]
or 2 mm [14]. Acquisition conditions are therefore carefully
controlled to minimize occlusions, holes and other artifacts.
For example, using a hand held laser scanner it is possible to
obtain a high quality ear-to-ear facial scan1.

The increased availability of three dimensional (3D) scans
has made it possible to overcome traditional limitations inher-
ent to 2D, such as viewpoint and lighting conditions. From this
perspective, we can make a first distinction between methods
using exclusively geometric cues (e.g. curvature) and those
that analyze also texture information. While the latter havethe
benefit of including an additional source of information, they
suffer from two shortcomings: 1) not all 3D scanners provide
texture and, even when they do, it cannot be assured that thisis
accurately registered to the geometry [12]; 2) they may become
more sensitive to viewpoint and lighting conditions, as texture
information is not invariant to these factors.

Thus, there is a special interest in methods that localize
facial landmarks based purely on geometric information. The
most widely used feature to encode the facial geometry for
landmark detection has been surface curvature. Building from
early works on surface classification (using mean and Gaussian
curvatures [15] or shape index [16]), several authors have
explored the properties exhibited by certain facial landmarks.
For example, it has been found that the nose and chin tips
are peaksor caps, while the eye and mouth corners arepits
or cups [17]–[21]. This classification has proved useful for
rough detection of the most distinctive facial features but, in
general, it does not suffice for highly accurate localization and
is restricted to a very small number of specific landmarks, with
little likelihood of being extended to other points.

Similar limitations are observed in the use of relief curves
(or profiles), that is, a projection of the range information
(depth) onto the vertical or horizontal axes. With some as-

1See http://www.cipa.dcu.ie/videos/face3d/ScanningDCU RCSI.avi for an
example [Accessed on 20.05.2013].

http://www.cipa.dcu.ie/videos/face3d/Scanning_DCU_RCSI.avi
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sumptions regarding the orientation of the head (relative to
the scanner), this procedure allows the use of the resulting1D
projections to detect some facial landmarks. This has proved
helpful in detecting the nose tip, even under some variations in
head pose [22], but without informing on localization accuracy.
Recent extensions include the generation of multiple profiles to
account for large changes in head pose [23] and combinations
with curvature cues to derive heuristics for the detection of
reduced sets of points on the eyes and nose [21]. Other
geometric features include the response of range data when
convolved with a set of primitive filters [24], Gabor wavelets
[25], or combinations of features such as local volume, spin
images, distance to local plane, or Radial Basis Function
(RBF) shape histograms [20], [26]–[28].

Regardless of the features that are used, it is unlikely thata
unique and highly accurate detection can be achieved. Even the
nose tip, so far the most successfully detected facial landmark,
suffers from both false positives and negatives. Hence, the
responses from feature detectors are usually combined with
prior knowledge to improve performance. This leads us to a
second distinction between methods that use a training set to
derive these priors and those that employ heuristic rules.

Methods targeting a small subset of landmarks are often
training-free. A set of carefully designed rules encodes the
prior knowledge, sometimes with the help of anthropometric
statistics [3]. A weakness of these methods is that they usually
follow a chain of rules that depend on one another. For
example, some methods [3], [21], [25], [29] start by locating
the nose tip and use its location to constrain the search region
of the remaining points, while others [30] first detect the inner-
eye corners and use these to fit a local plane from which
the nose tip is determined as the furthest point. Therefore,
missing or incorrectly detecting one landmark compromises
the detection of all subsequent landmarks in the chain.

Prior knowledge can also be derived from a training set.
At the expense of requiring that such a set (with appropriate
annotations) is available, training-based methods are more
flexible than their training-free counterparts in the landmarks
that can be targeted, as there is no need to derive specific
rules for each point. This has been widely exploited in 2D
landmarking algorithms and is becoming more popular also
in 3D, especially since the availability of large annotated
databases. Examples of this strategy include the use of graph
matching [28], [31], random forests [32] or statistical shape
models [19], [20], [33]–[36].

Recently, it has been shown that statistical methods can
produce accurate results for diverse subsets of landmarks [19],
[20], [35], [36]. The common idea behind them is to combine
the responses of local feature detectors with shape constraints
that ensure plausibility of the result at a global level. Since
localization of landmarks is simultaneously addressed, these
methods are more robust to localization errors in individual
points. Nonetheless, current approaches still rely on the avail-
ability of a complete set of features, i.e. the local feature
detectors are expected to always provide at least one suitable
candidate positionfor each targeted landmark, which can
prove quite difficult for most feature detectors.

One can relate this intuitively to partial occlusions, but

the problem is actually more general: for example, a feature
detector can fail to provide a suitable candidate for the chin
tip becausei) it is occluded (e.g. by a scarf),ii) the surface is
missing (e.g. acquisition artifacts),iii) because of limitations
inherent to the detector itself, even though the surface of the
chin was captured correctly by the scanner. In the latter case,
we say the the feature detector has produced afalse negative
which, as discussed above, is almost impossible to avoid.

In this paper we present Shape Regression with Incomplete
Local Features (SRILF) for the detection of facial landmarks.
It can handle any combination of missing points and allows
for non-rigid deformations, while working on a global basis.
Instead of trying to avoid false negatives, we provide a
mechanism to handle them by using a flexible shape model that
encodes prior knowledge of the facial geometry. Therefore,
we withdraw the requirement of a complete set of features
and try to match our set of targeted landmarks to a set
of candidates that is potentially incomplete. Our matching
algorithm, based on RANSAC [37], consists of analyzing
reduced subsets of candidates and completing the missing
information by inferring the coordinates that maximize the
probability of the flexible model. Thus, despite the resulting
subset possibly containing only part of the targeted landmarks,
estimates for the remaining coordinates are inferred from the
model priors. Subsets of candidates that fulfill the statistical
constraints of the shape model are retained and additional
landmarks are incorporated iteratively as long as the set
remains a plausible instance of the shape model. The cost
of including a new candidate is computed as the median of
squared distances to the closest candidate (per landmark),
which provides robustness to potential landmarks for which
no nearby candidates have been found. The best solution is
determined as the one with minimum inclusion cost among
those with the largest number of candidates (i.e. those with
the largest support).

The key contribution of SRILF is to bridge the gap between
two research streams:

• Methods based on robust point matching but restricted
to rigid transformations, as done by Creusot et al.
[27], which can handle missing landmarks but do not
allow non-rigid deformation and are therefore strongly
limited in their accuracy. We have shown experimentally
that inability to cope with non-rigid deformations can
considerably impair accuracy even in databases without
expression changes [38].

• Methods based on statistical shape models that allow
non-rigid deformation but cannot handle missing land-
marks [19], [20], [35], [36].

Recent efforts to tackle these shortcomings have not pro-
vided a general and unified framework. Passalis et al. [19]
and Perakis et al. [20] exploited facial symmetry to divide their
shape model into left and right sub-models, but each of these
is actually a separate statistical model in itself, necessitating
a complete set of features and not allowing inference of the
landmarks of the other sub-model. In contrast, SRILF always
provides estimates for the positions of all landmarks regardless
of the subset for which information is missing.

Another alternative based on statistical models is that of
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Zhao et al. [35], [36], who address a local optimization after
an initial solution is provided (e.g. by a previous face detector
block). Thus, even if some feature detectors produce poor
responses, the search is constrained to a bounded neighbor-
hood and is unlikely to diverge. However, we can see that the
problem is actually shifted to the availability of an adequate
initialization and, therefore, the solution is not global.

The idea of using statistical constraints to complete missing
landmarks in shape models has been explored previously and
has found diverse applications. These include predicting the
normal shape of vertebrae from their neighbors to assess
fractures [39], initializing a registration algorithm from a
reduced set of manual annotations [40], [41] or reconstructing
bones or facial surfaces from partial observations [42], [43].
Solutions to estimate the unknown variables were based on
regularized or partial least squares [44], [45], canonicalcor-
relation analysis [46] or linear regression [39]. However,in
all cases the goal of these models is to predict unknown parts
of the shape based on a partial observation that is pre-defined
statically. That is, the part of the shape that will be available is
known already when the model is constructed, either at once
[39] or sequentially one landmark at a time [47]. In contrast,
we use a unique Principal Component Analysis (PCA) model
to handle any combination of known and unknown landmarks
(as this information is not know in advance) and select the best
solution based on a cost function as described above. A similar
concept has been explored recently by Drira et al. [48] in the
context of face recognition, to predict the missing information
of curves extracted from facial surfaces that might be partially
incomplete due to occlusions or artifacts.

We use Asymmetry Patterns Shape Contexts (APSC) [49]
as feature detectors. These constitute a family of geometric
descriptors based on the extraction of asymmetry patterns from
the popular 3D Shape Contexts (3DSC) [50]. APSC resolve
the azimuth ambiguity of 3DSC and offer the possibility to
define a variety of descriptors by selecting diverse spatial
patterns, which has two important advantages: 1) choosing the
appropriate spatial patterns can considerably reduce the errors
obtained with 3DSC when targeting specific types of points;
2) once an APSC descriptor is built, additional descriptorscan
be built incrementally at very low cost.

We experimentally demonstrate the accuracy of our ap-
proach by testing it on FRGC, the most widely used database
for reporting 3D landmark localization. We obtain an average
error of approximately3.5 mm when targeting14 promi-
nent facial landmarks. For the majority of these our method
produces the most accurate results reported to date in this
database among methods based exclusively on geometric cues.
Additionally, we also show that our results compare well even
with methods combining both geometry and texture, which
have reported lower errors only in the case of the eye corners
where texture seems to play a more prominent role. We also
test our algorithm on the Bosphorus database [51], and show
the suitability of SRILF to handle scans with occlusions or
where large parts of the facial surface are missing.

To investigate potential limits in the accuracy that could
be reached, we report experiments on a database acquired
in the context of craniofacial dysmorphology research, which

contains surfaces of higher quality than those from FRGC with
manual annotations performed by experts. Targeting the same
14 landmarks, we obtain an average error of2.3 mm on144
facial scans.

We present the details of our landmark localization al-
gorithm in Section II; experimental results are provided in
Section III, followed by a discussion in Section IV and
concluding remarks in Section V.

II. SHAPE REGRESSION WITHINCOMPLETELOCAL

FEATURES (SRILF)

The SRILF algorithm has three components:i) selection
of candidates through local feature detection;ii) partial set
matching to infer missing landmarks by regression;iii) com-
binatorial search, which integrates the other two components.
We present each of these in separate subsections.

A. Local Feature Detection

Let M be a facial surface described by verticesv ∈ M, let
{a(ℓk)}Lk=1 be the set of manual 3D annotations containingL
landmarks and letD(v) be adescriptorthat can be computed
for every vertexv. We want to train a local descriptor model
for each landmark. The objective is to compute asimilarity
scores(v) based solely on the local descriptors, that correlates
well with the distance to the correct position of the targeted
landmark. That is, for each landmarkℓk we seek a function
fk() such thatsk(v) = fk

(

D(v)
)

is high for vertices close to
a(ℓk) and low for all other vertices of the mesh.

For example, spin images [52] or 3DSC [50] are popular
geometric descriptors; and one of the simplest options to
obtain similarity scores, quite widespread both in the 2D and
3D landmark localization literature, is to compute the distance
to a templatederived as the average descriptor from a training
set.

1) False Positives:For every mesh vertex, the Euclidean
distance to the targeted landmark can be computed as:

d(v, ℓk) = ‖v − a(ℓk)‖ (1)

Ideally, vertices with highsk(v) should be close to the target
and have smalld(v, ℓk). However, very often there arefalse
positives, i.e. vertices with highsk(v) andd(v, ℓk) at the same
time. Whether a vertex is considered a false positive or not
depends on how close to the target we require it to be, which is
set by anacceptance radiusrA. To successfully locate a given
landmark, we wish to retain enough candidates (the top-Nk)
so that at least one of them is within our acceptance radius:

Nk = min
n

{n = RD(sk(v)) | d(v, ℓk) ≤ rA,v ∈ M} (2)

RD(sk(v)) = #
(

{w ∈ M| sk(w) ≥ sk(v)}
)

(3)

Thus,Nk is the required number of candidates, RD() is the
(descending) rank function and#() is the cardinality of a set.
Alternatively, if v1

k is the highest scoring vertex withinrA:

v1
k = argmax

v

{s(v) ∈ M| d(v, ℓk) ≤ rA} (4)
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Fig. 1. Required number of candidates to be retained so that atleast one of
them is within the acceptance radius from the target. The boxplots indicate
the results for all meshes in FRGCv1 database when targeting the right corner
of the mouth using spin images.

we can give a precise definition of false positives as the set
of verticesF+

k that are farther from the targetℓk thanrA but
score higher thanv1

k:

F+
k = {v ∈ M| d(v, ℓk) > rA ∧ sk(v) > sk(v

1
k)} (5)

Thus,Nk is also the number of false positives plus one.
2) Candidate Sets:Given a meshM and a landmarkℓk to

be targeted, we define the set ofcandidatesfor that landmark,
Ck as the̺k highest scoring vertices:

Ck = {v ∈ M|RD(sk(v)) ≤ ̺k} (6)

From the discussion in the previous paragraphs we can infer
that the setCk will contain at least one candidate withinrA if
and only if̺k ≥ Nk. Clearly, we do not knowNk beforehand
and trying to ensure̺k ≥ Nk results in very high̺ k without
a guarantee to be sufficient for all meshes.

To illustrate this, consider a set{Mi}Ni=1 where we compute
the number of candidates required for each mesh,N

(i)
k . These

values depend on our choice ofrA; the smallerrA the larger
number of candidates we need to retain. Fig. 1 shows the
resulting number of candidates forrA between2 and40 mm
when targeting the right corner of the mouth in FRGC v1.
As observed in the figure, the distributions ofN

(i)
k tend to

be very skewed. Thus, setting̺k based on the maximum
values (which are typically outliers) is an expensive choice,
as it implies retaining up to one or two orders of magnitude
more candidates than needed in the majority of cases. This is
a common problem to almost any geometric descriptor.

In contrast, we set̺ k as an outlier threshold for the
distribution ofN (i)

k , as follows:

̺k = q3 + 1.5(q3 − q1) (7)

which is a standard criterion to determine outliers, beingq1
andq3 the lower and upper hinges (or quartiles) for{N (i)

k }Ni=1.
Continuing with the example in Fig. 1, if we setrA = 10 mm
we get̺k ≃ 50, while the maximum ofN (i)

k is above1000.
Choosing̺k based on an outlier threshold for the distribu-

tion implies that, in the vast majority of cases, we will detect
a candidate that is withinrA from the target, but we will miss

a small proportion (the outliers). The latter will be dealt with
by the partial set matching explained in the next section.

B. Partial set Matching with Statistical Shape Models

Let x = (x1, y1, z1, x2, y2, z2, . . . , xL, yL, zL)
T be a shape

vector, constructed by concatenating the coordinates ofL
landmarks2. By applying PCA over a representative training
set [53], we get the mean shapex and the eigenvector and
eigenvalue matricesΦ andΛ, respectively, sorted in descend-
ing order (Λii ≥ Λjj , ∀i < j). Given any set ofL points
x, we can obtain its PCA representation asb = ΦT (x − x),
which will be considered to comply with the PCA model (i.e.
to be a plausible instance within such a model) if it satisfies:

M
∑

j=1

(

b2j
Λjj

)

< β2
e (8)

whereM is the number of retained principal components and
βe is a constant that determines the flexibility of the model,
which we set toβe = 4 as in [38].

However, if the point set is incomplete, we may want to use
the available points and the model statistics to infer thosethat
are missing. Letxf be thefixed (or available) landmarks, and
xg the unknown landmarks (the ones toguess). Without loss
of generality we group the missing landmarks from1 to 3g:

xg = (x1, y1, z1, . . . , xg, yg, zg)
T

xf = (xg+1, yg+1, zg+1, . . . , xL, yL, zL)
T

x =

(

xg

xf

)

, Φ =

(

Φg

Φf

)

(9)

The objective is to infer the coordinates of landmarksxg so
that the probability of the resulting shape complying with
the PCA model is maximized, ideally without modifying the
coordinates inxf . Let Pr(x) be the probability that shape
x complies with the model. Assuming thatPr(x) follows
a multi-variate Gaussian distributionN (0,Λ) in PCA-space,
this probability is proportional to the negative exponential of
the Mahalanobis distance, as follows:

Pr(x) ∼ e(−b
T
Λ

−1
b) (10)

We want to find its maximum with respect toxg, so we need
to cancel the first order derivatives simultaneously for allthe
components ofxg:

∂Pr(x)

∂xg
= 0 ⇔ ∂

∂xg
(−bTΛ−1b) = 0 (11)

Replacingb = ΦT (x−x) and definingy = x−x we obtain:

∂Pr(x)

∂xg
= 0 ⇔ ∂

∂xg
(−yTΦΛ−1ΦTy) = 0 (12)

Note thaty andx differ only by a constant, so we can take
derivatives directly with respect toy. We also define a new
matrix Ψ = ΦΛ−1ΦT to simplify the notation:

∂Pr(x)

∂xg
= 0 ⇔ ∂

∂yg
(−yTΨy) = 0 (13)

2We assume that the shape has been aligned (e.g. by Procrustes analysis)
so that Similarity is removed.
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We can explicitly separate the components related toyf and
yg, as follows:

yTΨy =

(

yg

yf

)T [

Ψgg Ψgf

Ψfg Ψff

](

yg

yf

)

(14)

∂

∂yg
(−yTΨy) = − ∂

∂yg

(

(yg)TΨggyg + (yf )TΨfgyg+

+ (yg)TΨgfyf + (yf )TΨffyf

)

= −Ψggyg − (Ψgg)Tyg − (Ψfg)Tyf −Ψgfyf (15)

The expression can be further simplified by noting thatΨ is
symmetric (because the inverse ofΛ is symmetric),

∂

∂yg
(− yTΨy) = 0 ⇔ Ψggyg +Ψgfyf = 0 (16)

Finally, as long asΨgg is invertible, we can solve foryg,

yg = −(Ψgg)−1Ψgfyf

= −
(

ΦgΛ−1(Φg)T
)

−1(
ΦgΛ−1(Φf )T

)

yf (17)

As explained in Section I, the idea of using statistical
constraints to complete missing landmarks has been explored
previously by other authors. The closest approach to ours is
the one from de Bruijne et al. [39], where a closed form
solution is obtained using the maximum likelihood estimate
of xg|xf from the covariance matrix of the training set.
While results tend to be very similar, the main difference
is that we maximize the probability of the shape after the
projection into model space, which results in higher probability
of compliance with the model at the expense of having also a
higher reconstruction error forxf .

C. Combinatorial Feature Matching

We use RANSAC as the basis for our feature matching
procedure, as described in Alg. 1. We start fromL sets of
candidate points, one set for each landmark. As described in
Section II-A, these candidates are the top-scoring vertices up
to ̺k, which is determined during training. All combinations
of 4 landmark candidates are then evaluated. In principle, we
could also start from subsets of3 points as we use Similarity
alignment (7 degrees of freedom), but4 points were found to
provide more robustness to estimate the initial alignment.

We use eq. (17) to infer the positions of missing landmarks.
As long as the generated shape fulfills the model constraints,
we successively add candidates from the remaining landmarks
in a sequential forward selection strategy [54]. The cost
of including a new candidateck into xf is computed as
the median of squared distances toxf

test, taking the closest
candidates to the current estimate for the missing landmarks:

γ(ck) = median(∆x̂test) (18)

∆x̂test =

{

‖x̂test(ℓk)− x
f
test(ℓk)‖2, ∀ℓk ∈ x

f
test

minck
‖x̂test(ℓk)− ck‖2, ∀ℓk /∈ x

f
test

}

where ck ∈ Ck are the candidates for landmarkℓk, x(ℓk)
indicates the position of thek-th landmark and̂x is the best
PCA reconstruction of shapex in a least squares sense.

Algorithm 1 SRILF: Shape Regression with Incomplete Local
Features

1: Start from input meshM
2: for (all landmarksℓk, 1 ≤ k ≤ L) do
3: Compute descriptor scoressk(v), ∀v ∈ M
4: Determine landmark candidatesCk using (6)
5: end for
6: for (all 4-tuple combinations of candidates,x4) do
7: Initialize xf = x4

8: Infer x̂g using (17), obtaininĝx
9: while (x̂ fulfills the constraints in (8))do

10: for (all other landmarks,ℓk /∈ xf ) do
11: for (all candidatesck for landmarkℓk) do
12: Add the candidateck to xf to obtainxf

test

13: Infer x̂g
test from x

f
test to obtainx̂test

14: Constrainx̂test to be withinM (optional)
15: Compute the resulting costγ(ck) as in (18)
16: end for
17: Compute the landmark costγ(k) = minck

γ(ck)
18: end for
19: Add to xf the landmark with minimumγ(k)
20: Infer x̂g from the updatedxf to obtainx̂
21: end while
22: Compute the score forx4 as#(xf ) + e−γ(k)

23: end for
24: Keep the subset that achieves the highest score

The inclusion cost in (18) is a key aspect of the algorithm
and is divided in two parts from the definition of∆x̂test. The
first part is the reconstruction error for thefixed landmarks,
while the second part considers the distance from the inferred
landmarks to their closest candidates. Note that a possible
alternative would be using‖ΦT (x̂−x)‖ as the inclusion cost,
but such a choice would neglect the effect of the coordinates
inferred for x̂g. The definition ofγ(ck) based on the median
implies that the landmark costγ(k), in line 12 of Alg. 1, is
the least median of squares [55], which provides robustness
to potential outliers (e.g. landmarks for which no nearby
candidates have been found).

For each set that is checked, a score is computed. The
candidates successfully included inxf (i.e. those which allow
completion of a shape fulfilling the PCA constraints) are
considered inliers. Thus, the cardinality ofxf is used as the
main component of the score. Upon equality of inliers, the
subset with smallestγ(k) is preferred.

The optional statement in line 14 of Alg. 1 forces all
landmarks to be on the input surface, e.g. by shifting them
to the nearest vertex ofM. This is useful for discarding
incorrect solutions but could be disabled to tolerate occlusions
or missing parts of the surface.

1) Complexity:The loop of lines11 to 16 of Alg. 1 plays
a central role in the overall complexity of the algorithm. Each
time this loop is executed we need to compute the matrix
inversion of eq. (17). For each potential landmark to be added
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a new repetition of this loop is needed3. Thus, the complexity
of the algorithm is variable and depends on how quickly we
can discard implausible combinations of candidates.

An efficient way to discard implausible combinations at
low cost was presented by Passalis et al. [19]. For each
new combination, they check the distances between all pairs
of landmarks and discard the combination if these are not
compatible with the distances observed in the training set.The
use of distances is possible due to their choice to exclude
scaling from the transformation relating image and model
coordinates, which is not our case. Rather, we adapt their
approach to scale invariance by using ratios of distances to
validate combinations of4 candidates at line7 of Alg. 1.

2) Convergence:As we are interested in accuracy, we do an
exhaustive search instead of random sampling. However, we
do retain the idea of consensus as the figure of merit, hence the
relation of our algorithm with RANSAC. On the other hand,
an exhaustive search does not guarantee finding a plausible
solution, which depends on the choice of the threshold for
plausibilityβe and the number of false positives. For example,
when large parts of the torso are included in the scan there
might be too few candidates retained in the facial region. One
can always choose to keep the best solution that was found so
far, even if deemed implausible. However, in such a situation
we could also benefit from the splitting of such best solution
into xf andxg and re-run the algorithm with more candidates
for the inferred landmarks, namely increasing̺k ∀ℓk /∈ x̂f .

The advantage of increasing the candidates for just part
of the landmarks is twofold:1) it reduces the number of
combinations to test,2) it generally results in lower proportion
of combinations being plausible, which are the most expensive
ones to discard. Adding candidates for landmarks inxf

would most likely produce additional subsets of candidate
combinations that are plausible but are still geometrically
similar to combinations already available before adding further
candidates, thus increasing the computational cost without
much benefit in accuracy.

3) Examples:Visualizing the different steps of the combi-
natorial search can be helpful to illustrate the process described
in Alg. 1. For this purpose we have generated a large number
of example videos showing the behavior of SRILF both for
typical and extreme cases, which are available on-line4.

III. E XPERIMENTAL EVALUATION

A. FRGC Database

The FRGC database [12] is a large publicly available corpus
that has been widely used to report landmark localization
results, thus allowing for a direct comparison of our algorithm
with state of the art methods. The 3D part of the database
provides both geometric (range) and texture information and
is divided in two parts (orversions): FRGC v1 contains943
scans from275 subjects with only mild expression variations

3Note that each execution of the loop between lines11 to 16 of Alg. 1
involves only one matrix inversion, as all candidates testedwithin the loop
correspond to the same landmark and therefore produce the same split of the
eigenvector matrixΦ into Φf andΦg .

4http://www.cipa.dcu.ie/face3d/SRILFExamples.html [15.07.2013]

TABLE I
LANDMARK DEFINITIONS AND ABBREVIATIONS

Name Abbr Description
Alare crest (2) ac Nose corner, L/R (insertion of each

alar base)
Cheilion (2) ch Mouth corner, L/R (labial commissure)
Endocanthion (2) en Inner-eye corner, L/R
Exocanthion (2) ex Outer-eye corner, L/R
Labiale inferius li Middle point of the lower lip
Labiale superius ls Middle point of the upper lip
Nasion n Depressed area between the eyes, just

above the nose bridge
Pogonion pg Chin tip (most anterior, prominent point

on the chin)
Pronasale pm Nose tip (most anterior midpoint of the

nasal tip)
Subnasale sn Point at which the nasal septum merges, in

the midsagittal plane, with the upper lip

and without illumination changes; FRGC v2 contains4007
scans from466 subjects with both illumination and expression
variations, some of which are very significant.

We will report experimental results using2-fold cross-
validation on each database version (v1 or v2) and results
training on v1 and testing on v2, to reproduce the different
experimental settings reported in the literature.

All scans were pre-processed with a median filter to remove
spikes and a smoothing filter based on a bi-quadric approxima-
tion of each vertex from a3 mm neighborhood. Finally, scans
were decimated by a factor of1:4 and converted to triangulated
meshes. This resulted in an average of approximately25500
vertices per mesh.

Ground truth annotations for this database are also publicly
available. We used annotations from Szeptycki et al. [34], with
the additions and corrections introduced by Creusot et al. [27]
which are available on line5. We target the14 facial landmarks
available in this set, with definitions as indicated in TableI.

B. Geometric Descriptors

We use APSC [49] as geometric descriptors (i.e. to generate
the scoress(v)). APSC descriptors are constructed by ex-
tracting asymmetry patterns from a 3DSC. The computational
cost of the latter is considerably higher than the extraction of
asymmetry patterns, which allows computing several APSC
descriptors at a computational cost comparable to a single de-
scriptor. On the other hand, the use of asymmetry resolves the
azimuth ambiguity of 3DSC, which speeds up the computation
of the scores and tends to compensate the extra time needed
to build the descriptors. While individual APSC descriptors
can achieve comparable accuracy to other popular descriptors
such as spin images or 3DSC, using a pool of APSC to target
each landmark with the most appropriate descriptor provides
improved localization accuracy with a marginal increase in
computation cost [49], [56].

We evaluated all APSC descriptors listed in [49] and choose
the most appropriate for each landmark using default settings:
11 × 12 × 15 elevation, azimuth and radial bins covering a
spherical neighborhood ofrmax = 30 mm radius and setting

5Available at http://clementcreusot.com/phd/ [08.07.2013]

http://www.cipa.dcu.ie/face3d/SRILF_Examples.htm
http://clementcreusot.com/phd/
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the smallest radial bins atrmin = 1 mm. We select this only
once, using the FRGC v1 database.

In all cases, we obtained descriptor templates for each land-
mark by averaging over the training set. As manual annotations
for FRGC have been shown to be rather noisy, we used the
Least Squared Corrections of Uncertainty algorithm [57] to
build the templates. In brief, this means that we assumed an
uncertainty in the manual annotations, which were allowed to
move within a small neighborhood of radiusru to enforce
consistency of the extracted descriptors. Previous experiments
on this database produced stable results forru between5
and 20 mm, hence we adopt a conservative value and set
ru = 5 mm. The ground truth displacements are only used
during training to derive the templates and are specific to each
descriptor. We have shown that this strategy is more accurate
than simply trusting the manual annotations [57].

Descriptor scores were computed as the negative Euclidean
distance to the template. We also explored using the Maha-
lanobis distance, which generally reduced the errors, although
this was significant only for the landmarks in the mouth and
chin (ch, ls, li and pg). Since the dimension of the APSC
descriptors is relatively high (990 bins) using the Mahalanobis
distance proved computationally expensive, even though we
computed it after projection into a lower dimensional space
obtained by PCA. Thus, Mahalanobis distances were used
only for those landmarks on the mouth and chin; Euclidean
distances were used for all other landmarks.

Our evaluation of descriptors is based on the expected local
accuracyek, which quantifies the expected localization error
of a descriptor when it is evaluated in a local neighborhood6

of the target [56] and the required number of candidates̺k,
as defined in Section II-A2. To avoid biasing the localization
results, we evaluated the descriptors only within each foldof
the cross-validation split. Results for the1st fold of FRGC v1
are provided in Supplementary Table I. The descriptors finally
chosen for each landmark are highlighted in blue. The criterion
used was to include a new descriptor only if there were none
already included that could achieve comparable performance
(i.e. not significantly different from the best). This directly
led to the choice of DAR, A+R and A+DAR and either A0 or
A+DAER. However,1-ring APSC are faster to compute than
2-rings, therefore we choose A0.

Results on the2nd fold of FRGCv1 were similar to those
discussed above, hence we kept the same selection of descrip-
tors for all experiments in this paper. Note that this relates to
what descriptors were used but not to the number of candidates
retained̺, which must be recomputed for each training set.

C. Localization Accuracy on FRGC

In this section we compare localization errors for the14
targeted landmarks measured as the Euclidean distance to the
manual annotations. We provide results for SRILF together
with results reported in the literature from other12 methods.

6The neighborhoods used to computeek are determined as the nearest rings
around each targeted point for which accuracy is stable. These neighborhoods
can play a role when comparing descriptors but that was not thecase in these
experiments, hence we omit them here. Please refer to [56] for details.

TABLE II
SUMMARY OF COMPARED METHODS ON THEFRGCDATABASE

Method
# of # scans Deci- Smoothing Hole
Lmk tested mation filter filling

Alyuz et al.
5 v2: 4007 none yes yes

[29]
Colbry

9 v1: 953 1 : 4 yes
[58]

Creusot et al.
14

v1: 943
1 : 32

[27] v2: 4007
Lu & Jain

7 v1: 946 1 : 4
[59]

Lu & Jain
7 v1: 953 1 : 4

[60]
Passalis et al.

8 v2: 975 1 : 4 yes yes
[19]

Perakis et al.
8 v2: 975 1 : 4 yes yes

[20]
Segundo et al.

4
v1: 943

none yes
[21] v2: 4007

Sukno et al.
14

v1: 943
1 : 4 yes

(SRILF) v2: 4007
Szeptycki et al.

9 v1: 462 none yes yes
[34]

Yu & Moon
3 v1: 200 none

[24]
Zhao et al.

15
v1: 462

none yes yes
[35] v2: 1400

Zhao et al.
15

v1: 462
none yes yes

[36] v2: 1500

A summary of the experimental settings of all compared
methods is provided in Table II, including the total number
of landmarks targeted and the size of the test sets that were
reported by their authors. Decimation is often used, with
1:4 being the preferred factor because it allows to reduce
computational load without impairing accuracy. Most methods
apply smoothing filters to deal with spikes and noise in the
range data and a few of them apply also hole-filling. Thus, we
see from Table II that our experimental settings are similarto
the majority of compared methods.

Table III gathers the localization errors reported on
FRGCv1. It can be seen that, among methods using only ge-
ometric information, our results are the best for all landmarks
other than the nose tip, where Szepticky et al. [34] and Yu
& Moon [24] obtain averages about half a millimeter lower.
However, in both cases the errors of these methods in the rest
of landmarks make them far less accurate than SRILF.

When considering methods that combine both geometric
and texture information, we find that the two methods by Zhao
et al. [35], [36] perform better than SRILF for the eye corners
(both inner and outer). However, for the other7 landmarks
that can be compared, SRILF produces either equivalent or
better performance than all methods using texture, even though
we use only geometric information. A similar trend can be
observed in the results for FRGCv2 (Tables IV and V) for
which we split the comparison in two, depending on whether
the algorithms were trained on FRGCv1 or FRGCv2.

Training on FRGCv1 and testing on FRGCv2 is the most
challenging scenario, as the training data do not contain strong
facial expressions but these are present in the test set. We can
analyze how this affects accuracy by comparing the results
from Tables III and IV, i.e. training with FRGCv1 and testing
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TABLE III
LANDMARK LOCALIZATION ERRORS REPORTED ONFRGCV1, IN TERMS OF MEAN± STANDARD DEVIATION . VALUES IN [MM ]

A. Approaches based on geometric cues only

Method
Eyes Nose Mouth and chin

en ex n prn ac sn ch ls li pg
Creusot et al. [27] 4.67 6.25 4.50 4.07 4.14 3.39 4.84 3.62 4.68 5.46

±2.26 ±3.35 ±2.48 ±2.16 ±2.37 ±1.71 ±2.94 ±2.19 ±2.40 ±2.98
Lu & Jain [60] 8.25 9.9 - 8.3 - - 6.1 - - -

±17.2 ±17.6 - ±19.4 - - ±17.9 - - -
Segundo et al. [21] 4.21 - - 2.69 6.69 - - - - -

±3.33 - - ±2.14 ±2.93 - - - - -
Sukno et al. (SRILF) 3.57 4.71 2.76 2.77 3.17 2.36 3.23 2.83 3.82 4.24

±1.76 ±2.79 ±1.76 ±1.68 ±1.83 ±1.24 ±2.19 ±1.62 ±1.95 ±2.46

Szeptycki et al. [34] 3.85 7.96 - 2.27 6.18 - 8.56 -
±2.03 ±3.87 - ±1.35 ±4.23 - ±7.47 -

Yu & Moon [24] 5.17 - - 2.18 - - - - - -
±13.30 - - ±6.83 - - - - - -

B. Approaches combining both geometry and texture
Colbry [58] 5.8 - 4.8 4.0 - 4.1 5.4 - - 11.7

±4.75 - ±6.4 ±5.4 - ±5.9 ±6.75 - - ±7.3
Lu & Jain [59] 5.85 7.5 - 5.0 - - 3.6 - - -

±3.15 ±5.51 - ±2.4 - - ±3.11 - - -
Zhao et al. [35] 3.21 4.27 - 2.68 4.47 - 3.93 2.72 3.76 -

±1.97 ±2.82 - ±1.85 ±3.69 - ±2.53 ±1.51 ±2.07 -
Zhao et al. [36] 3.11 3.92 - 4.11 4.18 - 3.60 2.74 3.81 -

±1.49 ±2.02 - ±2.20 ±1.75 - ±1.96 ±1.42 ±1.97 -

TABLE IV
LANDMARK LOCALIZATION ERRORS ON FRGCV2 USING MODELS TRAINED ONFRGCV1, IN TERMS OF MEAN± STANDARD DEVIATION . VALUES IN

[MM ]

A. Approaches based on geometric cues only

Method
Eyes Nose Mouth and chin

en ex n prn ac sn ch ls li pg
Creusot et al. [27] 4.30 5.93 4.22 3.36 3.72 3.65 5.57 4.26 5.47 6.72

±2.05 ±3.08 ±2.47 ±1.95 ±1.72 ±1.61 ±3.41 ±2.63 ±3.90 ±4.15
Segundo et al. [21] 3.52 - - 2.73 5.34 - - - - -

±2.30 - - ±1.39 ±1.89 - - - - -
Sukno et al. (SRILF) 3.35 4.49 2.55 2.22 3.09 2.81 4.05 3.40 4.82 5.39

±1.63 ±2.64 ±1.60 ±1.31 ±1.18 ±1.11 ±3.12 ±1.97 ±4.04 ±4.01

B. Approaches combining both geometry and texture
Zhao et al. [35] 4.07 5.10 - 4.88 6.80 - 5.03 3.53 6.48 -

±2.07 ±2.99 - ±2.52 ±4.37 - ±3.07 ±1.86 ±3.16 -
Zhao et al. [36] 3.23 4.10 - 4.43 4.64 - 4.22 3.37 4.65 -

±1.44 ±2.05 - ±2.56 ±2.06 - ±2.41 ±1.89 ±3.41 -

TABLE V
LANDMARK LOCALIZATION ERRORS WHERE BOTH TRAINING AND TEST SETS DERIVE FROMFRGCV2, IN TERMS OF MEAN± STANDARD DEVIATION .

VALUES IN [MM ]

A. Approaches based on geometric cues only

Method
Eyes Nose Mouth and chin

en ex n prn ac sn ch ls li pg
Alyuz et al. [29] 4.98 - - 3.26 4.60 - - - - -

n/a - - n/a n/a - - - - -
Passalis et al. [19] 5.25 5.71 - 4.91 - - 6.06 - - 6.31

±2.53 ±3.46 - ±2.49 - - ±4.30 - - ±4.43
Perakis et al. [20] 4.28 5.71 - 4.09 - - 5.49 - - 4.92

±2.42 ±3.38 - ±2.41 - - ±3.89 - - ±3.74
Sukno et al. (SRILF) 3.54 4.63 2.53 2.34 2.62 2.70 3.87 3.31 4.55 4.91

±1.74 ±2.67 ±1.63 ±1.70 ±1.35 ±1.12 ±2.77 ±1.83 ±3.39 ±3.54

TABLE VI
LANDMARK LOCALIZATION ERRORS ON THE CLINICAL DATASET, IN TERMS OF MEAN± STANDARD DEVIATION . VALUES IN [MM ]

Method
Eyes Nose Mouth and chin

en ex n prn ac sn ch ls li pg
Sukno et al. (SRILF) 1.73 3.21 1.72 1.90 2.01 1.83 2.55 2.19 2.35 3.35

±1.07 ±1.99 ±1.20 ±1.29 ±1.27 ±1.12 ±1.69 ±1.27 ±1.38 ±2.12
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on FRGCv1 or FRGVCv2, respectively. We can see that
SRILF and the methods by Creusot et al. [27] and Segundo et
al. [21] maintain their accuracy for all landmarks in the eyes
and most of the nose but not for the mouth and chin landmarks
(Segundo et al. do not target them and the other two methods
show increased errors). The algorithms from Zhao et al. [35],
[36] show increased errors for most landmarks when testing
on FRGCv2. In the case of [35], errors grow significantly for
all landmarks while the method in [36], which incorporates
an occlusion model, is able to maintain accuracy for the eyes
and, to some extent, also the nose. Landmarks in the mouth
and the chin clearly show higher errors.

Further details for SRILF are provided in Fig. 2. The strong
facial expressions on FRGCv2 result in increased errors in the
lower part of the face; the boxplots in Fig. 2 show that this is
better explained by a rise in the number and the strength of
outliers than by an actual change in overall accuracy (indicated
by the medians). This is a rather straight-forward consequence
of the mismatch between training and test sets, as illustrated
in Fig. 3, top row. FRGCv1 is not a representative training
set for some of the scans with strong facial expressions in
FRGCv2. In those cases, landmarks in the lower part of the
face cannot be identified correctly as both the local geometry
around landmarks and the global shape defined from them
deviate considerably from the statistics of the training set.

The above can be dealt with by deriving training and test
sets from FRGCv2, which in our case was done by means of2-
fold cross validation (Fig. 3, bottom row). Now the algorithm
can also tackle cases with strong facial expressions, as these
are present in the training set: for example, in Fig. 3 the images
in (c) and (e) correspond to the same scan, but localization
results are considerably better in (e).

Some limitations of SRILF can be observed in those cases
where all included candidates correspond to the upper part of
the face. The latter is illustrated in example (f) of Fig. 3: all
candidates included inxf correspond to landmarks above the
upper lip, while all landmarks from the lower part have been
inferred (i.e. they are inxg). As the majority of examples
in FRGCv2 have a closed mouth, so does the most probable
estimate unless there is image evidence that contradicts it. A
possible solution would be to force that at least one of the
candidates included inxf corresponds to a landmark in the
lower part of the face, providing the necessary constraintsfor
a more accurate estimate (e.g. as in Fig. 3-e). However, this
problem was limited to very few cases: as it can be appreciated
in the boxplots attached to each example of Fig. 3, (c) and
(f) correspond to extreme cases, which are clearly outliersin
terms of localization accuracy.

Another figure of merit used to assess the performance of
localization algorithms is the landmark detection rate, i.e. the
percentage of landmarks that were localized within a given
radius from the ground truth. While this is a weaker measure
than the average errors provided in Tables III to V, it relates
to robustness and is sometimes reported. Thus, we provide
detection rates in Supplementary Table II. These conform
SRILF as the top-performing approach for most landmarks.
Additionally, the landmark coordinates obtained by SRILF for
all experiments on FRGC are provided on-line4, together with
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Fig. 2. Landmark localization errors of SRILF using trainingsets derived
from FRGCv1 for test sets from FRGCv1 (cross-validation) and FRGCv2.

Fig. 3. Examples of landmark localization in FRGCv2 using SRILF trained
on FRGCv1 (top row) and FRGCv2 with cross validation (bottomrow).
Landmarks identified based on candidates (included inx

f ) are displayed in
blue, while inferred landmarks are displayed in red. We show also the overall
error for each case and a boxplot of the overall errors for allscans in the test
set where we can see the position of each example. Thus, (a), (b), (d) and
(e) are representative examples while (c) and (f) are extreme cases, showing
nearly worst-case performance. More examples available on-line4.

several example videos that illustrate the behavior of SRILF
in best, worst and typical cases.

D. Landmarks and Complexity

As mentioned earlier, our primary interest is on highly
accurate localization of facial landmarks. In contrast, some of
the methods compared in the previous sections focus on com-
putational complexity and can extract landmark coordinates in
about1 second per facial scan [21], [27].

While we do not target low complexity, it is important to
compare SRILF with the Flexible Landamrk Models (FLMs)
presented by Passalis et al. [19] and Perakis et al. [20]. These
recent methods share with SRILF the use of a statistical
model to validate combinations of landmark candidates but
cannot handle incomplete sets. The strategy used in FLMs
is to tolerate large numbers of false positives, in an attempt
to avoid any false negatives in at least one side of the face.
Hence, they need to retain a large number of candidates for
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each landmark. In contrast, we retain a smaller number of
candidates and handle false negatives as missing information
that is completed by inference from the statistical model.

The computational cost of both SRILF and FLMs depends
on the number of landmarks that are targeted. Hence, we re-
peated the experiments on FRGCv1 targeting different subsets
of landmarks. We started with a subset of8 points that matches
the landmarks targeted by FLMs and successively added points
until reaching the full set of14 landmarks. The results are
summarized in Supplementary Table III and include:

• Localization errors per landmark, to verify whether
using smaller subsets (with fewer constraints) has an
impact on the accuracy of the algorithm.

• Computational cost, measured as the average run-time
on a PC equipped with an Intel Core i3-2120 CPU @
3.30 GHz with 4 GB RAM. Reported results correspond
to a C++ implementation using the Armadillo library
[61] for the matrix inversions and OpenMP [62] for
parallelization.

The first conclusion that can be extracted is that localization
errors did not vary much for the different subsets. The largest
variations were observed in the eye corners, which showed
slightly higher errors when fewer landmarks were targeted.
However, these differences were always within5% of the
errors obtained when targeting the full set of14 landmarks.

SRILF required4.7 seconds to locate8 landmarks and
approximately31.5 seconds to target the full set. We can
compare the results when targeting8 landmarks with those
reported using FLMs to target the same subset, which averaged
6.68 seconds on a PC comparable to the one used here [20].
In both cases we can clearly isolate the time taken by the
combinatorial search, thus highlighting the difference between
our strategy of using incomplete sets of landmarks (0.54
seconds) and the one used in FLMs of trying to always find
the complete set, which was reported to average6.07 seconds.

In terms of scalability, an approximate analysis can be done
by assuming a constant number of candidates,Nc, retained for
all landmarks. Targeting an additional landmark with FLMs
multiplies the number of combinations to test byNc (or

√
Nc

if the extra landmark is symmetric). In SRILF we test
(

L
4

)

N4
c

combinations, so targetingL + 1 landmarks increases the
combinations to test only by a factor of(L+ 1)/(L− 3).

Therefore, SRILF not only outperforms FLMs in the con-
crete case of localizing8 landmarks as in [19], [20], but it
also scales better when additional landmarks are targeted,since
(L + 1)/(L − 3) quickly tends to the unit as we increaseL.
Also, as already mentioned, recall that SRILF needs to retain
less candidates than FLMs, which results in smaller values of
Nc, i.e. NSRILF

c < NFLM
c and typicallyNFLM

c ≫ 1.
It is worth emphasizing that the complexity of the combi-

natorial search depends not only on the number of targeted
landmarks but also on the number of candidates included into
xf case by case, as shown in Fig. 4. Having to test larger
subsets of candidates increases the complexity but also reduces
the number of landmarks that must be inferred and, on average,
localization errors. It can be seen that in the majority of cases
(82.6%) there were between9 and 12 landmarks identified
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Fig. 4. Results on FRGCv1 grouped by number of candidate-based landmarks
(cardinality ofxf ). Top: average error over all landmarks; Middle: percentage
of scans with the number of candidate-based landmarks indicated by the
horizontal axis; Bottom: average run-time of the combinatorial search. In the
top and bottom plots, bars indicate a95% confidence interval of the mean.

based on candidates (i.e. included inxf ) while the remaining
2 to 5 landmarks were inferred from the model statistics.

Finally, it should be noted that both the computation of
descriptors and the combinatorial search involve a large num-
ber of operations that are inherently independent. Therefore,
the algorithm could in principle be accelerated substantially
through parallelization (e.g. by using GPUs).

E. Occlusions and Out-of-plane Rotations

An interesting by-product of the strategy followed by SRILF
is that it can naturally handle cases with occlusions or missing
data. Let us emphasize that, up to this point, we have referred
to missing landmarksas those for which feature detectors did
not produce suitable candidates, although the vast majority of
the test surfaces did not present occlusions or missing parts.

In this section, we present tests on the Bosphorus database
[51], which offers the possibility to test scans with actual
occlusions (due to hair, glasses or hands covering the face)
and scans where part of the surface was not captured due to
self-occlusions generated by large out-of-plane rotations.

The Bosphorus database contains scans from105 subjects
showing expressions, facial action units and, as mentioned
above, rotations and occlusions. To facilitate comparisonto
other works, we selected the same4339 facial scans used by
Creusot et al. [27], namely all available scans but those with
90 degree rotations or flagged asinvalid. We proceeded analo-
gously as done with the FRGC database, including decimation
by 1:4 which resulted in an average of approximately9240
vertices per facial scan.

Fig. 5 shows the localization results for each landmark,
discriminated in three sets:2803 frontal scans without oc-
clusions (most of which show expressions or action units),
1155 scans with out-of-plane rotations and381 scans with
occlusions. Models were constructed using exclusively scans
that are frontal without occlusions, so that they could not learn
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Fig. 5. Landmark localization errors of SRILF on the Bosphorus database.
We show separately the errors for frontal scans without occlusions (blue),
scans with rotations (red) and scans with occlusions (green).

from occluded or rotated scans. Experiments were carried our
under2-fold cross validation ensuring that no subject was part
of both training and test sets at the same time.

Comparing the errors for the three sets in Fig. 5, we can
see that the overall performance is maintained for a majority
of landmarks. On the other hand, it is also clear that the
presence of occlusions and rotations increases the percentage
of outliers. Fig. 6 shows snapshots of rotated and occluded
cases, as well as some especially challenging scans where the
algorithm produces errors considerably larger than the average.

Numeric results, in terms of localization errors and de-
tection rates, are provided in Supplementary Tables IV and
V. Similarly to FRGC, comparison to other state of the art
algorithms is favorable for most landmarks. The landmark
coordinates obtained by SRILF for all tested scans are also
provided on-line7 together with a large collection of snapshots
of the localized landmarks.

F. Localization Accuracy for Clinical Data

The experiments presented in the previous sections aimed at
testing the robustness of SRILF and its performance in relation
to state of the art approaches using large public databases in
which there are acquisition artifacts, occlusions, strongfacial
expressions and a non-negligible degree of noise in the manual
annotations, as discussed in [57].

In this section we explore how much can we reduce localiza-
tion errors by testing SRILF on a clinical dataset where special
care has been taken to minimize the presence of artifacts
and manual annotations have been performed by experts. The
dataset consists of144 facial scans acquired by means of a
hand-held laser scanner8 with an average of approximately
44200 vertices per mesh.

The dataset contains exclusively healthy volunteers who
acted as controls in the context of craniofacial dysmorphology
research. All scans are from different individuals (i.e. one scan
per person) and volunteers were asked to pose with neutral
facial expressions. Each scan was annotated with a number of

7http://www.cipa.dcu.ie/face3d/SRILFExamplesBosphorus.htm
[19.03.2014]

8Polhemus FastSCANTM , Colchester, VT, USA. Example available at
http://www.cipa.dcu.ie/videos/face3d/ScanningDCU RCSI.avi [20.05.2013].

Fig. 6. Examples of landmark localization in the Bosphorus database using
SRILF: a-c) scans with occlusions, d-f) scans with out-of-plane rotations that
produce large missing parts of the surface, g-i) especially challenging cases.
Examples (a) to (g) correspond to average performance while (h) and (i) have
larger errors; in particular, (i) shows the worst result obtained in this database.
Landmarks identified based on candidates (included inx

f ) are displayed in
blue, while inferred landmarks are displayed in red.

anatomical landmarks [63], among which we target the same
14 points as in the previous experiments. Due to the moderate
size of the dataset, we used6-fold cross-validation so that
training sets would always contain120 scans. All parameters
were kept as in Section III-B.

Results are shown in Fig. 7 and Table VI. Average errors
are below3.5 mm for all landmarks and within2 mm for
half of them. However, we can also see that averages are
still importantly affected by the presence of outliers and the
median errors are at or below2 mm for the majority of
landmarks. Recent work in the clinical domain suggests that
human observers could annotate facial landmarks with errors
between1 and2 mm [13], [14], which would be an acceptable
accuracy for craniofacial dysmorphology applications [7].

Comparing these results to those in FRGCv1 (the part of
FRGC with less variations due to facial expressions), the
overall localization error is more than1 mm lower:3.44 mm
on FRGCv1,2.31 mm on the clinical dataset. Looking at each
landmark individually, all of them have lower average errors in
the clinical dataset. In relative terms, the reduction in average
errors ranged from slightly above20% (sn, ch, ls, pg) to more
than 50% (en). In both datasets the chin tip and outer-eye
corners were the most difficult points to locate.

IV. D ISCUSSION

The experiments presented in Section III have shown that
our algorithm can locate facial landmarks with an accuracy

http://www.cipa.dcu.ie/face3d/SRILF_Examples_Bosphorus.htm
http://www.cipa.dcu.ie/videos/face3d/Scanning_DCU_RCSI.avi
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Fig. 7. Landmark localization errors of SRILF on the clinicaldataset.

that is comparable or better than state of the art methods. The
methods compared can be divided into two categories:

• Approaches based on geometric cues only: these are
the most direct competitors, as our algorithm belongs
to this category. A combined analysis of Tables III to
V shows that SRILF always obtained lower localization
errors than all other geometric methods for12 out of
the 14 tested landmarks (en, ex, n, ac, sn, ch, ls and
li ). For the remaining2 landmarks, SRILF was the most
accurate method for the nose tip in FRGCv2 but not in
FRGCv1; while it was the most accurate for the chin
tip in all three experiments, results were similar to the
method by Perakis et al. [20] in FRGCv2.

• Approaches combining both geometry and texture: in
principle, these methods have an advantage over SRILF,
not only because they incorporate an additional source
of information but also because manual annotations for
FRGC have been derived from 2D images and could
therefore have some bias toward texture. However, the
results reveled that our algorithm was still as accurate
or better than texture-based methods for the majority of
compared landmarks and it only produced consistently
higher errors for the eye corners. Nonetheless, this
increase was in all cases below20%.

In terms of average errors over all targeted landmarks,
SRILF obtains the best results (3.4 to 3.7 mm), followed by the
method from Zhao et al. [36] (3.7 to 4.1 mm). Interestingly,
these two methods share the concept of using partial sets of
landmarks if there is no information available for the complete
set. In the case of Zhao et al. this is achieved by using an
occlusion detection block, which indicates whether the image
information for a given landmark should be used or discarded
(presumably due to an occlusion). Comparison to prior work
of the same authors without occlusion detection [35] yields
similar errors in FRGCv1 but considerably higher errors in
FRGCv2. However, the number of scans with occlusions (or
missing parts of the surface) in FRGC is limited and affects
a rather small percentage of the data, suggesting that the
information that is discarded is not restricted to occludeddata
but also includes regions where the image features are not
reliable (e.g. do not match the statistics from the trainingset).

Among remaining methods that target landmarks in all facial
regions, those from Creusot et al. [27], Perakis et al. [20]
and Passalis et al. [19] are the most accurate, although their
overall errors are above4.5 mm. These three methods also
include strategies to handle partial information: Creusotet al.
use combinatorial search based on RANSAC but constrained
to a rigid model that can be scaled but not deformed, while
Perakis et al. and Passalis et al. exploit bilateral symmetry to
account for cases where information is complete only for one
side of the face, but without providing estimates for the other
side. The method by Fanelli et al. [32] is yet another recent
work using partial information to target facial landmarks;this,
unfortunately, has not yet been reported on FRGC.

V. CONCLUSIONS

In this paper we present SRILF for the automatic detection
of facial landmarks. The algorithm generates sets of candi-
date points from geometric cues extracted by using APSC
descriptors and performs combinatorial search constrained by
a flexible shape model. A key assumption of our approach
is that some landmarks might not be accurately detected by
the descriptors, which we tackle by using partial subsets
of landmarks and inferring those that are missing from the
flexible model constraints.

We evaluated the proposed method in the FRGC database,
where we obtained average errors of approximately3.5 mm
when targeting14 prominent facial landmarks. For the ma-
jority of these our method produces the most accurate results
reported to date in this database. This was verified even for
methods combining both geometry and texture, which outper-
formed SRILF only when targeting eye corners, suggesting
that texture information might be of special importance in
the localization of the eyes. It was also shown that smaller
subsets of landmarks could be targeted while keeping accuracy
essentially constant and reducing computational cost.

From the12 methods that we included for comparison, those
that achieved the best results shared with SRILF some ability
to use partial information. There seems to be a trend indicating
that most successful methods for landmark localization are
those that can dynamically determine (on a case by case basis)
what information to rely on and what information to discard
or ignore. In this sense, SRILF provides a general framework
that integrates non-rigid deformation with the ability to handle
any combination of missing points.

We also investigated the performance of our algorithm on
data with occlusions and out-of-plane rotations, as well as
potential limits in the accuracy that could be reached. Testing
our algorithm against expert annotations in a clinical dataset,
we found that SRILF could localize facial landmarks with an
overall accuracy of2.3 mm, with typical errors below2 mm
for more than half of the targeted landmarks. Nonetheless, this
relates only to overall performance and cannot be guaranteed
for all individual cases. Thus, further efforts should concen-
trate on reducing the number and the strength of outliers.
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