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Abstract. This paper presents a method for the automatic detection of
facial landmarks. The algorithm receives a set of 3D candidate points for
each landmark (e.g. from a feature detector) and performs combinatorial
search constrained by a deformable shape model. A key assumption of
our approach is that for some landmarks there might not be an accurate
candidate in the input set. This is tackled by detecting partial subsets of
landmarks and inferring those that are missing so that the probability
of the deformable model is maximized. The ability of the model to work
with incomplete information makes it possible to limit the number of
candidates that need to be retained, substantially reducing the number
of possible combinations to be tested with respect to the alternative of
trying to always detect the complete set of landmarks. We demonstrate
the accuracy of the proposed method in a set of 144 facial scans acquired
by means of a hand-held laser scanner in the context of clinical craniofa-
cial dysmorphology research. Using spin images to describe the geometry
and targeting 11 facial landmarks, we obtain an average error below 3
mm, which compares favorably with other state of the art approaches
based on geometric descriptors.

1 Introduction

Accurate and automated detection of facial landmarks in 3D is an important
problem in computer vision, with applications to biometric identification and
medicine. Biometric applications [1, 2] are typically concerned with the robust-
ness of the algorithm (e.g. to occlusions, expressions, non-collaborative subjects)
to achieve systems that can be deployed in a wide variety of scenarios. In this
context, state of the art algorithms target the most prominent facial landmarks
on large databases with diverse acquisition artifacts (e.g. holes, spikes) that help
in assessing performance in challenging scenarios.

In medical applications such as craniofacial dysmorphology [3], which is the
focus of our research, there is greater interest in the highly accurate localization
of landmarks, as they constitute the basis for analysis, often aimed at detect-
ing quite small shape differences. Acquisition conditions are therefore carefully
controlled to minimize holes and other artifacts. For example, using a hand held
laser scanner it is possible to obtain a high quality ear-to-ear facial scan.
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The availability of high quality surfaces poses an important challenge to
landmark localization algorithms, namely what accuracy can we obtain for facial
landmarks in the presence of high quality data?

1.1 Related work

To take full advantage of three dimensional data, there is a particular interest in
methods that localize facial landmarks based purely on geometric information
(i.e. without including texture information). The most widely used feature to
encode the facial geometry for landmark detection has been surface curvature
[1, 4, 5]. Other geometric features include relief curves [6], the response of range
data when convolved with a set of primitive filters [7] or Gabor wavelets [8].

Regardless of the features that are used, it is unlikely that unique and highly
accurate detection can be achieved for a given landmark. Even the nose tip, so far
the most successfully detected facial landmark, suffers from both false positives
and negatives. Thus, responses from feature detectors are usually combined with
prior knowledge to improve performance. Methods targeting a small subset of
landmarks typically encode prior knowledge by a set of carefully designed rules
about the human face, sometimes with the help of anthropometric statistics [1].
A weakness of these methods is that they usually follow a chain of rules that
depend on one another. Therefore, missing or incorrectly detecting one landmark
hampers the detection of all subsequent landmarks in the chain.

Statistical methods can derive prior knowledge from an annotated training
set. At the expense of requiring that such a set is available, they are more flexible
than their training-free counterparts in the landmarks that can be targeted, as
there is no need to derive specific rules for each point. Examples of this strategy
include the use of graph matching [9] and statistical shape models [5, 10, 11].
However, these methods still rely on the detection of all targeted points, which
can prove difficult for most feature detectors.

To alleviate this problem, Creusot et al. [12] use partial graph matching
and determine the final alignment by clustering transformations from triplets of
points while Amberg & Vetter [13] use Branch and Bound to optimize the search
of extended sets of landmarks (so that the missing ones are less important).
However, in both cases a rigid shape is used, which is an important limitation for
facial modeling. In contrast, Passalis et al. [14] present an algorithm that allows
non-rigid deformations by using a deformable shape model. They exploit facial
symmetry to account for possible occlusions, but still require the full visibility
(and detection) of the landmarks of the left or right side. As a consequence, they
need to retain a large number of candidates for each landmark and test nearly
billions of combinations even though they target only 5 to 8 landmarks.

1.2 Contribution

In this paper we present a method for the detection of landmarks for craniofacial
research that can handle missing points, allowing non-rigid deformations. It is
assumed that for each targeted landmark there will be a set of candidates that
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may or may not contain a suitable solution (i.e. one that is close enough to
the correct position of the landmark). This is analogous to the point-matching
problem found in algorithms that search for correspondences [15, 2]. However,
the human face is a non-rigid object and these point-matching algorithms are
typically restricted to rigid transformations3.

Our matching algorithm, based on RANSAC [16], consists of analyzing sub-
sets of candidates and completing the missing information by inferring the co-
ordinates that maximize the probability of a deformable shape model. Thus,
despite the resulting subset possibly containing only part of the targeted land-
marks, estimates for the remaining coordinates are inferred by regression from
the priors encoded in the model. Subsets of candidates that fulfill the statistical
constraints of the model are retained and additional landmarks are incorporated
iteratively as long as the set remains a plausible instance of the shape model.

The ability of the model to work with incomplete information makes it pos-
sible to limit the number of candidates to be retained for each landmark, which
substantively reduces the number of combinations to test with respect to the
alternative of trying to always detect the complete set of landmarks. We ex-
perimentally demonstrate the accuracy of our approach, comparing it with two
recent methods: one [4] based on heuristics on curvature and profile projections
and another [14], closer to ours, which uses a statistical model.

2 Shape Regression with Incomplete Local Features

Our algorithm has three components: i) selection of candidates through local fea-
ture detection; ii) partial set matching to infer missing landmarks by regression;
iii) combinatorial search, that integrates the other two components.

2.1 Local feature detection

LetM represent a 3D surface, whose vertices we denote by v ∈ M. Also, let d(v)
be the (Euclidean) distance from v to the ground truth (i.e. manual location of
the considered landmark) and s(v) the descriptor score (i.e. the value resulting
from the evaluation of the descriptor template at vertex v). For example, spin
images [17] are a descriptor and the average per landmark over a training set
can be used as a template.

Ideally, vertices with high s(v) should be close to the target and have small
d(v). However, very often there are false positives with high s(v) and d(v) at the
same time. We wish to retain enough candidates (the top-Nc) so that at least one
of them is close enough to the target, i.e. there is some v so that d(v) ≤ rA, where
rA is the acceptance radius. Unfortunately, this derives a very large Nc. Given
a training set {Mi}Ni=1, if we compute the candidates required for each mesh,

N
(i)
c , we find a very skewed distribution, where the maxima are typically outliers.

3 While some robustness to deformations has been demonstrated experimentally in the
literature, the formulation of these algorithms is constrained to rigid transformations.
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Thus, we set Nc as an outlier threshold for the distribution of N
(i)
c ; specifically,

we used 1.5 times the inter-quartile distance from the upper quartile, which is
accepted as a standard setting. We found that, for some landmarks, this choice
can reduce the number of retained candidates by up to an order of magnitude.

Choosing Nc based on an outlier threshold for the distribution implies that,
in the vast majority of cases, we will detect a candidate that is close enough to
the target (e.g. within rA) but we will miss a small proportion (the outliers).

2.2 Partial set matching with statistical shape models

Let x = (x1, y1, z1, x2, y2, z2, . . . , xL, yL, zL)
T be a shape vector, constructed by

concatenating the coordinates of L landmarks4. By applying Principal Compo-
nent Analysis (PCA) over a representative training set [18], we get the mean
shape x and the eigenvector and eigenvalue matrices Φ and Λ, respectively,
sorted in descending order (Λii ≥ Λjj , ∀i < j). Given any set of L points x, we
can obtain its PCA representation as b = ΦT (x − x), which will be considered
to comply with the PCA model (i.e. to be a valid object within such model) if

M∑
m=1

(
b2m
Λmm

)
< β2

e (1)

where M is the number of retained principal components and βe is a constant
that determines the flexibility of the model.

However, if the point set is incomplete, we may want to use the available
points and the model statistics to infer those that are missing. Let xf be the
fixed (or available) landmarks, and xg the unknown landmarks (the ones to
guess). Without loss of generality we group the missing landmarks from 1 to 3g:

xg = (x1, y1, z1, . . . , xg, yg, zg)
T

xf = (xg+1, yg+1, zg+1, . . . , xL, yL, zL)
T

x =

(
xg

xf

)
, Φ =

(
Φg

Φf

)
(2)

The objective is to infer the coordinates of landmarks xg so that the probability
of the resulting shape complying with the PCA model is maximized, ideally
without modifying the coordinates in xf . Assuming that the model follows a
multi-variate Gaussian distribution N (0,Λ) in PCA-space, it can be shown that
(see Appendix A in supplementary material):

xg = xg − (
ΦgΛ−1(Φg)T

)−1(
ΦgΛ−1(Φf )T

)
(xf − xf ) (3)

The idea of using statistical constraints to complete missing landmarks has
been explored previously by other authors [19, 20]. While Blanc et al. [19] use

4 We assume that the shape has been aligned (e.g. by Procrustes analysis) so that
Similarity is removed.
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an iterative approach to solve the resulting system of equations, de Bruijne et
al. [20] obtain a closed form solution by applying linear regression. They use
the maximum likelihood estimate of xg|xf from the covariance matrix of the
training set, which produces results very similar to ours. The difference is that
we maximize the probability of the shape after the projection into model space,
which results in higher probability of compliance with the model at the expense
of having also a higher reconstruction error.

2.3 Combinatorial feature matching

We use RANSAC as the basis for our feature matching procedure, as described in
Algorithm 1. We start from L sets of candidate points, one set for each landmark.
All combinations of 4 landmarks are then evaluated5. In principle, we could
also start from subsets of 3 points as we use Similarity alignment (7 degrees of
freedom), but 4 points were found to provide more robustness to estimate the
initial alignment.

We use equation (3) to complete the shape by inferring the missing land-
marks. As long as the generated shape fulfills the model constraints, we suc-
cessively add candidates from the remaining landmarks in a sequential forward
selection strategy [21]. The cost of including a new candidate ck into xf is com-

puted as the median of squared distances to xf
test, taking the closest candidates

to the current estimate for the missing landmarks:

γ(ck) = median(∆x̂test) (4)

∆x̂test =

{‖x̂test(�j)− xf
test(�j)‖2, ∀�j ∈ xf

test

mincj
‖x̂test(�j)− cj‖2, ∀�j /∈ xf

test

}

where �j is the j-th landmark, and cj are each of the candidates for landmark j.
We use x(�j) to indicate the j-th landmark of the shape, and x̂ is the best PCA
reconstruction of shape x in a least squares sense.

The inclusion cost in (4) is a key aspect of the algorithm and is divided in
two parts, from the definition of ∆x̂test. The first part is the reconstruction error
for the fixed landmarks, while the second part considers the distance from the
inferred landmarks to their closest candidates. Note that a possible alternative
would be using ‖ΦT (x̂−x)‖ as the inclusion cost. However, this option neglects
the effect of the coordinates inferred from x̂g. We have found that it is important
to constrain the solution to be within the mesh surface and using the landmark
candidates is a convenient alternative to achieve this. The definition of γ(ck)
based on the median implies that the landmark cost γ(k), in line 12, is the
least median of squares [22], which provides robustness to potential outliers (e.g.
landmarks for which no nearby candidates have been found).

Finally, for each set that is checked a score is computed. The candidates
successfully included in xf (i.e. those which allow completion of a shape fulfilling

5 Note that, as we are interested in accuracy, we do an exhaustive search instead of
random sampling but we do retain the idea of consensus as the figure of merit.



6 Federico M. Sukno, John L. Waddington, and Paul F. Whelan

Algorithm 1 SRILF: Shape Regression with Incomplete Local Features

1: Start from a set of candidates for each landmark
2: for (all 4-tuple combinations of landmarks and candidates x4) do
3: Initialize xf = x4

4: Infer x̂g using (3), obtaining x̂
5: while (x̂ fulfills the constraints in (1)) do
6: for (all other landmarks, �k /∈ xf ) do
7: for (all candidates ck for landmark �k) do
8: Add the candidate ck to xf to obtain xf

test

9: Infer x̂g
test from xf

test to obtain x̂test

10: Compute the resulting cost γ(ck) as in (4)
11: end for
12: Compute the landmark cost γ(k) = mink γ(ck)
13: end for
14: Update xf adding the landmark with minimum γ(k)
15: Infer x̂g from the updated xf to obtain x̂
16: end while
17: Compute the score for x4 as #(xf ) + e−γ(k)

18: end for
19: Keep the subset that achieved the highest score

the PCA constraints) are considered inliers. Thus, the cardinality of xf is used
as the main component of the score. Upon equality of inliers, the subset with
smallest γ(k) is preferred.

3 Experimental evaluation

Our test dataset consisted of 144 facial scans acquired by means of a hand-held
laser scanner (FastSCANTM , Colchester, VT, USA). Special care was taken to
avoid occlusions due to facial hair. There is some heterogeneity regarding the
extent to which neck and shoulders were included. The extracted surfaces were
subsampled by a factor of 4 : 1, to facilitate comparison to [14]. As a result,
there were, on average, approximately 21.3 thousand vertices per mesh.

The dataset contains exclusively healthy volunteers who acted as controls
in the context of craniofacial dysmorphology research. Each scan was annotated
with a number of anatomical landmarks [3], among which we target the following
11: the nose root or nasion (n); the nose tip or pronasale (prn); the chin tip or
pogonion (pg); the inner-eye corners or endocanthion (en, left & right); the outer-
eye corners or exocanthion (ex, left & right) the nose corners or alare crest (ac,
left & right) and the mouth corners or cheilion (ch, left & right).

All experiments were performed using 6-fold cross-validation. For each fold,
the 120 surfaces composing the training set were used to build the PCA model
and to determine the feature candidates to be retained. For the PCA model, we
kept 99% of the total variance, with the flexibility parameter set to βe = 4. We
chose spin images [17] as our local geometry descriptor, adopting the parameters



Title Suppressed Due to Excessive Length 7

n prn pg enR enL exR exL acR acL chR chL

1 

10

P
oi

nt
 to

 p
oi

nt
 d

is
ta

nc
e 

[m
m

]

Landmarks

 

 
SRILF
RANSAC

1   10  100 1000
2

3

4

6

8

10

Average number of combinations tested {Millions]

A
ve

ra
ge

 p
oi

nt
 to

 p
oi

nt
 e

rr
or

 [m
m

]

 

 

r
A
 = 30mm

r
A
 = 25mm

r
A
 = 15mm

r
A
 = 10mm

Passalis et al.
SRILF

Fig. 1. Left: accuracy of SRILF and RANSAC with respect to ground truth anno-
tations. For symmetric landmarks, Left or Right are additionally indicated. Right:
Accuracy and number of combinations tested for SRILF and the method by Passalis et
al. [14] when varying the parameters that control the number of candidates retained.
Error bars indicate a 95% confidence interval of the mean.

indicated in [14] (16 bins of 2 mm each). For each targeted landmark we compute
a descriptor template as the median over the training set and determine the
number of candidates Nc as described in Section 2.1. Unless otherwise stated,
reported results correspond to rA = 20 mm.

3.1 Localization accuracy

We measured the accuracy of our method by comparing the automatic results
with manual annotations from [3] that were used as independent ground truth.

To assess the necessity of a deformable model, the same experiment was re-
peated with a rigid template (the mean-shape of the PCA model). The resulting
algorithm is much like RANSAC. The fixed landmarks are now simply those in
the 4-tuple being tested, which are used to align the mean-shape to the test
shape. Since deformation is not allowed, the shape is automatically completed
and we have a rigid guess6 for the remaining landmarks. Then we can use the
same cost as in SRILF, defined in (4). Such a choice is equivalent to defining a
minimum support of 50% in the RANSAC algorithm.

The localization results are shown in Fig. 1 (left). As expected, the deformable
model is superior to the rigid one and this is verified for all tested landmarks.
Since variations in our dataset are mainly due to identity with only residual
expression changes, this is a remarkable result in favor of non-rigid modeling
vis-à-vis the rigid registration used, for example, by Creusot et al. [12] and
Ambert & Vetter [13]. The median errors of SRILF were below 3 mm for all
landmarks except the chin tip and outer eye corners. Less than 2% of landmarks
had errors above 10 mm and only in two cases did errors exceed 20 mm.

As suggested by the example in Fig. 2, our method does not actually locate
a suitable candidate for every landmark. Therefore, only some of the targeted

6 The alignment is performed using a Similarity transformation and hence uniform
re-scaling is possible, but the model shape is not allowed to deform.
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Fig. 2. Three examples of SRILF results (left) and one of the method by Passalis et al.
(right). Solid lines show the obtained shape and red circles indicate successfully detected
candidates. In SRILF the shape is completed by inference. All retained candidates for
each landmark are also indicated according to the markers in the key.

landmarks are detected with the remainder inferred using statistics from the
shape model. In our experiments, an average of 8.67 landmarks were found for
each shape (∼ 78.8%). The most frequently detected point was the nose tip
(found in more than 93% of faces) and the least frequent was the chin tip (only
found in 48% of faces). Note that all errors reported for our method are averages
over all 144 shapes including both detected and inferred landmarks.

3.2 Comparison to other methods

In this section we provide a quantitative comparison with two recently published
methods. The first method, from Segundo et al. [4], has reported state of the
art accuracy (among methods purely based on geometry) using a training-free
approach, completely different from ours. In contrast, the second method, from
Passalis et al. [14], is based on statistical shape models and is closer to the
approach proposed here. Indeed, some of the settings used in our experiments
were chosen following [14] to facilitate comparison. The key difference is that
their approach is based on fixed models of 5 landmarks that need to be detected
in all cases (i.e. a suitable candidate for every landmark is always required). This
leads them to define heuristics to keep large sets of candidates which, in addition
to a potential increase of mismatches, considerably raises the computational load,
as illustrated by the examples in Figure 2.

Table 1 summarizes the comparison results. Statistically significant differ-
ences with respect to SRILF are indicated by an asterisk7. It can be observed
that our method performs consistently best for all compared landmarks except
the nose tip, where [4] obtained similar accuracy. The average run time for our
algorithm was 4.1 seconds8.

Fig. 1 (right) provides further comparison to [14]: we found its performance
very dependent on the number of candidates retained. While Passalis et al.
specify an upper limit, the actual number kept depends on a threshold on the

7 p < 0.05 both in a paired t-test and a paired Wilcoxon signed rank test.
8 Non-optimized C++ implementation on an Intel Xeon E5320 @1.86 GHz.
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Table 1. Localization accuracy [mm] per landmark (mean ± standard error) for the
different methods.

Landmark n prn pg en ex ac ch

Passalis et al. n/a 2.89(*) 9.19(*) 3.42 6.98(*) n/a 5.88(*)
[14] ±0.15 ±0.97 ±0.66 ±1.35 ±0.96

Segundo et al. n/a 2.63 n/a 5.64(*) n/a 4.93(*) n/a
[4] ±0.13 ±0.61 ±0.21

SRILF 3.08 2.43 4.52 2.26 3.67 2.45 2.69
±0.22 ±0.15 ±0.25 ±0.20 ±0.18 ±0.22 ±0.19

spin-image scores below which candidates are discarded. The much larger num-
ber of candidates retained in [14] not only increases computational load but also
impairs accuracy, as it is more likely to find combinations of points that, while
being off-target, still comply with the statistical constraints. The need of a suit-
able candidate for every targeted landmark makes it necessary to retain those
large sets, which might even be insufficient in some cases. For example, in order
to always detect both mouth corners in our dataset, we would need to retain
more than 1000 candidates, while the heuristics defined in [14] limit this value
to 256. A similar situation was observed for the eye corners and the chin tip.

4 Conclusions

We present a method for the localization of facial landmarks that uses regression
from a deformable shape model to tackle the potential false negatives in the
detection of some landmarks. This allows an important reduction in the number
of candidates to test, hence reducing the space of possible solutions.

We compared our method with two state of the art approaches targeting 11
landmarks on a dataset of 144 facial surfaces acquired with a hand-held laser
scanner, in the context of craniofacial dysmorphology research. Despite the mod-
erate size of the database, there were statistically significant differences in favor
of the proposed approach for the majority of targeted points. We also showed that
the capability to tackle non-rigid deformations through the deformable shape
model clearly outperforms the alternative of using a rigid template.

The method is general and not constrained in any way to the landmarks
selected for our experiments. The only requirement, as a learning-based method,
is the availability of an annotated training set. Furthermore, the reduction in
computational complexity with respect to similar approaches suggests that a
larger number of landmarks might be targeted. Nonetheless, this would be linked
to the accuracy of the utilized descriptor, so that the number of candidates that
must be retained is kept within acceptable bounds.
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