

$

Visual Programming for Machine
Vision

By

Paul F. Whelan1

This chapter will outline the development of a visual programming environment

for machine vision applications, namely JVision2 [WHE-97a, WHE-97b]. The
purpose of JVision is to provide machine vision developers with access to a non-
platform specific software development environment. This requirement was
realised through the use of Java, a platform independent programming language.
The software development environment provides an intuitive interface which is
achieved using a drag and drop, block diagram approach where each image
processing operation is represented by a graphical block with inputs and outputs
which can be interconnected, edited and deleted as required. Java provides
accessibility, hence reducing the workload and increasing the deliverables in
terms of cross-platform compatibility and increased user base. JVision is just one
example of a such a visual programming development environment for machine
vision, other notable examples include Khoros [KRI-99] and WiT [WiT-99]. See
[JAW-96, GOS-96] for details on the Java programming language.

$.1 Design Outline
JVision is designed work at two levels. The basic level allows users to design

solutions within the visual programming environment using JVisions core set of
imaging functions. (Currently JVision contains over 200 image processing and
analysis functions, ranging from pixel manipulation to colour image analysis. A

1 http://www.eeng.dcu.ie/~whelanp/home.html.
2 JVision was designed and developed at the Vision Systems Laboratory, Dublin City University,

Dublin 9, Ireland. See http://www.eeng.dcu.ie/~whelanp/jvision/jvision_help.html for more details, and
for information on acquiring this package.

 2

full listing of all the functions available can be found at the JVision web site.) At
the more advanced developers level, JVision allows users to integrate their own
functionality, i.e. to upgrade through the introduction of new image processing
modules.

The following sections outline the key issues involved in the development and
use of a visual programming environment for machine vision. While may of the
issues discussed are common to a wide range of visual programming
environments, this chapter concentrates on the issues specific to a machine vision
development system.

$.1.1 Graphical User Interface (GUI)

The graphical user interface consists mainly of a canvas where the processing
blocks reside. The processing blocks represent the functionality available to the
user. Support is provided for handling positioning of blocks around the canvas or
workspace, the creation and registration of interconnections between blocks and
support for double clicking. See Figure $.1 for an example of the JVision GUI.
The lines connecting each block, represent the path of the image through the
system, with information flowing from left to right. Some of the blocks can
generate child windows, which can be used for viewing outputs, setting
parameters and selecting areas of interest from an image. If each block is thought
of as a function then the application can be thought of as a visual programming
language, the inputs to each block are similar to the arguments of a function, and
the outputs from a block are similar to the return values. The advantage in this
case is that a block can return more than one value. The image processing system
can be compiled and executed as with a conventional programming language with
errors and warnings being generated depending on the situation. Warnings are
generally associated with the failure to connect blocks correctly.

$.1.2 Object Oriented Programming

The Object Oriented Programming (OOP) paradigm allows us to organise
software as a collection of Objects that consist of both data structure and
behaviour. This is in contrast to conventional programming practice that only
loosely connects data and behaviour. The Object Oriented approach generally
supports five main aspects: Classes, Objects, Encapsulation, Polymorphism and
Inheritance. Object Orientation (OO) encourages modularization (decomposition
of the application into modules) and the resuse of software, in the creation of
software from a combination of existing and new modules.

Classes allow us a way to represent complex structures within a programming
language. Classes have two components. States (or data) are the values that the
object has and methods (or behaviour) are the ways in which the object can
interact with its data, i.e. the actions.

 3

Figure $.1, A typical JVision canvas.

Objects are instantiated, in that they exist in the computers memory, with

memory space for the data. Instantiation is the creation of an object from the class
description. An object is a discrete, distinguishable entity. For example, my car is
an object, whereas the common properties that exist with my car and every other
car may be grouped and represented as a class called Car. Objects can be concrete
(a car, a file on a computer) or conceptual (a database structure) each with its own
individual identity.

Encapsulation provides one of the major differences between conventional
structured programming and object oriented programming, it enables methods and
data members to be concealed within an object in effect making them inaccessible
from outside of the object. In effect a module must hide as much of its internals as
possible from other modules. Encapsulation can be used control access to member
data forcing its retrieval or modification through the objects interface which
should incorporate some level of error checking. In strict object oriented design an
objects data members should always be private to the object, other parts of the
program should never have access to that data.

A derived class inherits its functions or methods from the base class, often
including the associated code. It may be necessary to redefine an inherited method
specifically for one of the derived classes, i.e. alter the implementation. So,
polymorphism is the term used to describe the situation where the same method
name is sent to different objects and each object may respond differently.
Polymorphism has advantages in that it simplifies the Application Programming
Interface (API) [SUN-99] and also a better level of abstraction can be achieved.

Object Oriented languages allow a new class to be created by extending some
other class, so inheritance enables the creation of a class which is similar to one
previously defined. An inherited class can expand on, or change the properties of

 4

the class from which it is inherited. In traditional programming, modification of
existing code would be required to perform a function similar to inheritance
introducing bugs into the software as well as generating bulky repetitive source
code. The level of inheritance can be controlled by the use of the key words
public, private and protected.

$.1.3 Java Image Handling

Java provides an Image class for the purpose of storing images. This class
contains useful methods for obtaining information about the image. The most
useful of these methods are described in Table $.1. The image object can be
displayed on the canvas using the drawImage() method which is a member of the
Graphics class, this method allows the scaling of an image using a bounding box.
The scaling function is particularly useful in performing basic magnification tasks.

Method Description

getWidth(ImageObserver) Returns the width of the image object, if the
width is not yet known the return value is -1.

getHeight(ImageObserver) Returns the height of the image object, if the
height is not yet known the return value is -1.

getSource() Returns the image producer which produces
the pixels for the image. An image producer is
sometimes used in the generation of a filtered
image.

ImageObserver An image observer is an object interested in
receiving asynchronous notifications about
the image as the image is being constructed.

Table $.1 Methods of the image class.

An image consists of information in the form of pixel data, in the case of a Java

image object, a pixel is represented by a 32 bit integer. This integer consists of
four bytes containing an alpha or transparency value, a red intensity value, a green
intensity value and a blue intensity value. This representation of pixel data is
referred to as the default RGB colour model. The structure of a pixel using this
colour model is given in Figure $.2. For the purposes of JVision the alpha or
transparency value is always set to its maximum value as all images are required
to be fully opaque for display purposes, hence the alpha value can be ignored
when processing an image. Also for grey-scale images the values for each of the
colour planes will be the same hence only the value for one of the colour planes
need be extracted in order to obtain the grey intensity value for that pixel, this
approach increases the speed at which an image can be processed.

 5

$.1.4 Image Processing Strategy

The key requirement of the image processing and analysis strategy is generation
of a robust method for image flow control. This is achieved through the
introduction of the sequential block processing algorithm or the block manager.
Blocks appear as boxes with a user definable number of inputs and outputs
depending on which image-processing function is being implemented. The only
information the sequential block-processing algorithm requires is the actual state
of each of the blocks in the image processing system. Blocks request attention by
setting an internal state variable, which is polled by the block manager, rather than
generating an interrupt. A block can have one of several states and the block
manager will act according to the state of the block. The complete list of currently
available block states and their description are given in Table $.2.

The purpose of the sequential block processing algorithm is to bring all the
processing blocks in a system to their steady state. This is achieved by monitoring
for two main states, the operation of the algorithm can be summarised as follows.
Any block which receives new information on any of its inputs eventually signals
that it is WAITING_TO_PROCESS. When the algorithm sees a block signalling
WAITING_TO_PROCESS it calls the processImage() method of the relevant
block thus causing the block to signal WAITING_TO_SEND. When the
algorithm sees a block signalling WAITING_TO_SEND it calls the sendImage()
method of the block in question which results in the block returning to its
STEADY_STATE. The algorithm loops through all the blocks in the linked list
until they all signal STEADY_STATE when this occurs the algorithm terminates.

Figure $.2, The default RGB colour model.

 6

Name of State Description
STEADY_STATE A block in STEADY_STATE is ignored by the

block manger as it is assumed to have
processed its image and requires no further
attention.

WAITING_TO_PROCESS A block which is WAITING_TO_PROCESS
has received an image from one of its inputs
and has verified that there are no images
inbound on any other of its inputs. This
checking back is required to avoid glitch-like
operations evident in digital systems where
asynchronous inputs to gates occur.

WAITING_TO_SEND A block is WAITING_TO_SEND if it has
processed an image and sent the image on to its
output node.

WAITING_TO_RECEIVE A block is WAITING_TO_RECEIVE only if it
has more than one input. When an image is
received on any input a check back function is
called to ascertain if there is any more inbound
image data. If so wait for that data before going
in to the WAITING_TO_PROCESS state.
Asynchronous inputs are caused by intensive
processing taking place on one input to a block

WAITING_TO_FEEDBACK The only block which can implement the
WAITING_TO_FEEDBACK state is the
feedback block. Feedback can only occur when
all the other blocks have settled into steady
state.

Table $.2 JVision block states.

In order to integrate the type of image processing required certain changes to

the GUI must be made, these changes are outlined below.

• Addition of image storage capabilities to the connectors both male and female is
required as inter-block communications occur at the connector level thus the
input and output images of a block must be stored at this level.

• Addition of getImage() and setImage() methods to each type of connector is
required so that communication of images between male and female
connectors is possible, if a block wishes to process an image it reads that
image from its input connector and when the processing is complete it writes
the new image to its output connector.

• The possible block states as outlined in Table $.2 must be added to the block
template so that the so that the sequential block processing algorithm may be

 7

incorporated into the GUI and thus control the flow of image information
throughout the system.

• The definition of possible block types must also be added to the block template
so it can be determined where an images originates and terminate.

• The addition of the processImage() method to the block template is also
required, this method is declared as abstract and must be overwritten in any
inherited versions of the block template class. The algorithm contained in the
processImage() method provides the only difference between each of the
blocks available with the JVision.

$.2 Data Types

This section summarises the various data types currently supported by JVision
visual programming environment.

$.2.1 Image

Images are the best catered for data types in the JVision library. Dark green
nodes correspond to colour images and red nodes correspond to grey scale
images. If a colour image is specified for a grey scale input then the grey scale
representation of the image is obtained and used in the consequent processing.
Note if the image viewer frame does not re-render properly after resizing a refresh
can be forced by clicking on the image.

Figure $.3, Image data types.

 8

$.2.2 Integer

Integer values may be used in conjunction with maths blocks or other image
processing blocks. The range of the Java integer is between -2,147,483,648 and
2,147,483,647. These are indicated by light green nodes.

Figure $.4, Integer data types.

$.2.3 Double

Double values may also be used in conjunction with maths blocks or other
image processing blocks. The range of the Java double is between -
.7976931386232e308 and 1.79769313486232e308. These are indicated by dark
blue nodes.

Figure $.5, Double data types.

$.2.4 Boolean

Boolean values are used in the interface between components of the maths
library and the conditional processing blocks. The value of a Boolean variable
may be either TRUE or FALSE. These are indicated by orange nodes.

Figure $.6, Boolean data types.

 9

$.2.5 String

Strings values may be used to alert the user to certain results. Any of the above
variables integer, double, Boolean may be appended to a string using the string
add block. Note that for file saving purposes a string may not contain a new line.
These are indicated by pink nodes.

Figure $.7, String data types.

$.2.6 Integer Arrays

Integer arrays are used to provide the mask input for the convolution filter or
the structuring element for morphological operations. In the case of the
morphological blocks an ‘x’ in the structuring element corresponds to a don't care
statement (in fact an non-valid integer has the same effect, this includes spaces).
These are indicated by light green nodes.

Figure $.8, Integer arrays.

$.3 Non-linear - Feedback Blocks

The non-linear blocks supplied with JVision can be used to conditionally and
repeatedly process any type of variable from images to strings. A feedback loop
implemented in any of the instances of the blocks described below must contain
some kind of operation otherwise they serve no purpose and an error will occur.

$.3.1 Feedback

 10

Feedback is an extremely useful mechanism for implementing a repetitive set of
operations. In the example outlined in Figure $.9 multiple dilations are applied to
the input image (the top most input on the left side of the feedback block). The
number of times the dilation operation shall be applied is specified by the integer
input block (this corresponds to the middle input in the feedback block). Once the
image has been processed the specified number of times it may be further
processed. The result from the feedback loop is obtained from the top most output
on the right side of the feedback block. (Figure $.9).

Figure $.9, Feedback example. Multiple dilations of a grey scale image.

$.3.2 FOR Loop

Implementation of the FOR loop is similar to that described previously for the
feedback structure, except in this case a loop variable is available to the feedback
loop for further processing. Also the single integer input from before is replaced
with three inputs which represent the start value, finish value and the loop
increment. In fact the implementation here is equivalent to the following C code:

For(x=start;x<finish;x+=increment)

where start is the top most integer value, finish is the centre integer value and
increment is the lower integer value. (Figure $.10).

 11

Figure $.10, FOR loop example. Multiple erosion of a grey scale image.

$.3.3 IF ELSE

The IF ELSE structure is yet another implementation of the feedback
mechanism. In this case the feedback operation is applied only once, if at all. The
decision whether processing of the data should be performed using the IF or the
ELSE path is based on the status Boolean input variable. In the case of the JVision
canvas illustrated in Figure $.11, if the Boolean input is TRUE then the Smallest
Intensity Neighbour (SIN) filter is applied to the image. If the Boolean input is
FALSE then the Largest Intensity Neighbour (LIN) is applied.

Figure $.11, IF ELSE example.

$.3.4 Nesting

Another key feature of JVision is that it allows multiple nesting of feedback
structures. For example the operation implemented in Figure $.12 is low level
image negation which performs a pixel by pixel raster scan of the image. The two
FOR structures which represent the vertical index and the horizontal index

 12

respectively. The vertical index block ranges from 0 to the image height in steps
of 1, i.e. one pixel at a time.

Figure $.12, Nesting. Pixel by pixel negation.

$.4 Visual Programming Environment

Blocks are selected from the menu system as required, then placed in the
workspace. Interconnections are made between blocks following a strict 45 degree
snap to grid rule system. When the processing system is set up, input images must
be specified. This is done by double clicking on the relevant input block this
causes an image viewer frame to appear. The open option is then selected from the
file menu and the appropriate file name is chosen by navigating the file dialog box
directory structure. If the file selected contains raw image data then the
dimensions of the image must be specified before the image can be loaded. There
is currently support for 9 input graphics file formats, see Section $.4.1. Images
can be saved in either Microsoft Windows Bitmap (BMP) or PC Paintbrush
(PCX) formats.

Initialisation of certain block parameter may be required throughout the system.
If they are not set the parameters will assume to their default values. A system
may be compiled using the compile button if successful then the system can be
executed. System parameters can be adjusted and the system may be reset and
executed again until the desired response is obtained. At any stage blocks may be
added or removed from the system. A block can be deleted by clicking on the
relevant block in order to highlight it, then pressing the delete key. If the delete
key is not available which may be the case with certain keyboards then the ‘d’ key
will perform this same operation.

Once a programme is executed each block is highlighted as it is processed. This
enables novice users to get a sense of the relative speeds of the various processing
options available within the JVision environment.

$.4.1 Interpretation of Graphics Files

The first problem which needs to be addressed in the development of any image
processing software is interpretation of image resource files containing bitmap or
raster information. Java provides support for the two most common file formats

 13

found on the Internet, Graphics Interchange Format (GIF) and Joint Photographic
Experts Group File Interchange Format (JPEG). Unfortunately these file formats
are not used for computer vision applications as the compression techniques
which they employ distort image information. The pixel error introduced by either
compression technique is typically 1%, although this may not be visually apparent
but it does result in unacceptable information loss.

In order to preserve image information, support for several non-corrupting file
formats has to be implemented in Java, the three main formats required are raw
image data (BYT), PC Paintbrush (PCX) and Tagged Image File Format (TIFF),
see below for the definitive list of file formats supported by the JVision [MUR-
96].

• BMP: Microsoft Windows Bitmap (BMP), a bitmap image file using Run

Length Encoding (RLE), supports a maximum pixel depth of 32 bits. A
maximum image size of 32K x 32K pixels.

• BYT: Raw image data, grey-scale only with a maximum pixel depth of 8 bits the
data is stored with the first byte of the file corresponding to the top left hand
corner of the image. No header is contained within the image and details
about the dimensions must be supplied by the user. This file format preserves
image data, no information lost since no compression is used.

• GIF: Graphics Interchange Format (GIF) is a bitmap file which utilises Lemple-
Zev-Welch (LZW) compression, is limited to a maximum colour palette of
256 entries and a maximum image size of 64K x 64K pixels.

• JPEG: Joint Photographic Experts Group (JPEG) File interchange format is a
bitmap file utilising JPEG compression, an encoding scheme based on the
discrete cosine transform. It has a maximum colour depth of 16.7 million
colours and a maximum image size of 64K x 64K pixels.

• PCX: PC Paintbrush (PCX), a bitmap file using either no compression or RLE,
allowing image data to be kept intact, A maximum colour depth of 24 bits is
available and a maximum image size of 64K x 64K pixels.

• PGM: Portable Greymap Utilities (PGM), a bitmap file uses no compression
hence allowing image data to be left intact. It has a maximum grey-scale
depth of 256.

• RAS: Sun Raster Image (RAS), a bitmap file format using either no compression
or Run Length Encoding (RLE) supports a maximum of 16.7 million colours
and has an undefined maximum image size.

• RAW: Raw image data, this has a similar specification to the BYT format
described except that colour image data also supported. The image data is
stored in RGB triplets with the triplet representing the upper left hand corner
of the image.

• TIFF: Tagged Image File Format (TIF) a bitmap file using a wide range of
compression techniques, uncompressed, RLE, LZW, International Telegraph
and Telephone Consultative Committee (CCITT) Group3 & Group4 and
JPEG supports a maximum pixel depth of 24 bits (16.7 million colours) and a
maximum image size 4 G pixels.

 14

$.4.2 Plug in and Play Architecture

The main objective here is to allow the user to write code for a new block and
integrate it into the JVision without the need to recompile the source code. To do
this a dynamic class loader must be written to allow a class, in this case an
inherited version of the main Block class, to be imported into the application after
it has been compiled. The name of the class referred to above or more precisely
the list names of block classes which together create the JVision must be made
known to the application, so it may import them as required. This is implemented
in a similar manner to the method in which the resource file information is made
available to the file dialog box i.e. through the use of a scripting language. In this
case the file called menubar.rc contains the list of processing blocks available to
the user, the block names are categorised into functional groups e.g. filters,
transforms etc. A limitation associated with this approach is that the name of the
block must be an exact match for the name of the class which implements the
functionality of that block. Although this is easily overcome as the name of the
class usually gives a good description of the function which it performs. The
scripting language uses the four tags outlined in Table $.3 in the generation of the
main JVision menu bar.

Tag Meaning

<number of menus> The value directly after this tag specifies the
number of menus described by the file. This
number is used to initialise an array of Java menu
objects and must be an integer.

<menu> The new line terminated string following this tag
is used as the menu name. The strings following
the first line specify the menu items i.e. the
individual blocks.

</menu> This tag marks the end of a menu, the file
interpreter now waits for another menu or the end
of file tag.

<end> This tag informs the file interpreter that all the
menus and menu items have been updated and to
close the input stream.

Table $.3 Tags for the automatic generation of the menu bar.

When the JVision application is initialised it reads the data from the menubar.rc

file with this data it constructs the menu bar for the main window automatically.
Each menu in the menu bar corresponds to a menu block in the menubar.rc file,
the name of the menu being specified by the first string in the menu block and the
menu contents being specified by the remaining strings in that menu blocks. This

 15

method of setting up the menu bar performs two tasks. It means the user does not
need to recompile the code to update the menu bar and hence the inventory of
processing blocks. It also means that when a menu event is handled, the argument
specifying the event is the name of the new block to be added to the workspace.
This block name is used in conjunction with the class loader to load the selected
block, dynamically import it and then add it to the linked list and eventually to the
workspace. The method by which the menu bar is automatically updated is
outlined in Figure $.13. Note that the dashed lines in the script file correspond to
menu separators in the actual menu.

Figure $.13, Automatic menu bar generation.

$.5 Image Viewer and Tools

JVision provides several image investigation tools, horizontal and vertical
intensity scans, normal and cumulative histograms, pseudo colour tables and a 3D
profile viewer. These functions are common to both the colour and grey scale
image viewer frames.

$.5.1 Horizontal and vertical scans

 16

The horizontal and vertical scans tools provide cross-sectional intensity maps of
the average intensity of the displayed image, this means that it works with both
grey scale and colour images. The profile lines may be removed by closing the
Horizontal and Vertical Scan windows. Both scans can be applied simultaneously
giving the cross hair display illustrated in Figure $.14.

Figure $.14, Horizontal and Vertical Scans.

$.5.2 Histograms

The displayed image may be represented using the histogram function in either
normal or cumulative mode.

$.5.3 Pseudo Colour Tables

JVision provides a selection of pseudo colour tables which may be used to re-
render an image. This is especially useful when it is required to distinguish
between several grey levels of similar intensity. A random pseudo colour table is
also provided. This has been found to be useful when dealing with images which
have been processed using the label operation.

 17

Figure $.15, Grey scale representation of the Pseudo colour tables.

$.5.4 3D - profile viewer.

The 3D profile viewer can be launched only from the image viewer frame when
a valid Region of Interest (ROI) is selected. A ROI can only be selected if neither
of the other two probing utilities (horizontal and vertical scan) are in operation, as
they have precedence over ROI selection. Once the 3D viewer is launched then
the profile may be manipulated using the menu system or the 3D navigator which
can be launched using the navigate menu. The 3D profile viewer may be applied
to a colour image in which case only the intensity of the image is represented.

Figure $.16, 3D image viewer. The 3D navigator is shown on the bottom right
of this diagram.

In addition to the default grey scale colour table used with the profile viewer we

may also use any of the pseudo colour tables described previously in order to
distinguish between differing grey levels as well as adding extra depth
information to the image.

In addition to using the 3D navigator or the menu bar we may manipulate the
profile using the keyboard, as described below. Note that the profile must be
brought into focus by clicking on it before any keystrokes are valid.

• UP ARROW - tilt backwards
• DOWN ARROW - tilt forwards
• RIGHT ARROW - spin anticlockwise
• LEFT ARROW - spin clockwise
• MULTIPLY - intensity multiply

 18

• DIVIDE - intensity divide
• PLUS - zoom in
• MINUS - zoom out

$.6 Sample Problems

JVision provides an image analysis software development environment that can
work at several levels. For example at a relatively low level we can manipulate
individual pixels (Section $.6.1). Alternatively we can use JVisions built in
functionality to generated solutions to complex machine vision tasks (Section
$.6.5).

$.6.1 Low-level programming.

The solution outlined in Figure $.17 illustrates this for the case where pixels in a
circular arrangement are superimposed on a black image. This solution
implements the following equivalent code.

int xcent = 128;
int ycent = 128;
int radius = 20;
int colour = 255;

for (int i=0;i<360;i++)
 {
 int x = radius*sin(i);
 int y = radius*cos(i);
 input.setxy(xcent+x,ycent+y,colour);
 }

 19

Figure $.17, Low level functionality of JVision.

$.6.2 High-level programming.

Working at a higher level maximises the use of the predefined image processing
algorithms. For example the label by location operator is used to implement a
naive blob fill algorithm.

Figure $.18, Blob fill algorithm implementation.

$.6.3 Convolution.

Figure $.19 illustrates the operation of user defined convolution masks of
varying sizes (3x3 and 5x5) in extracting horizontal and vertical information from
an image.

(a)

 20

(b)

Figure $.19, Convolution. (a) JVision canvas. (b) Results from the 5x5 and 3x3
convolution operators.

$.6.4 Fourier Transform.

At the highest level complex abstract concepts such as Fourier analysis can be
implemented, for example the band pass filter illustrated in Figure $.20.

Figure $.20, Fourier analysis: Band pass filter. The original input image is
indicted on the lower left. The resultant filtered image is illustrated on the lower
right.

 21

$.6.5 Isolate the largest item in the field of view.

The aim of this programme is to find and isolate the largest white region in the
scene and indicate the area (in pixels) of this region in an embedded text message.
The input image is in PCX format. This is loaded by double clicking the input
image box and selection the crown.pcx image. A low pass filter is applied to the
image, with the effect of blurring the image. The image is then thresholded at grey
scale 200. All pixel values below 200 will go to black, the rest will be assigned to
white, producing a binary image. You can experiment with the threshold by
double clicking the single threshold box and varying the slider bar. Any single
isolated white pixels are then removed and a 3 pixel wide black border is drawn
around the image. This is implemented to eliminate any white pixels touching the
boundary (a necessary requirement for the biggest blob operator). See Figure
$.21.

The largest white region is then isolated, and its area calculated by counting the
number of white pixels. This is assigned to an integer variable which is then
combined with the predetermined text string "The area in pixels is: " and
displayed to the user.

Figure $.21, Find and isolate the largest white region in the scene.

 22

$.6.6 Character detection using the N-tuple operator.

Figure $.22 illustrates how the N-tuple operator can be used to highlight the
Arial font character "t" in a sentence for a given orientation. The original image is
threshold at the mid grey level and inverted. This image is then convolved with n
N-tuple representing the Arial font character "t", resulting in a output image in
which the location of the desired character is highlighted by a white point. The
threshold operator is the applied to isolate these points and the detected characters
are emphasised by overlaying them with a small square box. The JVision canvas
for this is illustrated in Figure $.22c.

(a)

(b)

(c)

Figure $.22, (a) Original image. (b) Detection of the Arial font "t" character
using an N-tuple operator. (c) The associated JVision canvas.

 23

Bibliography
[GOS-96] J Gosling, B Joy, G Steele, The Java Language Specification (Java
 Series), Addison-Wesley Pub Co. 1996, ISBN: 0201634511.
[JAW-96] J Jaworski, Java Developers Guide, Sams Net, 1996.
 ISBN: 1-57521-069-X.
[KRI-99] Khoral Research, Inc. - http://www.khoral.com/core.html
[MUR-96] JD Murray & W Van Ryper, Encyclopaedia of Graphics File Formats,

O’Reilly, 1996.
[SUN-99] Java Technologies from Sun Microsystems: Products and APIs.
 http://java.sun.com/products/index.html
[WHE-97a] PF Whelan, Remote Access to Continuing Engineering Education

RACeE, IEE Engineering Science and Education Journal, Oct 1997,
pp205-211, 1997.

[WHE-97b] PF Whelan, EE544 - Computer and Machine Vision – Online
 Course, http://www.eeng.dcu.ie/~whelanp/vsg/outline.html, 1997.
[WiT-99] Logical Vision - http://www.logicalvision.com/default.htm, 1999.

http://www.khoral.com/core.html
http://java.sun.com/products/index.html
http://www.eeng.dcu.ie/~whelanp/vsg/outline.html
http://www.logicalvision.com/default.htm

	$
	Visual Programming for Machine Vision
	$.1 Design Outline
	
	$.1.1 Graphical User Interface (GUI)
	$.1.2 Object Oriented Programming
	$.1.3 Java Image Handling
	$.1.4 Image Processing Strategy
	Figure $.2, The default RGB colour model.
	Description
	STEADY_STATE
	WAITING_TO_PROCESS

	$.2 Data Types
	$.2.1 Image
	$.2.2 Integer
	$.2.3 Double
	$.2.4 Boolean
	$.2.5 String
	$.2.6 Integer Arrays

	$.3 Non-linear - Feedback Blocks
	$.3.1 Feedback
	$.3.2 FOR Loop
	$.3.3 IF ELSE
	$.3.4 Nesting

	$.4 Visual Programming Environment
	$.4.1 Interpretation of Graphics Files
	$.4.2 Plug in and Play Architecture

	$.5 Image Viewer and Tools
	$.5.1 Horizontal and vertical scans
	$.5.2 Histograms
	$.5.3 Pseudo Colour Tables
	$.5.4 3D - profile viewer.

	$.6 Sample Problems
	$.6.1 Low-level programming.
	$.6.2 High-level programming.
	$.6.3 Convolution.
	$.6.4 Fourier Transform.
	$.6.5 Isolate the largest item in the field of view.
	$.6.6 Character detection using the N-tuple operator.

	Bibliography

