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Left-ventricle myocardium segmentation using
a coupled level-set with a priori knowledge
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Abstract

This paper presents a coupled level-set segmentation of the myocardium of the left ventricle of the heart using a priori information. From a fast
marching initialisation, two fronts representing the endocardium and epicardium boundaries of the left ventricle are evolved as the zero level-set of
a higher dimension function. We introduce a novel and robust stopping term using both gradient and region-based information. The segmentation
is supervised both with a coupling function and using a probabilistic model built from training instances. The robustness of the segmentation
scheme is evaluated by performing a segmentation on four unseen data-sets containing high variation and the performance of the segmentation is
quantitatively assessed.
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. Introduction

Early identification of myocardium dysfunction through
uantitative analysis, permits a reliable and fast diagnosis of
eart diseases. Such quantitative functions include left ventricle
jection fraction, left ventricle myocardium thickening over the
ardiac cycle and left ventricle myocardium mass. To evaluate
hese measures, accurate delineation of the left ventricle cavity
nd left ventricle cardiac muscle is required.

Advanced imaging techniques in magnetic resonance imag-
ng (MRI) have allowed for the imaging of the heart muscle at
ncreasing spatial and temporal resolutions. Multisection mul-
iphase short-axis cardiac MR images are the most suitable
o assess left ventricle function without drawing any assump-
ions about left ventricle geometry [1]. Traditional methods
f quantitative analysis required the manual delineation of the
yocardium. This has become increasingly time consuming
ith the extra data now available from a single MRI examina-

ion. Therefore, an automatic segmentation of the left ventricle
yocardium is desired. This issue has been previously addressed

n literature and the developed methods can be classified into

Region-based methods are used to segment the image, com-
monly using no a priori information. The most basic form
of region-based segmentation is thresholding. Thresholding
requires a high degree of supervision, high differentiation
between the object being segmented and the background and
may require some additional post processing. More complex
statistical region-based methods like clustering, collect pixels
of similar intensities to create a segmentation of structures in
the image [2]. However, in some cases the distributions of one
structure may locally overlap with those from another structure
rendering intensity-based segmentation techniques unusable.

Boundary finding algorithms like snakes [3], aspire to deform
a local boundary curve and come to rest on the high frequency
data in an image, corresponding to edges. Such algorithms are
sensitive to initialisation, local minima and leaking through
boundaries of low gradient. The extension of snakes to 3D (active
surfaces) has also been applied to cardiac segmentation. Kaus
et al. [4], aim to perform a adaption algorithm based on image
information and internal constraints using a triangulated surface
mesh. An additional coupling constraint is added to the update
energies in order to maintain the spatial separation of the inner
egion-based and boundary finding approaches.
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and outer surface. As this method is derived from snakes, it is
sensitive to initialisation and is not applicable to images where
the cardiac muscle cannot be represented by a smooth shape.

Active shape models (ASMs) proposed by Cootes et al. [5]
use a statistical model built up from a training set of segmented
895-6111/$ – see front matter © 2006 Elsevier Ltd. All rights reserved.
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objects to delineate the desired shape. The model is compiled and
then compressed, commonly using principal component analysis
(PCA). ASMs have become a prominent tool in the segmentation
of the left ventricle [6,7]. It is also worth noting that the accuracy
of the segmentation relies heavily on the amount and variation
of images in the training set.

Active appearance models (AAMs) [5] are an extension to
ASMs which use the texture variation in the training set in the
compressed PCA. This method alleviates the problems associ-
ated with the ASMs in areas of low gradients. Stegmann and
Larsson [8] showed how these active appearance models could
be applied to analyse short axis MR images of the heart. Mitchell
et al. [9] addresses the problems that AAMs have with attach-
ing the model with the gradient information. A hybrid approach
is taken which combines ASMs and AAMs. Lelieveldt and co-
workers [10] introduces a time factor into his active appearance
motion models (AAMMs) and minimises the appearance-to-
target differences.

Level-set methods for segmentation (also called Geodesic
Active Contours) were first introduced by Osher and Sethian in
1988 [11] following previous work in Sethian’s Ph.D. thesis [12]
on flame propagation. The theory behind this boundary-based
segmentation is largely based on work in partial differential
equations and the propagation of fronts under intrinsic properties
such as curvature [13]. The deformation of the level set is seen as
a gradient flow to a state of minimal energy providing the object
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segmented. Paragios [24] describes a multiple class probabil-
ity problem which uses a priori intensity information about the
structures (left ventricle blood pool and myocardium) to be seg-
mented. Curve evolution is then performed by minimizing the
energy using this a priori intensity based information, boundary
information and a collection of shape based model constructed
from prior segmentations. While this algorithm performs well
in homogenous regions, the nature of MRI image acquisition
implies that the signal intensity is subject to variation through
the dataset and, therefore, partitioning the data using prior signal
intensity information may not be appropriate.

To address the problems faced by probabilistic partition-
ing methods, we introduce a novel formulation that performs
a gradient-based coupled level-set segmentation of the left ven-
tricle myocardium. We increase robustness in the segmentation
in areas of low edge strength by incorporating both gradient and
texture information. This segmentation is supervised by incor-
porating a priori knowledge into the evolution and applying this
information in a global sense to avoid leaking and selecting
false local minima. The a priori model is a probability function
derived from manually segmented heart images which biases
results towards a training set. Due to the low signal-to-noise
ratio (SNR) present in MRI scans, region based information is
included in the deformation, which gives improved robustness
in the segmentation of a wide variation of cardiac morpholo-
gies. Analysis of point-to-curve errors, reproducibility plots and
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o be segmented has clearly identifiable boundaries [14,15]. By
xtending the dimensionality of the problem to N + 1, where N is
he initial dimension of the problem, some advantageous prop-
rties can be exploited. These include level-sets ability to deal
ith local deformations like shape corners, changes in topology

nd multi-component structures. Such qualities lend themselves
ell in the field of medical image segmentation where the bio-

ogical structures split and merge through the volume. In our
ase, this is useful when separating the papillary muscles from
he blood pool. Malladi et al. [16,17] showed how level-set algo-
ithms could be applied for enhancement and shape recovery in
edical images. An extension of Malladi’s work, performed by
iessen et al. [18] uses a more diffusive propagation term to

ncrease the influence of the stopping term.
Zeng et al. [19] first introduced the idea of coupled level sets

or segmentation of the cortex of the brain. The coupled level
et can use the constant thickness or distance between the level-
ets as a constraint to avoid spilling or over segmentation. The
deas introduced by Zeng were extended by Paragios [20] who
pplied a similar coupling constraint for the segmentation of the
yocardium of the heart.
Leventon et al. [21] introduced a priori knowledge by building

n a priori model that was embedded in a level set formalisation
nd evaluating its modes of variation using PCA analysis.

Variational approaches to segmentation using a two class
r more partioning within the image have being investigated.
hen and Vese [22] implemented the Mumford and Shah [23]

unctional in a level-set framework. Probabalistic approaches
ave also being investigated, where curve propagation is con-
rolled using the probabilistic membership of signal intensity
o the expected prior intensity values of the structure to be
orrelation results are provided on data-sets of the heart and
ompared against manual delineation.

. Method

A level-set segmentation is performed to robustly segment the
yocardium of the left ventricle of the heart. Level-set segmen-

ation involves a deformable curve or surface evolving under
radient information and the intrinsic curvature. To overcome
imitations with gradient based stopping terms, we introduce a
egion-based term to the stopping function to increase robust-
ess. To further control the evolution, two additional features
ave being applied. Firstly, a coupled level-set is introduced,
epresenting the endo- and epicardium boundaries of the left
entricle. These two level-sets interact with each other through
he evolution using a coupling function. This prohibits the endo-
ardium boundary joining with the epicardium boundary and
lso restricts the epicardium boundary spilling where there is no
radient information available. The second feature to be added
o the evolution is a priori information, obtained from manual
egmentations of the endo- and epicardium boundaries. This
ontrols the evolution to bias manually defined shapes of the
eft ventricle muscle.

.1. Level-set formulation background

The fundamental objective behind level-sets is to track a
losed interface Γ (t), for which Γ (t): [0, ∞] → RN, as it evolves
n the data space. The interface is represented by a curve in 2D
nd a surface in 3D or the set of points that are on the bound-
ries of the region of interest Ω. Caselles et al. [14] formalised
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Fig. 1. The original phantom image with a diffused segment (a) and Sobel edge
image (b). The second row shows the evolution with the existing g = 1/(1 +�I) at
iteration 0, 25 and 50 while the third row shows the evolution with our proposed
approach where g = 1/(1 +�I/Iσ ) iteration 0, 25 and 50.

the minimization of the classic energy function used in snake
evolution for the extension to level-set theory.

min
∫

g(|∇I(Γ (s))|, Iσ)|Γ ′(s)|ds (1)

We reformulate the stopping term to include the gradient (�I)
and region changes (Iσ) at that position. This improves seg-
mentation by enforcing homogeneity within the region Ω being
segmented and is illustrated in Figs. 1 and 2. In Eq. 1, �I is the
gradient value measured across a six connected 3D neighbor-
hood. Iσ is a measure of the change in texture and is calculated
by firstly measuring the mean and variance of the voxels chosen
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during the initialisation stage.

g = 1

1 + (∇I/Iσ)
(2)

Level-set theory aims to exchange the Lagrangian formali-
sation and replace it with Eulerian, initial valued partial differ-
ential equation evolution. From [14] it can be shown that the
Euler–Lagrange gives a minimizing curve that is of the form.

d

dt
Γ (s) = g(|∇I|)κ�n − (∇g.�n)�n (3)

The term ∇g.�n is a naturally accuring attraction force vector
normal to the surface and κ is the curvature term. By repre-
senting the boundary as the zero level set instance of a higher
dimensional function φ, the effects of curvature can be easily
incorporated. φ is represented by the continuous Lipschitz func-
tion φ(s, t = 0) = ±d, where d is the signed distance from position
s to the initial interface Γ 0. The Lipschitz condition implies that
the function has a bounded first derivative. The distance is given
a positive sign outside the initial boundary (DΩ), a negative sign
inside the boundary (Ω\∂Ω) and zero on the boundary (∂Ω).

φ(s) =

⎧⎪⎨
⎪⎩

−d ∀s ∈ Ω\∂Ω
0 ∀s ∈ ∂Ω

+d ∀s ∈ Rn\Ω
(4)
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ig. 2. The original phantom image with a close region (a) and Sobel edge
mage (b). The second row shows the evolution with the existing g = 1/(1 +�I)
t iteration 0, 25 and 50 while the third row shows the evolution with our proposed
pproach where g = 1/(1 +�I/Iσ ) iteration 0, 25 and 50.
From this definition of φ, intrinsic properties of the front can
e easily determined, like the normal �n = ±(∇φ/|∇φ|) and the
urvature κ = ∇(∇φ/|∇φ|).

In the segmentation scheme we would like to add a non-zero
nternal advection or ballooning force, c, to the evolution, to
volve the either outward (c = 1) or inward (c = −1). β and ∈ are
ndependent user defined parameters controlling the effects of
ttraction to gradients and curvature, respectively.

∂φ

∂t
= g(|∇I|)(c + ∈ κ)|∇φ| + β(∇g · ∇φ) (5)

.1.1. Determination of the stopping term

To illustrate the improved performance of the advanced stop-
ing term, the following phantom images were created and
ested. Two situations are described, the first where the edge
trength between two regions were diffused to reduce the gra-
ient information (see Fig. 1) and the second case where the
rayscale difference between two regions was low (see Fig. 2).
he stopping term, as defined in Eq. (2), uses a combination of

he gradient and change in texture. The change in texture (Iσ) is
alculated after the initialisation using the fast marching algo-
ithm described in Section 2.4. Within the initialised region the
ean µ and variance σ of the voxels are calculated. From these

alues, a Gaussian is constructed and the Iσ(s) is calculated as,

σ(s) = 1

2πσ2 e(x−µ)2/2σ2
(6)

here x is the value of the voxel at each position s in the 3 × 3 × 3
eighbourhood. The value of Iσ is normalised between 0 and 1.
he use of a Gaussian distribution is proposed as a measure of
robability that the evolving contour incorporates voxels that
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belong to the structure and has been previously used to model
tissue response in MRI [25,26].

The user-defined parameters ε and β represent the influence
of the curvature and attraction to gradient on the evolving bound-
ary. In the following tests, we want to evaluate the influence of
the improved stopping term, so the value of ε is given less signif-
icance to reduce the influence of curvature on the evolution. In
the segmentation of the left-ventricle boundaries, the value of ε

is given a higher significance as we know the boundaries approx-
imate circles. Similarly, β controls the attraction of the level-set
boundary to gradients that are normal to the curve. Again, this
value is given a reduced weighting in the proceeding tests. The
results shown in Figs. 1 and 2 demonstrate the improved robust-
ness against boundary leaking between regions.

2.2. Coupling force

To further control the level-set evolution we employ a cou-
pling function between two level-sets. The coupling adds an
extra constraint by introducing a second level-set that is depen-
dent on the first and coupling the level-sets with an inhibitor
function, which allows the curve to change direction of growth.
This is achieved without any extra computational expense as the
distance between any point to the level-set boundary is the value
of φ at that point, see Eq. (4). The piecewise inhibitor func-
tion, which is used as the interaction between the two level-sets,
i
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Fig. 3. Graph of the inhibitor function where the values of d = 6 and w = 4.
The value d represents the nominal distance between the endo-cardium and epi-
cardium boundary and w represents the transition width. Both these values may
be obtained from the PDF.

direction using linear interpolation, scaled and aligned in the xy
direction.

The PDF is constructed by aligning the binary manually seg-
mented boundary images and summing the boundary elements.
This is done for both the endocardium boundary and the epi-
cardium boundary. It is incorporated into the evolution in a
global context, after each iteration the value ρt is evaluated as,

ρt =
∑

φ(t)s × Ps (8)

where φ(t)s is the value of φ at time t at the position s and Ps is
the probability density at position s.

In order to obtain the full evolution equation for the level-set
we have to incorporate both the coupling function and the a pri-
ori knowledge into Eq. (5). Firstly, the output from the coupling
function is either 1 or −1 and we want it to change the direc-
tion of the curve evolution. From Eq. (5) we can see that the
advection force defines the direction of the evolution, therefore,
we incorporate the coupling function by multiplying it with the
advection force c. The a priori is designed to disregard inap-
propriate gradients and give significance only to gradients that
are situated close to previously manually segmented boundaries.
For this reason, we incorporate the a priori information in the
attraction term from Eq. (5). Thus, the complete evolution for
the coupled level-set is defined as,

φ
β

F
m
e
p

s defined below, where d is the preferred distance between the
ndo- and epicardium surfaces and w controls the slope between
nward and outward growth. The result η2(φ1) changes value
rom +1 to −1, which changes the direction of the evolution for
2 between inwards and outwards. In practice the values of d
nd w are taken from the scaled a priori model.

2(φ1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 for φ1(s) < −d − w∣∣∣∣∣ 3

√
φ1(s) − d

w

∣∣∣∣∣ for − d − w < φ1(s) < d + w

1 for φ1(s) > d + w
(7)

For this segmentation scheme, it is assumed that the gradi-
nt between the blood pool and the endocardium boundary is
ignificantly high to halt the evolution of the level-set, also it
s known that in some cases there is little or no gradient infor-

ation between the epicardium boundary and the lungs or liver
Fig. 3).

Therefore, the level-set segmenting the epicardium boundary
s controlled by the endocardium level-set using the inhibitor
unction described.

.3. Introducing priors

A priori information is incorporated with a probability den-
ity function (PDF), which is defined as P(s) = ʃ f(s) ds. The
odel is built from a set of hand segmented boundaries, a

robability density function is created of both the endocardium
nd epicardium boundaries that are then interpolated in the z
t+1 = φt + g(|∇I|)(cη + ∈ κ)|∇φ| +
1 + ρ̃t

(∇g · ∇φ) (9)

ig. 4. Images show the probability density functions from a priori hand seg-
ented images. (a) Shows the combined contours while (b) and (c) show the

ndo- and epicardium boundaries, respectively. Darker gray tone defines a higher
robability of the boundaries.
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Fig. 5. Results show the initialisation (marked in white) from a seeded fast marching algorithm. The method was applied to perform a robust initial estimate of left
ventricle cavity of the heart on four separate datasets displaying a high variability of left ventricle shape.

Fig. 6. The images above show evolution of the front at four different iterations (a) iteration = 0, (b) iteration = 5, (c) iteration = 10 and (d) iteration = 15.

where η is the result of the coupling function between the level-
sets and is defined in Eq. (7) and ρt is the a priori knowledge
and is defined in Eq. (8).

2.4. Initialisation

To counteract the ‘myopic’ characteristics of these
deformable models, the initialisation process is very influen-
tial and is performed as follows. Firstly, it is known that the
endocardium boundary can be characterised by the high contrast
between the blood and the heart muscle in standard (TruFISP)
cine imaging of the heart (Fig. 4). This characteristic is used
when a fast marching algorithm is applied to find a fast effi-
cient initialisation for the blood following the manual insertion
of a seed point. The fast marching approach is driven by a force
Fs = e−α∇Is , which has a diffusive effect aimed at halting the
fronts progress at regions of high gradient. This fast march-
ing approach falls short of the gradient defining the transition
from blood to muscle. Therefore, the contour found by the fast

marching algorithm is used as the initial curve of the level-set
algorithm to find the endocardium boundary. The results from
the fast marching initialisation are illustrated in Fig. 5.

To find the epicardial boundary the endocardium initialisa-
tion is dilated slightly and the inner gradients are masked. Both
curves are given a positive advection force to propagate out-
wards. It is known that both the endo- and epicardium boundaries
of the left ventricle are approximately circular, therefore the ∈ is
given a high significance in the evolution. High curvature con-
straints, the distance inhibitor and the a priori constraints all
act to limit the epicardium front from joining the inner front
or spilling in areas of low gradient, like the liver or the lungs
(Figs. 6 and 7).

3. Results

In order to assess the performance of the segmentation, the
results were compared against those obtained by manual seg-
mentation of the endo- and epicardium boundaries. The algo-

ough
Fig. 7. Segmentation results of the same slice at three separate phases thr
 the hearts cycle: (a) end-diastolic, (b) mid-diastolic and (c) end-systolic.
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Fig. 8. The images above show the segmentation using our method on the four previously unseen datasets.

Table 1
Point-to-curve errors between manually segmented data and our method

Point-to-curve error

Endocardium Epicardium

Average 0.477 1.149
Root mean square 0.839 1.649
Standard deviation 0.683 1.157

rithm is applied to four unseen datasets (see Fig. 8) with a high
variation between datasets to assess the robustness when using
the coupling function and the a priori model. The datasets have
a variation in pixel spacing (1.1–2.3 mm/pixel) so all error mea-
surements are given in pixels. Table 1 represents the average,
root mean square and variation of the point to curve error for
both the endocardium boundary and the epicardium boundary.

The results were then assessed in 2D using the areas enclosed
in the endo- and epicardium boundaries (see Figs. 9 and 10).

F
a
F

The results are displayed in linear regression plots and in
Bland–Altman [27] plots to assess reproducibility. In the
Bland–Altman plots, the x-axis is the manually determined area
and the y-axis represents the difference between the manual and
automatically determined area. The high gradient information
present between the myocardium and the blood pools plays a
crucial role in the accurate segmentation of the endocardium
which yields a correlation factor of 0.86. To maintain the gen-
erality of this approach the parameters were unchanged for all
datasets assessed. The correlation factor for the epicardium areas
regression is 0.85. The higher than expected error illustrated in
the Bland–Altman plots for Figs. 9 and 10 can be explained with
the high variation of the datasets, in particular see Fig. 8(c). To
illustrate the influence of this dataset on the results, the dataset
was removed and the results evaluated again. With this dataset
removed (11% of the total number of images) the regression
values increase to 0.89 and 0.87 for the endocardium and epi-
cardium boundaries, respectively.

F
a
F

ig. 9. The Bland–Altman plot and linear plot of the automatic segmentation
gainst the manual segmentation for the endocardium for all datasets shown in
ig. 8.
ig. 10. The Bland–Altman plot and linear plot of the automatic segmentation
gainst the manual segmentation for the epicardium for all datasets shown in
ig. 8.
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Computationally, the level-set is less efficient when compared
to point evolution methods like snakes. Our implementation
performs computation in a narrow-band to improve efficiency.
The construction and re-initialisation of this narrow-band can
be optimised, as in Chen et al. [28]. Our algorithm has been
developed on a Pentium IV 1.4 GHz PC, with 512 MB RAM
running Windows 2000. The algorithm has not being optimised
for computational speed and currently, using the datasets shown,
the iterative steps run at 0.4 s to grow the fast marching algo-
rithm over 3000 voxels. The level-set iterates in 10–40 s within
a narrow band of 10 voxels, depending on the number of points
in the boundaries.

Kaus et al. [4] report a mean error of 2.45 ± 0.75 mm for the
end-diastolic phase and 2.84 ± 1.05 mm for end-systolic phase
using a deformable model technique, while our method returns
an overall mean error of 0.76 ± 1.09 mm for the endocardium
and 1.83 ± 1.85 mm for the epicardium for all phases of the car-
diac cycle. The improved performance returned by our algorithm
is generated by the improved stopping term and the unique cou-
pling function that is aided by the implicit nature of the level-set
function φ.

4. Conclusions and future work

The qualitative and quantitative results presented in this paper
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