

Real-time Colour Recognition for Machine Vision Systems

Bruce G. Batchelor Paul F. Whelan
Department of Computing Mathematics School of Electronic Engineering
University of Wales Dublin City University
Cardiff, Wales, United Kingdom Dublin, Ireland

Abstract: It is impossible to collect more than a tiny proportion of all of the possible examples of a
given hue, to form a training set for a machine that learns to discriminate colours. In view of this, it is
argued that colour generalisation is essential. Three mechanisms for learning colours as defined by a
human being are described. One of these is based upon an idea developed by AP Plummer and is
implemented in a commercial device known as the Intelligent Camera. This implementation can learn
the characteristics of coloured scenes presented to it, and can segment a video image in real-time. This
paper presents four procedures which allow the range of colours learned by such a system to be
broadened, so that recognition is made more reliable and less prone to generating noisy images, which
are difficult to analyse. Three of the procedures can be used to improve colour discrimination, while a
fourth procedure is used when a single and general colour concept has to be learned. Several
experiments were devised to demonstrate the effectiveness of colour generalisation. These have shown
that it is indeed possible to achieve reliable colour discrimination / recognition for such tasks as
inspecting packaging and fruit. A practical system based upon the Intelligent Camera and controlled by
software written in Prolog has been developed by the authors and is being used in a study of methods
for declarative programming of machine vision systems for industrial applications.

1. Introduction

Consider the task of designing a machine to inspect printed cardboard and plastic
cartons, such as those used for food products, household goods, toiletries, etc. These
are often printed in several colours. Inspecting such items could be achieved by first
isolating the different colours and then applying conventional (i.e. monochrome)
image analysis procedures to each of the colour separations. In this article, we shall
discuss electronic filters that are capable of performing such a separation of colours.
(Plummer 1991; Intelligent Camera 1990) A Programmable Colour Filter (PCF)
might, for example, isolate the yellow streak on a margarine tub, so that it can be
examined in detail. Once a yellow streak has been inspected, other coloured features
can be treated in the same way. Of course, such a filter should be able to tolerate
wide variations in the brightness of the scene being examined; it should be sensitive
to colour, not intensity. Other possible applications include: reading resistor colour
codes, identifying coloured wires, inspecting iconic displays on car dash boards, etc.

Previous work by the authors has shown that colour recognition can be used to good
effect in a symbolic programming environment (Prolog has been used for several
years as a medium for programming vision systems. See Batchelor (1991; 1992),
Batchelor and Whelan (1993; 1994)). This approach to colour recognition, requires
machines that can quickly learn to recognise colours such as “margarine-tub yellow”,
“margarine-tub red”, given a few examples of each. The samples on which such an
inspection machine is to be designed would most conveniently be obtained by
examining a small number of margarine tubs on a production line.

1.1 The Naming of Colours

The axiom on which this article is based is that the names of colours cannot be
defined mathematically. The standard CIE (1931) Chromaticity Diagram should
properly be regarded as a conceptual aid, since it cannot form a precise basis for
discriminating between colours. The position of the boundary between any two
named colours in the Chromaticity Diagram is plotted for an hypothetical standard
observer, working in carefully controlled lighting conditions. In a practical situation,
however, an industrial machine vision system is likely to be taught by a person
untrained in colour science, working in a factory environment, where the lighting is
highly variable. Schettini (1993) points out that camera, lighting and filter
combinations affect the RGB values measured by a video camera.

Several authors, have represented the colours of ordinary everyday objects as points
plotted on the Chromaticity Diagram. (Chamberlain and Chamberlain 1980).
However, it should be noted that each point represents just one instance of a broad
class of objects. The set of all ripe tomatoes, for example, is represented more
accurately by a cluster of points, while ripening tomatoes generate a broad serpentine
curve in the Chromaticity Diagram. The Chromaticity Diagram does not include
definitions for the range of such colours as “margarine-tub yellow” or even “sky
blue”. The fact that people recognise colours by some mental process that is not fully
understood simply has to be accepted. (Chamberlain and Chamberlain 1980; Optical
Society of America 1953). The authors suggest that a colour recognition filter used
when inspecting artefacts such as food packaging, household good and
pharmaceutical cartons could be designed using the principle of teaching-by-showing.

1.2 Notation
The set notation introduced in this section allows us to define colour generalisation
process in formal mathematical terms. Generalisation is seen as being an essential
function in any learning system. Let <X> denote the set of colours of objects in that
class defined by human beings and which is called X. A machine that is designed for
colour recognition, might well use the conventional RGB colour separations. To take
account of this fact, we shall therefore take {X} as being the set of all of those
(R,G,B)-vectors that can be associated with the label X. Notice that in this notation,
<X> is defined by a person, while {X} is a set of 3-element (R,G,B)-vectors, derived
by a machine.

1.3 Recognition and Generalisation of Colours
Implicit in our approach to colour recognition is the concept of teaching by showing.
It is important, of course, to make the maximum use of each colour sample, since they
may be difficult and/or expensive to collect. It is impossible, in practice, to obtain
more than a very small proportion of all the colours of a class such as <yellow>, so
we must teach our machine using a few well chosen samples and leave it to
generalise. Generalisation is universally accepted as being essential in all pattern
recognition machines, of which the PCF is an example.

Given that <daffodil> ∪ <canary> ∪ <banana> ∪ <lemon> ⊆ <yellow> it is
reasonable to expect that {daffodil} ∪ {canary} ∪ {banana} ∪ {lemon} ⊆ {yellow}.
Now, we want to find some operation upon the set {daffodil} ∪ {canary} ∪ {banana}
∪ {lemon} which will generate an enlarged set E, such that E ⊇ {daffodil} ∪
{canary} ∪ {banana} ∪ {lemon} and ∀ X: X ∈ E → X ∈ {yellow}. An important but

ill-defined condition is that the set E should be as small as possible, thereby avoiding
over-generalisation.

This is one of the two types of colour generalisation we discuss in this paper. It is
appropriate for those situations in which we are interested in colour recognition
(single colour class), as distinct from colour discrimination (more than one colour
class). We shall present one procedure for generalisation in colour recognition.
(Procedure 4 defined below) A different type of colour generalisation is needed
when we have to discriminate between colours. For reasons of economy, we might,
for example, need to use a small data set to learn to distinguish between {apple} and
{tomato} and wish to make the discrimination more reliable, so that colours in these
sets that were not represented in the training data are classified appropriately.

2. Colour Recognition

The inspection of coloured objects and surfaces by machine has, of course, been studied
by numerous researchers over many years. Particular attention has been paid to the
characterisation and matching of subtle colouring of fabrics, paint, paper, printing and
automobiles. Since very precise colour measurement is needed in these areas, non-
imaging techniques have been widely used. It should be understood that the approach that
we have taken is quite different, since we are concerned with relatively coarse, high-
speed recognition and discrimination processes. A typical application for the techniques
we shall discuss is the inspection of packages and containers for food, domestic goods
and pharmaceutical products on a factory production line. A review of previous work in
this area can be found in Batchelor and Whelan (1994).

2.1 Real-time Recognition of Colours in Electronic Hardware
Figure 1 shows the block diagram of a colour recognition system designed by
Plummer (1991). This is built into a small self-contained commercially available
image processing unit, called the Intelligent Camera (1990). The authors used the
Intelligent Camera, in conjunction with control software written in Prolog (Batchelor
1991; 1992) in the experiments reported below. Another implementation using a real-
time RGB/HSI converter chip (Umbaugh et al 1992) is suggested in Figure 2. A third
implementation relies upon the use of the xy parameters used to define the standard
Chromaticity Diagram, see Figure 3. These last two configurations have not yet been
implemented.

Notice that in Figures 1-3, the output from the Look-Up Table (LUT) is a stream of 8-
bit values, which may be regarded as forming intensities in a monochrome image.
This image can be analysed in a conventional monochrome image processing sub-
system. All of these hardware systems can be fully simulated in a software
environment, but not necessarily in real-time. While it is the accepted wisdom that the
HSI representation is better able than RGB to discriminate colours as we perceive
them, this hardware arrangement is, in fact, quite general, since the LUT in Figure 1
can be programmed to generate H, S and I, given R, G and B. Hence, Figure 1 is able
to implement any functions which Figures 2 and 3 can. A further advantage of Figure
1 is that it relies upon cheap standard memory devices, rather than custom ICs or real-
time divider circuits. Our discussion hereafter is based upon the system using a LUT
with RGB inputs, as illustrated in Figure 1.

The LUT forms the heart of the Programmable Colour Filter. The use of high-speed
random access memory (RAM) to form a look-up table, together with “flash”
analogue-to-digital converters, makes the PCF very fast indeed. It is well able to
perform transformations upon a digitised video signal, in real time. Training the PCF
consists of calculating appropriate values for each of the LUT’s 218 storage cells. (See
Batchelor (1992), Batchelor and Whelan (1993; 1994) for details on the programming
of the PCF). Once the PCF has been programmed, the colour recognition process
takes place in real-time and does not increase the computational load needed for
image analysis in any way.

3. Procedures for Colour Generalisation

The colour scattergram (generated by projecting all RGB vectors onto the colour
triangle, this is a convenient representation of the distribution of colours within the
input (Batchelor and Whelan 1993; 1994)), may be displayed as a grey-scale image,
in which intensity indicates the number of pixels with the same values of hue and
saturation. (See Figure 4 for some results.) The colour scattergram must be simplified
before any further processing takes place. An obvious step is to threshold it, This
process will generate a compact blob for each region of similar colours.

Our approach to colour generalisation consists of adjusting the sizes of the blobs
created by thresholding the colour scattergram. It will be necessary to do this in such
a way that blobs which were distinct when the (multi-cluster) scattergram was first
thresholded, remain separate. In a typical application, a number of coloured scenes are
used to design the PCF. As each scene is being viewed, a scattergram is generated in
the colour triangle. Noise is then removed from the scattergram, using common image
processing operations, such as low-pass filtering. This is followed by thresholding. If
the input scene consists of a single colour, such as <margarine-tub yellow>,
thresholding the scattergram, after clean-up, creates a single blob, Bi. This process is
repeated for each colour we wish to use to design the PCF. As each new blob (Bi, i =
1,…,n) is generated, it is superimposed on the colour triangle. Therefore, prior to
generalisation, the colour triangle consists of a number of blob regions, each of which
corresponds to one of the trained colours. The aim of the generalisation procedures is
to expand these regions, forming the regions Ci, i = 1,…,n. By projecting the Ci, back
onto the colour cube, we generate the contents of the PCF look-up table. If the Ci have
been generated appropriately, the resulting colour recognition process is more
reliable, than it would have been if the smaller blobs Bi had been used instead
(Batchelor and Whelan 1993; 1994). Here are the definitions of four suggested
procedures for colour generalisation.

Procedure 1 - Simple Dilation: Each blob, Bi, in the colour triangle is dilated
(expanded) by single a pixel for a fixed number of iterations. The number of iterations
is denoted by the variable N. The resultant blob is Ci.

Procedure 2 - Dilation with Preservation of Connectivity: A single layer of
background pixels is stripped from the (binary) image in the colour triangle. Unlike
the previous approach, pixels critical for connectivity are retained. The number of
iterations in this 'onion peeling' operation is denoted by the variable N.

Procedure 3 - Watershed: This approach involves finding the watershed for each of
the blobs Bi. The watershed is generated by finding the medial axis transformation of
the image background.

Procedure 4 - Convex Hull Generalization: The convex hull is drawn around the set of
blobs Bi (i = 1,…,n) in the colour triangle. It is reasonable to expect that points within
this convex hull will correspond to a generalisation of the observed colours, {Ai }, i = 1,
…,n.

4. Demonstration of Colour Recognition

Our experiment is concerned with the analysis of a multi-colour pattern, similar to
those found on a number of product logos. In Figure 4(a) we have the original artwork
of the multi-colour pattern. This was produced using Photoshop image processing
software, running on a Macintosh computer, and a Kodak ColorEase laser printer.
(When the image was used in the experiments, a narrow white border around this
pattern was included in the cameras field of view). In Figure 4(b) we see the result of
RGB colour separations. The top left image is red, top right is green and the bottom
left is blue. Figure 4(c) represents the resultant colour scattergram. Notice that there
are 7 blobs, corresponding to the six colour bands in Figure 4(a). The narrow white
border mentioned in Figure 4(a) is represented by the central spot in the colour
triangle.

Figure 4(d) is a pseudo-colour display of the colour scattergram. Notice that the dark
regions in Figure 4(c) are more clearly visible here, as purple cloud-like structures.
The colour scattergram is then thresholded, and all minor blobs removed, Figure 4(e).
The remain major blobs have be assigned colours in an arbitrary manner. Figure 4(f)
is the output of the programmable colour filter when trained on the blobs of Figure
4(e) (when the camera was again focused on the image in Figure 4(a)). Notice that the
colour bands contains dark spots and are separated by dark streaks. Both of these
effects are caused by the blobs in Figure 4(e) being too small. (The white border of
Figure 4(a) is visible here as a yellow edge).

Figure 4(g) illustrates the result of colour generalisation on the blobs of the colour
scattergram. The blobs have been greatly enlarged. When the PCF is now trained on
these new enlarged blobs, the result PCF output is greatly improved, see Figure 4(h).
Notice the absence of dark spots and streaks when compared to Figure 4(f).
Recognising the colour pattern in Figure 4(a) as the anticipated logo can be performed
quite easily by measuring the proportions of each of the component colours and
noting their position and shape. Thus, colour pattern recognition reduces to logically
combining the results of a series of very simple binary image analysis operations.

 5. Discussion and Conclusions

The idea of using a look-up table to perform colour recognition is not new but has
considerable appeal for such tasks as recognising (ripe) fruit on a tree, recognising
resistor colour codes, tracing wiring, inspecting food products, cartons and

pharmaceutical packaging. It lends itself to implementation in fast electronic
hardware. Commercial equipment has been available for colour recognition, for some
years. The colour scattergram is a useful tool, which allows the user to associate areas
of the colour triangle with colours that he/she can recognise and name. Once a colour
scattergram has been generated, the user can think about colour in convenient terms,
using the concepts of blob position, shape and size. He/she can also apply a wide
range of image processing operators to the colour triangle. This is possible because
the colour triangle is an image, like any other. Colour recognition is achieved in real
time, although the subsequent procedures for image analysis may not be. Four
techniques for colour generalisation have been described and have been studied
extensively by ourselves, using an interactive image processing system. As a result of
their experience, the authors are convinced that the techniques described above
provide a useful addition to the range of facilities available for recognising colours. It
is possible to extend the range of colours recognised by the PCF to any extent desired.
In Procedure 2, for example, the parameter N can be adjusted at will; if N is
increased, the degree of generalisation will become higher. It is possible for a person,
working with an interactive system, to experiment with the colour generalisation
parameter, to obtain the best results for a given application. On the other hand, a
program can be written which chooses a suitable value for N, according to some pre-
defined criterion.

References

Batchelor BG (1991) Image Processing in Prolog. Springer Verlag, Berlin & New York.
Batchelor BG (1992) Colour Recognition in Prolog. Proc. SPIE conf Machine Vision Applications,
 Architectures and Systems Integration SPIE 1823: 294-305.
Batchelor BG, Whelan PF (1993) Generalisation Procedures for Colour Recognition. Proc. SPIE
 conf. on Machine Vision Applications, Architectures and Systems Integration II SPIE 2064: 36-46.
Batchelor BG, Whelan PF (1994) Real-time Colour Recognition in Symbolic Programming for
 Machine Vision Systems. In Press.
Chamberlain GJ, Chamberlain DG (1980) Colour: Its Measurement, Computation and Application.
 Heyden & Son Ltd., London, :18-45.
Intelligent Camera (1990), Image Inspection Ltd., Unit 7, First Quarter, Blenheim Road, Kingston,
 Surrey, KT19 9QN, U.K.
Optical Society of America (1953) The Science of Colour. Optical Society of America Committee on
 Colorimetry : 99-144.
Plummer AP (1991) Inspecting Coloured Objects Using Grey Scale Vision Systems. Proc. SPIE conf.
 Machine Vision Systems Integration SPIE CR36: 78-92.
Schettini R (1993) A segmentation algorithm for color images. Pattern Recognition Letters 14: 499-
 506.
Umbaugh SE, Moss RH, Stoecker WV (1992) Automatic color segmentation algorithm with
 application to identification of skin tumor borders. Computerized Medical Imaging and Graphics
 16(3): 227-235. Refers to Part no. DT 2871, Data Translation Ltd.

Figure 1. Hardware structure of the Programmable Colour Filter, based upon RGB inputs to the
LUT. This is the block diagram of the implementation of this technique in the Intelligent Camera
(1990; Plummer 1991) and was used by the authors in the experiments reported here.

Figure 2. Proposed hardware structure of a Programmable Colour Filter, based upon HSI inputs to
the LUT, using a real-time RGB/HSI converter chip (Umbaugh et al 1992).

Figure 3. Proposed hardware structure of a Programmable Colour Filter, based on the xy parameters
used in defining the standard Chromaticity Diagram.

Figure 4. Analysing a multi-colour pattern. (a) Original artwork. (b) RGB colour separations. (c)
Colour scattergram. (d) Pseudo-colour display of the colour scattergram. (e) Processed colour
scattergram. (f) PCF output when trained on image (e). (g) Application of colour generalisation. (h)
PCF output when trained on image (g). (i) Pseudo colour display of an intensity wedge, black on the
left and white on the right.

