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Abstract: It is impossible to collect more than a tiny proportion of all of the possible examples of a 
given hue, to form a training set for a machine that learns to discriminate colours. In view of this, it is 
argued that colour generalisation is essential. Three mechanisms for learning colours as defined by a 
human being are described. One of these is based upon an idea developed by AP Plummer and is 
implemented in a commercial device known as the Intelligent Camera. This implementation can learn 
the characteristics of coloured scenes presented to it, and can segment a video image in real-time. This 
paper presents four procedures which allow the range of colours learned by such a system to be 
broadened, so that recognition is made more reliable and less prone to generating noisy images, which 
are difficult to analyse. Three of the procedures can be used to improve colour discrimination, while a 
fourth procedure is used when a single and general colour concept has to be learned. Several 
experiments were devised to demonstrate the effectiveness of colour generalisation. These have shown 
that it is indeed possible to achieve reliable colour discrimination / recognition for such tasks as  
inspecting packaging and fruit. A practical system based upon the Intelligent Camera and controlled by 
software written in Prolog has been developed by the authors and is being used in a study of methods 
for declarative programming of machine vision systems for industrial applications.  
 

1. Introduction 
 
Consider the task of designing a machine to inspect printed cardboard and plastic 
cartons, such as those used for food products, household goods, toiletries, etc. These 
are often printed in several colours. Inspecting such items could be achieved by first 
isolating the different colours and then applying conventional (i.e. monochrome) 
image analysis procedures to each of the colour separations. In this article, we shall 
discuss electronic filters that are capable of performing such a separation of colours. 
(Plummer 1991; Intelligent Camera 1990) A Programmable Colour Filter (PCF)  
might, for example, isolate the yellow streak on a margarine tub, so that it can be 
examined in detail. Once a yellow streak has been inspected, other coloured features 
can be treated in the same way.  Of course, such a filter should be able to tolerate 
wide variations in the brightness of the scene being examined; it should be sensitive 
to colour, not intensity. Other possible applications include: reading resistor colour 
codes, identifying coloured wires, inspecting iconic displays on car dash boards, etc. 
 
Previous work by the authors has shown that colour recognition can be used to good 
effect in a symbolic programming environment (Prolog has been used for several 
years as a medium for programming vision systems. See Batchelor (1991; 1992), 
Batchelor and Whelan (1993; 1994)). This approach to colour recognition, requires 
machines that can quickly learn to recognise colours such as “margarine-tub yellow”, 
“margarine-tub red”, given a few examples of each. The samples on which such an 
inspection machine is to be designed would most conveniently be obtained by 
examining a small number of margarine tubs on a production line. 
 
1.1 The Naming of Colours 



The axiom on which this article is based is that the names of colours cannot be 
defined mathematically. The standard CIE (1931) Chromaticity Diagram should 
properly be regarded as a conceptual aid, since it cannot form a precise basis for 
discriminating between colours. The position of the boundary between any two 
named colours in the Chromaticity Diagram is plotted for an hypothetical standard 
observer, working in carefully controlled lighting conditions. In a practical situation, 
however, an industrial machine vision system is likely to be taught by a person 
untrained in colour science, working in a factory environment, where the lighting is 
highly variable. Schettini (1993) points out that camera, lighting and filter 
combinations affect the RGB values measured by a video camera. 
 
Several authors, have represented the colours of ordinary everyday objects as points 
plotted on the Chromaticity Diagram. (Chamberlain and Chamberlain 1980). 
However, it should be noted that each point represents just one instance of a broad 
class of objects. The set of all ripe tomatoes, for example, is represented more 
accurately by a cluster of points, while ripening tomatoes generate a broad serpentine 
curve in the Chromaticity Diagram. The Chromaticity Diagram does not include 
definitions for the range of such colours as “margarine-tub yellow”  or even “sky 
blue”. The fact that people recognise colours by some mental process that is not fully 
understood simply has to be accepted. (Chamberlain and Chamberlain 1980; Optical 
Society of America 1953). The authors suggest that a colour recognition filter used 
when inspecting artefacts such as food packaging, household good and 
pharmaceutical cartons could be designed using the principle of teaching-by-showing.  
 
1.2 Notation 
The set notation introduced in this section allows us to define colour generalisation 
process in formal mathematical terms. Generalisation is seen as being an essential 
function in any learning system. Let <X> denote the set of colours of objects in that 
class defined by human beings and which is called X. A machine that is designed for 
colour recognition, might well use the conventional RGB colour separations. To take 
account of this fact, we shall therefore take {X} as being the set of all of those 
(R,G,B)-vectors that can be associated with the label X. Notice that in this notation, 
<X> is defined by a person, while {X} is a set of 3-element (R,G,B)-vectors, derived 
by a machine.  
 
1.3 Recognition and Generalisation of Colours 
Implicit in our approach to colour recognition is the concept of teaching by showing. 
It is important, of course, to make the maximum use of each colour sample, since they 
may be difficult and/or expensive to collect. It is impossible, in practice, to obtain 
more than a very small proportion of all the colours of a class such as <yellow>, so 
we must teach our machine using a few well chosen samples and leave it to 
generalise. Generalisation is universally accepted as being essential in all pattern 
recognition machines, of which the PCF is an example. 
 
Given that <daffodil> ∪ <canary> ∪ <banana> ∪ <lemon> ⊆ <yellow> it is 
reasonable to expect that {daffodil} ∪ {canary} ∪ {banana} ∪ {lemon} ⊆ {yellow}. 
Now, we want to find some operation upon the set {daffodil} ∪ {canary} ∪ {banana} 
∪ {lemon} which will generate an enlarged set E, such that E ⊇ {daffodil} ∪ 
{canary} ∪ {banana} ∪ {lemon} and ∀ X: X ∈ E → X ∈ {yellow}. An important but 

 



ill-defined condition is that the set E should be as small as possible, thereby avoiding 
over-generalisation.  
 
This is one of the two types of colour generalisation we discuss in this paper. It is 
appropriate for those situations in which we are interested in colour recognition 
(single colour class), as distinct from colour discrimination (more than one colour 
class). We shall present one procedure for generalisation in colour recognition. 
(Procedure 4  defined below) A different type of colour generalisation is needed 
when we have to discriminate between colours. For reasons of economy, we might, 
for example, need to use a small data set to learn to distinguish between {apple} and 
{tomato} and wish to make the discrimination more reliable, so that colours in these 
sets that were not represented in the training data are classified appropriately.  

 
2. Colour Recognition 

 
The inspection of coloured objects and surfaces by machine has, of course, been studied 
by numerous researchers over many years. Particular attention has been paid to the 
characterisation and matching of subtle colouring of fabrics, paint, paper, printing and 
automobiles. Since very precise colour measurement is needed in these areas, non-
imaging techniques have been widely used. It should be understood that the approach that 
we have taken is quite different, since we are concerned with relatively coarse, high-
speed recognition and discrimination processes. A typical application for the techniques 
we shall discuss is the inspection of packages and containers for food, domestic goods 
and pharmaceutical products on a factory production line. A review of previous work in 
this area can be found in Batchelor and Whelan (1994). 
 
2.1 Real-time Recognition of Colours in Electronic Hardware 
Figure 1 shows the block diagram of a colour recognition system designed by 
Plummer (1991). This is built into a small self-contained commercially available 
image processing unit, called the Intelligent Camera (1990). The authors used the 
Intelligent Camera, in conjunction with control software written in Prolog (Batchelor 
1991; 1992) in the experiments reported below. Another implementation using a real-
time RGB/HSI converter chip (Umbaugh et al 1992) is suggested in Figure 2. A third 
implementation relies upon the use of the xy parameters used to define the standard 
Chromaticity Diagram, see Figure 3. These last two configurations have not yet  been 
implemented. 
 
Notice that in Figures 1-3, the output from the Look-Up Table (LUT) is a stream of 8-
bit values, which may be regarded as forming intensities in a monochrome image. 
This image can be analysed in a conventional monochrome image processing sub-
system. All of these hardware systems can be fully simulated in a software 
environment, but not necessarily in real-time. While it is the accepted wisdom that the 
HSI representation is better able than RGB to discriminate colours as we perceive 
them, this hardware arrangement is, in fact, quite general, since the LUT in Figure 1 
can be programmed to generate H, S and I, given R, G and B. Hence, Figure 1 is able 
to implement any functions which Figures 2 and 3 can. A further advantage of Figure 
1 is that it relies upon cheap standard memory devices, rather than custom ICs or real-
time divider circuits. Our discussion hereafter is based upon the system using a LUT 
with RGB inputs, as illustrated in Figure 1. 

 



 
The  LUT forms the heart of the Programmable Colour Filter. The use of high-speed 
random access memory (RAM) to form a look-up table, together with “flash” 
analogue-to-digital converters, makes the PCF very fast indeed. It is well able to 
perform transformations upon a digitised video signal, in real time. Training the PCF 
consists of calculating appropriate values for each of the LUT’s 218 storage cells. (See 
Batchelor (1992), Batchelor and Whelan (1993; 1994) for details on the programming 
of the PCF). Once the PCF has been programmed, the colour recognition process 
takes place in real-time and does not increase the computational load needed for 
image analysis in any way. 
 

3. Procedures for Colour Generalisation 
 
The colour scattergram (generated by projecting all RGB vectors onto the colour 
triangle, this is a convenient representation of the distribution of colours within the 
input (Batchelor and Whelan 1993; 1994)), may be displayed as a grey-scale image, 
in which intensity indicates the number of pixels with the same values of hue and 
saturation. (See Figure 4 for some results.) The colour scattergram must be simplified 
before any further processing takes place. An obvious step is to threshold it, This 
process will generate a compact blob for each region of similar colours.  
 
Our approach to colour generalisation consists of adjusting the sizes of the blobs 
created by thresholding the colour scattergram. It will be necessary to do this in such 
a way that blobs which were distinct when the (multi-cluster) scattergram was first 
thresholded, remain separate. In a typical application, a number of coloured scenes are 
used to design the PCF. As each scene is being viewed, a scattergram is generated in 
the colour triangle. Noise is then removed from the scattergram, using common image 
processing operations, such as low-pass filtering. This is followed by thresholding. If 
the input scene consists of a single colour, such as <margarine-tub yellow>, 
thresholding the scattergram, after clean-up, creates a single blob, Bi. This process is 
repeated for each colour we wish to use to design the PCF. As each new blob (Bi, i = 
1,…,n) is generated, it is superimposed on the colour triangle. Therefore, prior to 
generalisation, the colour triangle consists of a number of blob regions, each of which 
corresponds to one of the trained colours. The aim of the generalisation procedures is 
to expand these regions, forming the regions Ci, i = 1,…,n. By projecting the Ci, back 
onto the colour cube, we generate the contents of the PCF look-up table. If the Ci have 
been generated appropriately, the resulting colour recognition process is more 
reliable, than it would have been if the smaller blobs Bi had been used instead 
(Batchelor and Whelan 1993; 1994). Here are the definitions of four suggested 
procedures for colour generalisation.  
 
Procedure 1 - Simple Dilation: Each blob, Bi, in the colour triangle is dilated 
(expanded) by single a pixel for a fixed number of iterations. The number of iterations 
is  denoted by the variable N. The resultant blob is Ci.   

 
Procedure 2 - Dilation with Preservation of Connectivity: A single layer of 
background pixels is stripped from the (binary) image in the colour triangle. Unlike 
the previous approach, pixels critical for connectivity are retained. The number of 
iterations in this  'onion peeling' operation is denoted by the variable N.  

 



 
Procedure 3 - Watershed: This approach involves finding the watershed for each of 
the blobs Bi. The watershed is generated by finding the medial axis transformation of 
the image background.  
 
Procedure 4 - Convex Hull Generalization: The convex hull is drawn around the set of 
blobs Bi (i = 1,…,n) in the colour triangle. It is reasonable to expect that points within 
this convex hull will correspond to a generalisation of the observed colours, {Ai }, i = 1,
…,n.  
 

4. Demonstration of Colour Recognition 
 
Our experiment is concerned with the analysis of a multi-colour pattern, similar to 
those found on a number of product logos. In Figure 4(a) we have the original artwork 
of the multi-colour pattern. This was produced using Photoshop image processing 
software, running on a Macintosh computer, and a Kodak ColorEase laser printer. 
(When the image was used in the experiments, a narrow white border around this 
pattern was included in the cameras field of view). In Figure 4(b) we see the result of 
RGB colour separations. The top left image is red, top right is green and the bottom 
left is blue. Figure 4(c) represents the resultant colour scattergram. Notice that there 
are 7 blobs, corresponding to the six colour bands in Figure 4(a). The narrow white 
border mentioned in Figure 4(a) is represented by the central spot in the colour 
triangle. 
 
Figure 4(d) is a pseudo-colour display of the colour scattergram. Notice that the dark 
regions in Figure 4(c) are more clearly visible here, as purple cloud-like structures. 
The colour scattergram is then thresholded, and all minor blobs removed, Figure 4(e). 
The remain major blobs have be assigned colours in an arbitrary manner. Figure 4(f) 
is the output of the programmable colour filter when trained on the blobs of Figure 
4(e) (when the camera was again focused on the image in Figure 4(a)). Notice that the 
colour bands contains dark spots and are separated by dark streaks. Both of these 
effects are caused by the blobs in Figure 4(e) being too small. (The white border of 
Figure 4(a) is visible here as a yellow edge).  
 
Figure 4(g) illustrates the result of colour generalisation on the blobs of the colour 
scattergram. The blobs have been greatly enlarged. When the PCF is now trained on 
these new enlarged blobs, the result PCF output is greatly improved, see Figure 4(h). 
Notice the absence of dark spots and streaks when compared to Figure 4(f). 
Recognising the colour pattern in Figure 4(a) as the anticipated logo can be performed 
quite easily by measuring the proportions of each of the component colours and 
noting their position and shape. Thus, colour pattern recognition reduces to logically 
combining the results of a series of very simple binary image analysis operations. 

 
 

 5. Discussion and Conclusions 
 
The idea of using a look-up table to perform colour recognition is not new but has 
considerable appeal for such tasks as recognising (ripe) fruit on a tree, recognising 
resistor colour codes, tracing wiring, inspecting food products, cartons and 

 



pharmaceutical packaging. It lends itself to implementation in fast electronic 
hardware. Commercial equipment has been available for colour recognition, for some 
years. The colour scattergram is a useful tool, which allows the user to associate areas 
of the colour triangle with colours that he/she can recognise and name. Once a colour 
scattergram has been generated, the user can think about colour in convenient terms, 
using the concepts of  blob position, shape and size. He/she can also apply a wide 
range of image processing operators to the colour triangle. This is possible because 
the colour triangle is an image, like any other. Colour recognition is achieved in real 
time, although the subsequent procedures for image analysis may not be. Four 
techniques for colour generalisation have been described and have been studied 
extensively by ourselves, using an interactive image processing system. As a result of 
their experience, the authors  are  convinced that the techniques described above 
provide a useful addition to the range of facilities available for recognising colours. It 
is possible to extend the range of colours recognised by the PCF to any extent desired. 
In Procedure 2, for example, the parameter N can be adjusted at will; if N is 
increased, the degree of generalisation will become higher. It is possible for a person, 
working with an interactive system,  to experiment with the colour generalisation 
parameter, to obtain the best results for a given application. On the other hand, a 
program can be written which chooses a suitable value for N, according to some pre-
defined criterion.   
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Figure 1. Hardware structure of the Programmable Colour Filter, based upon RGB inputs to the 
LUT. This is the block diagram of the implementation of this technique in the Intelligent Camera 
(1990; Plummer 1991) and was used by the authors in the experiments reported here.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Proposed hardware structure of a Programmable Colour Filter, based upon HSI inputs to 
the LUT, using a real-time RGB/HSI converter chip (Umbaugh et al 1992).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Proposed hardware structure of a Programmable Colour Filter, based on the xy parameters 
used in defining the standard Chromaticity Diagram. 
 
 
 
 
 
 
 
 

 



 

 
Figure 4.  Analysing a multi-colour pattern. (a) Original artwork. (b) RGB colour separations. (c) 
Colour scattergram. (d) Pseudo-colour display of the colour scattergram. (e) Processed colour 
scattergram. (f) PCF output when trained on image (e). (g) Application of colour generalisation. (h) 
PCF output when trained on image (g). (i) Pseudo colour display of an intensity wedge, black on the 
left and white on the right. 
 
 


