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Abstract—In this work we examine in detail the landmark
localisation algorithm proposed by Gupta et al. [9]. This algo-
rithm automatically localises 10 facial fiducial points using both
texture and range images, in conjunction with anthropometric
information. For six of the landmarks detected a modified version
of the EBGM technique developed by Wisott et al. is used
[8]. The landmark localisation performance of this system is
determined as the original authors only provide 2D standard
deviation results. While the nose tip localisation performs poorly
with a 3D mean error of 6.15mm, the remaining landmarks are
all localised with an error of under 3.35mm, with the outer eye
corner and mouth corner detections performing particularly well.
The influence of the inclusion of texture and/or range information
when localising landmarks is examined. It is determined that
best performance is achieved when both texture and range
information is used. Finally, the relative localisation performance
improvement achieved by using the modified EBGM technique
determined. For all landmarks examined the use of EBGM
improves localisation.

I. INTRODUCTION

Facial landmark localisation is the primary step in a number
of computer vision systems including, facial recognition, facial
pose estimation, medical diagnostics and multimedia appli-
cations. Historically most landmark localisation algorithms
have used standard 2D images. Such systems, no matter how
accurate, are always going to be limited by the fact that they
are operating on dimensionally reduced representations of 3D
objects. A significant amount of extra information about the
human face is contained in the 3D spatial dimension.

A number of different approaches have been taken with
regard to localising facial landmarks in 3D images. Geometry
based techniques have received a good deal of attention.
Segundo et al. present an effective system which uses surface
classification techniques in order to localise landmarks [1].
The authors record a 3D localisation error of under 10mm for
90% of images in their test set. Creusot et al. combine machine
learning and a large number of geometric techniques in their
system [2]. The authors note that while this system does not
out perform others in terms of precision it does perform quite
well in terms of robustness. Since the algorithm used is not
sequential in nature, a failure to detect certain landmarks does
not influence the localisation of subsequent landmarks. This
system provides a framework for landmark localisation and
leaves potential for future improvement.

Zhao et al. present a statistical model based approach in [3].
This system works well in challenging situations where there
is facial occlusion and/or very expressive faces. This system
learns the spatial relationships between different landmarks
and uses this in conjunction with local texture and range
information. The authors use PCA to create a statistical facial
feature map . This is essentially a combination of individual
geometry (landmark coordinates), shape (range images) and

texture (texture images) models. The authors report a mean
3D error rate of below 4.65mm for all 15 facial landmarks.

Perakis et al. use local shape descriptors to localise facial
landmarks [4], [5]. These local shape descriptors characterise
the shape profile at a given landmark. By evaluating the
shape index at a landmark in a number of training images
a model can be constructed. These descriptors are generated
by examining the principal curvature and spin image at a
landmark. A facial landmark model is then created. This is
used to constrain the relative locations of detected landmarks.
Models are also created for the left and right hand side of the
face. These are used to deal with profile or semi-profile faces.
The systems achieves relatively good results with a mean 3D
error of below 5.58mm for all 8 landmarks.

One particular approach which has received increased at-
tention in recent years is the use of Gabor filters for facial
landmark localisation. While an in depth discussion of Gabor
filter theory is outside the scope of this work, an excellent
tutorial is provided in [6]. Jahanbin et al. use Gabor filter banks
for landmark localisation in [7]. This technique implements
the same landmark localisation procedure as Wiscott et al.
used in their Elastic Bunch Graph Match system (without the
elastic constraint) [8]. While the authors do not present in
depth results in this particular paper, it does serve as a basis
for later work carried out by the same research group [9].

This particular system combines curvature detection, Gabor
filter and expert knowledge of the human face to localise
landmarks. Anthropometric information based on the work
carried out by Farkas et al. in the medical field [10]. This
information plays a vital role in establishing a sensible search
region which is then examined to further improve the accu-
racy of localisation. For the detection of inner eye corners
and mouth corners the authors used a technique which they
term 2D + 3D EBGM which involves using the techniques
developed by Wiscott et al. on both range and portrait images.
For the outer eye corners the 2D EBGM is used rather than
2D + 3D. The authors state the reason for this is that “the
outer corners of the eyes do not have distinct surface curvature
characteristics”. The authors of this paper only publish the 2D
standard deviation error results detected. Even though these
are impressive it does mean that the algorithm cannot be
benchmarked against state of the art techniques.

In this work the method developed by Gupta et al. is
examined in depth. The mean 3D error is evaluated with a
view to determining the systems performance in terms or
actual localisation rather than just standard deviation. The
influence of the inclusion of texture information on landmark
localisation is also examined. For the six landmarks where
EBGM is used for localisation, the results are compared for 2D
(texture),3D (range) and 2D + 3D (range and texture) EBGM.
Finally the relative performance improvement obtained by



Fig. 1: 10 facial landmarks

using EBGM is evaluated.

II. DATABASE

The Texas 3DFR database is used for the development and
testing of this system [9], [11], [12]. This is the same database
used by the original authors. It contains 1149 high resolution
(751 x 501 pixels, 0.32 mm per pixel) pairs of portrait and
range images. The database contains 118 healthy adult sub-
jects. 25 facial landmarks have been manually located. Both
range and portrait images were acquired simultaneously using
a regularly calibrated stereo vision system. Median filtering
and bi-cubic interpolation are used to remove impulse noise
and large holes. Finally Gaussian smoothing (o = 1 pixel) is
applied to reduce noise levels.

III. AUTOMATIC LANDMARK LOCALISATION USING
ANTHROPOMETRIC INFORMATION

The landmark localisation procedure carried out remains
as faithful as possible to the method developed by Gupta et
al. [9]. Generally speaking the algorithm first uses curvature
information to detect an approximate location for a particular
landmark. Using anthropometric information a search region is
defined around this approximation. The search region is then
evaluated using some other technique, as described below. The
10 landmarks localised are shown in figure 1.

For a more detailed description of the development and
implementation of this algorithm please see Appendix B.

A. Nose Tip (prn)

The Iterative Closest Point (ICP) algorithm is used to
register each face in the database to a frontal template face.
These aligned images are used in all subsequent steps. Once
all images have been aligned the manually localised tip of
the template face is taken as an approximate location for tip
of the nose in all images. A window of 96 mm x 96mm is
then defined around this approximated nose tip. Since all faces
have been frontally aligned, the actual nose tip is present in
this large window for all cases. This means that the method is
not fully automated since it relies on the manually localised
tip of the template face.

It has been observed that the Gaussian surface curvature
of the tip of the nose is distinctly elliptical (K >0,) [1], [2],
[13]. For this reason the Gaussian surface curvature ( o = 15
pixels) is evaluated within the search region about the nose tip
approximation. The maximum Gaussian curvature within the
region is taken as final location of the nose tip (prn).

B. Nose Width Points (al-al)

The nose width points are localised by first defining a search
region around the detected nose tip. The size of this window
(42 mm x 50 mm) is defined based on the mean and standard
deviation values published by Farkas [14]. Further detail is
provided in [9]. A Laplacian of Gaussian edge detector ( o =
7 pixels) is then used within this region. Moving in a horizontal
direction from the nose tip, the first edge encountered is
considered to be the nose contour and is retained. A curvature
detection technique developed by Rodriguez and Aggarwal is
used to detect the nose width points which are considered to
be points of negative curvature (as per notation used) [15].
This is done by generating an unwrapped chain code for the
nose contour. A derivative of Gaussian filter is used on this
one dimensional signal to detect points of critical curvature
(Fig. 2).

(a) Critical points
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Fig. 2: Detection of nose width points

The choice of which critical points are selected as nose
width points is based on selecting the first critical points
immediately above and below the vertical coordinate of the
nose tip. The widest of these are selected as nose width points.

C. Inner Eye Corner (en-en) & Center of Nose Root (m’)

A search region for the left and right inner eye corners is
defined using the location of the detected nose tip and nose
width points. The vertical limit defined based on the fact that
for the average adult, the distance between inner eye corners



and the tip of the nose in the vertical direction is 0.3803 times
the distance between the tip of the nose and the top point
of the head [9], [10]. Gupta et al. allow for variations in the
measure by setting the upper vertical limit at (prn, +0.3803 x
1.5|prny, — V), where V,, is the ¥ coordinate of the highest
vertical point in the 3D model. The horizontal limit is obtained
by using the locations of the nose width points and the nose
tip. Specifically horizontal limits are defined from the nose tip
to aly jeft/right £0.5]als 1eft — aly rignt| for the left and right
inner eye corners.

The Gaussian curvature within this region is evaluated and
the location of maximum curvature is used as an approxima-
tion for the location of the inner eye corner (¢ = 15 pixels, as
in III-A).Finally a region of 20mm x 20mm is defined around
this peak of Gaussian curvature.

In order to further improve the localisation of the inner eye
corner a modified version of the EBGM technique is used
[71, [8]. In brief, this technique involves comparing the Gabor
coefficients generated for each pixel in the search region with
the coefficients for the landmarks of 89 training images. These
89 images consist of neutral and expressive faces. The images
are selected in an attempt to cover as much feature variance
as possible (i.e. closed/open mouth and eyes). Since Gupta
et al. do not state specifically (the database partitions are
provided) which 89 images from the database they use as
example images, we selected the example images based on
the information provided in [9]. 80 Gabor coefficients (known
as a Gabor jet) are generated at each landmark for each of
the example images. A filter bank of 40 Gabor filters is used
(5 scales x 8 orientations). 40 coefficients are generated for
both range (3D) and texture (2D) images. While the specific
parameters of these filters are not provided in [9], we used the
filter bank outlined in by Wiscott et al. [8]. It is important to
note that all images should be scaled by % when Gabor filtering
is applied. The final location of the inner eye corner is obtained
by finding the pixel which has a Gabor jet most similar to
that of any training landmark. The similarity score is given in
equation 1, where J and J’ are the jets to be compared. The
jets contain either 40 or 80 coefficients depending on which
form of EBGM is to be used. Gupta et al. chose to use 2D
and 3D Gabor coefficients. In this work 2D, 3D and 2D+3D
results are compared.
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The center of the nose root is determined by finding the
mid-point between the two inner eye corners.

D. Outer Eye Corners (ex-ex)

A search region for the outer eye corners is defined based
on the location of the detected inner eye corners as per [9].
This 20 x 34 mm region is evaluated using the same search
procedure as used for the inner eye corners. Gupta et al. chose
to use 2D EBGM search as the outer eye corner region does
not have distinct enough curvature characteristics. In this work
all three EBGM techniques are evaluated.

E. Mouth Width Corners (ch-ch)

The lip curvature is examined in order to determine a
search region for the mouth width corners. The Gaussian
curvature of both the upper and lower lips is elliptical in
nature. The regions immediately above the upper lip and
below the lower lip are hyperbolic (K < 0). As shown in
figure 3a where the peaks correspond to the nose tip, upper
lip, lower lip and chin, moving from left to right. These
properties can be used to define upper and lower search limits
for the mouth corners. The horizontal limits are defined by
[(alr,left - O~7|alm,left - alz,m’ght‘)a (alz,left)} for Chleft and
[(alaz,m'ght + 0.7‘alz,left - alz,’right‘)v (alx,right)] for Chright-
In order to remove noise a certain amount of smoothing must
be carried out when calculating Gaussian curvature. In some
cases the Gaussian curvature of the upper or lower lip is too
weak and cannot be localised, as shown in figure 3b. In such
cases the troughs in Gaussian curvature immediately above
and below the lip region are used as limits. While these are
usually stronger features than the lips, errors can arise when
searching for peak mean curvature in the next stage of the
algorithm as there is a high mean curvature along the jaw
line.

x10° Gaussian Cunature Profile Below Nose Tip

0 50 400 150 200 250 300 350 400

(a) Lip curvature profile - strong upper & lower lip
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(b) Lip curvature profile - weak lower lip

Fig. 3: Comparison of lip curvature profiles

The mean curvature (o = 2 pixels) is then calculated for the
defined search region. Since the mouth corners are regions of
high mean curvature the peak curvature value in this region is
taken as an estimate for of the mouth corner. A 30mm x 11mm
search region is defined around these mouth corner estimates.
The same EBGM procedure used in sections III-C and III-D
is used to precisely localise the mouth corners.Gupta et al.
chose to use 2D+3D EBGM. In this work 2D, 3D and 2D+3D
EBGM results are compared.



IV. EXPERIMENTAL RESULTS & DISCUSSION

Provided below is a summary of results obtained. For more
comprehensive results see appendix C.

A. Test Data

The performance of the landmark localisation algorithm is
evaluated using the Texas 3DFR database. As mentioned in
section II the database contains 1149 pairs of portrait and range
images. 89 of these pairs are used in the EBGM search. The
remaining 1060 pairs are used as test data.

B. Landmark Localisation Results

The landmark localisation results obtained for the Texas
3DFR database are given in table II. All results are given in
millimetres.

As mentioned previously Gupta et al. do not provide 3D
error results [9]. In order to ensure that this method faithfully
reproduced the original method a comparison with the 2D
results obtained by Gupta et al. is provided in XXXX.

Landmark Author | X std. dev Y std. dev 2D std. dev
Prn Gupta 1.045 1.68 1.978
This method 0.766 1.714 1.705

Gupta 0.721 1.655 1.805

Al Left 1y i¢ method 0.647 0.710 0.739
. Gupta 0.798 1.646 1.829
ALRight s ethod 0.546 0.814 0.818
Gupta 1.488 1.245 1.940

En Left i method 1.249 0.908 1363
. Gupta 1.354 1.344 1.908

En Right .0 method 1.378 0.792 1.417
D Gupta 1.355 1.811 2.261
This method 1.415 1.010 1.417

Gupta 1.795 1.285 2.208

Ex Left  pic method 1.727 1.047 1.850
. Gupta 2.126 1.384 2.537

Ex Right 1y hethod 1.940 1.248 2.149
Gupta 1.948 0.933 2.160

ChLeft i method 1.749 1.692 2.321
. Gupta 1.976 1.045 2.235

Ch Right 1.0 method 1.429 0.844 1.460

TABLE I: Error standard deviation comparison with Gupta et
al. [9]

The mean error result of the nose tip is noticeably larger
than the localisation of the other landmarks. On closer ex-
amination it appears that in all cases the detected nose tip is
above the manually localised nose tip (in the Y direction).
This can clearly be seen in the boxplot in figure 4. This figure
shows clearly that the median value for the X error is Omm
as expected in a normal error distribution. The Y distribution
is extremely skewed to one side of the manually localised
nose tip (a negative Y error is above the manual location for
an upright face). Since the standard deviation of the Y error
is relatively small it seems that the issue is that the peak of
Gaussian curvature does not correspond to the same location
the manual annotators have identified as the nose tip.
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Fig. 4: Boxplot of nose tip localisation error

The mean error results obtained for the nose width points are
reasonable while the standard deviations are impressive. The
most impressive results are those obtained using the modified
EBGM technique. A 3D mean error of under 2mm is recorded
for both inner eye corners. The outer eye corners which are
slightly more difficult to localise are detected with a mean
error of under 2.6mm. A mean error of below 2.16mm is
achieved for both mouth corners. The algorithm does have
particular difficultly with faces where facial hair is present.
This is as expected when using Gabor filters as there is a
significantly different response to a Gabor filter when facial
hair is present.

One interesting point to note is that the three worst results
obtained are for the three landmarks localised using techniques
which do not involve training. The training stage of EBGM
uses manual landmark locations. This means that when EBGM
is used, the algorithm searches for a location on an unknown
image which is most similar to the training data, which is
based on manual locations. For the nose tip and width points
the algorithm searches for a particular image feature (e.g.
maximum Gaussian curvature) which is said to be present
at that landmark. Perhaps using EBGM for all landmarks
might yield better performance. Another possible issue could
be marker bias. No details are provided about how many
annotators are used but using separate annotators for test and
training data could be a possible solution.

Landmark \ 3D mean (mm) 3D std. dev (mm)
Prn 6.147 1.746

Al Left Left 3.354 1.647
Al Right 3.310 1.877
En Left 1.821 1.499
En Right 1.747 1.520
WY& 2.760 1.591

Ex Left 2477 2.576
Ex Right 2.590 2.990
Ch Left 2.159 3.039
Ch Right 2.016 2.153

TABLE II: Landmark localisation error

C. Texture & Range Comparison

The inner eyes and outer mouth corners are detected using
2D + 3D EBGM while 2D EBGM is used for the outer eye
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Fig. 5: 3D error boxplot

corners. The same similarity metric is used in each case (1)
with the only difference being the coefficients examined.

Landmark  Method | 3D mean 3D std. dev
2D 1.833 1.533

En Left 3D 2.181 1.695
2D + 3D 1.821 1.499

2D 1.753 1.546

En Right 3D 1.986 1.581
2D + 3D 1.747 1.520

2D 2.477 2.576

Ex Left 3D 5.103 5.280
2D + 3D 2.388 2.116

2D 2.590 2.990

Ex Right 3D 8.908 7.215
2D + 3D 2.489 2.273

2D 2.197 2.830

Ch Left 3D 2.537 2.886
2D + 3D 2.159 3.039

2D 2.151 2.442

Ch Right 3D 2.202 1.613
2D + 3D 2.016 2.153

TABLE III: 2D, 3D & 2D+3D EBGM comparison

Interestingly, table III shows that for the inner and outer eye
corners the inclusion of range coefficients improves localisa-
tion results. Gupta et al. use 2D + 3D for the inner eye corner
while they choose to use just 2D for the outer eye corners.
The results obtained here suggest that a similar improvement
in localisation could be achieved with the inclusion of range
information. The original authors state that only 2D is used
as the outer eye corners do not have any distinct curvature
characteristics. While it is clear that just using 3D information
results in poor localisation performance it should be noted that
the 3D information only influences the result of localisation
when a 3D coefficient is more similar to one of the training
image coefficients than any of the 2D coefficients. This means
that in some individual cases the inclusion of 3D information
may adversely affect localisation but for the entire database
there is a decrease in mean error.

With regard to the mouth corners the use of texture and
range information results in the best mean error performance.
This is the same as the behaviour for the other landmarks.
Once again the worst mean error is recorded when just range
information is used.

It is clear that in all cases examined the inclusion of more
information (texture & range) in the EBGM stage results in
better overall localisation. This suggests that the similarity

score and the procedure Gupta et al. use for choosing the
landmark location works quite well. It suggests that in the
majority of cases the inclusion of extra information leads
to enhanced localisation performance. Obviously there is a
computational overhead to be considered when including this
extra information but in cases where speed isn’t an issue it
seems that the inclusion of 2D and 3D information leads to
the best localisation performance.

Since the 2D and 3D EBGM techniques are directly compa-
rable, table III shows that for all landmarks examined texture
information yields better results. Though for the inner eye
corners and mouth corners this difference is quite small.

D. Improvement Achieved Using EBGM

For each of the landmarks localised using EBGM a similar
approach is taken. An approximation of the landmark location
is first obtained and a search window is then defined around
this approximation. In this section the accuracy of this approx-
imation is evaluated and the relative improvement achieved by
the EBGM stage is examined. The inner eye and mouth corners
approximations are obtained by examining the curvature of the
local area. The outer eye corner approximation is based on the
location of inner eye corners.

Landmark Method | 3D mean (mm) 3D std. dev (mm)
i g |
e | W
s e | e
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TABLE IV: Comparison of approximations & EBGM results

The results in table IV clearly show that an improvement
in localisation is achieved using EBGM. In the case of the
inner eye corners a relatively small improvement is a gained
by using EBGM. In certain cases where speed is an issue,
the approximation of the inner eye corner could be used as
the final location of that landmark. This would not result
in a major decrease in localisation accuracy. The remaining
four landmarks show a significant improvement when EBGM
is used, with the outer eye corner localisation improving
significantly. As a whole the results show that the increased
computation overhead is warranted in terms of localisation
performance.

V. CONCLUSION

We have shown that the method developed by Gupta et
al. performs well in terms of landmark localisation. The one
weak point is the localisation of the nose tip which is quite
poor. Even though the localisation of the tip is poor it does



not appear to adversely affect the localisation of subsequent
landmarks where the location of the nose tip is used to define
a search region. Another better performing method, such as
that used by Segundo et al., could perhaps be used for the
localisation of the nose tip [1].

It was determined that for the EBGM stage, the inclusion
of both texture and range information yields the best results.
Interestingly, for the inner eye corners and mouth corners
the error results recorded are similar for each of the EBGM
methods. For the outer eye corner 3D EBGM performed quite
poorly, with 2D and 2D+3D obtaining similar results. This
suggests that for outer eye corner detection, 2D EBGM could
be used without a significant ( 0.3mm) decrease in mean error.

Finally the improvement in localisation achieved by using
EBGM was examined. A noticeable improvement was ob-
served for the outer eye corner and mouth corners localisa-
tion. The distinct curvature features of the inner eye region
results in it being easier to localise and as a consequence the
approximation obtained was reasonably good.
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