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Abstract— In this paper we describe the development of a
computationally efficient computer-aided detection (CAD) algo-
rithm based on the statistical features derived from the local
colonic surface that are used for the detection of colonic polyps
in computed tomography (CT) colonography. The candidate
surface voxels were detected and clustered using the surface
normal intersection, convexity test, region growing and Hough
Transform. The main objective of this paper is the selection
of the statistical features that optimally capture the convexity
of the candidate surface and consequently provide a high
discrimination between local surfaces defined by polyps and
folds. The developed polyp detection scheme is computationally
efficient (typically takes 3.9 minute per dataset) and shows
100% sensitivity for phantom polyps greater than 5mm and
87.5% sensitivity for real polyps greater than 5mm with an
average of 4.05 false positives per dataset.

I. INTRODUCTION

Colon cancer is the second leading cause of cancer deaths
in the developed nations [1], [2], [3]. Early detection and
removal of colorectal polyps via screening is the most effec-
tive way to reduce colorectal cancer (CRC) mortality [4], [5],
[6]. Colonography (CTC) [7], [8], [9] is a rapidly evolving
noninvasive technology for the detection of colorectal polyps.
In the last decade research has been focused on developing
automated computer aided detection CAD polyp detection
techniques and several approaches have been proposed. In
this regard, Vining et al. [10] proposed a method to detect
the colonic polyps based on surface extraction and curvature
analysis and they indicated that a 73% sensitivity with 9 to
90 false positives (FP) per dataset was achieved. Summers
et al. [11] developed a method that uses the curvature of
colon surface computed by partial derivative and local shape
criteria. One problem with this approach is the fact that the
sensitivity and specificity of the system depend on the filter
chosen to evaluate the shape and as a result their system
performed only modestly. Yoshida et al. [12] proposed to
evaluate the shape index and curvedness values from a small
volume of interest and polyp detection was achieved by
employing a fuzzy clustering scheme. They reported 89%
sensitivity with 2.0 FP per dataset, but FP per polyp increased
with a factor of 1.5 when sensitivity was increased to 100%.
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Kiss et al. [13] combined the surface normal distribution and
sphere fitting to produce 90% polyp sensitivity for polyps
higher than 6mm with 2.82 FPs/dataset. Recently, Kiss at el.
[14] also used surface normal and slope density function
to produce 85% polyp sensitivity for polyps higher than
6mm with 2.48 FPs/dataset (it is worth mentioning that these
results were obtained when the polyp detection algorithm
has been applied to datasets with a 0.8mm reconstruction
interval). More recently, Paik et al. [15] developed a new
technique based on surface normal overlap where the sensi-
tivity was 100% with 7.0 FPs/dataset. Acar et al. [16] method
detects the spherical patches using the Hough Transform
(HT) method [12] and the spherical patches were validated
using the optical flow to decide if they are polyps or not.
The sensitivity rate of their method was 100%, specificity
was 85% and the FPs/dataset was 3. Gokturk et al. [17] also
used the HT method for detecting spherical colonic patches
and the features collected from a large number of cross
sectional images of suspicious structures were supplied to
a support vector machine (SVM) classifier to perform polyp
detection. Acar et al. [18] proposed an edge displaced field-
based classification scheme that achieved a 30% reduction
of false positive per dataset.

In this paper we propose a computationally efficient
method to detect colonic polyps based on statistical features,
surface normal concentration, 3D histogram and Hough
Transform. The main contribution of this paper is the inclu-
sion of statistical features that maximize the discrimination
between the folds and polyps.

II. MATERIALS AND METHOD

Prior to their scheduled examination all patients were
instructed to take a low-residue diet for 48 hours followed
by clear fluids for 24 hours. Prior to the day of examination,
patients were prescribed one sachet of Pixcolax at 8.00, a
second sachet of Pixcolax at 12.00, a sachet of clean prep
in a litre of cold water at 18.00 and a Senokot tablet at
23.00. Before the CT scan, a rectal tube is inserted and the
colon is gently insufflated with room air to the maximum
level tolerated by the patient. All scans were performed on
a commercially available Siemens Somatom 4 multi slice
Spiral CT scanner. The scanning parameters were 120kVp,
100mAs, 2.5mm collimation, 3mm slice thickness, 1.5mm
reconstruction interval, 0.5s gantry rotation. The scanning
time range from 20 to 30s, and the image acquisitions were
performed in a single breath-hold. The procedure was first
performed with the patient in the supine position and then
repeated with the patient in the prone position.



III. CAD ALGORITHM

The developed polyp detection algorithm consists mainly
of four steps that include 3D data formatting, extraction of
candidate surfaces, calculation of statistical features from
detected candidate surfaces and polyp/fold classification. An
overview of our algoritm is illustrated in Figure 1.
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Fig. 1. Overview of the proposed CAD-CTC system.

A. Interpolation and Segmentation

Initially the non-isotropic patient data was converted to
isotropic data by using cubic interpolation. As the CTC
images offer a good contrast between the gaseous and lean
tissues the colon can be succesfully segmented by using a
standard seeded region growing algorithm [20]. It is useful
to note that in some datasets remaining residual material and
water can create collapses in the colon and the region grow-
ing algorithm may require multiple seed points to segment
the entire colon. The region growing algorithm is iterative
and the threshold value for segmentation was set to -800HU
[10]. The adjacent voxels having HU values higher than -
800HU define the colonic wall (CW).

B. Surface Analysis

The normal vector for each colonic wall voxel was cal-
culated using the Zuker and Hummel operator [21]. Each
voxel of the CW generates 8 Hough points (HP) in the
normal direction from 2.0mm to 10mm by varying the t
value in Eq. 1. In Eq. (1) p1 is the colon wall voxel under
investigation and n is the normal vector at the voxel position.

p = p1 + t × n (1)

The intersections between the normal vectors are obtained
by evaluating the 3D histogram for each point in the HP
set. As the normal vectors are determined using 3D local
operators their orientation is sensitive to abrupt changes in
the 3D structure of the CW and to reduce the level of noise in
the 3D histogram a weighted smoothing procedure is applied.
After smoothing, all HP’s having histogram values higher
than 5.0 intersections are considered as initial candidate
center points (ICCP) for polyp. At this stage each point
in ICCP creates a cluster of surface points. This cluster of
surface points was created by inclusion of the Hough points
and their corresponding surface points from the HP within
a certain distance (10mm to 16mm). A minimum distance
of 10mm was experimentally selected in initial clustering
to include the highest possible number of surface points in

the clustered surface. The distance threshold is adaptive and
varies from 10mm to 16mm depending on the histogram
value for each center point in ICCP. It is useful to note
that the candidate surface cluster may include surrounding
non-convex surface points or disconnected surfaces. Thus,
in order to remove the non-convex surface points and asso-
ciated HP points from the initial clusters, a convexity test
was performed. Convex voxel detection can be performed
using different techniques including curvature analysis [12]
and normal intersection [13]. In this paper, the non-convex
surface points from each candidate cluster were elliminated
using the simple convexity test described in [13]. After the
removal of the non-convex surface voxels, each cluster was
further processed to evaluate discontinuities in the surface
under examination. If discontinuities exist in the surface area,
the cluster is divided into multiple clusters and they are also
considered as potential candidate surfaces. The center of each
cluster is calculated using a Gaussian distribution (see Eq. 2)
and the Hough point with the highest Gaussian distribution
was set as the center of the clustered surface.

GMi =

N
∑

j=1

e(−x2/2.0×σ) (2)

In Eq. 2 x is the distance between the Hough points, σ is
the standard deviation and is set to 1.0, N is the number of
Hough points in the cluster and j takes values between 1...N.

IV. FEATURE EXTRACTION

Our aim is to extract the statistical features associated
with each cluster surface that offer optimal discrimination
between polyps and folds. The features that we compute for
each cluster surface are: standard deviation (SD) of surface
variation, SD of the three axis of the ellipsoid, SD of ellipsoid
fit error, SD of sphere fit error, Gaussian distribution, major
axis of the ellipsoid and the Gaussian sphere radius.
Let Sinit be the surface number (SN) in the candidate
cluster (CS) and dmax the maximum distance from the
cluster center to the surface normal (see Figure 2). For each
iterated radius Ri (see Eqns. 3,4) the new cluster surface
Si was calculated from the candidate surface (CS). The
standard deviation SNSD of the cluster surface variation
was calculated using the Eqns. 5,6,7. Experimental results
indicate that for folds the SD of the surface variation is
significantly higher than the SD of the surface variation for
polyps. This can be observed in Figure 3 (note that polyp
and fold classes are ordered by size in the diagram) where
the SD of the surface variation for a large variety of polyps
and folds is plotted.

Step = (Dmax − 1.0)/N (3)

Ri = Dmax − Stepi for i = 1, ..., N, (4)

SNmean =
N

∑

j=1

SNi (5)
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Fig. 2. Cluster Center to surface normal distance (dN ). s1...s4 are the
surface voxels, n is the normal at each surface voxels and d1..d4 are
distances from cluster center C to normal n.

SNinorm =
SNi

SNmean
for i = 1, ..., N, (6)

SNSD =

√

√

√

√

1

N

N
∑

j=1

(SNinorm − SNmean) (7)

where Step is the step size for radius change and N is
the number of steps required to reduce the radius Ri from
Dmax to 1.0mm. In Eq. 5 SNi is the surface number (SN)
calculated for each radius Ri and SNmean is the mean
of SNi for the cluster CS. In Eqns. 6,7 SNinorm is the
normalized surface number and SNSD is standard deviation
of the cluster CS.
As additional features we calculated the least square ellipsoid
fitting [22] for each surface Si of the cluster CS and
calculate the SD for each axis of the ellipsoid. In similar way,
we calculated the SD of the ellipsoid fitting error and SD
of the sphere fitting error [22]. In line with aforementioned
features we have also included the maximum value of the
Gaussian distribution for each cluster that was calculated as
indicated in the Surface analysis section and the major axis
and sphere radius of each cluster surface. All these features
are used to classify the candidate surfaces into polyps or
folds using a feature normalised nearest neigbourhood clas-
sification scheme [23]. The classifier was trained with 64
polyps and 354 folds that were selected as true positives by
a radiologist.

V. RESULTS

Thirty six patients’ supine and prone data with 57 polyps,
five patients’ data with 33 synthetic polyps [24] and a
phantom data with 47 polyps of various sizes [25] were tested
using the proposed method. Overall sensitivity for real polyp
detection was 70.175% with a false positive rate of 4.05 per
dataset (Table I). Sensitivity for polyps greater than 5mm
was 87.5%. Sensitivity for polyps less or equal to 5mm was
61.76% and for masses the detection was 71.429%. When
the algorithm was applied to synthetic polyp detection, the
overall sensitivity was 84.08% and the false positive level
per dataset was 3 (Table II). Sensitivity for polyps higher
than 5mm was 100% and less than 5mm was 33.33%. For
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Fig. 3. Standard deviation of the surface variation for different classes of
polyps and folds (classes are sorted by size).

phantom data, overall sensitivity was 89.58% (Table III).
Sensitivity for polyps <= 5mm, 5 to 10mm, > 10mm and
flat polyps were 100%, 100%, 100% and 44.44% respectively
(Table III). For comparative testing purposes we have made
the phantom data available from the following web page:
http : //www.eeng.dcu.ie/ ∼ whelanp/cadctc

To determine whether a polyp was correctly detected by
the proposed algorithm, we cross correlated the detected
polyps’ location with the CTC reports performed by the radi-
ologists. Also we compared the result with the Colonoscopy
reports for both supine and prone views. It is important to
mention that approximately 20% of the polyps are visible
in only one view and as a consequence there was only one
chance to detect these polyps.

The average size of typical interpolated CT dataset was
300MB for each view. The average time required for pro-
cessing each volume of data was approximately 3.9 min on
a Pentium-IV 1.6 GHz processor machine with 1GB memory.

TABLE I
PERFORMANCE ANALYSIS FOR REAL POLYP DATA

Type Number True Positive Sensitivity
≤ 5mm 34 21 61.765%
> 5mm 16 14 87.5%

Mass 7 5 71.429%
False Positive 4.05

Total 57 40 70.175

TABLE II
PERFORMANCE ANALYSIS FOR SYNTHETIC POLYP DATA

Type Number True Positive Sensitivity
≤ 5mm 6 2 33.33%

> 5− ≤ 10mm 17 17 100%
> 10mm 9 9 100%

Flat 1 0 00.00%
False Positive 3

Total 33 27 84.85

A. Discussion and Conclusion

The proposed statistical feature-based CAD system for
colonic polyp detection provides high sensitivity yet main-
taining a low false positive incidence per dataset. Our polyp



TABLE III
PERFORMANCE ANALYSIS FOR PHANTOM DATA

Type Number True Positive Sensitivity
≤ 5mm 5 4 80%

> 5− ≤ 10mm 19 19 100%
> 10mm 14 14 100%

Flat 9 4 44.44%
False Positive 0

Total 47 42 89.36

detection scheme was not able to correctly classify the polyps
that are adjacent to fold or on fold. The statistical features
derived from small and medium polyps when positioned
adjacent to folds or on folds show similar characteristics
as generic folds, and the classifier detected them as folds.
When the CAD system was applied to real datasets, 30%
(5 out of 15) of the undetected small polyps were placed
adjacently to folds and the classifier failed to identify them
correctly. However, a better surface detection technique can
be envisioned and this will increase the polyp detection rate
when they are situated adjacently to folds. Approximately
10% of the false positives were generated by the residual
material attached to the colonic surface. These false positives
can be eliminated by texture analysis [19] as they have a
different density than folds and polyps.

By using surface normal intersection and statistical fea-
tures calculated from polyps/folds morphology and least
square fitting, we aimed to extract the optimal features that
capture the surface convexity. In fact, SD of surface variation,
SD of three axis of ellipsoid fitting, SD of sphere fitting, SD
of ellipsoid fitting error and Gaussian distribution provide a
detailed morphological description of the candidate surface.

The experimental data indicate that our polyp detection
technique shows better results when compared to other
existing techniques. Another advantage of our method is its
low computational overhead and more importantly it shows
high sensitivity for medium (6−9mm) and large (> 9mm)
polyps while the false positive rate is maintained at low
levels. The experimental results indicate that our CAD polyp
detection technique is a suitable tool to be utilized in clinical
studies.
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