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Generalising the Ideal Pinhole Model to Multi-Pupil
Imaging for Depth Recovery

Brendan P. Byrne

Abstract

This thesis investigates the applicability of computer vision camera mod-
els in recovering depth information from images, and presents a novel
camera model incorporating a modified pupil plane capable of perform-
ing this task accurately from a single image. Standard models, such
as the ideal pinhole, suffer a loss of depth information when project-
ing from the world to an image plane. Recovery of this data enables
reconstruction of the original scene as well as object and 3D motion re-
construction. The major contributions of this thesis are the complete
characterisation of the ideal pinhole model calibration and the develop-
ment of a new multi-pupil imaging model which enables depth recovery.
A comprehensive analysis of the calibration sensitivity of the ideal pin-
hole model is presented along with a novel method of capturing calibra-
tion images which avoid singularities in image space. Experimentation
reveals a higher degree of accuracy using the new calibration images.
A novel camera model employing multiple pupils is proposed which, in
contrast to the ideal pinhole model, recovers scene depth. The accuracy
of the multi-pupil model is demonstrated and validated through rigor-
ous experimentation. An integral property of any camera model is the
location of its pupil. To this end, the new model is expanded by gen-
eralising the location of the multi-pupil plane, thus enabling superior
flexibility over traditional camera models which are confined to posi-
tioning the pupil plane to negate particular aberrations in the lens. A
key step in the development of the multi-pupil model is the treatment of
optical aberrations in the imaging system. The unconstrained location
and configuration of the pupil plane enables the determination of optical
distortions in the multi-pupil imaging model. A calibration algorithm
is proposed which corrects for the optical aberrations. This allows the
multi-pupil model to be applied to a multitude of imaging systems re-
gardless of the optical quality of the lens. Experimentation validates
the multi-pupil model’s accuracy in accounting for the aberrations and
estimating accurate depth information from a single image. Results for
object reconstruction are presented establishing the capabilities of the
proposed multi-pupil imaging model.
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Chapter 1

Introduction

One of the primary goals of computer vision is to retrieve metric information

from images. This has remained a constant goal despite the technological ad-

vances in the field of imaging. In fact, as a result of improving technology, the

physical size of image sensors has decreased whilst the on board processing

power has increased. This has enabled access to a host of new areas to imple-

ment imaging system solutions which were not previously possible due to phys-

ical and computing constraints. Therefore the field is constantly developing

new imaging techniques which take advantage of these technological advances

to meet the requirements of new application areas. This thesis sits firmly in

this area of developing new imaging models which build on the technological

advances of the imaging field. More specifically, a new imaging framework is

developed for the purpose of retrieving metric information from images. This

is achieved within the realm of modifying optical properties of a conventional

imaging system.

Naturally, the problems which are fundamental to the recovery of metric in-

formation from images must be addressed. This is primarily, calibration of the

camera model. Calibration is the process in which the camera model param-

eters, which describe the world to image projection, are estimated. Further-

more, an increasing trend amongst manufacturers within the area is to produce

ultra-compact imaging solutions. This has a direct impact on the quality of

the optical systems within the package and as such, a decrease in quality with

miniaturisation is being observed. Therefore in addition to estimating camera

model parameters, compensation for optical quality of the imaging system is

1



Chapter 1 – Introduction

required. These are all problems which are addressed in this thesis.

Cameras which are modelled as pinhole describe the projection of 3D world

points to 2D sensor points through a single centre of projection. In order to

recover the metric information of this process, such as distances between ob-

ject points, knowledge of the model parameters which describe the projection

is required. Naturally, the recovery of camera model parameters is achieved by

a calibration process. Typically this process entails imaging a calibration ob-

ject of known geometry, and subsequently calculating model parameters based

on the image to world point relationship. Understandably, a large amount of

research has been directed at this problem as camera calibration is a process

which is fundamental to all computer vision tasks which require metric infor-

mation. To this end, many approaches have been investigated, however, it is

the planar methods which have taken precedence within the computer vision

community due to the relaxation on input requirements coupled with read-

ily available implementations. Consequently, feature points are captured by

imaging planar targets in the form of chessboard grids. Although the majority

of existing planar calibration methods are based on the same geometric con-

straints, the focus has been on improving camera parameter estimates from

an algorithmic aspect. Thus, the effects on accuracy due to the geometric

configuration of the input planar targets has largely been neglected. With

the exception of known degenerate configurations, which result in parameter

estimation failure, the overall impact of planar target orientation on camera

parameter estimation is an area which warrants further investigation. This

goal forms the basis for the initial section of this thesis.

The pinhole model is applicable to a multitude of imaging systems, however,

within the constraints of estimating object depth from a single image, addi-

tional cues are required to obtain depth information. Object depth is lost

within the process of central projection, therefore two pinhole cameras in a

stereo configuration is the standard method to recover depth information. The

natural progression of the pinhole model to lens models is outlined in this the-

sis. Generally, approaches which estimate depth using a single camera impose

lens models which allow image phenomena such as focus and blur to be mod-

elled. These additional cues enable the recovery of object depth information.

However, multiple images with varying camera parameter settings is typical

to this process. Recently, techniques which modify the imaging process in the

optical domain have been promoted as an alternative method to recover depth

2



Chapter 1 – Introduction

from a single image. Typically, these modifications make use of lens proper-

ties to encode additional information about the scene in the image. One such

approach is modification of the pupil plane within the imaging system. This

thesis initially investigates the sensitivity of such modifications firstly in terms

of pupil plane location within the optical system and secondly, in terms of the

placement of a pupil within the pupil plane. Subsequently, a new multi-pupil

model is proposed for estimating depth from a single image. This requires

a novel calibration method and the ability to account for optical aberrations

present in the imaging lens.

1.1 Background and Motivation

This section gives a brief overview of the principal concepts and ideas that are

addressed in this thesis. The aim is to highlight the significance of camera

calibration and the evolution of camera models incorporating modified optics

for the purpose of depth recovery.

1.1.1 Camera Models and Calibration

A camera captures information from 3D world space and subsequently projects

this to a 2D representation in the form of an image. Modelling of the imaging

process is a fundamental task of computer vision. Many camera models have

been proposed for this purpose as no single model fits all prospective appli-

cations. The pinhole camera model is the most basic model for perspective

cameras. Additionally, it is the most used geometric camera model in the field

of computer vision. A single centre of projection through which all scene rays

must pass is assumed. Naturally, the theoretical pinhole represents the ideal

case for true perspective projection, and the closer the camera is to this model,

the better the performance for certain tasks. However, imperfections within

the optical system of imaging lenses leads to deviation from this projection,

and as such, models which incorporate optical properties are of paramount

importance to accurately represent the imaging process.

Calibration of a camera is the process in which the parameters that form the

camera model are recovered. Since the model represents the projection of 3-

3



Chapter 1 – Introduction

space points to image space pixel locations, knowledge of these parameters

allows metric measurement and analysis of the information available in the

camera image. This is a primary objective for many computer vision applica-

tions. There are many approaches to calibrating a camera. Although there are

methods which calibrate a camera based on natural scene constraints, known

as self-calibration, a scale ambiguity remains in the determination of metric

information. Therefore, camera calibration employing targets with known ge-

ometry are dealt with in this thesis. The calibration target provides a set

of feature points in 3-space which are subsequently imaged by the camera.

Camera calibration methods have been proposed for 1D, 2D, and 3D targets.

Issues in finding exact 3D locations of feature points has led to techniques

using 2D planar targets, of a chessboard nature, being most commonly used

in the computer vision community. Generally, these 2D methods are formed

under the same geometric constraints. Therefore, the impact of the geometric

configuration of planar targets on calibration accuracy has received less at-

tention. This has implications on the input requirements of the practitioner

as well as on the accuracy in model parameter determination. This problem

is thoroughly investigated in this thesis and results in a novel approach to

capturing calibration images with improved geometrical properties.

1.1.2 Modified Optics - Calibration and Depth Estima-

tion

With the successful application of a calibration algorithm, accurate model

parameters allow tasks such as object depth estimation to be completed. The

standard configuration for depth estimation employing a pinhole camera model

is that of a stereo vision system. This requires knowledge of the camera offset

or baseline coupled with correct alignment of the images captured from each

camera. Typical implementations of stereo vision systems are seen with 3D

broadcasting of sporting events, and synthetically in the case of generating

scenes for 3D animated movies. It is clear that one major shortcoming of the

pinhole model is its inability to passively estimate depth from a single image

using a single sensor.

In response to these shortcomings, optical properties have been introduced to

the camera model in the form of lens models. Additional image artifacts as a
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result of deviation from pinhole imaging are retrievable with the inclusion of a

lens in the camera model. One such artifact is image blur, which is a product of

the aperture diameter and object depth. Depth dependent blur is a well known

cue for passive object depth recovery. However the calibration process requires

multiple images and camera settings in order to successfully estimate object

depth. Additionally, properties which require accurate measurement, such as

image edges in the presence of blur, are known to be error prone. Furthermore,

there are inherent ambiguities in estimating depth from a single defocused

image. Depending on the optical configuration of the imaging system, an

object depth which lies a certain distance behind the focal plane will exhibit

an equal amount of blur to an object located at a certain distance in front of

the focal plane. The second ambiguity relates to measuring blur from edge

features. It is difficult to ascertain whether the measured blur is due to a

strong edge which is out of focus or a weak edge which is in focus.

Active methods are an alternative to retrieving depth information from a sin-

gle image. Generally, these methods employ an additional source to aid in

the calculation of depth. Examples of such methods are time of flight cam-

eras (Gokturk et al., 2004) which emit infrared pulses and calculate resulting

depth information based on the duration between emitting and sensing. The

Microsoft Kinect is another example of monocular depth recovery from a single

image1. An infrared camera is used in conjunction with an infrared projec-

tor. Properties of the projected pattern on the scene are used to infer depth

information. The main issue with active methods is the requirement of addi-

tional sources to fuse with image data, which also complicates the calibration

process.

Due to increased processing power and an increased number of imaging pix-

els, modifying the optical system within a camera is a recent trend which has

surfaced in the field of computer vision. The most common modification of

these camera models is the intentional alteration of the optical path between

scene points and the image sensor. Resulting non-conventional images are thus

encoded based on the geometry of these modifications. Therefore additional

image cues, which are not available from a single conventional image, can be

coded in the image data for subsequent retrieval. Camera models with modi-

fied optics have been successfully implemented to complete various computer

1http://www.xbox.com/en-ie/kinect accessed November 2011
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vision tasks, such as scene depth recovery, single-image variable focus, super-

resolution, and extended depth of field. Examples of modified camera models

for the purpose of depth recovery are seen with coded apertures (Levin et al.,

2007) and with systems implementing diffusers (Cossairt et al., 2010). These

methods can also extend the depth of field by post processing the image data.

Plenoptic cameras (Adelson and Wang, 1992, Ng et al., 2005, Lumsdaine and

Georgiev, 2009), which modify the optical path with a microlens array placed

near the sensor, have post-processing applications such as variable focus and

super resolution. Recently, the plenoptic work developed by Ng et al. (2005)

was commericialised as the Lytro camera2. Additionally, a recently formed

company3 offer custom modified optical solutions for various applications such

as medical endoscopes, 3D broadcasting and military equipment.

There are clear benefits with the implementation of imaging systems with

modified optical properties. Modern processing capabilities allow additional

operations to be performed on the captured image. Therefore, new cues for

common computer vision tasks, such as depth recovery, can be availed of. How-

ever, a common theme amongst these new imaging modalities is difficulty in

construction and system calibration. Many of the modifications occur within

the system of lens elements or near the image sensor, which inherently requires

a high level of accuracy as these areas are most sensitive to optical variation.

Since the resulting images are tailored based on optical modification, stan-

dard camera calibration procedures are not applicable. These difficulties are

addressed in this thesis with the proposition and calibration of a new camera

model with modified optical properties.

1.1.3 Thesis Goals

The work presented in this thesis is motivated by the fast changing environment

in which imaging systems are currently being developed. Smaller image sensors

with increased processing power are enabling new approaches to solve the

problem of metric information retrieval from images. The primary goal of this

work is to develop a new imaging framework, building on a non-conventional

approach, which can estimate metric information from a single image. In order

to realise this goal, a better understanding of current camera models and their

2www.lytro.com accessed: October 2011
3http://www.isee3d.com accessed: November 2011
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calibration is required as well as the development of novel methods to deal

with the new camera model.

Accordingly, the goals of the presented research are

• to evaluate current camera models and their calibration to identify char-

acteristics suitable for depth estimation;

• to develop a new camera model that is applicable to current and emerging

imaging modalities and is capable of retrieving metric information from

a single image;

• to develop novel and practical calibration methods for the new camera

models;

• to demonstrate the suitability and applicability of the new camera model

to the modelling, calibration and removal of optical aberrations;

1.2 Literature Review

Since the advent of digital cameras, the topic of camera calibration has possi-

bly received more attention than any other aspect of computer vision. With

such a large body of work, the following literature survey concentrates on the

significant publications which are directly related to the stated goals of the

thesis. The following review is conducted under headings which correspond to

the main themes within this thesis.

1.2.1 Camera Calibration

Camera calibration is a fundamental task of computer vision. Accordingly, it

has received much attention and many approaches have been proposed. Gen-

erally the process involves imaging a calibration target with known geometry.

Within the scope of this thesis, the primary interest is in the configuration

of calibration targets and the impact this has on camera parameter estimates.

This review presents calibration approaches employing targets of one, two, and

three dimensions. The key problems when employing each form of target are

outlined and discussed.
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There have been numerous methods proposed to calibrate a camera with the

earliest recorded work in the area of photogrammetry. Sutherland (1964) de-

veloped a system which inferred user drawings into a graphical format. The

perspective transformation between the 3D world coordinates and 2D image

coordinates from point correspondence was formulated. However, accuracy of

this method was not reported as its application was in the graphics domain.

This work led to the introduction of linear calibration methods. Abdel-Aziz

and Karara (1971) introduced the Direct Linear Transformation (DLT) which

provided a linear solution to solving the camera parameters given the world

and image coordinate correspondence. The main disadvantage of the linear

methods was that lens distortion could not be solved linearly. Additionally,

the number of unknowns being estimated was greater than the degrees of free-

dom within the projection matrix. Therefore, the effect of noise within the

imaging system or within the measurement of world point coordinates would

have a detrimental effect on accuracy of camera parameter recovery. Subse-

quent nonlinear methods were proposed which minimised the reprojection error

equation. This is the geometric distance between the observed image point and

the projection of the world point onto the image (via the projection matrix

being estimated). Distortion models were included in the nonlinear minimi-

sation of the reprojection error. The photogrammetric community coined the

term “Bundle Adjustment” (BA) for this particular type of calibration (Slama

et al., 1980). Other non-linear methods used the linear solution as an initial

estimate for the camera parameters which were then refined with BA (Hartley

and Zisserman, 2003).

The evolution of camera calibration algorithms resulted in a greater emphasis

on the type of calibration object used. Calibration objects of one, two and

three dimensions have been proposed. Thus, depending on the type of cali-

bration object employed, various approaches are taken to solve the calibration

problem. Classical calibration algorithms in the field of computer vision began

to surface in the late 1980s. These algorithms employed 3D calibration tar-

gets which were precisely manufactured. Tsai (1987) proposed a calibration

approach using a 3D calibration rig consisting of two orthogonal planar facets

in which the control point positions were accurately known. Tsai used a radial

alignment constraint to decouple the camera intrinsic and extrinsic parame-

ters which enabled a two-stage approach to estimating the camera parameters

along with a single parameter radial model for distortion. The initial step in-
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volved linearly estimating the camera extrinsic parameters. Subsequently, the

focal length (principal point was assumed given by manufacturer) and single

radial distortion term were estimated using a non-linear optimisation scheme.

Weng et al. (1992) proposed a calibration technique which considered addi-

tional distortion parameters in the form of tangential and thin-prism distor-

tion. Some of the assumptions made in Tsai’s algorithm, such as an assumed

principal point, were addressed. Weng’s approach was also completed in two

stages. Initially, a closed form solution for the external parameters and some

internal parameters was formed based on a distortion free camera model. Im-

age points close to the centre of the image were used for this initial calibration

stage. These points are least affected by distortion and thus provide a reason-

able approximation of a distortion free camera model. The second step was

initialised with the closed form parameter estimates and subsequently refined,

via non-linear optimisation, based on a camera model incorporating distortion.

A comprehensive analysis of the early calibration algorithms employing 3D

calibration objects is presented in Salvi et al. (2002). It is shown that the

performance of both Tsai (1987) and Weng et al. (1992) achieve comparable

accuracy. However, for lenses which suffer greater distortion, such as lenses

with larger fields of view, the method of Weng et al. (1992) performs better.

This is due to its more accurate distortion model compared to Tsai’s, which

only models radial distortion.

Alternative camera calibration methods employing similar 3D targets, but

without the requirement of exact 3D control point localisation, were proposed

using Vanishing Points (VP) and Vanishing Lines (VL). In the seminal work

of Caprile and Torre (1990), which was aimed at calibrating a stereo system,

the idea of using vanishing points for camera calibration was introduced. The

calibration target consisted of an aluminum cube with straight line segments

painted on three of the mutually orthogonal facets. Camera intrinsic param-

eters were calculated based on the property that the three vanishing points

of the lines on the planar facets of the cube form the vertices of a triangle

whose orthocentre is the intersection of the optical axis with the image plane.

This approach is valid provided a zero skew camera is assumed with a known

aspect ratio. Recovery of the principal point enabled calculation of the focal

length and camera rotation matrix based on the VP constraint. The remaining

extrinsic parameters were recovered using properties of the calibration target
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in both cameras.

A method based on similar principles to Caprile and Torre (1990) was proposed

by Cipolla et al. (1999). The principal point is calculated as the orthocentre

of the triangle containing the VPs which allows subsequent calculation of the

focal length. The main difference with Cipolla’s method is that the calibration

target information is retrieved by the user in the form of marking orthogonal

lines in the image. The main application of this method is for reconstruction of

architectural scenes. Beardsley and Murray (1992) also proposed a calibration

(intrinsic parameters only) method based on the VPs and corresponding VLs.

By enforcing orthogonality constraints on the VPs and VLs of multiple planes,

the internal camera parameters can be estimated. Guillemaut et al. (2005)

presented a method based on line orientation and the constraint that a VP

must lie on the imaged line. This allows the camera intrinsic parameters and

orientation to be decoupled from the translation component for a two-step

calibration. The main benefit of this approach is that it does not require the

explicit calculation of VPs, however, it does require accurate knowledge of 3D

control points.

Overall, when considering calibrating a camera using a 3D calibration object,

the accuracy will be limited by the resolution with which the control points

can be located. Even in the case of using VPs and VLs, orthogonality between

planar facets of the calibration object is required, such as an accurately man-

ufactured cube object (Caprile and Torre, 1990). In addition to calibration

object issues, there are sensitivity issues in the calculation of VPs and VLs

which influence the parameter estimation accuracy.

In order to address the limitations of 3D calibration objects, techniques were

developed for calibration objects with reduced dimensionality. Zhang (2004)

proposed a camera calibration technique employing a 1D object in the form of

a stick with three marker points of known separation distances. By anchoring

one of the points, the stick target is rotated to new positions (six independent

positions required) to form the input images for calibration. Results indicate

comparable performance with standard techniques. However, since one point

of the stick is fixed, there is a likelihood of capturing orientations which are

dependent in the calibration equations. Hammarstedt et al. (2005) address

this issue by detailing the configurations of the 1D object which result in

degenerate cases. Recently, Miyagawa et al. (2010) presented a method capable
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of calibrating certain parameters (focal length and extrinsic parameters) from

a single image of a 1D object. Two sticks containing three collinear points, one

of which is shared between both sticks, are placed in an orthogonal fashion.

Calibration parameters are calculated based on orthogonality constraints of

the calibration object. Generally, calibration using 1D objects is implemented

in multi-camera networks where the calibration object is required to be present

within the field of view of each camera.

Camera calibration employing 2D targets has arguably received the most at-

tention within the computer vision community. The ease with which 2D targets

can be constructed has led to this interest. Standard printers can be used to

print calibration patterns for attachment to a planar surface. The majority

of planar methods are based on the geometric constraints resulting from the

Image of the Absolute Conic (IAC). Triggs (1998) introduced the use of the

IAC to the calibration domain for the purpose of auto-calibration. It was

shown that the IAC encodes the camera intrinsic parameters. However it was

the seminal work of Zhang (1998, 2000) which presents its use for the purpose

of camera calibration from planar targets. Typically, the calibration patterns

employed are either circular or of a checkerboard nature. Zhang (1998) out-

lined a calibration procedure which required at least two images of a planar

checkerboard target to recover the camera parameters. Since the IAC is in-

dependent of the position and orientation of the camera, planar targets are

captured with varying pose. Based on the target to image planar homography,

two constraints, in the form of the two circular points, are found on the IAC.

Thus with two images, assuming a zero skew camera, four constraints are suf-

ficient to estimate the IAC which in turn encodes the intrinsic parameters of

the camera. Zhang outlines a closed form solution to estimating the extrin-

sic parameters once the intrinsic parameters have been recovered. Subsequent

non-linear optimisation is performed to include a distortion model and to refine

the camera parameter estimates. Although this method is universally accepted

as the standard planar calibration approach, with the exception of standard

degenerate configurations such as translation and rotation about a single axis,

it lacks consideration of the overall effect of planar target orientation on the

camera parameter estimates.

In the search for a more meaningful representation of the planar camera cali-

bration setup, Gurdjos and Payrissat (2001) and Gurdjos et al. (2002) propose

an intuitive geometric framework to solve the planar calibration problem. Al-
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though it is based on the same geometric constraints introduced by Zhang

(1998), the method exploits the geometric configuration of the planar target

to decouple the calibration of the intrinsic parameters. The Centre Line (CL)

is introduced, through perspective correspondence of the planar target and its

image, and is shown to include the principal point. Thus with two or more

images of a planar target, the principal point can be recovered along with the

aspect ratio. This allows the calibration of focal length to be decoupled from

the other intrinsic parameters. Calibration of a camera with varying focal

length is the primary goal of this work. Guillemaut and Illingworth (2008)

developed a similar approach to calibrate a zooming camera with the intro-

duction of the normalised IAC. It is shown that the linear approach is identical

to that of Gurdjos and Payrissat (2001), however a calibration result can be

obtained with a non-zero skew camera. Both methods can recover the intrinsic

parameters with three or more images of a planar pattern.

In contrast to the aforementioned planar calibration methods, which all use

chessboard planar targets, a number of approaches have employed planar tar-

gets with circular patterns. Yang et al. (2000) describe such a method in which

a minimum of three concentric circles are printed on a planar surface. Assum-

ing the centre of the conics is located at the origin of the coordinate system, a

relationship between the conic target and its image is developed which allows

the planar homography to be estimated. This allows the camera parameters

to be recovered by estimating the IAC with two or more images of the planar

target in varying orientation using the constraints outlined by Zhang (1998).

Kim et al. (2005) describes a planar calibration method also employing con-

centric circles. However, the number of printed circles is reduced (two) along

with a relaxation on the constraint of a known centre. A study by Mallon

and Whelan (2007b) compares chessboard and circular patterns in order to

determine which pattern yields higher accuracy in the presence of distortion.

It is shown that chessboard grid features are invariant to both perspective and

distortion bias whereas circular patterns are variant to distortion bias. Thus,

chessboard patterns are more suitable for calibration algorithms employing 2D

targets.

It is clear that there is an abundance of literature in the area of camera cali-

bration. Generally, the approach to solving the problem depends on the type

of calibration target employed. Targets of one/two/three dimensions and their

respective methods have been outlined, however it is the planar methods (2D
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targets) which are predominantly practised within the computer vision com-

munity, particularly when used in conjunction with algorithms based on the

IAC. This allows 2D targets to be imaged in varying orientation since the IAC

is invariant to camera rotation and translation. Thus the constraint of accu-

rate 3D control point knowledge, which is required using targets of one and

three dimensions, is relaxed.

Whilst the primary focus of the computer vision community has been on devel-

oping new strategies to calibrate cameras from planar targets, the sensitivity

of such targets to camera parameter estimation based on their orientation

has received much less attention. Sturm and Maybank (1999) describe image

configurations which lead to singularities in the planar calibration equations,

however, orientations which are near degenerate are not examined. Addition-

ally, there are no reported guidelines on enforcing ideal geometry on the planar

target orientations. Wang and Liu (2006) suggest a subset of planar target ori-

entations, which according to them yields good results, but no justification is

given. Rupp and Elter (2007) describe a heuristics approach which uses a

genetic algorithm to optimise the selection of images from a dataset to yield

accurate camera parameter estimates. However, this approach requires the

calibration of each possible subset to minimise its selection criteria which is

a combination of the re-projection error and a plane fit error. There are two

problems with this approach. Firstly, it requires calibration of all possible

combinations of images in the data set. This is a slow and rather mechanical

process to determine accurate parameter estimates. The author reports the

process as taking several hours depending on the data set size. Secondly, the

proposed approach does not enlighten practitioners on the significance of the

planar target orientation in the overall scheme of planar camera calibration.

Specifying ideal geometry for input planar calibration target images is the main

problem that is addressed in Chapter 3. Initially, a more detailed examination

of planar calibration (Zhang, 1998, 2000) is given in Chapter 2, along with an

insight into the geometric relationship of the planar target orientation (Gurd-

jos and Payrissat, 2001). Chapter 3 presents a new approach to forming input

image data sets, without the need for a pre-calibration stage, for planar camera

calibration. Optimal image geometry is imposed, consequently avoiding degen-

erate and near-degenerate configurations, yielding more accurate calibration

results with less input images.
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1.2.2 Modified Optics in Computer Vision

A primary goal of computer vision is to accurately estimate object depth from

images. The pinhole camera model and its calibration has been discussed in

detail, however, in the context of depth estimation, object depth information

is lost in the central projection of world points to image points. Therefore,

depth estimation is not possible from a single image using the pinhole cam-

era model. Traditionally this task has been achieved passively by employing

two pinhole cameras in a stereo configuration. Many robotics applications

implement stereo vision systems, and increased research in the area has been

observed since the 1970s. The geometrical background and many of the early

techniques are outlined in Faugeras (1993), while Brown et al. (2003) reviews

the more modern advances in terms of point correspondence, handling occlu-

sions and real-time implementation. One of the main drawbacks of stereo

configurations is the need for an additional sensor and accurate knowledge of

the camera configurations with respect to each other. In terms of generating

depth, an additional drawback is that of occlusions i.e. when a feature is de-

tected in one image but is not visible in the second image. A new approach

to estimating depth using a single sensor was proposed by Pentland (1987).

Pentland moved from the traditional pinhole model to a thin lens model in

order to take advantage of the focus/defocus artifacts within an imaging sys-

tem. It was shown that the blur induced at out of focus step edges could

be related to object depth. This process was termed Depth from Defocus

(DfD) and stimulated intense research into alternative approaches to Pentland

(Chaudhuri and Rajagopalan, 1999, Subbarao and Wei, 1992, Subbarao and

Surya, 1994). The main disadvantage of these methods was the requirement of

accurate estimation of the blur within the images. Additionally, many of these

techniques required well defined edge features for defocus estimation. Lai et al.

(1992) proposed an extension to Pentland’s method to capture depth informa-

tion from a single image. However, the dependency on strong step-like edges

remained. Within the scope of this thesis, the primary interest is in retrieving

depth information using a single image from a single sensor. This is a task

that can not be accurately fulfilled by employing traditional DfD techniques.

Addressing the limitations of DfD led to the emergence of a new area in the

form of modifying the optics of a traditional camera for accurate range re-

covery. Adelson and Wang (1992) introduced the “Plenoptic Camera” which
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captures the 4D light-field. In other words, directional information of the light

rays striking the sensor is also recorded. This is equivalent to capturing struc-

tural information of the world from all possible viewpoints within the camera

aperture. Directional information was acquired by modifying the traditional

optics of the camera. A lenticular array was placed on front of the image

sensor while a field lens was also inserted to ensure that the main lens aper-

ture was placed at optical infinity from the microlenses. Furthermore, a relay

lens was introduced to the system to enable a replicated view, using an addi-

tional camera, for calibration and alignment purposes. Figure 1.1(a) presents

the plenoptic configuration. This optical arrangement provided multiple views

from different locations within the system aperture and recorded these onto

separate pixels. Thus, correspondence problems were reduced to selecting the

correct pixels using a weighted mask. Subsequent depth estimation was per-

formed based on the displacement of image features caused by the lenticular

array. An additional application of the acquired light-field was the ability to

generate synthetic images from alternative viewpoints. However, the spatial

resolution is reduced due to the sampling process. It was also noted that this

method was unsuitable for large range depth estimation due to the fixed optical

configuration and limitations on the lens diameter.

Ng et al. (2005) proposed a hand-held solution for a plenoptic camera which

has been recently4 made available in the market. Improvements were made

to the design of the camera with portability being a key driver. The field

and relay lenses were eliminated compared to the original design by Adelson

and Wang (1992). The image sensor was located at the focal plane of the

lenticular array. This lenticular array was focused at infinity, which due to the

diameter of the microlenses, was in fact focused on the aperture or traditional

lens of the camera. The optical arrangement for this type of plenoptic camera

is presented in Figure 1.1(b). The primary focus of this work was not range

estimation but rather post processing captured images for refocusing. Spatial

resolution of captured images was reduced due to the sampling of multiple

pixels per microlens within the lenticular array. This is the same limitation

that applied to the configuration of Adelson and Wang (1992). Additionally,

the required placement accuracy of the lenticular array was approximately

36µm. This is a consequence of modifying the optical path within the image

space of the imaging system, which is highly sensitivity. Thus the physical

4www.lytro.com
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(a) (b)

(c) (d)

Figure 1.1: Non-conventional imaging approaches (a) Adelson and Wang

Plenoptic camera; (b) Ng’s plenoptic camera; (c) Georgiev’s plenoptic con-

figuration; (d) General modified aperture plane imaging

construction of a plenoptic camera requires precise manufacturing.

Improvement in spatial resolution was the key contribution in the recent plenop-

tic system proposed by Lumsdaine and Georgiev (2009). The optical config-

uration (in Figure 1.1(c)) was modified to focus the microlens array at the

focal plane of the main lens rather than placing the microlens array at this

plane. This increased the spatial resolution of the final images but reduced the

angular resolution in sub-sampling the system aperture. Fife (2009) describe

a sensor level architecture which is customised to capture the light-field in a

similar optical configuration to Lumsdaine and Georgiev (2009). However, the

primary focus of that work is in the custom manufacturing of the image sen-

sor (CMOS) with the integrated microlens array, thus applications in depth

estimation and image refocusing are not explored. Besides image resolution,

the main issue with plenoptic cameras is practicality in their optical config-
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uration. Since the optical modifications are made in the image space of the

system, sensitivity dictates an extremely fine resolution in the manufacturing

process (minimum 36µm). Additionally, metric depth estimation is not a high

priority with plenoptic approaches since the main goal is to digitally refocus

images or regenerate alternative perspectives from a single image capture.

Alternative methods have been developed by modifying the optical properties

either within the system of lens elements or in object space. General modifi-

cation within this domain are presented in Figure 1.1(d). Dowski and Cathey

(1994) describe a method to obtain depth information from a single image and

sensor using a “phase plate” located at the lens. This plate is effectively an

optical mask which has been designed to be highly sensitive to depth informa-

tion. Thus, range information can be extracted from images by examining the

frequency response of the imaging system. Metric depth estimation is reported

for a confined range (approximately 1.3 to 1.5m) with 2% error. However, spa-

tial information is degraded which inhibits image reconstruction. In order to

recover image data a new approach was taken which required the construction

of an alternative optical mask. Dowski and Cathey (1995) proposed a method

to extend the depth of field of standard imaging systems by employing a cubic-

phase modulated mask within the lens. The mask was designed in such a way

that the system response was to defocus all rays independently of depth by the

same magnitude. Therefore a sharp, all in focus image, could be retrieved by

a single deconvolution to the image. The main drawback of this system was

that metric depth information could not be retrieved.

Further work involving the deployment of optical masks within the imaging

system was carried out by Farid and Simoncelli (1996, 1998). An optical

system was constructed with a Liquid Crystal Display (LCD) located at its

optical centre (see Figure 1.1(d)). The LCD is used to generate two separate

optical masks, one of which is the derivative of the other. Therefore, the

differential variation in intensities recorded by both masks are related by a

scale factor. Thus recovery of the scale factor allows depth estimation with

calibration knowledge of the camera (sensor depth and focal length). Depth

estimation results are demonstrated for near range planar objects (< 170mm).

The experiments performed were quite limiting with error in depth estimation

reported at 9%. This approach does however allow more flexibility than that

of Dowski and Cathey (1994) which requires a complex optical mask. Another

limitation of this approach is that two images are required, one for each mask,

17



Chapter 1 – Introduction

therefore depth estimation is not acquired in a single image.

Recently, Zhou et al. (2010) presented an approach to depth estimation using

an optical diffuser located in object space. “Depth from diffusion” operates

on the same principal as depth from defocus. However, in order to increase

the blur baseline in the image, this method is not limited by the physical

diameter of the aperture. Increasing the diffusion angle of the optical diffuser

is sufficient to increase the sensitivity of the depth estimation at large depth

ranges. Metric depth estimation up to 2m is reported with errors less than

1mm. Macro depth estimation is also presented with depth resolution of less

than 1mm. The sensitivity of this depth estimation is certainly superior to

traditional techniques, however there are limitations with this configuration.

Besides requiring two images in configurations with and without the diffuser,

a major limitation of this approach is the placement of the optical diffuser.

Although it is placed in object space, which is less sensitive to error than image

space, it is required to be located near the object being imaged. Therefore,

the implementation of a depth from diffusion system using this technique is

impractical.

There has been a large shift in the research area of modified optics in recent

years, particularly with regard to modifying the aperture of conventional cam-

era lenses. This area of “coded apertures” has been an active area of research

in the fields of astronomy and medical imaging for X rays and Gamma rays,

but it was the work of Levin et al. (2007) which highlighted the benefits of

coded apertures for depth recovery to the computer vision community. The key

idea was to construct an aperture which encoded the system response (PSF)

to be more distinct in the frequency domain. This enabled accurate recovery

of blur scale related to depth. Thus, Levin was able to recover depth informa-

tion from a single image. Depth estimation results are presented for a scene

with objects placed between 2 and 3m and exhibit a high degree of accuracy

(less than 2mm). However, accurate depth recovery required an extensive pre-

calibration procedure. The camera was set to focus at every depth within the

working range at a resolution of 10cm. In order to address the diffractive and

distortion elements of the imaging system, calibration images were captured

with the target varying across the horizontal plane of the image. Additionally,

the developed method requires a deconvolution operation which is known to

result in image artifacts. Although this configuration required cumbersome

calibration, it reignited interest in implementing modified optical systems for
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depth recovery.

Zhou and Nayar (2009) propose a method for designing and evaluating aperture

patterns which are subsequently employed in a similar manner to Levin et al.

(2007). A criterion based on defocus deblurring is developed, therefore the

main application is in the area of post-processing captured images for the

creation of all-in-focus images. This approach is the basis for further work

(Zhou et al., 2009) in which coded aperture pairs are optimised for DfD. The

apertures are designed to complement each other when analysing the frequency

response of the imaging system. Thus, a deconvolution is also required to

recover depth information. The method also requires two images, one from

each coded aperture, thus the capturing process is complicated due to the

necessary modification to the internal components of the imaging lens.

To this end, coded aperture techniques have been implemented on LCD dis-

plays which are embedded in the imaging lens, such as presented in Figure

1.1(d), (Liang et al., 2008, Gao et al., 2007, Dou and Favaro, 2008) in order to

avoid manually changing the coded aperture inside the lens. However, these

methods tend to require precise optical arrangement, generally in a labora-

tory environment, and lack practicality in implementation. A further problem

with LCD apertures is the transmission of light through the screen in its “on”

state. Nagahara et al. (2010) describe a coded aperture system using a Liquid

Crystal on Silicon (LCoS) which addresses some of the issues observed with

LCD systems such as poor transmission and large diffraction. The primary

issue with coded aperture techniques employing controllable displays at the

aperture plane is the constraints imposed on the optical arrangement. Typ-

ically, the display is either mounted inside the imaging lens, thus modifying

conventional lenses, or optical relay components are used to shift the optical

centre to a suitable location for placement of the LCD/LCoS system.

In order to address the complications of aperture plane and code definition,

recent work has reverted to more basic codes and alternative methods to ex-

tract image information. In an original work, Jones and Lamb (1993) describe

a technique using a customised spherical lens which is separated in two halves.

An aperture with two slits is inserted at the aperture plane and a composite

image is formed. The main contribution of this work was in the area of feature

matching across the composite image of both slits. Thus depth estimation

results are not outlined, but verification of composite feature match disparity
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related to a single depth is reported. Hiura and Matsuyama (1998) proposed a

multi pinhole aperture for depth recovery employing a multi-focus camera. The

multi-focus camera consisted of three Charge Coupled Device (CCD) sensors

which were equipped with custom optics ensuring that each image captured

was focused at different scene depths. The aperture was located at the focal

plane, thus the optical system was telecentric. Therefore, with unit magnifi-

cation, the scale of the blur could be obtained from the three images in a DfD

style approach. In a more recent approach, Kim and Kanade (2011) formed

a telecentric system incorporating a Fresnel lens, however, similarly to Hiura

and Matsuyama (1998) the implementation of such systems require specialised

equipment and are limited due to physical size and the number of sensors being

used.

Bando et al. (2008) describe a system consisting of a conventional lens which

has been modified in a similar manner to Levin et al. (2007). The coded aper-

ture contains three separate openings covered with a red, green, and blue filter.

By separating the captured red, green and blue image planes, induced colour

mis-alignments are used to discriminate between foreground and background

information. The main focus of this work is to extract foreground information

for matting applications. An indicative experiment was performed to yield a

quality metric on foreground segmentation. Therefore no effort was made to

retrieve metric depth information. Lee et al. (2010), Sangjin Kim and Paik

(2010) propose a similar approach to Bando et al. (2008) employing an “RGB”

aperture within the imaging lens. The main goal of these approaches is to re-

cover an all-focused image by registering the three colour plane images. There

are two main limitations, other than not estimating metric depth, with the

“RGB” aperture approaches outlined. Firstly, the aperture position is lim-

ited to the conventional aperture plane of the imaging lens and secondly, the

structure of the “RGB” aperture plane may not be modified. Although the

approaches of Bando et al. (2008) and Lee et al. (2010), Sangjin Kim and

Paik (2010) are optimised for matting and generating all focused images, the

“RGB” concept is certainly applicable to metric depth estimation.

Recently Koh et al. (2011) developed a dual aperture with colour filters for the

purpose of autofocusing a camera. The aperture is placed at the conventional

lens iris diaphragm location. The speed at which the autofocus procedure is

completed is of paramount importance, thus the primary objective of this work

is to reliably measure the colour dependent disparity generated by each colour
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filter using simple techniques. System implementation is completed with two

apertures, one for capturing images and the other (coded) for autofocusing.

Camera calibration is not completed, rather the imaging configuration data is

taken from the image header information which is known to be unreliable. Ex-

periments are presented for auto-focusing on objects at fixed distances between

2 and 11m using the colour disparity properties of the imaging configuration.

Metric depth information is not calculated. While this approach certainly

merits further work on the possibilities of depth estimation, it is expected

that the colour dependent disparity at large object depths (coupled with the

lack of accurate calibration information) would not be sufficiently sensitive to

accurately estimate multiple objects at these ranges.

Of the reviewed methods based on modified optical configurations, the general

applications are to either post-process images to create all-focused images, or

to extract foreground information for matting applications. Typically, these

methods require the recovery of the modified system Point Spread Function

(PSF) for depth map generation, and involve a deconvolution operation to

recover the focused images. With the exception of Levin et al. (2007), the

calibration of such systems is not addressed which results in a lack of metric

depth information employing these systems. Additionally, the location of the

modified aperture is generally fixed at the location of the iris diaphragm. Thus

the focus of chapters four and five in this thesis is to redress these issues with

the proposition of a new modified optical imaging model. The new multi-pupil

imaging model defines the location of pupils within the pupil plane and inves-

tigates their sensitivities as well as the location of the pupil plane within the

imaging system. A practical calibration procedure is developed for a general

multi-pupil system and verification of the model is performed via metric depth

estimation.

1.3 Mathematical Notation

The projective space is represented by P n, respectively, where n is the di-

mension of the space. Matrices are denoted by upper case letters as A. The

element at row i and column j of matrix A is denoted as aij. Matrix A[i j ... k]

is a new matrix formed from columns i, j, . . . k of matrix A. In×n is the identity

matrix of size n. Transformations are denoted T = [t1 t2 . . .] where ti are the
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columns of the transformation with entries t11, t12, . . . , t33. Rotations, R, and

homographies, H, are represented similarly.

Vectors and points in P 2 are denoted in bold lower case as a = [a1 a2 a3 . . . an]
T

with elements a1, a2, a3, . . . an. Points in P 3 are represented in bold upper case

as A = [A1 A2 A3 . . . An]
T with elements A1, A2, A3, . . . An. Point A[i j ... k] is

a new point formed by selecting elements i, j, . . . , k from point A. Equality

up to a non-zero multiple is denoted with the ≃ symbol. Finally, an image

point p after aberrations is represented by p̃. An image point which has been

corrected for aberration is represented as p̄.

The effective focal length of a lens is represented as F , while the image plane

to lens centre distance, the sensor depth, is represented as v.

1.4 Contributions

The major contributions of this thesis correspond to the main themes within

this thesis. Contributions of lesser weight, which contribute to and enable

the major contributions, are described in the minor contributions section. To-

gether, these contributions encapsulate the most important work of the thesis.

Major Contributions

• Sensitivity of the pinhole model within the context of planar camera

calibration is investigated and outlined. Planar camera calibration tar-

get orientations play a significant role in parameter estimation accuracy.

Certain orientations cause dependency in the planar calibration equa-

tions and result in poor parameter estimates. These planar target con-

figurations are known as degenerate configurations. The manifold of all

possible degenerate configurations for a two planar target setup is identi-

fied. Additionally, configurations which are near-degenerate, which also

contribute to poor parameter estimates are highlighted. A method for

recognising these configurations is presented using a real geometrical en-

tity on the image plane in the form of the Centre Line (CL).

• A novel framework is developed for the formation and capturing of in-

put images for planar camera calibration. The input images are called
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the Image Network (IN). Characteristics of the image CL are used to

specify optimal planar target pose. INs which contain optimal geometry

are termed Generated Image Networks (GIN). Planar camera calibration

performed using the proposed approach results in more accurate camera

parameter estimates as well as higher efficiency due to the avoidance of

degenerate and near-degenerate configurations.

• A new imaging model is presented in the form of the multi-pupil imaging

model which enables the recovery of metric depth information from a sin-

gle image. The Double Pupil Model (DPM) is outlined which contains a

modified pupil plane located at the conventional aperture location. Ex-

tensive model characterisation is completed along with depth estimation

experimentation. By relaxing the constraints of pupil plane placement,

further enhancement is achieved with the proposed Double Pupil Shifted

Model (DPSM). Similar characterisation is performed along with ex-

tensive depth estimation experimentation in which it is shown that the

multi-pupil imaging models achieve a high degree of accuracy across a

large depth range.

• A practical and accurate calibration framework for multi-pupil imag-

ing is presented. The calibration can be performed with a single image

given a minimum of two objects for DPM calibration and four objects

for DPSM calibration. Only the offset between object depths is required.

The multi-pupil calibration approach is benchmarked using standard cal-

ibration techniques. Superior accuracy is obtained using the proposed

calibration methods as certain lens aberrations are accounted for which

are not addressed with the standard techniques.

• A novel approach to modelling, calibrating and removing monochromatic

aberrations from imaging systems is developed. This is achieved within

a multi-pupil imaging framework. A pupil plane containing three pupils

is presented which provides a new cue to estimate aberrations with pupil

plane dependencies. This allows the calibration of all monochromatic

aberrations within the imaging system using point feature correspon-

dences. The accuracy of the aberration corrected images are validated

with depth estimation and object reconstruction experiments.
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Minor Contributions

• An automatic image selection strategy for planar camera calibration

which complements the GIN approach is developed. The input require-

ments are an image data set in which the algorithm selects the most

geometrically independent image set. The resulting image network is

called Selected Image Network (SIN). Additionally, an augmented ap-

plication is developed for the realisation of the GIN approach for the

replication stage.

• An examination of the sensitivity of placement of the pupil plane within

an imaging system is outlined. It is shown that image space placement

of the pupil plane is highly sensitive in comparison to object space place-

ment. The relationship between the system PSF and the pupil plane

placement is shown to be non-linear when the pupil plane is placed in

image space.

• The impact of sub-sampling a conventional pupil plane with an offset

pupil is examined in detail. The system response, in the form of the

PSF, is shown to sub-sample a single centred ray which passes through

the modified pupil plane. This property forms the basis for multi-pupil

imaging.

1.5 Thesis Organisation

Chapter 2 examines existing camera models used in the field of computer

vision. Initially, the pinhole model is introduced which is augmented into the

lens models using Gaussian lens laws. The calibration of camera models is

discussed, in particular two planar calibration approaches which are used in

this thesis are outlined. Finally, an examination of the significance of the pupil

plane within an imaging system is presented. Experiments are conducted to

analyse the sensitivity of shifting the location of the pupil plane as well as

moving the pupil within the pupil plane.

Chapter 3 firstly addresses the issue of degenerate configurations in planar

camera calibration. A key link is made between these configurations and the

orientation of the image CL. It is shown that the manifold of critical configu-

rations can be avoided with knowledge of the image CL. Thus, the second part
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of this chapter develops a new approach to forming an input image network

for accurate and degenerate-free planar camera calibration. Experiments are

conducted to verify the increased accuracy and efficiency in camera parameter

estimates employing the new image networks.

Chapter 4 presents a new imaging model for the recovery of metric depth in-

formation from a single image. Initially, the double pupil model is introduced.

The sensitivity and accuracy of the model is examined and benchmarked with

industry standard optical simulation software. Subsequently, the double pupil

shifted model is presented, which relaxes pupil plane constraints of the DPM,

along with detailed analysis of its sensitivity and accuracy. A novel calibration

procedure is described for both multi-pupil imaging models. Finally, extensive

experiments are carried out to verify the accuracy of the calibration procedure

as well as the viability of the models for accurate depth estimation from a

single image.

Chapter 5 investigates the applicability of multi-pupil imaging for the mod-

elling, calibration and removal of aberrations in images. Initially, the forma-

tion and effects of monochromatic aberrations in imaging systems is presented.

Subsequently, a pupil plane is introduced containing multiple pupils which are

shown to encode additional information on aberrations that have a pupil plane

dependence. This contributes to the formation of a calibration procedure which

allows all monochromatic aberrations to be estimated from a single image of

a control point grid. Evaluation of the accuracy of the multi-pupil calibration

and aberration removal approach is demonstrated through object depth and

structure estimation experiments.

Chapter 6 summarises the principal contributions of the thesis. Directions for

further research are outlined, and a list of publications arising from the work

in this thesis is provided.
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Camera Models and Calibration

Researchers in the field of computer vision strive towards accurately modelling

the imaging process. This consists of capturing the 3D projection of world

points onto an imaging sensor. An accurately modelled camera allows metric

information about the 3D world to be drawn from the captured 2D image. The

extent to which this process can be precisely modelled depends on the camera

model imposed, and secondly, on how well this model can be calibrated. Cal-

ibration of a camera model is the process of recovering the model parameters

which describe the projection from world to image. Typically, a calibration

process is undertaken to recover these parameters. Therefore, this chapter

is primarily concerned with the camera models used in the area of computer

vision, and the calibration of these camera models.

Section 2.1 introduces the pinhole camera model, which is the most basic

camera model used in the field. It is based on the central projection of 3D

points to a 2D image plane. The camera calibration matrix is defined along

with the parameters which describe the location and orientation of the camera

with respect to the 3D world coordinate system. The pinhole model gives

a precise geometric mapping from 3 space to the image plane, however, it

does not capture irradiance or imaging lens phenomena. Consequently, lens

models are introduced in the form of the thin and thick lens models. Gaussian

optics is outlined and the thin lens law is presented. The introduction of an

imaging lens allows optical phenomena such as focusing and blurring artifacts

to be captured by the camera model. Since most conventional imaging lenses

comprise of multiple lens elements, the thick lens model is presented, which
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allows these lenses to be modelled by the cardinal points of the optical system.

One of the key aspects of this thesis is the recovery of metric depth information

from a single image. Using the pinhole model, this depth information is not

captured within the central projection equations. Thus, the introduction of

lens models, which capture image focusing properties of an imaging system,

provides an additional cue which can be exploited for the purpose of retrieving

depth information.

Recovery of metric information from images requires knowledge of the numer-

ical quantities of the camera model parameters. To this end, the calibration of

a camera model is presented in Section 2.2 . Two calibration methods based

on an imaginary projective entity, the IAC, are described. Planar camera cali-

bration is arguably the predominant method practised in the computer vision

community when calibrating conventional cameras. The original method of

Zhang (1998) is presented. Subsequently, an alternative approach, also based

on the IAC is examined, in the form of Gurdjos and Payrissat (2001). This

transforms the planar calibration problem into a more intuitive geometric do-

main and provides a more meaningful cost function for the estimation of the

camera parameters. Both planar methods assume a pinhole camera model.

The geometric equivalence of the pinhole and lens models is outlined. Certain

camera parameters, in particular the sensor depth, are required for the pur-

poses of depth estimation. The focal length parameter retrieved via planar

camera calibration is thus applicable to the lens models and laws in the form

of the sensor depth.

Section 2.3 examines, in more detail, the significance of the pupil plane within

the lens models. In particular, the placement of this plane within a system

of lens elements, such as those which form conventional imaging lenses, can

have a large effect on the resulting image blur recorded. The proportionality

between pupil (aperture) diameter and image blur for object distances which

lie outside of the camera focus plane is shown. However, if the pupil plane is

shifted outside of the lens, this relationship does not remain constant. Experi-

ments are performed to highlight how this relationship varies for a pupil plane

placed in object space as opposed to image space. Object space is defined

as the area in front of the apex of the first lens surface (extends to infinity),

while image space is the area between the apex of the last lens surface and the

image plane. Results indicate that pupil placement in object space leads to

a linear relationship between the pupil diameter and the magnitude of image
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blur. Conversely, image space pupil plane placement leads to a non-linear rela-

tionship. This is shown to be as a result of optical irises in an imaging system.

The entrance and exit pupils, defined as irises throughout this thesis, of an

optical system are defined and shown to be the limiting factor for light rays

entering and exiting the imaging system respectively. Due to the linear rela-

tionship of object space pupil planes, an experiment is performed to confirm

that a pupil plane located at the lens with a geometrically equivalent pupil

diameter can be defined using a pupil plane which is located in object space.

Experiments are conducted to examine the properties of the pupil on the pupil

plane. Results show that a conventional pupil can be sub-sampled by a pupil

of much smaller diameter. Thus, a ray passing through a conventional pupil

can be approximated by a sub-sampled pupil centred at that rays’ location in

the conventional pupil. The intersection of this ray with the image plane is cal-

culated as the centroid of the resulting sub-pupil blur spot on the image plane.

Further experiments investigate the impact of the sub-sampling pupil diame-

ter on the accuracy of the ray data recovery. It is shown that smaller pupils

lead to better accuracy in centroid estimation. Additionally, diffractive effects

of sub-sampling pupils, due to the decrease in pupil diameter, are examined.

Results indicate that the diffractive component is increased with a decrease in

pupil diameter, however, the centroid estimation accuracy is unaffected.

2.1 Camera Models

One of the fundamental tasks in computer vision is examining how the 3D

world relates to a captured 2D image. Typically, the process which describes

this relationship is governed by the choice of imaging model used. In general, a

camera consists of two primary components in the form of an imaging sensor,

and an optical system. The optical system, or camera lens, is formed by a

variable number of glass surfaces (possibly with different refractive indices) in

conjunction with a number of stop planes. The function of the camera lens is

to capture multiple rays emanating from object points in the 3D world, and

suitably adjust this information for the image sensor. Subsequently, an image

sensor captures the object ray information provided by the lens and forms

an image. There are a multitude of possible combinations of camera lenses

and image sensors. Lenses which increase or decrease the field of view or

magnification of the scene being observed all modify the optical properties of
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the imaging lens. Image sensors vary in physical size, however optical systems

are generally tailored to match the image sensor size.

In spite of the number of variables within the constraints of an imaging system,

it is the task of the computer vision practitioner to choose the most appropriate

model to describe the imaging process for the required task. This section

examines three such models. The initial model examined is the simple pinhole

camera model. This model does not account for optical phenomena of the

lens. Consequently, the second model under examination considers the optical

effects of the imaging lens in the form of the ideal thin lens model. The final

model considers additional optical properties of the imaging system in the form

of the Gaussian thick lens model.

2.1.1 Pinhole Camera

The pinhole model is the most basic and commonly used camera model in

computer vision. Historically, the first recording of a pinhole camera was the

camera obscura which dates back as far as 470BC. The first images containing

perspective effects were recorded during the Renaissance by painters who made

use of the pinhole camera. Such pinhole cameras were constructed by inserting

a small circular hole in an opaque sheet of material. Naturally, the object scene

rays passing through the pinhole were projected onto a canvas sheet, which

was parallel to the pinhole plane. This allowed the painters to capture the

perspective effects of the scene observed on the canvas sheet.

A general pinhole model is presented in Figure 2.1. A single Euclidean coor-

dinate frame is assumed in which the origin is set as the camera centre, C. If

the Z-axis of the Euclidean coordinate frame is chosen as the principal axis of

the system, then the image plane can be defined by any plane orthogonal to

this axis. Consequently, the image plane is defined as the orthogonal plane at

a distance f from the camera centre. The distance f is commonly referred to

as the “focal length” within a pinhole configuration1. The principal point, p,

is defined as the intersection of the principal axis with the image plane.

An object point in Euclidean space is represented by the vector X. In a pinhole

1This is a common abuse of terms in the field of computer vision and will be clarified in

Section 2.1.2
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Figure 2.1: Central projection of the pinhole model.

model framework, only a single ray emanating from the object point may pass

through the camera centre. This ray intersects the image plane at the point x.

Assuming the origin of the image coordinate system is the principal point, the

projection of a 3D object point to a 2D image point can be described linearly

using homogeneous coordinates as,

x ≃


f 0 0 0

0 f 0 0

0 0 1 0

X (2.1)

Figure 2.2 presents a generalised pinhole camera model in which all coordinate

frames are outlined: the camera coordinate frame (origin at C), the world

coordinate frame (origin at O), and the image coordinate frame (xi, yi). Gen-

erally, the origin of a camera coordinate frame is not located at the principal

point. Therefore a distinction is made between the camera coordinate sys-

tem and the image coordinate system. This relationship is described by a

principal point offset (px, py) and f . Furthermore, to fully describe the con-

version of camera coordinates to image coordinates, non-Euclidean properties

of the camera frame must be accounted for. If image pixels are not exactly

square, a scale factor is introduced which will modify the camera focal length

in each direction. This parameter is realised in the form of the aspect ratio,

α, which is the ratio of pixel height to pixel width. Additionally, a camera

skew parameter, s, is included to account for skewness in the camera sensor
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elements. These parameters are independent of the camera orientation and

position. They define the camera calibration matrix, K, which describes the

intrinsic parameters of the pinhole camera.

K =


αf s px

0 f py

0 0 1

 (2.2)

The projections described up to this point have assumed that the camera co-

ordinate frame is coincident with the world coordinate frame. However, as

depicted in Figure 2.2, this is generally not the case. The world coordinate

system is a different Euclidean frame with its origin at O. Both coordinate

systems are related by a rotation, Rc, and translation, tc, where (Rc, tc) rep-

resents the camera’s orientation and location in the world coordinate frame.

The relationship between the object point X in camera and world coordinate

systems is,

Xcam =

[
Rc tc

0 1

]
X, (2.3)

where tc = −RcC

These six parameters (3 angles for Rc and 3 for C ) are known as the extrinsic

parameters of the camera. Knowledge of the intrinsic and extrinsic camera

parameters yields a full description of the 3D to 2D mapping of a pinhole

camera model. This defines the pinhole camera projection matrix P , which

consists of Eqns. 2.2 and 2.3,

P = K [Rc|tc] (2.4)

Now the projection of an object point in the world coordinate system, X, onto

the image plane in the image coordinate system can be described as

x ≃ PX (2.5)

2.1.2 Thin Lens Camera

In order to model the imaging process of a conventional camera more accu-

rately, an imaging lens is introduced to the camera model. With the pinhole
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Figure 2.2: Pinhole camera model.

camera model, an assumption was made that only a single ray emanates from

each object point. Consequently, image information relating to the camera

focus is neglected, thus each imaged object point is always ideally focused.

This is not the case with a conventional camera.

The purpose of deploying a lens within an imaging model is to overcome the

impracticalities of the pinhole model. Since a pinhole model requires an aper-

ture of infinitesimal size, the amount of light irradiated onto the image sensor

is minimal. Thus, image detail is lost - the image is under exposed. If the aper-

ture size was increased in the pinhole model, additional rays would be captured

by the imaging sensor. However, these scene rays would not converge to a single

image point, and thus there would be a combination of over-exposure within

the image coupled with a lack of object detail. The solution to this problem

was the introduction of an imaging lens.

Interest in using optical lenses for the formation of images accelerated with

the birth of the photographic process in the early part of the 19th century

(Kingslake, 1989). The primary function of the imaging lens was to capture

additional scene radiance and simultaneously focus scene rays at a single im-
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age point. This led to increased research in the area of optical lens design and

resulted in the proposition of Gaussian or paraxial optics. Gaussian optics as-

sumes that the lens under examination is rotationally symmetric and centred

on its optical axis. Scene rays emanating from the object point of interest are

assumed to be in a region close to the optical axis. This allows the paraxial

approximation to be made, in other words, the slope angles and the incident

and refracted angles are assumed equal to their sines and tangents. The in-

troduction of paraxial optics resulted in the proposition of the thin lens model

for an imaging system, as presented in Figure 2.3.

The thin lens consists of a single lens element and two refractive surfaces.

The thickness of the lens is assumed negligible. In Figure 2.3, the lens is

rotationally symmetric about the optical axis. The lens diameter D is equal

to the aperture diameter which, since there is no physical stop, is the limiting

factor for scene rays passing through the lens. The optical power of the lens,

known as focal length, is defined by the radius of curvature of the lens surfaces

and the corresponding refractive index of the lens material. Since there are

two surfaces within the thin lens system, which are symmetric, a focal point is

defined on both the object and image side of the lens. These points correspond

to F
′
and F respectively. Object points are defined at distances u0 and u1 on

the object side of the lens. The significance of the optical power of the lens

and its focal points is highlighted in the formation of the image points. For the

case of the object at depth u1, three rays are traced from the object point to

its formed image point on the sensor. Rays which enter the lens parallel to the

optical axis are refracted to pass through the focal point on the image side of

the system. Conversely, rays which pass through the focal point on the object

side, entering the lens, are refracted and travel parallel to the optical axis on

the image side. The object ray which passes through the centre of the lens does

not deviate. In this case, the incident angle is equal to the refracted angle. All

rays emanating from the object point passing through the lens intersect in a

single point and thus form an image at this location.

The image sensor is located at a distance, v, from the lens. Throughout

this thesis, this property is referred to as the “sensor depth”. A common

misconception in the field of computer vision is to assume that this property

is equal to the focal length of the imaging system. This arises from the use

of the term “focal length” within the pinhole configuration to describe the

image plane to pinhole distance. The correct use of the term “focal length”
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Figure 2.3: Thin lens camera model.

is to describe the optical power of an imaging lens. Therefore, if a pinhole

camera model is being used to calibrate a conventional camera, the f parameter

recovered (intrinsic camera parameter from Eqn. 2.2) is in fact the sensor depth

parameter.

The main benefit of adding a lens to the imaging model is that optical proper-

ties of a conventional camera, such as focus within a scene, are captured. The

optical power of the lens is defined by its focal length, therefore it is the sensor

depth, v, which determines the object plane that is in focus. Under paraxial

approximation, the thin lens law is derived for an object in focus on the image

sensor as

1

u
+

1

v
=

1

F
(2.6)

where F is the lens focal length, u is object depth and v is the sensor depth.

The importance of the sensor depth parameter is highlighted by this relation-

ship. It defines u as the object depth which is conjugate to the sensor depth

v. Consequently, an object point which does not lie on the plane at depth u

will not appear in focus at the image plane. Generally, the focus property of a

conventional camera is controlled by shifting the lens unit with respect to the

fixed image sensor location. Two distinct object depths are shown in Figure

2.3. It is clear that the sensor depth v is conjugate to the object depth u1.

The object point at depth u0 corresponds to a conjugate plane (at distance v0)

which is behind the image sensor location in its current configuration. There-

fore, the image sensor will capture a blur circle since the object point is out of

focus, and the “aperture” shape is circular. If the lens was shifted along the

optical axis on the object side by the distance v0 − v, then the object point at

depth u0 would become focused on the image sensor. However, the object at
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depth u1 would now form as a blur spot on the sensor. If the image sensor is

located at the focal point of the lens (v = F ), the conjugate object plane in

focus is the plane at infinity. This results in the object rays travelling paral-

lel to the optical axis, and as such, object depths of smaller magnitudes will

appear out of focus within the image. Typically, conventional imaging lenses

allow the sensor depth value to be adjusted to focus object depths within the

range of 200mm to infinity.

The aperture diameter, D, which in this case is the lens diameter, plays a key

role in the definition of the amount of image blur observed on the image plane.

With reference to Figure 2.3, the object point at depth u0 is imaged on the

sensor out of focus with a blur diameter of B. The aperture diameter can be

seen as the limiting stop for object rays entering the imaging system. Thus,

if the aperture diameter was adjustable, the incoming cone of light rays from

the object point could be adjusted. Since this cone of rays limits the amount

of light reaching the image sensor, it is obvious that the image blur diameter

B, is proportional to the aperture diameter. As the diameter D is reduced,

the imaged object point at u0 will appear sharper (more focused) on the image

sensor. However, this comes at a cost of reduced illumination which was the

initial motivating factor for introducing an imaging lens to the camera model.

2.1.3 Thick Lens Camera

The thin lens model introduced in the previous section represents the most

basic lens model within the Gaussian optics domain. It is primarily applicable

when the thickness of the lens can be assumed negligible. When the thickness

of a lens can not be assumed negligible, such as the case with modern pho-

tographic lenses, an alternative Gaussian model is used called the thick lens

model. Figure 2.4 presents the thick lens model. It is defined by the six car-

dinal points of Gaussian optics (Smith, 2000). These are the first and second

focal points, the first and second principal points, and the first and second

nodal points.

The focal points of a thick lens system are the points at which incoming rays,

from an infinitely distant axial object point, will intersect the optical axis after

refraction through the lens system. A focal point is defined on both the image

and object sides in the same manner. The distance from the lens vertex to the

35



Chapter 2 – Camera Models and Calibration

Figure 2.4: Thick lens camera model.

object space focal point is called the Front Focal Length (FFL) for the object

side of the lens. Similarly, the distance from the lens vertex on its image side

to the focal point in image space is termed the Back Focal Length (BFL). On

closer examination of the rays entering and emerging from the optical system

in Figure 2.4, it can be seen that a dashed line has been traced which represents

the non-refracted path of these rays. The intersection of these rays which pass

through both focal points define points on the principal planes of the optical

system, P and P
′
. The principal planes are in fact spherical and centred about

the focal point, however, under the paraxial approximation, these surfaces

become planar. The intersections of each principal plane with the optical axis

define the principal points of the lens. The Effective Focal Length (EFL) of

the optical system can now be calculated as the distance from either principal

point to its corresponding focal point. When dealing with optical systems

which are tailored for imaging systems, this is typically the value given for the

focal length of the lens. The two remaining cardinal points of a general optical

system are the nodal points. A ray which is traced through the optical centre

of the lens will have the properties that its incident angle will be equal to its

refracted angle. Within a thick lens optical system, the incident and emerging

rays will be displaced. If both rays are extended to intersect the optical axis,

they define the nodal points of the optical system. Therefore nodal points have

the property that rays directed towards the first nodal point emerge from the

second nodal point parallel to the original direction. Thus, θ is equal to θ
′
,

as shown in Figure 2.4. The nodal points will coincide with principal points

if the index of refraction is the same in both image and object space. This is

generally the case when dealing with imaging systems and lenses as it is air

which will occupy the medium on both sides.
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Once the cardinal points of the optical system are identified, rays can be traced

through the system enforcing refraction to occur at the principal planes. This

implies that the rays travel parallel to the optical axis between the principal

planes. The distance between both principal planes is defined as the lens

“thickness” and is shown in Figure 2.4 as zg. If all distances are measured on

the object and image side with respect to P and P
′
, then the thin lens law can

be enforced. Therefore, from Figure 2.4 it is shown that the object and image

distance are related to the effective focal length as

1

u0

+
1

v0
=

1

EFL
(2.7)

2.2 Camera Calibration

One of the most fundamental tasks in computer vision is the recovery of metric

3D information from 2D images. The projection of 3D metric information onto

the 2D image is generally dependent on the camera model used. Calibration of

a camera is the recovery of the camera parameters which describe this 3D to 2D

projection. Therefore, when a camera is deemed calibrated, it is the camera

model which is calibrated. This highlights the importance in the choice of

camera model as it is these parameters which characterise the accuracy of the

imaging process and of subsequent reconstructions.

Generally, the procedure for calibrating a camera involves imaging a structure

or scene with known geometry. The relationship between the known geome-

try and image of this structure/scene is used to describe the projection and

subsequently to estimate the camera model parameters. A camera is said

to be fully calibrated when both its intrinsic and extrinsic parameters are

known. The planar camera calibration methods, proposed independently by

Zhang (1998) and Sturm and Maybank (1999), borrowed an approach from

the self-calibration domain (Faugeras et al., 1992) in the formulation of their

calibration algorithms. A geometric invariant property in the form of the IAC

was used to capture properties of the imaging camera. A relationship between

the internal camera parameters and the IAC was developed. It was shown that

with three images of a planar calibration target, there are sufficient constraints

to estimate all camera parameters. In addition to developing an accurate cam-

era calibration algorithm, Zhang (1998) also reduced the input requirements

of the camera calibration practitioner. A simple planar target with well de-
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fined feature points was the only requirement. This target was subsequently

captured in varying orientations (minimum of three for full calibration). Thus,

difficulties with traditional methods such as accurate scene point knowledge

and physical setup were no longer an issue for calibrating a camera. These

aspects of the planar approach contributed largely to its popularity. Readily

available implementations2 with standard calibration tools (Bouguet, 2008)

quickly propelled the planar calibration approach to be the computer vision

community’s preferred method. Consequently, it is the planar camera calibra-

tion method based on the IAC which is dealt with in this thesis. In particular,

two approaches are examined in detail.

2.2.1 Planar Camera Calibration

Two approaches are examined in this section. Zhang (1998) showed how the

IAC was directly related to the internal parameters of the camera. Thus the

planar calibration problem was reduced to fitting a conic to the IAC. One of the

main issues with Zhang’s approach was that it involved the use of an abstract

projective geometrical entity in the form of the IAC. As a result, the linear

stage of the calibration algorithm was in fact minimising an algebraic distance,

which is known to cause instability due to the lack of physical meaning (Hartley

and Zisserman, 2003). Consequently the second approach examined in this

thesis, even though it is also based on the IAC, puts the calibration problem

into a more intuitive geometric domain. Gurdjos and Payrissat (2001) exposed

the relationship between the image plane and planar target in order to derive

an expression for a real geometric entity on the image plane. This entity, the

Centre Line (CL), was subsequently used to calculate the principal point of the

image plane. This approach decoupled the intrinsic parameters of the camera

for the purpose of calibrating a variable focal length camera. However, in this

thesis, the interest is primarily in cameras with constant intrinsic parameters.

The most important aspect of Gurdjos’s method was the alternative geometric

interpretation of the planar calibration problem. This interpretation allows the

constraints of plane based calibration to be linearly represented by a geometric

cost rather than the algebraic expression developed in Zhang (1998).

Properties of the Absolute Conic (AC) and its image are the basis for both

2http://opencv.willowgarage.com
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planar calibration methods under examination. The AC, represented mathe-

matically as Ω∞, is located on the plane at infinity, π∞, and is a conic consisting

of purely imaginary points. It satisfies the equation

0 =

X2
1 +X2

2 +X2
3

X4

(2.8)

and has a radius of i =
√
−1, thus it is the conic Ω∞ = I on π∞. The invariant

properties of the AC are exposed by examining the relationship between π∞

and the image plane. If points on π∞ are represented as X∞ = (dT , 0)T , the

image captured by a camera (of the form Eqn. 2.3) forms the image, x of X∞

as,

x = PX∞ = KRc[I| − C]

(
d

0

)
= KRcd (2.9)

This identifies the relationship between the image plane and π∞ as a planar

homography H with H = KRc and x = Hd. Consequently, this mapping

only depends on the intrinsic parameters of the camera, K, and the camera

orientation with respect to the world coordinate frame Rc. Since the AC lies

on π∞, its image can be determined via the planar homography H = KRc,

H−TΩ∞H−1 = (KRc)
−T I(KRc)

−1 = K−TRR−1K−1 = (KKT )−1

ω = K−TK−1 (2.10)

which defines the image of the absolute conic, ω. Similar to Ω∞, the IAC

is an imaginary point conic, however, as can be seen from the expression in

Eqn. 2.10, it is only dependent on the intrinsic camera parameters. Therefore,

it is an ideal tool for calibrating a camera as it is invariant to the camera’s

orientation and location. Once ω is determined, K can be calculated via

Cholesky factorisation (Hartley and Zisserman, 2003).

Zhang’s Approach

Zhang’s (1998) method of planar camera calibration requires imaging a planar

target, in the form of a “chessboard” grid, in varying orientations. A pinhole

camera model is assumed as described in Section 2.1.1. The planar calibration

equations are derived by considering the planar target to be in the Z = 0
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plane of the world coordinate system. Thus, points on the planar target are

projected onto the image sensor as,

x ≃ K
[
r1 r2 r3 tc

]


X

Y

0

1



= K
[
r1 r2 tc

]
X

Y

1

 (2.11)

where ri denotes the ith column of the rotation matrix Rc. Therefore, the

projection of the planar target points onto the image sensor can be described

by a planar homography H where

H ≃ K
[
r1 r2 tc

]
. (2.12)

A planar homography can be estimated given a minimum of four point corre-

spondences, no three of which can form a line, between the planar target and

its image. The relationship in Eqn. 2.12 can be expressed as[
h1 h2 h3

]
= λK

[
r1 r2 tc

]
(2.13)

where hi denotes the ith column of the planar homography matrix H and

λ is an arbitrary scalar factor. Exploiting the orthonormal properties of the

rotation matrix yields two constraints from Eqn. 2.13,

hT
1K

−TK−1h2 = 0 (2.14)

hT
1K

−TK−1h1 = hT
2K

−TK−1h2 (2.15)

where K−TK−1 is the IAC. Consequently, each planar homography gives two

constraints on the camera intrinsic parameters. Since there are five intrin-

sic parameters, three images of the planar target in varying orientations are

required to uniquely solve for the parameters.

The two constraints obtained in Eqns. 2.14 and 2.15 can be geometrically in-

terpreted as follows. The direction of the planar target in the world coordinate

system has coordinates l = [r1 × r2]. This plane intersects with the plane at

infinity in a line which, in turn, intersect the absolute conic in two points,

the circular points [r1 ± ir2]. The projection of the circular points into the

image are found as K[r1 ± ir2] which is equal to [h1 ± ih2]. Since the circular
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points intersect the AC on the plane at infinity, the image of the circular points

(h1 ± ih2), must intersect ω, the IAC. Therefore the expressions in Eqns. 2.14

and 2.15 are found by setting both real and imaginary parts of the imaged

circular points to zero. This represents fitting a conic to the imaged circular

points.

A closed-form linear solution to fitting a conic to the imaged circular points is

outlined by Zhang. Firstly, the symmetric conic matrix for the IAC is defined.

It consists of the intrinsic camera paramaeters.

ω = K−TK−1 =


1

(αf)2
− s

((αf)2f)

pys−pxf

(αf)2f

− s
(αf)2f

s2

(αf)2f2 +
1
f2 − s(pys−pxf)

(αf)2f2 + py
f2

pys−pxf

(αf)2f

s(pys−pxf)

(αf)2f2 − py
f2

(pys−pxf)2

(αf)2f2 +
p2y
f2 + 1

 (2.16)

Thus ω can be represented as a 6D vector b = [ω11, ω12, ω22, ω13, ω23, ω33]
T and

a system of equations can be derived, based on the constraints on the IAC, in

the form Ab = 0. The A matrix consists of 2n rows where n is the number of

images captured for the calibration and the two equations are the constraints

outlined in Eqns. 2.14 and 2.15. Zhang conveniently denotes these entries as

hT
i ωhj = aT

ijb

where,

aij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2,

hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]
T

thus Ab = 0 is a 2n× 6 matrix and is expressed as,[
aT
12

(a11, a22)
T

]
b = 0 (2.17)

which can be solved using well known linear techniques, such as Singular Value

Decomposition (SVD) (Golub and Van Loan, 1996). With three or more input

images, a unique solution is obtained for the IAC, however, if the camera skew

parameter, s, is considered to be zero, two images will suffice to estimate the

conic. Once a solution for b is found, the camera intrinsic parameters are
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calculated as follows,

py =
ω12ω13 − ω11ω23

ω11ω22 − ω2
12

λ =
ω33 − [ω2

13 + py(ω12ω13 − ω11ω23)]

ω11

αf =

√
λ

ω11

f =

√
λω11

ω11ω22 − ω2
12

s = −ω12(αf)
2f

λ

px =
spy
f

− ω13(αf)
2

λ
(2.18)

allowing the camera extrinsic parameters to be calculated using Eqn. 2.13.

r1 = λK−1h1

r2 = λK−1h2

r3 = r1 × r2

tc = λK−1h3 (2.19)

This provides a linear solution for the camera intrinsic and extrinsic param-

eters. One problem with this solution is the fact that the distance being

minimised in calculating the camera parameters is algebraic. Algebraic dis-

tances have no physical meaning in minimisation problems and are known to

cause instability in the estimates, particularly in the presence of noise (Hartley

and Zisserman, 2003). Therefore, Zhang proposes a geometric refinement of

the camera parameter estimates in the form of a Maximum Likelihood Esti-

mation (MLE). In addition to the MLE, a standard two term radial distortion

model (c1, c2) is imposed on the system (Brown, 1971). Consequently, the cost

function minimises the geometric distance between the projected planar tar-

get points in the image, x̂, under the model in which the parameters are being

estimated, and the observed image points, x.

n∑
i=1

m∑
j=1

∥xij − x̂ij(K, c1, c2, Ri, ti, Xj)∥ (2.20)

This is a non-linear minimisation problem which is solved using the Levenberg-

Marquardt (LM) algotrithm. Initial estimates of the parameters in Eqn. 2.20

are taken as the results of the linear estimation stage with c1 and c2 set to

zero. In summary, Zhang’s planar calibration method involves (1) Imaging a
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planar target in a minimum of three varying orientations (2) Detecting the

planar target feature points (3) Linearly estimating the intrinsic and extrinsic

camera parameters using Eqns. 2.17, 2.18 and 2.19 (4) Refining all parameter

estimates non-linearly via Eqn. 2.20.

An important aspect of any camera calibration algorithm is awareness of degen-

erate configurations. These are defined as planar target orientations which do

not provide any additional constraints on the intrinsic parameters. Typically

this implies that there is an inherent dependency in the system of calibration

equations. Since the calibration equations are based on the properties of the

rotation matrix, there are a large number of possible orientations in which

degenerate cases can arise. This is particularly true in the case of two-plane

calibration (assuming zero skew), for which Sturm and Maybank (1999) outline

a large family of singularities.

Alternative Approach

Gurdjos and Payrissat (2001) proposed an alternative approach to the planar

calibration problem by introducing the theorem of Poncelet (1862) to the do-

main. The theorem geometrically proved that two planar figures, for which

the first is the central projection of the second, remain in perspective cor-

respondence when one rotates the first plane about its intersection with the

second plane. The corresponding centres of projection describe a circle which

lies within a plane orthogonal to the intersection of both planes. Figure 2.5

presents a diagram to aid with visualisation of the theorem and its relevance to

planar camera calibration. A world plane intersects the image plane in a line,

the intersection line. If this line is taken as an axis, about which the world

plane may rotate freely, there is an infinite number of world planes which re-

main in homographic correspondence with the generated image on the image

plane. Thus a planar homography H represents the transformation. Each

world plane has a unique centre of projection through which it remains in

homographic correspondence with the image. The locus of these centres of

projection forms the Centre Circle (CC). This circle lies in a plane orthogonal

to the intersection line. The orthogonal projection of the CC onto the image

plane forms a line, the CL. Thus, for each projected centre of projection onto

the image plane, there is an associated principal point on the CL. When mul-

tiple planar targets are captured in varying orientations, each image CL will
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World Planes

Image plane
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Centres of 
Projection

Centre Line
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Figure 2.5: Poncelet’s theorem and its application to planar camera calibration

(Gurdjos and Payrissat, 2001).

intersect at the true camera principal point. This allows a partial calibration

of the intrinsic parameters (px, py and α). Gurdjos decouples the intrinsic pa-

rameters to calibrate the focal length in a second step based on the estimated

principal point and aspect ratio.

An expression for the CL can be derived from properties of the planar homog-

raphy based on the constraints of Eqns. 2.14 and 2.15. If zero skew is assumed,

the IAC is defined as (after scaling by (αf)2),

ω =


1 0 −px

0 α2 α2py

−px −α2py α2f2 + p2x + α2p2y

 (2.21)

now by algebraically eliminating the ω33, of the IAC, a linear equation in ω is

achieved. With further refinement of the constraints in Eqns. 2.14 and 2.15 an

expression is obtained:

φT [ω13, ω23, ω22, ω11]
T = 0 (2.22)
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where φT = [φ1, φ2, φ3, φ4]
T , and,

φ1 = (h2
31 + h2

32)(h31h12 − h11h32)

φ2 = (h2
31 + h2

32)(h31h22 − h21h32)

φ3 = (h31h12 − h11h32)(h11h31 + h12h32)

φ4 = (h31h22 − h21h32)(h21h31 + h22h32)

(2.23)

which yields the equation for a line, l, containing the principal point.

py = −φ1α
2

φ2

px +
φ3α

2 + φ4

φ2

l = [−φ1α
2,−φ2, φ3α

2 + φ4]
T (2.24)

Confirmation that the line l, in the image frame, and the CL are equivalent

is achieved by illustrating its orthogonality with respect to the vanishing line,

l∞, of the planar target. The vanishing line is calculated as the third row

of adj(H) and is equal to, lT∞ = [h21h32 − h31h21, h31h12 − h11h32, h11h22 −
h12h21]. Orthogonality between the VL and CL satisfies lTω∗l∞ = 0, where ω∗

is the dual IAC and represented in this case as diag(1, 1/α2, 0) (Hartley and

Zisserman, 2003).

The function which is minimised when estimating the principal point and

aspect ratio is linear and based on the constraint on these parameters given the

CL equation (Eqn. 2.24). Thus the solution can be found linearly by minimisg

Eqn. 2.22 for all input images. The main benefit of Gurdjos’ approach to

planar calibration is the transformation of the minimisation function into a

linear geometric cost function. The previous cost of Eqn. 2.22 is algebraic and

therefore has no physical meaning. However, this function can be transformed

into a sum of squared Euclidean distances based on the distance between the

principal point and the CL. Normalisation of Eqn. 2.22 is performed with the

aspect ratio approximated to unity. Thus the function to be minimised is,

argmin

{
n∑

j=1

d2(m0, l
(j))

}
(2.25)

where d(m0, l
j) is the Euclidean distance from the principal point, m0, to the

CL lj. This can be solved using linear techniques such as the SVD.

A linear expression is developed for subsequent calculation of the camera focal

length. A decoupled camera calibration matrix Kd is formed with the esti-

mated principal point and aspect ratio. For each image of the planar target,
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G = K−1
d H. This forms a modified IAC of KT

d ωKd ∼ diag(1, 1, f 2). This

problem can be seen as solving for F = f 2 the equation Ψ[1, F ] = 0 where,

Ψ =

[
G2

11 +G2
21 −G2

12 −G2
22 G2

31 −G2
32

G11G12 +G21G22 G31G32

]
(2.26)

in which a linear least-squares solution can be obtained from Ψ.

Aside from providing a linear method to calculating the camera intrinsic pa-

rameters, the CL also provides a geometrical insight into singularities within

the system. Degenerate configurations in the recovery of the principal point

arise when no clear principal point can be defined. This is the case when

CLs of different views are parallel. Such configurations arise when the planar

target undergoes translation only, rotation about a parallel axis, and rotation

about an axis orthogonal to the plane. In terms of the recovery of focal length,

degenerate cases arise when the camera and world coordinate systems are par-

allel in the X or Y direction as noted by Sturm and Maybank (1999). Both

methods of planar camera calibration examined in this section are based on the

fundamentals of the IAC and the constraints of fitting a conic to this image.

However, it is the geometric domain in which Gurdjos presents the problem,

in the form of the CL, which is explored further in Chapter 3.

2.3 Significance of the Pupil Plane

The properties of a camera’s aperture, on the pupil plane, are an integral

component to describing the true process of imaging 3D world points to the

2D image sensor. Three imaging models have been outlined in the form of

the pinhole, thin-lens, and thick-lens models. The pinhole model, which is

the simplest of the three models, has been examined in detail. In particular,

the calibration of the pinhole model has been outlined. Camera calibration

recovers the camera model properties which describe the 3D to 2D projection

of world to image points. The model parameters which are recovered are the

focal length, f , the principal point, (px, py), the aspect ratio (α) and the cam-

era skew (s). One of the primary goals of this thesis is to recover real depth

information given a single image of a scene from a single camera. However,

this task is not directly possible within the constraints of the pinhole model.

A closer examination of the model for central projection (Eqn. 2.1) shows how
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object depth information is directly lost as the world point (X, Y, Z) is pro-

jected to the image as (fX/Z, fY/Z). Thus direct depth recovery from a single

image using the pinhole model is not possible. Generally, when modelling the

camera as pinhole, and attempting to recover depth, a stereo configuration is

implemented. This consists of two cameras/sensors in which the baseline dis-

tance between both camera centres is known. Typically, image pixel disparities

can be calculated between both camera images and subsequent triangulation

methods allow direct recovery of object depth. The main disadvantage with

this approach is that two cameras/sensors are required. The equivalence of

f within the pinhole model and v, the sensor depth, of the lens models has

been highlighted. Within the constraints of a single sensor and single image,

knowledge of the sensor depth alone is not adequate for depth recovery. Addi-

tional information is required which is not available by modelling the camera

as pinhole.

Camera models incorporating lenses were discussed in Section 2.1. An expres-

sion for object depth is presented which depends on knowledge of the lens EFL

and the conjugate object distance i.e. focused image point distance. The ad-

dition of a lens to the imaging model introduces new properties to the camera

model which can be exploited for the purpose of depth recovery. The optical

phenomenon of focusing and subsequent image blur offers a new image cue

which encodes object depth information. Given an image of a natural scene,

certain objects within that scene will appear to be more well defined (in bet-

ter focus) than in other areas of the image. These “in focus” areas generally

correspond to the focus plane which can be found with knowledge of the focal

length of the lens and the sensor depth value. Objects in front and behind of

this focus plane, within the scene, exhibit varying amounts of image blur. The

magnitude of this image blur is depth dependent. In addition to being depth

dependent, the amount of blur generated at each depth within the image is de-

fined by the pupil within the pupil plane of the imaging system. It was shown

in Section 2.1 that the focusing properties of the camera models incorporating

a lens depend on properties of the pupil on the pupil plane. Specifically, the

physical size of the pupil, which in this case is its diameter, effectively controls

the amount of blur within the image. The relationship between pupil diameter

and blur radius was identified in Figure 2.3 where B is proportional to D. This

connection between pupil diameter and blur diameter has been well studied

in the area of DfD (Pentland, 1987, Pentland et al., 1989, Subbarao and Wei,
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1992, Subbarao and Surya, 1994). However, these methods require multiple

images with varying camera parameter settings to estimate object depth.

The pupil and pupil plane are an important aspect of Gaussian optics and of

the image formation properties of imaging lenses. Conventional imaging lenses

consist of multiple lens elements coupled with multiple stops. The effect of a

stop within an optical system is to limit the amount of light entering the system

or striking the image sensor. Typically, there will be one stop or diaphragm

within the system of lens elements which is adjustable. This is known as the

aperture stop or pupil stop. This pupil is the limiting factor for light rays from

axial object points entering and exiting the system. Lens systems considered

up to this point have assumed a pupil plane located at the centre of the lens.

The effect of adjusting the diameter of the pupil on the pupil plane has been

observed in the form of image focus and blur. The position of the pupil plane

and the diameter of its pupil play an integral role in image formation.

Shifting the pupil plane either side of the effective lens centre gives rise to the

entrance and exit irises. The entrance iris is the image of the pupil plane from

the object side of the optical system. Conversely, the exit iris is the image

of the pupil plane as seen from the image side of the optical system. Thus,

the entrance and exit iris are conjugate. In both cases, the diameter of the

iris is defined by the diameter of the pupil on the pupil plane and the optical

power of the lens elements through which it is being projected. Figures 2.6(a)

and 2.6(b) present two optical configurations with the entrance and exit iris

shown. In the case of Figure 2.6(a), the pupil plane is situated on the object

side of the imaging lens. Therefore the entrance iris is equivalent to the pupil

plane position and pupil diameter since there is no optical element between the

pupil plane and the object being imaged. The exit iris is defined as the image

of the pupil plane and pupil from the image side of the imaging lens. This

image corresponds to the exit iris lying closer to the object than the entrance

iris. Figure 2.6(b) presents the case with the pupil plane on the image side

of the imaging lens. Now the exit iris and pupil plane are coincident while

the entrance iris is the image of the pupil plane from the object side of the

lens. The most significant property of the entrance and exit iris is that they

represent the limiting pupils through which all axial rays must pass. It is seen

that the cone of light accepted by the optical system in object space has the

entrance iris as its limiting stop. Similarly, the exit iris is the limiting stop of

the cone of rays which emanate from the optical system and strike the image
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sensor. A representation for a general optical system including the entrance

and exit iris is shown in Figure 2.6(c). An off-axis object is imaged where two

rays are depicted. The axial ray emanates from the optical axis and has the

property that it strikes the limit of the entrance and exit iris. The chief ray

emanates from the off-axis object point and passes through the centre of the

entrance iris, and, the centre of the exit iris. Additionally, the incident and

refracted angle of these rays are equal.

Awareness of the optical properties of imaging lenses is of utmost importance,

particularly when considering properties of the pupil plane as a cue for depth

recovery. Two different properties of the pupil plane are examined in this

section. Firstly, the effects of shifting the pupil plane axially are examined.

Secondly, the effects of shifting the pupil on the pupil plane are outlined.

2.3.1 Location of Pupil Plane

The importance of the location of the pupil plane has been highlighted. It is

the limiting stop for all axial light rays which pass through the optical sys-

tem. Optical properties, in the form of optical irises, have been introduced

and shown to be conjugate images, through the lens, of the pupil plane. The

entrance iris is the limiting pupil for rays which enter the system from object

space. When the pupil plane is located in object space, it becomes the limiting

factor for light rays entering the optical system (as shown in Figure 2.6(a)).

Thus it is defined as the entrance iris. As a result, the entrance iris diameter

is equal to the pupil plane diameter, and the relationship between the magni-

tude of observed blur on the image plane is directly proportional to this pupil

diameter within the pupil plane. However, placement of the pupil plane within

image space leads to a different scenario.

When placing the pupil plane in image space, it must be noted that the limit-

ing factor for rays entering the optical system, the entrance iris, is in fact the

conjugate image of the pupil plane through the optical system. Thus, the di-

ameter of the entrance iris may not necessarily be equal to the diameter of the

pupil within the pupil plane (see Figure 2.6(b)). This results in a dispropor-

tionate relationship between the pupil plane diameter and the observed blur

on the image plane. A number of experiments were conducted to identify this

relationship and highlight the effects of placing the pupil plane in image space.
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Figure 2.6: Placement of pupil plane and its overall effect on optical irises

(a) Pupil plane in object space ; (b) Pupil plane in image space ; (c) General

optical configuration depicting both entrance and exit irises
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Figures 2.7(a)-2.7(f) present experiments conducted using the optical design

software Zemax3. Zemax is the industry standard optical design software and

contains libraries for numerous lens catalogues. Its ray-tracing algorithms

account for all optical properties of the given lenses. Edmund Optics (EO)

catalog lenses were chosen for this experiment as they are the lenses which are

used in the real experiments in Chapter 4. The aim of this experiment was

to highlight the difference in magnitude of the recorded image blur diameter

given a system with its pupil plane located in object space, and in image space.

An ideal lens (thin lens) was also simulated for comparative purposes. The

lens chosen for this simulation was the EO achromat with focal length 75mm

and lens diameter of 25mm. The optical system was configured to a near-focus

setting (approx. 300mm) and the pupil plane was fixed at 30mm in front of

the lens for the object space test. Similarly, the pupil plane was set at 30mm

behind the imaging lens for the image space experiment. With the ideal lens,

the pupil plane is located at the centre of the lens. For each experiment, six

different pupil plane diameters were implemented, with ten axial object depths

captured for each diameter. The Point Spread Function (PSF) is measured for

each object depth point imaged. The PSF defines the response of an imaging

system to an object point or point source. Therefore it describes object point

rays which pass through the optical system and strike the image sensor. Zemax

provides exact measurements for the width of the PSF.

The main conclusion from the experimental results presented in Figures 2.7(a)-

2.7(f) is that the diameter of the PSF, with the pupil plane located in object

space, displays the same properties as the ideal imaging system across all object

depths. The similarity in performance between the the ideal system and the

system with the pupil plane in object space is due to the incoming cone of

rays being directly related to the number of rays captured on the image sensor.

With the pupil plane located in image space, the limiting stop for incoming rays

is defined by the systems’ entrance iris pupil diameter, which after projection

through the lens, is not equal to that of the pupil diameter within the pupil

plane. Similar performance for all axial object depths is achieved with a pupil

plane diameter of 25mm as shown in Figure 2.7(a). This is due to the fact

that the entrance iris pupil diameter generated with a pupil plane diameter of

25mm in image space is greater than 25mm. However, since the lens diameter is

25mm, the lens becomes the limiting factor for rays entering the optical system

3www.zemax.com
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and the exit iris, in this case the pupil plane, does not affect the relationship

between incoming rays and the PSF. The difference in magnitude of the PSF

diameter for Figures 2.7(b)-2.7(f) is due to the entrance iris diameter being

greater than that of the pupil plane located in image space.

A closer examination of the relationship between the recorded PSF diameter

at particular object depths and the pupil plane diameter exposes the effects of

pupil plane placement for optical systems. Figure 2.8(a) presents the results

for PSF diameter versus pupil plane diameter for each object depth with the

pupil plane located in object space. Similarly, Figure 2.8(b) presents the same

criteria for the pupil plane located in image space. As expected, the relation-

ship is linear when the pupil plane is in object space. This is due to the pupil

plane and entrance iris being equivalent. Therefore when decreasing the pupil

plane diameter, a proportional decrease in PSF diameter is observed on the

image plane. With placement of the pupil plane in image space, the nonlin-

ear relationship is exposed between PSF diameter and pupil plane diameter.

When the pupil plane diameter increases beyond 12.5mm, the PSF diameter

does not increase proportionately. This is a result of the actual entrance iris

diameter being greater than the lens diameter, causing the lens diameter to

become the limiting pupil for incoming rays. Thus the PSF diameter remains

constant despite increases in pupil plane diameter. This is an important re-

sult in terms of using the relationship between the imaged object point and

the pupil plane diameter as a cue for depth information. The linear nature

of this relationship with the pupil plane in object space is more desirable for

developing a depth dependent model.

The effects of a pupil plane located remotely to the lens in object space is

further examined with the experimental results presented in Figure 2.9(a) and

2.9(b). It has been established that when the pupil plane is located in object

space, it is equivalent to the entrance iris of the optical system. Due to the

linear nature of the relationship of the pupil plane diameter in object space,

a remote pupil plane can be modelled by an equivalent pupil plane at the

centre of the lens. This equivalent pupil diameter will be slightly greater in

magnitude than the physical pupil plane. This is due to the axial rays striking

the lens marginally outside the limits of the physical pupil plane (Figure 2.6(a)

illustrates this behavior at the lens centre). The results outlined in Figure

2.9(a) and 2.9(b) were captured with a pupil plane located 30mm in front of

the lens in object space (Zemax data used with the 75mm focal length EO
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Figure 2.7: Placement of pupil plane and overall effect of optical irises on

the PSF (a) Pupil diameter 25mm; (b) Pupil diameter 18.75mm; (c) Pupil

diameter 15.625mm; (d) Pupil diameter 12.5mm; (e) Pupil diameter 6.25mm;

(f) Pupil diameter 3.125mm
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Figure 2.8: Placement of pupil plane and overall effect on optical irises (a)

Pupil plane in object space; (b) Pupil plane in image space

lens). Four different pupil diameters within the pupil plane were examined, all

of which were less than the lens diameter. Pupil diameters greater than the lens

diameter no longer represent the limiting pupil in the system. The solid lines

in both figures represents the actual PSF diameter recorded at each object

depth at the given remote pupil plane pupil diameter. The circular points

represent the data recorded employing the given pupil plane diameter at the

imaging lens. Thus, the difference between Figure 2.9(a) and Figure 2.9(b) is

that the pupil plane diameter in Figure 2.9(b) has been adjusted to account

for the physical remote pupil plane. In contrast, Figure 2.9(a) represents a

pupil plane at the lens of the same diameter as the remote pupil plane. It is

clear from the results that the adjusted pupil diameter at the lens models the

captured image data more accurately than the non-adjusted case.

If knowledge of all camera parameters is available, it is possible to calculate

an equivalent pupil at the lens based on the recorded PSF diameter. The

practicality of such an equivalent aperture is questionable due to the sensitivity

of absolute measurements in image space. The placement of the pupil plane

in image space could not be guaranteed with sufficient accuracy to calculate

an equivalent aperture. A number of systems have been proposed in the form

of “plenoptic cameras” which insert microlens arrays in the image space of

the optical system (Adelson and Wang, 1992, Ng et al., 2005, Lumsdaine and

Georgiev, 2009). Typically, the placement of the microlens array, which is

located at the focal plane in image space of the imaging system (see Figure

1.1(b)), must be highly accurate i.e. 36µm as reported by Ng et al. (2005).
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Figure 2.9: Equivalent pupil diameter after axial shift (a) Non-adjusted pupil

diameter; (b) Adjusted object space pupil diameter.

These sensitivity issues are avoided with planes in the object space of the

imaging system.

Properties of the pupil plane also demonstrate the equivalence between the

camera models presented in this chapter. By choosing a suitable location for

the pupil plane, it is seen that the lens models are related. Generally, the

thick lens model pupil plane diameter is equal to the principal plane diameter,

and is located at the first principal plane. Figure 2.10 presents the thick lens,

thin lens and pinhole camera models. The thick lens model is defined by its

two principal planes which are in unit magnification. The object ray passing

through the first principal point of the thick lens emerges from the second

principal point with equal angle. If both principal planes are amalgamated and

the sensor depth, v, remains constant, then the thick lens can be equivalently

modelled by a thin lens. The thin lens must have its pupil plane (central plane)

located at the same position as the first principal plane of the thick lens, and,

the sensor depth must be equal to the thick lens sensor depth. This equivalent

configuration is depicted in Figure 2.10. Similarly, the thin lens model can be

geometrically modelled by the pinhole model. This is achieved by replacing

the lens plane with the pinhole pupil and maintaining the image sensor to

pinhole distance, v. Thus the pinhole model is also geometrically equivalent to

the thick lens model. The significance of this geometric equivalence between

both lens models is that the pupil plane can be remotely located in object

space and an equivalent pupil plane and diameter can be defined at the lens

principal plane. Consequently, imaging lenses, which generally have multiple
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Figure 2.10: Equivalence between camera models.

lens elements, can be modelled by the thin lens camera model provided the

principal planes are amalgamated. Furthermore, a remote pupil plane can be

defined and geometrically accounted for.

2.3.2 Location of Pupil on Pupil Plane

The pupil located on the pupil plane is defined as the circular opening on the

opaque pupil plane in which light rays may pass through for image formation.

Within conventional imaging systems, such as those modelled by the thin/thick

lens models, the pupil is centrally aligned with the optical axis of the system.

Since the pupil is circular, it is rotationally symmetric about the optical axis
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and is of diameter D (as in Figure 2.6). The equivalence of camera models

examined in this chapter was outlined in Section 2.3.1. It was shown that lens

models reduced to pinhole when the image sensor and pupil plane/pinhole

configurations were equivalent. That is, the distance of the pupil plane to

image sensor and pinhole to image sensor were equivalent. Thus the lens

model, which captures a cone of rays from the object point, is geometrically

equivalent to the pinhole model which captures a single ray through its pinhole.

Since the pupil within the pupil plane is centrally located about the optical

axis, the corresponding cone of rays passes through the equivalent pinhole of

the lens model. Furthermore, as the pupil is rotationally symmetric about

the optical axis, the image formed by the cone of rays will be symmetric on

the image plane. Therefore, an object point which lies outside of the focused

imaging configuration will be imaged as a “blur circle” on the image plane.

The centroid of this blur circle is the cone axial ray i.e. the equivalent image

of the object point through the pinhole model. Consequently, the geometric

mapping of the cone of rays to the image plane can be approximated by a

central ray passing through the pupil and centred on the imaged circle.

The relationship between a single centred ray and the pupil of the pupil plane

has been established. An experiment is conducted to verify that this relation-

ship can be extended to sub-sampled pupils within the current pupil on the

pupil plane. The experiment was conducted using Zemax and the same lens

as in Section 2.3.1. The imaging configuration was set to focus at infinity i.e

v = F , and the pupil plane was located at the lens apex (thus becoming the

entrance pupil) and consisted of a conventional pupil of diameter 25mm. The

object distance was set to 3m, which in turn ensured that the image would be

out of focus and thus would result in a blur circle. Figure 2.11 presents the

configuration of the pupil plane for the conducted experiment. The symmetric

properties of the pupil have been identified, therefore in order to demonstrate

its sub-sampling properties, a number of sub-pupils are implemented at various

diameters within the conventional pupil. Besides providing accurate informa-

tion on each ray which passes through the optical system, Zemax also allows

the formation of non-conventional pupil planes within the system. Therefore

the experiment consisted of recording the image data for conventional pupils

of diameters 3mm, 5mm, 10mm, and 15mm. Subsequently, the experiment

was repeated using sub-sampled pupils of diameter 1mm centred on the pupil

plane at the aforementioned conventional diameters (red pupils in Figure 2.11).
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Figure 2.11: Pupil plane examination for conducted experiments. Sub-

sampling pupils (red) are 1mm. Pupil diameter variation (blue).

Conventional 

       pupil
Image Plane

(a)

Sub-sampled 

      pupil Image Plane

(b)

Figure 2.12: Experimental setup for pupil sub-sampling (a) Conventional

pupil; (b) Sub-sampled pupil.

Accuracy of the sub-sampling was evaluated by calculating the centroid of the

recorded image circle and comparing it with the image data at the correspond-

ing location of the conventional pupil at that diameter. The experimental setup

is shown in Figures 2.12(a) and 2.12(b).

Results for the sub-sampling are presented in Table. 2.1 and the accuracy is

visualised in Figure 2.13. The accuracy has been defined in terms of the pixel

pitch. Pixel pitch is the physical size of a single pixel on the image sensor,

which in the case of the Panasonic Lumix G1 (used in chapter 4), is 4.25µm.

The results indicate that the centre of the image formed by the sub-sampled

pupil is representative of a single ray passing through a conventional pupil

with the same diameter as the sub-sampled pupil offset. Of the four offsets

examined, the largest error recorded was 0.015 pixels while the minimum was

0.008 pixels. The trend suggests that as the sub-pupil offset is increased within

the conventional pupil, an increase in error is observed. This increase, which is

extremely small in magnitude (1/142 of a pixel) is due to spherical aberration.
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Figure 2.13: Error in pupil plane sampling via sub pupils of diameter 1mm.

Table 2.1: Sub-sampling pupil results.

Conventional Pupil size 3mm 5mm 10mm 15mm

Conventional measured PSF (µm) 25.476 42.179 82.129 120.121

Sub-sampled measured PSF (µm) 25.480 42.167 82.153 120.186

Error (µm) 0.0036 0.0124 0.0245 0.0651

When imaging an axial object point, spherical aberration is the only aberration

which affects the imaged point. Rays which pass through the lens further from

its centre are refracted slightly more than rays which pass through at the

centre. This is caused by the spherical shape of the lens (further examined

in Chapter 5). The most significant result of this experiment is the assertion

that a conventional pupil can be sub-sampled at any point using a pupil of

smaller size. Therefore, movement of the sub-pupil is geometrically equivalent

to sampling rays from the conventional pupil.

The second experiment conducted examined the effect of increasing the sub-

sampled pupil diameter. The results outlined in Figure 2.13 were acquired

with a 1mm diameter sub-sampled pupil. Thus, an examination range between

1mm and 5mm was chosen for the sub-pupil diameter within two conventional

pupil diameters of 10mm and 15mm. Formation of the pupil plane for this

experiment is represented by the blue pupils in Figure 2.11. Results are shown

in Table. 2.2 while the error is presented in Figure 2.14(a) for a conventional

diameter of 10mm and in Figure 2.14(b) for 15mm. In both cases, it can be

seen that as the sub-pupil diameter is increased, the error in sub-sampling the

conventional pupil also increases. Similarly to the initial experiment on sub-

sampling pupil location within the pupil plane, spherical aberration increases

the error. Initially, the error is increased with the conventional pupil diameter
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Figure 2.14: Error in sub-sampled pupil due to diameter variation (1mm-

5mm); (a) Sub-sampling a pupil diameter of 10mm; (b) Sub-sampling a pupil

diameter of 15mm.

Table 2.2: Sub-sampled diameter variation.

Conventional Diameter (µm) Sub-sampled Pupil Diameter(µm)

1mm 2mm 3mm 4mm 5mm

10mm 82.13 82.15 82.04 82.03 81.87 81.73

15mm 120.12 120.19 120.27 120.30 120.43 120.67

increase (from 10mm to 15mm). Subsequently, the increase in sub-sampled

pupil diameter (from 1mm to 5mm) contributes to a larger magnitude of error

in the final centroid estimate. This is due to the slight skew of the blur circle

introduced by the spherical aberration present within the system. The scale of

the induced error is approximately 1/8 pixel for a 5mm diameter sub-sampled

pupil at 15mm and 1/11 pixel for the same sub-sample diameter at 10mm.

Although the error remains relatively small in magnitude, it is desirable to

have the minimum error achievable for the sub-sampled ray to better represent

the effect of the full pupil. Therefore a sub-sample pupil diameter of 1mm is

best suited for this task.

A closer examination of the physical size of the sub-sampling pupil leads to

an investigation of the effect of diffraction within the imaging system. Diffrac-

tion occurs within an imaging system due to the wave nature of light passing

through it. Interference between light waves occurs when it passes through

the pupil. Naturally, the diffraction increases as the pupil size is decreased.

The pattern observed on the image plane is a combination of constructive and

60



Chapter 2 – Camera Models and Calibration

Figure 2.15: Airy pattern.

destructive interference between the waves of light which passed through the

pupil. This pattern takes the form of a centrally illuminated circle which is

enclosed by light and dark rings. The rings correspond to the interference

between the propagated light through the pupil. This pattern is known as

an “Airy” pattern (presented in Figure 2.15) in which the distance from the

pattern centre to the first dark ring, xd, is approximated by,

xd ≈
1.22λf

d
(2.27)

where λ is the wavelength of the incident light, f is the sensor depth, and d is

the pupil diameter. Therefore, an approximation can be made for the increase

in diameter of the imaged point due to diffraction. Within the constraints of

the Zemax experiments which were conducted, a single wavelength at 465nm

was used with the sensor depth at 75mm. Given a sub-sampled pupil diameter

of 1mm, the diffractive contribution to the imaged point will be approximately

42.5µm which equates to 9.8 pixels. However, since it is the centroid of the

imaged circle which is being estimated, and since the pattern is symmetric, the

diffractive effects can be ignored for the purpose of sub-sampling a conventional

pupil.
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2.4 Discussion

This chapter is primarily concerned with modelling the imaging process. Three

camera models, which are commonly used in the field of computer vision, are

examined in detail and the calibration of these models is outlined. Section 2.1

introduces the traditional pinhole camera model and details the parameters

which describe its projection properties. One of the main limitations of the

pinhole model is that it does not capture scene radiance. Therefore, lens

models are introduced which capture more light rays emanating from the object

point and focus these onto the image sensor. One of the key goals of this thesis

is to capture depth information from a single image using a single image sensor.

Therefore additional cues are required to regain the depth information which

is lost with the pinhole model. Depth estimation techniques incorporating

pinhole models are briefly discussed but typically require the use of multiple

sensors. Consequently, a closer examination of lens models is conducted. The

simplest lens model, the thin lens model, places an ideal lens at a distance v

from the the sensor where an aperture or pupil is located at the centre of the

lens with a diameter D. The diameter of the pupil determines the quantity of

light rays captured by the imaging system. With knowledge of the lens focal

length and sensor depth, Gaussian optical laws facilitate the determination of

object depth. The true nature of imaging lenses are neglected by the thin lens

model since most photographic lenses contain multiple lens elements and stops.

Therefore, the Gaussian thick lens model is introduced. The cardinal points

of the thick lens define how object rays are refracted through a system of lens

elements. With knowledge of the cardinal points, the lens law can be used to

calculate object depth. By incorporating a lens into the imaging system, only

a single object depth can be focused to a single point on the image sensor.

This object depth is known as the focus depth. A point at any object depth

which does not lie on the plane of the focus depth will be captured on the

image plane “out of focus” as a blur circle. The quantity of blur captured on

the image plane is related to the pupil diameter and, more importantly, the

object depth. Thus, the image blur is in fact a depth cue captured by the

camera models incorporating lenses.

Calculating object depth requires knowledge of certain camera parameters

when using the lens law. Generally, information on the lens focal length is

provided by the manufacturers. Therefore, it is the sensor depth which needs
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to be recovered to calibrate the optical configuration. The equivalence of the

sensor depth of the lens models and the “focal length” parameter of the pinhole

model was established. Section 2.2 presents the standard method for recover-

ing camera parameters based on a pinhole model. Planar camera calibration

requires three images of a planar target in varying orientation. Subsequent

fitting of the IAC based on the object point to image homography is per-

formed to recover the camera calibration matrix. The sensor depth parameter

is recovered from this matrix. An alternative method for planar camera cali-

bration is explored in the form of Gurdjos and Payrissat (2001). The standard

method of Zhang (1998) is based purely on fitting an imaginary entity in the

form of the IAC, and involves minimising an algebraic error to calculate the

calibration matrix. Gurdjos and Payrissat (2001) propose a more intuitive

geometric framework which, although based on the relationship of the IAC,

involves real entities on the image plane and thus minimises geometric error

in the determination of the calibration matrix.

Section 2.3 examines the impact of particular camera models on recovering ob-

ject depth. It was established that lens models introduced blur to the imaging

process which could be harnessed as a cue for depth recovery. Since the pupil

diameter and magnitude of image blur are proportional, this relationship is

further examined. In particular, the impact of the pupil plane location and

location of the pupil within the pupil plane are outlined. Conventional imag-

ing lenses consist of multiple lenses and stops. The limiting stop within the

system is known as the pupil within the pupil plane. Location of this plane

within the lens system plays an important role in the formation of the image

blur for an object depth which is out of focus. Subsequently, the concept of

optical irises is introduced. The entrance iris and exit iris are defined as the

images of the pupil from object space and image space respectively. Therefore

optical irises define the axial cones of rays which enter and exit the optical

system. When using image blur as a cue for depth, its relationship with the

pupil plane must be known. However, it is the entrance iris which defines the

object rays entering the system, and the eventual magnitude of the image blur

on the image sensor. Consequently, the location of the pupil plane and the

diameter of its pupil must be known. It is shown through experimentation that

when the pupil plane is physically located outside the system of lens elements

in object space, it becomes equivalent to the entrance iris. However, when

the pupil plane is located in image space, it is the exit iris and the entrance
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iris becomes its image in object space. Experimentation highlights the linear

relationship between pupil diameter and image blur for a system in which the

pupil plane is the entrance iris. Similarly, an experiment is conducted to verify

that this relationship becomes non-linear when the pupil plane is located in

image space.

The geometric equivalence of the camera models presented in this chapter is

outlined. It is shown that a thick lens can be modeled as a thin lens which

is centred at the first principal plane of the thick model. In turn, the thin

lens can be decomposed to a pinhole by replacing the lens with a pinhole.

With the additional knowledge of the pupil plane, properties of the image blur

formed on the image plane can be exploited. Thus, subsequent experimenta-

tion examines the impact of remotely locating the pupil plane in object space

and of sub-sampling the pupil of the pupil plane. The experiments verify that

a pupil plane may be remotely located in object space by modelling it with

an equivalent pupil diameter at the imaging lens. Further experimentation

examines how the pupil plane can be sub-sampled with a pupil of a smaller

diameter. Results show that sub-sampled pupils form an image blur circle

on the image plane which, when its centroid is found, accurately models the

ray which is passing through an equivalent (conventional) pupil at that di-

ameter. Further testing was carried out which examined the accuracy of this

sub-sampling based on increasing the diameter of the sub-sampled pupil. The

smallest pupil diameter (1mm) was found to yield the most accurate sampling

of the conventional aperture. An investigation into the diffractive properties

of the imaging system was subsequently performed. Smaller diameter pupils

will produce more diffraction on the image plane. However, since it is the

centroid of the image circle that is calculated, the diffraction will not effect

the sub-sampling results. Additionally, the object depths which are examined

lie in areas which are outside the object focus distance. Therefore, there is

considerable image blur present on the image plane which, in the majority of

cases, is larger in magnitude than the resulting diffraction of the sub-pupils.

Planar camera calibration is further investigated in Chapter 3. In particular,

the method in which calibration images are acquired and the effect this has

on camera parameter estimates are examined in detail. Properties of the pupil

plane outlined in this chapter are the foundations for the multi-pupil imaging

model in this thesis. The results presented in this chapter lead to the formation

of two multi-pupil imaging models which are presented in Chapter 4.
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Efficient Camera Calibration

The calibration of cameras is an area which has received much attention in the

computer vision community over the last 25 years. The drive towards increased

resolution with smaller sensor sizes has seen a continued growth in the digital

camera market and contributed to the need for flexibility when calibrating a

camera. In recent years, the mobile phone camera market has become the

largest market for digital sensor suppliers1. The emergence of the smartphone

has led to increased onboard processing power and high resolution displays,

which, coupled with a high resolution camera, is allowing these devices to

become more accessible to computer vision researchers. Camera calibration

is emerging as a key factor for computer vision researchers in this area for

a number of reasons. The lenses used in camera modules manufactured for

mobile phones are of a lesser quality (and cost) than a conventional point and

shoot digital camera. As a result, lens distortion and aberrations are increased

in the images. The increase in demand for mobile phone applications that make

use of augmented reality and metric depth information have also contributed

to the renewed interest in camera calibration as it is a fundamental step to

solving these problems.

Planar calibration targets, or calibration grids, are the de facto standard

method of calibrating cameras for computer vision tasks. They are easily man-

ufactured, for example by printing the grid pattern on a desktop printer and

then mounting the pattern on a planar surface. The planar calibration meth-

1http://www.strategyanalytics.com/default.aspx?mod=reportabstractviewer&a0=6216

accessed: September 2011
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ods of Zhang (1998) and Gurdjos and Payrissat (2001) introduced in Chapter

2 both employ checkerboard planar patterns for the calibration procedure. In

this thesis, the input images which form the image data set for planar camera

calibration are called the Image Network (IN). The implications for calibration

of the planar target orientation in world space with respect to the camera is

an area of planar camera calibration which has received little attention. With

the exception of the work by Sturm and Maybank (1999), in which degenerate

configurations are outlined, there is no indication of what constitutes a good

image network geometry for the purpose of planar camera calibration. Thus,

the primary focus of this chapter is to address this issue by specifying optimal

planar pose for calibration targets in INs.

Section 3.1 examines, in detail, the geometric relationship between the pla-

nar calibration methods of Zhang (1998) and Gurdjos and Payrissat (2001).

Although both methods solve the camera parameters based on the Image of

the Absolute Conic (IAC), the geometric domain in which Gurdjos’ method is

presented gives further insight into the configuration of the planar target and

constraints generated on the IAC. The Centre Line (CL), which was derived in

Chapter 2, encodes the geometric configuration of the planar target orientation

with respect to the camera. The CL is shown to intersect the IAC at its cen-

tre, while also being orthogonal to the vanishing line of the plane. Simulated

experimentation is conducted to examine the impact of planar target orienta-

tions on the calibration results. Planar targets which are degenerate and near

degenerate are outlined. Target orientations which conform to degenerate con-

figurations lead to singularities in solving the planar calibration equation, and

thus, result in poor parameter estimates. It is shown that consideration of the

image CL orientation can avoid such degenerate configurations. Additionally,

near degenerate configurations, which also result in poor camera parameter

estimates, can be identified and thus avoided when calibrating a camera.

The CL offers an attractive method to avoid singularities as it is calculated

from the image to plane homography. Therefore, an IN strategy is proposed

based on enforcing ideal geometry in the IN. By enforcing geometric indepen-

dence in the planar target orientations, independence in the circular points

on the IAC is achieved. This enables more accuracy in the estimation of the

IAC and subsequent camera parameters. The proposed IN strategy, Optimal

Image Network (OIN), is presented in Section 3.2. Optimal Image Networks

(OIN) are formed based on the properties of the CLs within the IN. Two forms
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of OIN are proposed in Generated Image Networks (GIN) and Selected Image

Networks (SIN). In the case of SINs, it is assumed that the user has acquired

a large data set of planar calibration images. Subsequently, image filtering, in

the form of an image search, is performed to select images with maximum ge-

ometric independence to form the IN. However, in the case of GINs, the input

requirements are that of a single image of the planar calibration target. Based

on the geometric properties of this image CL, synthetic images are generated

which correspond to planar target poses which enforce maximum independence

in the IN when formed with the initial image. Section 3.2 outlines the neces-

sary steps in forming the synthetic planar poses, and subsequently replicating

these images.

Experiments conducted with OINs are presented in Section 3.3. An application

of SINs is outlined by examining a data set captured by a webcam through

a video sequence. Calibration results using SINs are compared with these

for a random selection of images. Further accuracy assessment of camera

parameters is quantified by performing a distortion correction with both image

network strategies. Experimentation with GINs is undertaken with simulated

and real data. The increase in camera calibration accuracy employing GINs

is demonstrated with simulated data across a large range of INs. Additional

experiments are performed to validate the image replication process. Efficiency

of GINs is highlighted by examining the stability of the camera parameter

estimates with real data. The implications of OINs in terms of the increased

accuracy and stability in camera parameter estimates are clearly shown and

discussed.

3.1 Camera Configurations

The planar calibration approach of Gurdjos and Payrissat (2001) was presented

in Chapter 2. It outlined a more intuitive geometric approach to solving the

problem in comparison to the traditional planar methods. However the exact

relationship between both methods was not discussed. Figure 3.1 depicts the

Poncelet configuration of Gurdjos’ method in traditional planar calibration

terms i.e. in the form of the IAC. The assumed camera has zero skew, thus

two images of a planar target are the minimum requirement to calibrate the

camera. Examining Figure 3.1 from the point of view of the traditional method
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(Zhang, 1998), the VL of each planar target V Li will intersect the IAC (ω) in

the two circular points ci1 and ci2. Thus, there are four constraints on the IAC

to recover the four camera parameters (f , αf , px, py).

Analysing Figure 3.1 from a Poncelet perspective is best served by initially

examining the configuration for a single planar target. Poncelet’s theorem

outlined in Figure 2.5 showed that the image of a planar target remained in

perspective correspondence with the planar target rotating about its inter-

section with the image plane. Each rotated plane has an associated camera

centre and Principal Point (PP), however only one plane corresponds to the

true camera centre and PP. The projection of the camera centre locus onto

the image plane results in the CL, which is a real line on the image plane and

consists of all plausible PPs. Taking a single plane, for example the plane

which corresponds to V L1 in Figure 3.1, according to Poncelet there are an

infinite number of plausible camera centres and resulting PPs in this geometric

configuration. It was shown in Chapter two that the CL is perpendicular to

the VL of the planar target. Thus CL1 is shown in Figure 3.1 and it intersects

the IAC at its centre. The implication of Poncelet’s geometric configuration is

that the circular points (c11, c12) also intersect the infinite number of plausible

IACs which correspond to different camera centres and PPs. These IACs are

shown in Figure 3.1 as the red dashed conics. Since the CL represents all

plausible PPs in the image frame, it also intersects the plausible IACs at their

centres. Subsequently, when a second planar target is taken into consideration

(V L2, CL2 and the green IACs) to complete the calibration, it is clear that

the CL of this planar configuration will only intersect CL1 in a single point.

That single point is the true PP of the camera and thus corresponds to the

correct IAC.

It is clear from Figures 2.5 and 3.1 that the CL encodes geometric information

about the camera and planar target configuration. The focus of Gurdjos and

Payrissat (2001) was to decouple the camera intrinsic parameters for the pur-

pose of calibrating a camera using images at varying focal lengths. Thus the

CL was employed to initially calibrate the aspect ratio and principal point.

Consequently, the broader geometric significance of the CL within the planar

calibration framework was neglected. The work carried out in this chapter

focuses on using properties of the CL to increase the accuracy and stability of

planar camera calibration.
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Figure 3.1: Poncelet geometric interpretation in planar calibration domain.

3.1.1 Degenerate Configurations

A degenerate configuration results in a singularity arising in the planar cali-

bration equations. Geometrically, this is defined as a planar target which is in

an orientation such that it does not contribute independently to the current

system of planar calibration equations. Awareness of degenerate configura-

tions is of utmost importance when calibrating a camera, particulary in the

minimum case of using two planar targets. If both images do not contribute

independently i.e. define a unique IAC, recovery of the camera parameters is

not possible.

Degenerate configurations of planar camera calibration have been studied and

identified in the computer vision community. The work of Sturm and Maybank

(1999) gives the most comprehensive analysis of existing singularities. How-

ever, the impact of configurations which are close to degenerate on parameter

estimation accuracy has largely been neglected. Additionally, there has been

no straightforward method reported to avoid degenerate and near-degenerate

configurations when calibrating a camera. This issue is addressed in this chap-

ter by exposing the nature of the relationship between the geometry of the
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calibration images and their CLs.

The geometric significance of the CL has been demonstrated. It encapsulates

the geometric configuration of the planar target with respect to the camera.

Therefore it can be used as a guide to identifying favourable geometry when

considering planar target orientations for planar camera calibration. Con-

versely, it can aid in the detection of degenerate configurations. Extensive

simulated experiments were conducted in which the minimum planar calibra-

tion requirements were examined for a range of planar target orientations. A

zero skew camera was assumed, and a dense set of planar target orientations

was tested. Figure 3.2 presents the results for a range of two plane calibrations.

An initial planar target orientation was taken with a pitch angle of 20 degrees,

a yaw angle of 20 degrees, and a roll angle of 7.5 degrees. Planar calibrations

were performed using this orientation as a seed input image. The seed im-

age was calibrated with every combination (every 1 degree change) of planar

target with orientations of pitch ranging between -50 and 50 degrees, yaw of

-50 to 50, and a random roll angle between -7.5 and 7.5. These orientations

approximately represent the limits at which planar orientations are captured

for planar camera calibration due to feature extraction constraints.

In order to examine the stability of the calibration results, the condition num-

ber of the matrix containing the system of calibration equations (given the

two input images) was calculated for each image pair. It is represented by the

colourbar in Figure 3.2. The condition number is a quantity which represents

how well a system of equations is solved. It is calculated by taking the largest

singular value of the equation matrix and dividing this by the smallest sin-

gular value. Large condition numbers indicate dependence in the system of

equations. Given that the seed image had a (pitch, yaw) orientation of (20,

20), it is evident that an image with identical pitch and yaw orientation is a

degenerate configuration. This is represented by the spot area in Figure 3.2

at (20, 20). Variation of the roll angle equates to an in plane variation of

the planar target orientation. Thus, roll angle variation does not effect de-

generate configurations. On closer examination of Figure 3.2, the degenerate

configurations outlined by Sturm and Maybank (1999) can be identified. The

planar target orientations at (0, 0), (20, -20), and (-20, 20) are such configu-

rations. Due to the symmetric nature of the IAC (as a result of the zero skew

assumption), there are a number of degenerate configurations which arise as a

result of dependence between the circular points in certain orientations. Sturm
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Figure 3.2: Degenerate configurations - simulations.

and Maybank (1999) called this the “reflection constraint”. However this only

offered a brief explanation to the root cause of these degeneracies.

The reflection constraint arises when the vanishing lines of both planar targets

are reflections of each other by both a horizontal and vertical line in the image.

This configuration is outlined in Figure 3.3. The vanishing lines V L1 and V L2

intersect ω at the circular points (c11,c12) and (c21,c22). The IAC is symmetric

about the axes which intersect at the centre of the conic. It is evident that V L1

and V L2 are reflections of each other about the same horizontal axis and a

vertical line drawn in at the intersection of both VLs. Therefore, a dependency

arises in the circular points, and thus it is not possible to fit a unique conic

and solve the calibration equations. One of the major contributions of this

chapter is to link this particular family of singularities to the CL. Since the

CL is orthogonal to the VLs, it also captures the geometric dependence of the

circular points on the IAC. Thus, equal angle with a horizontal and vertical line

in the image identifies degenerate configurations equivalent to the “reflection

constraint”. This is an important result as the simple formation of the CL
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Figure 3.3: Degenerate configurations - reflection.

in comparison to the VLs makes it an attractive proposition for identifying

degenerate configurations. Since the CL always intersects the centre of the

IAC, it is sufficient to calculate its orientation with either the horizontal or

vertical direction to confirm its reflective properties.

Singularities which correspond to the reflection constraint are present in Fig-

ure 3.2 in areas between the already identified degeneracies. Thus, there is

a manifold of degenerate configurations for the initial seed image at (20, 20)

which corresponds to the “hot areas” in Figure 3.2. This manifold also in-

cludes near degenerate configurations, (the light blue/green areas) which are

not categorised in the literature but generally result in poor parameter esti-

mates. Examination of the image CLs for all the simulated data in Figure 3.2

confirms the link between the CL and image configurations. The seed image

has a CL with orientation -53.84o with respect to the horizontal direction. The

total number of simulated second image orientations was 10,201 of which 134

resulted in degenerate (red areas of Figure 3.2) and 201 in near degenerate con-

figurations (light blue/green). In addition to the 335 critical configurations,

a further ten images correspond to orientations which are close to the actual

seed image. These are the bright areas in Figure 3.2 at (20,20). The average

CL angle recorded for these configurations was -54.37o with a Standard Devia-

tion (SD) 1.45o. Whilst in the case of the 335 degenerate and near degenerate

configurations, the resulting CL angle was 54.13o with SD 2.43o. Therefore all

degenerate and near degenerate configurations are characterised by examining

the relationship between image CLs. Orientations of CL which are similar,
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reflected, and near both cases of similar and reflected are either degenerate or

near degenerate configurations.

The results presented in Figure 3.2 represent a single seed image orientation.

The same simulation was completed for seed images with pitch and yaw orien-

tations across the entire range outlined in Figure 3.2. The same constraints on

the CL were exhibited for the degenerate manifold in all cases. If additional

input images are used in the planar calibration framework, the number of con-

straints on the IAC is increased (two for each image). Cases of three or more

input images will generally produce a solution for the IAC. However if there is

dependency between input images, less stable parameter estimates are found.

Therefore image CLs are an ideal tool for examining the geometric configura-

tion of input calibration images regardless of the number of input images. The

focus of the remainder of this chapter is the implementation of calibration im-

age networks which contain ideal image geometry for the purpose of accurate

and efficient calibration parameter estimates.

3.2 Optimal Image Networks

The minimum number of images required in an IN for planar camera calibra-

tion is two. Properties of the CL have been introduced and shown to encode

geometric information of the planar target configurations. Particularly in the

cases of degenerate configurations, the CL can be used as a guide to determine

whether or not images within the IN will result in singularities in the parame-

ter estimation stage. Additionally, INs close to degenerate which also result in

poor camera parameter estimates can be identified via the CL. Consequently,

an optimal image network is defined as an IN which contains ideal image ge-

ometry (through optimally independent calibration equations) for the purpose

of planar camera calibration.

Two forms of optimal image networks are introduced in this section. Both

methods make use of the image CL to determine the geometric configuration

of the INs. The first method assumes that a large number of input calibration

images have been supplied. Subsequently the CL is used as a guide to filter the

ideal images from the degenerate cases. This form of optimal image network is

termed Selected Image Network (SIN). The second proposed method of optimal
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image networks requires an initial input image from the camera. Based on the

CL of this initial image, additional images are generated synthetically. These

synthetic images contain ideal IN geometry and are subsequently acquired by

the user to form a GIN. SINs and GINs evaluate image geometry based on the

orientation of the CL. Independence in the IN is achieved by ensuring that the

CLs of images are not in degenerate configurations.

Both methods require an initial seed image, therefore it is imperative that the

orientation of the seed image is not in a degenerate configuration or possible

degenerate configuration when additional images are added to the IN. CLs

with orientations of 0◦ and 90◦ correspond to fronto parallel planar target

orientations (pitch and yaw of orientation of (0◦,0◦)) and a rotation of the

target about either the pitch or yaw axis respectively. These are known to be

degenerate and must be disregarded as seed images for optimal image networks.

Depending on the number of images in the IN, which is defined by the user

for both SINs and GINs, distinctiveness between CLs must be enforced to

ensure a unique determination of the IAC. This is achieved by choosing an

adequate angle between image CLs based on the IN size, whilst at the same

time ensuring that the reflection constraint is avoided. An example of such

avoidance is ensuring the angle between two CLs in a two IN is 90◦ and that the

seed image is not of the orientations 0◦ and 90◦ (degenerate) or 45◦ (reflective

degenerate).

Since both forms of optimal image networks contain favourable geometry, an

increase in parameter estimation accuracy and stability is achieved. Guide-

lines on planar target poses for camera calibration have not been adequately

addressed in the literature. Therefore both SINs and GINs have implications

on the overall scheme of planar camera calibration, particularly in the case of

non-expert practitioners.

3.2.1 Generated Image Networks

The first step in forming GINs is to define the IN size and capture an ini-

tial image of a planar calibration target in a non-degenerate configuration (as

discussed in section 3.2). Subsequently, synthetic planar poses are generated

based on the properties of the initial CL in the IN. The key contribution of

GINs lies in the generation of synthetic images of planes in poses based on
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the image CL. In order to generate synthetic images for the GIN, properties

of the camera used to capture the initial image must be approximated. This

allows the formation of a synthetic planar homography, which in turn defines

the synthetic calibration image to be replicated by the user. Once the syn-

thetic poses have been captured, the GIN is formed. The replication process

is performed in realtime using the camera’s “live-view” screen2. The synthet-

ically generated image of the planar grid with ideal pose is augmented (in a

semi-transparent manner) to the current live view of the camera. Therefore,

the task of replication is reduced to visually aligning the current live-view of

the planar grid with the synthetically augmented grid. An example of this

process is shown in Figure 3.11.

Approximating the camera parameters to generate synthetic images requires

the construction of a planar homagraphy matrix which encodes the internal

parameters, K, of the camera and the new pose of the target. Estimating

the principal point (px,py) at the centre of the image allows an approximate

calculation for the camera sensor depth, or in pinhole model terms, the focal

length f . This yields an approximated camera matrix K̂ which reduces the

problem to the construction of the synthetic planar target pose R̂. The syn-

thetic homography Ĥ is formed by K̂ and the pose R̂. The rotation matrix,

R̂, is decomposed into the pitch (rα), yaw (rβ) and roll (rγ) angles, which

are used to estimate the new pose of the planar target. Constraints on the

CL are imposed, reducing the solution space and ensuring that a valid pose is

determined.

Forming Ĥ

The relationship between the IAC and a point homography was outlined in

Chapter 2. Coupled with the knowledge of the principal point and use of H

from the initial image captured by the user, Ĥ can be partially formed. For a

complete formation, the target pose being generated (R̂) must be considered.

A general planar homography matrix H can be decomposed as,

H = K[R12 |t], (3.1)

2A webcam, Logitech R⃝ QC3000 is used for the experimentation with GINs (at VGA

resolution)
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where R12 represents the first two columns of the rotation matrix. Image

generation of the planar target is obtained by applying Ĥ to an image of the

calibration target in its canonical position. A valid Ĥ is constructed similarly

to Eqn. 3.1. The first step of the formation takes advantage of the assumption

of px and py (at the image centre) by eliminating these terms in Eqn. 3.1. This

is accomplished by pre-multiplying H by a matrix U where Ĥ = UH with

U = [I | − c] and c = (px, py, 1)
T . This leaves an expression containing the

focal length, f , and the scaling factor, µ, of the H matrix,

Ĥ =


fr11
µ

fr12
µ

..
fr21
µ

fr22
µ

..
r31
µ

r32
µ

..

 (3.2)

The third column, which contains the translation, does not affect the forming

of f . By manipulation of the planar calibration equations (Eqns 2.14 and

2.15), the parameter f can be estimated from Ĥ as,

f =

√
−ĥ11ĥ12 − ĥ21ĥ22

ĥ31ĥ32

(3.3)

which can now be used to find the scaling factor in Eqn. 3.2. Calculating the

scaling factor is straightforward, since it is well known that the columns of a

rotation matrix form an orthornormal basis (Hartley and Zisserman, 2003).

With the ability to decompose the planar homography matrix from the first

image (H) into a calibration matrix K̂ and scaling factor µ, the planar ho-

mography matrix for the synthetically generated image (Ĥ) can be constructed

via these parameters coupled with the optimisation parameters R̂α, R̂β and

R̂γ which form the estimated rotation matrix R̂.

Ĥ = µK̂R̂ (3.4)

Constraints on Ĥ

The criteria for generating a valid Ĥ have been identified. The assumption

of the principal point at the image centre recovers an approximated K̂ which,

in turn, recovers the scale from the original image homography H. Therefore,

the key to determining the GIN is the estimation of the pose (R̂). Forming

a Ĥ which yields a correct solution requires constraints to be imposed on Ĥ

76



Chapter 3 – Efficient Camera Calibration

while R̂ is estimated. These constraints are based on geometric properties of

the image, primarily the CL.

An expression for the CL was derived in Eqn. 2.24. This can be written in

linear form as,

py = Γpx + Λ (3.5)

where Γ is the slope of the CL given by,

Γ =
−φ1α

2

φ2

(3.6)

and Λ, the y-intercept given by,

Λ =
φ3α

2 + φ4

φ2

(3.7)

The first constraint applied to Ĥ is on the slope of its CL. As discussed in

Section 3.2, once the GIN size (including seed image), k, has been chosen, a

non-degenerate seed image is defined. Therefore equal angle between image

CLs enforces independence in the geometry of the IN. The angle between CLs is

defined by its slope and the slope of the seed image, m1. Therefore, depending

on the number of images to be synthetically generated, n, the optimum CL

slope Γi is defined as,

Γi|i=1:n = tan

(
tan−1(m1) +

iaπ

180

)
(3.8)

where a is the angle between CLs, found as a = 180/k. Thus, generation

of synthetic images require their CLs to have a slope of Γi. As the slope is

nonlinear in the parameters of Ĥ, a cost function is developed to estimate the

optimal slope value. The cost function Ci(1, R̂) for this constraint (where “1”

indicates the first constraint) is expressed as,

Ci(1, R̂) = (Γ̂i − Γi)
2 (3.9)

where Γ̂ represents the slope of the CL for the homography being estimated

(Ĥ). The implications of Ci(1, R̂) lead to multiple solutions of equal angle

between CLs which are determined by the y-intercept, Λ̂i. Thus a second

constraint is imposed on Ĥ with the aim of generating the correct CL. This is

enforced by ensuring the generated CL passes through the assumed principal

point. The optimal intercept value (Λi) is calculated as,

Λi = py − Γipx (3.10)
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The cost function Ci(2, R̂) is formed similarly to Ci(1, R̂).

Ci(2, R̂) = (Λ̂i − Λi)
2 (3.11)

The minimisation of Ci(1, R̂) and Ci(2, R̂) yields a manifold of possible solu-

tions. In order to select poses that are realisable, a third constraint is applied

on the solution space which examines the extent of compression/expansion

in the generated synthetic images. This prevents the generation of GIN im-

ages that would be practically unattainable and difficult to perform feature

extraction on.

When a transformation Ĥ, is applied to an image, it can result in the expansion

and compression of pixels in the image. This compression and expansion can be

measured locally in the image by examining the singular values of the Jacobian

(Mallon and Whelan, 2005). The Jacobian of a single point p = (x, y) in the

image is defined as:

Gp ⇒ J(Ĥ, p) =

[
δx̂
δx

δx̂
δy

δŷ
δx

δŷ
δy

]
(3.12)

Each point, p, in the image has two corresponding singular values σ1(G) and

σ2(G). For a transformation Ĥ, if σ > 1 there is an expansion of pixels and

if σ < 1, the overall effect is compression. It is desirable to ensure that the

singular values of the Jacobian at each point in the image are as close as

possible to 1. This limits perspective distortion and ensures realisable images

and feature extraction. The Jacobian can be calculated at each point in the

image, or alternatively over a grid of points in the image. This constraint is

expressed as,

Ci(3, R̂) =
l∑

i=1

[
(σ1(Gi)− 1)2 + (σ2(Gi)− 1)2

]
(3.13)

where l is the number of points in the grid used. The total cost function (T)

which incorporates all the constraints is,

T(R̂) =
n∑

i=1

[
Ci(1, R̂) + Ci(2, R̂) + Ci(3, R̂)

]
(3.14)

where n is the number of images to be generated in the image network. Initial

estimates of rα, rβ and rγ for the optimisation are taken as the inverse orien-

tation of the initial calibration image provided by the user (approximating the

orientation by decomposing H). The minimisation of T(R̂) will generate the
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synthetic target poses for the GIN through the formation of the optimal Ĥ

matrices. The Levenberg-Marquardt (LM) algorithm is used for this purpose.

The algorithm generally converges within 20 iterations.

Network orientation and sensitivity

Given that the rotational parameters are being estimated for the GIN optimi-

sation, the sensitivity of R̂ is examined. Properties of the CL were investigated

in Section 3.1 and it was noted that the roll angle of the planar grid rγ has no

effect on the CL orientation as it represents an in-plane rotation. Therefore rγ

does not influence Ci(1, R̂) or Ci(2, R̂). However, it does influence the image

grid constraint Ci(3, R̂). If the roll angle is large in a perspectively distorted

image, the feature extraction process can be complicated, particularly with

regards to the ordering of the control points. Additionally, the guided image

acquisition can become more convoluted due to large roll angles which would,

for example, require the user to capture the images of a calibration grid rotated

by 90◦. Thus, by including the rγ in the optimisation, it prevents large roll

angles and yields images which are more practical for the replication process.

The sensitivity of the R̂ parameters to random perturbations is tested. These

perturbations are examined as they represent situations where the practitioner

may be unable to reproduce the synthetic pose exactly. They are modelled as

random variations (rerr) in the range of ±10◦ in rα and rβ. Typically the user

error is within ±2◦ of the optimum angle as outlined in the experiments in

Section 3.3.2.

The variations of R̂ are used to form the perturbed planar homography matrix

Hper which gives a perturbed CL. Hper is formed similarly to Ĥ in Section

3.2.1 using Eqn. 3.1.

R̂ = (rα + rerr1, rβ + rerr2, rγ)

Hper = K̂R̂ (3.15)

Simulated testing was performed for 1000 instances of random perturbations in

the R̂ of a homography describing a CL with known angle relative to another

CL. Figure 3.4 shows the relationship between the perturbed error on R̂ and

the corresponding induced angle error between the CLs. It can be seen that

for small perturbations of R̂, the induced angle error between CLs remains
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Figure 3.4: Effects of perturbations when estimating the ideal image via the

planar homography H and the rotational parameters R.

bounded. This is an important result as it ensures that small error in the R̂

estimation will not dramatically affect the calibration results.

3.2.2 Selected Image Networks

Selected image networks are the second method employed to obtain INs with

favourable geometry for planar camera calibration. SINs are formed given a

large data set of input calibration images. The user input requirements are

similar to that of the GINs in that an IN size must be specified before the

SIN is formed. Therefore, once a k sized IN is chosen, images from the given

data set can be selected to form a SIN based on the orientations of their CLs.

Additionally, the same constraints apply to selecting the seed image in terms

of degeneracy avoidance. The ideal angle between CLs is calculated in the

same manner as the GINs i.e. a = 180◦/N . The only constraint on selecting

calibration images is the slope of the CL. It can be assumed that all image
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CLs pass through the principal point since the data set provided for the SIN

formation is captured with the same camera. Automatic image selection is

implemented in two stages. The initial step requires each image CL to be

determined, with the angle of each CL relative to the x-axis calculated via the

slope (see Eqn. 3.6). The second step involves an algorithmic search through

the data set of images to select images with the desired geometry, or CL angles.

In practice, a tolerance of ±1◦ is enforced on a for the selection process.

The underlying search method of the proposed image selection strategy is

a binary search approach (Knuth, 1998). Figure 3.5 presents the proposed

strategy. Each node represents an image number while the number adjacent

to each node is its CL orientation. In a real situation all nodes are connected

to each other where the connecting lines represent the angle between image

CLs. To aid explanation all possible connecting lines are not shown, instead

the valid search paths are shown i.e each line is in fact equal to the binary

search key which is |a| ± 1

In this example, k, the number of images required in the SIN, is set to four

therefore a is 45◦. The search begins with the seed node 1. When a route

corresponding to the search key is identified (node 3) the search continues

with node 3 as the seed. In this case there are two possible routes, node 12

and 17. Since a binary search exploits only one route at a time, the proposed

strategy implements the search in a cascaded fashion. Therefore the search

will return to this point and follow other routes in the next cycle. If node 12

is chosen there are three candidates to complete the SIN: nodes 22, 31, and

64. When one possibility is chosen the SIN is formed and the node is deleted.

This will allow the binary search to find the next valid IN with subsequent

searches. When all possible SINs along the (1, 3, 12) route have been formed,

all image nodes are reintroduced but node 12 is deleted. This enables the

algorithm to return to the point (1, 3) and follow the route through node 17.

The search continues in this fashion until all valid routes have been identified.

In cases of multiple SINs being formed, further refinement can be implemented

by increasing the resolution of the search key.
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Figure 3.5: SIN image search space.

Search Algorithm Implementation

The implementation of the search algorithm is presented in Figure 3.6. The

algorithm is initialised with the seed node which is stored in the IN matrix.

The binary search is implemented and, if successful, the current IN size, NT ,

is incremented and the image found, imt, is stored in IN . A check is performed

to see if NT is equal to k the desired IN size. If true, the current imt is deleted

from the search space and the algorithm loops back to run the binary search

again. This is a similar situation as in Figure 3.5 when tier 4 was reached, the

node was deleted so other nodes could be found in subsequent searches. In the

case where NT ̸= k, the algorithm simply loops back to find the next image in

the network via the binary search.

The most significant branch point in the algorithm is the binary search junc-

tion. When a search fails it indicates that there are no more routes in a

particular tier of the search space. A check is performed on NT to see if the

search has failed in tier 2 (i.e. if NT = 1). If it has failed, the overall search

is finished, and all valid INs are stored in the IN matrix. On the other hand,

if NT ̸= 1, all nodes are reintroduced to the search space and the N th node
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Figure 3.6: SIN search algorithm flowchart.

of the current IN is deleted from the list. This is a similar situation to the

example given in Figure 3.5 where the IN was (1, 3, 12). When all tier 4 nodes

were found and subsequently deleted, node 12 was removed which allowed the

binary search to follow the (1, 3, 17) route. The search continues until the

binary search fails, and NT = 1 which indicates that all possible routes have

been explored. The algorithm is implemented in this fashion for each node

in the search space. Further refinement can be applied to the algorithm if

duplicate INs are stored.

3.3 Experiments

Experimentation is performed to evaluate both approaches to obtaining INs

with ideal geometry for planar camera calibration. In all cases, the image

network consensus employed for comparison with GINs and SINs is that of a

random selection. In the case of simulated data (used in some experiments

for GINs), planar target orientations are randomly drawn from an interval of

-50 to 50 degrees on pitch and yaw angles, whilst the roll angle was randomly
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drawn from a range between -7.5 and 7.5 degrees. The random consensus,

Random Image Network is termed RIN. The planar calibration target used

for the real tests is a standard checkerboard pattern. The planar calibration

method of Zhang (1998) is employed to calculate the camera parameters.

3.3.1 Selected Image Networks

The data set used for SIN experimentation consisted of 300 frames captured

by a webcam of a planar target in varying orientations. Three experiments are

conducted to illustrate the calibration accuracy and overall benefit of using

SINs. The first experiment examines the accuracy of the calibration result

as the number of views (images) increases. This is followed by a rigorous

comparison of the IN configurations with fewer images. The final experiment

validates the calibration accuracy of SINs by analysing the lens distortion in

the images. As there is no ground truth a calibration result is calculated

using all 300 frames and subsequently taken as an indicative optimal result for

comparison.

Convergence of Image Networks

This experiment examines the accuracy of the calibration result as the number

of images in the IN increases. In order to quantify the accuracy, a ground truth

calibration result is calculated using all 300 images within the data set. The

ground truth intrinsics are summed and subsequently used as an indicative

optimal calibration result. Therefore, results are presented as a percentage

error of the optimal calibration result. For each image network instance (2 to

25 INs) ten SINs are compared with ten RINs from the data set. It is clear

from Figure 3.7 that the SINs produce more accurate and reliable calibration

results than the RINs, particularly in the case of smaller INs. As the number

of views increases the stability of the SIN results still outperform the RINs,

however, once this increases beyond 7 images, comparable results are observed.

This is due to the number of constraints on the IAC. Each image provides 2

constraints on fitting the IAC (in the form of the circular points). Assuming

zero skew, four parameters are being estimated, and with 8 images there are

16 constraints on the IAC. Therefore, in both cases of RINs and SINs, the

systems are over-constrained, and therefore, the difference in performance is
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Figure 3.7: Calibration accuracy as the number of views increases from 2 to

25 INs. Standard Deviation (SD) is represented by bars at each IN instance.

negligible. The most important result is that in cases of INs with few images,

the SINs significantly outperform the RINs.

Reduced Number of Images

The number of images for each IN configuration is reduced for this set of

experiments to validate the previous result which identified that SINs can

achieve more accurate results than the RINs with fewer images in the IN. All

results in Table 3.1 are given in terms of percentage error with respect to the

indicative optimal calibration result for each parameter. There are 50 two

INs, 30 three INs, and 25 four INs in the SIN cases of Table 3.1. RINs were

randomly drawn from the data set of 300 images. Similar to the SINs, 50 two

INs, 30 three and 25 four INs were examined.

Results presented in Table 3.1 indicate that the SINs significantly outperform
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Image Network No. fx fy u v

Consensus Images x̄ (σ) x̄ (σ) x̄ (σ) x̄ (σ)

Random 2 23.3 20.7 23.7 23.5

(21.7) (21.2) (24.3) (27.4)

SIN 2 11.5 11.1 13.3 24.1

(11.7) (11.7) (16.6) (26.5)

Random 3 12.2 12.5 14.2 15.1

(10.2) (10.8) (11.1) (11.3)

SIN 3 3.8 3.6 5.3 9.9

(3.9) (4.3) (7.5) (7.9)

Random 4 8.9 8.9 10.8 11.1

(5.2) (5.1) (6.7) (6.6)

SIN 4 1.59 1.49 2.74 3.88

(1.55) (1.69) (3.31) (3.32)

Table 3.1: Percentage error results for image network configuration compari-

son.

the RINs for INs of smaller sizes. This trend is similar to that which was

observed in Figure 3.7. These results indicate that INs which comprise of im-

ages with geometry based on properties of the CL, enforce more independence

in planar calibration equations, and thus solve the camera parameters more

accurately.

Distortion Correction

A radial distortion correction experiment is undertaken to further quantify the

accuracy of the calibration results employing SINs as opposed to RINs. The

benefit of un-distorting the images is that the canonical calibration plane can

be used as a ground truth. This allows the distortion correction residuals to

be estimated and thus quantify the accuracy of the distortion correction pa-

rameters. The resulting calibration of a two image RIN and SIN are examined

as this represents the minimum number of images required to solve the planar

calibration equations. The plots in Figure 3.8 show the residual error vectors

after un-distortion (scaled by a factor of 20). The SINs have removed the

radial distortion more accurately from the image (mean residual 0.2 pixels)
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Figure 3.8: Residuals after un-distortion stage (in pixels).

compared to the random network, which still has significant distortion present

(mean residual 0.39 pixels).

3.3.2 Generated Image Networks

Experiments are performed with real and synthetic data to illustrate the advan-

tages of GINs over RINs. Initially, simulated data is used to verify the increase

in calibration accuracy achieved when employing GINs. Subsequently, an ex-

amination on the reproducibility of the synthetic planar poses is undertaken.

The process by which this is achieved and the accuracy obtained is outlined.

Experimentation with real images is conducted to verify the increased effi-

ciency of the calibration process using GINs. A benefit of GINs is highlighted

in Figures 3.9(a) and 3.9(b) which presents an imaging configuration where the

planar targets appear to be distinct in pitch and yaw orientation. However, on

examination of the CLs of both images, it is found that the angle between the

CLs is approximately 5◦. Therefore the configuration is near-degenerate and

results in poor camera parameter estimates. GINs provide a means to prevent

such geometric configuration arising.

Synthetic testing

A synthetic camera was formed with f = 500, α = 0.99, and (px,py) =

(300, 200). Synthetic grids (of control points) were simulated in P 3 and sub-

sequently projected onto the image plane in P 2. Each grid formed an image
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(a) (b)

Figure 3.9: Image network with an angle of 5o between the CLs.

of 600 × 400 pixels. A two parameter lens distortion model was applied to

the images, and random noise with standard deviation 0.5 pixels was added to

the grid point locations to simulate image noise. The test set comprised of 50

trials of each image network instance from 2 to 25 images. GINs were formed

by taking one image from each RIN and subsequently generating the optimal

image networks. The metric used to compare image network configurations is

the mean of the absolute error between the ground truth parameters and the

RIN/GIN parameter estimates for each network trial.

Figure 3.10 presents results for the internal parameters of the camera which

were estimated using GINs and RINs. The error is presented in terms of the

mean of the absolute error in the estimated parameters. It is clear from the

results for each parameter that the geometric configuration of the GINs con-

tribute to a better estimation of the camera parameters. The requirement

for solving the planar camera calibration equations is that a minimum of two

images are used thus giving four constraints on fitting the IAC and recovering

the camera parameters. As the number of input images is increased, so too are

the number of constraints on the IAC. Thus, it is evident in Figure 3.10 that

beyond 6 input images, the additional constraints do not significantly aid in

estimating the IAC more accurately. The increased performance of the GINs

for INs with five or less images is a result of the planar target orientations

being sufficiently independent to estimate the IAC. Degenerate configurations

and near-degenerate configurations are avoided with GINs. However, with

RINs, there is a greater likelihood of the planar target orientations being in

a configuration which exhibits dependency, such as near-degenerate configu-

rations (similar to those outlined in Section 3.1.1). Therefore, it is clear that

consideration of image network geometry, in cases of less than five images, is
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Figure 3.10: Intrinsic parameter estimation results for RINs and GINs for 2 to

25 image networks.

beneficial as an increase in calibration accuracy is achieved.

Image reproducibility

The required accuracy for reproducing the synthetically generated images, such

that the desired image can be captured, was outlined in the sensitivity analysis

in Section 3.2.1. It was shown that the induced error on the angle between

image CLs due to error in the orientation estimation remains bounded. There-

fore, if general users capture the synthetic orientation within ±5◦ on the grid

pitch and yaw angles, the desired CL orientation is obtained.

In order to examine the accuracy to which users replicate the synthetic images,

an indicative experiment was conducted. Four non-expert practitioners were

provided with 25 optimal planar poses for which to undertake the replication

process. The replication process is presented in Figure 3.11. The synthetic

planar pose is augmented in a semi-transparent manner to the current camera
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Figure 3.11: Augmented replication process for capturing GINs

Table 3.2: Non-expert practitioner results for optimal image reproducibility (Note:

optimal angle is 90◦)

Practitioner Average Angle Error (deg) (SD (deg))

1 1.55 (0.51)

2 1.78 (0.88)

3 2.13 (1.06)

4 0.51 (0.47)

live-view. The border of the synthetic grid is highlighted for alignment pur-

poses. A successful replication is achieved when the synthetic planar pose is

visually aligned with the current live-view of the physical planar calibration

target. The results presented in Table 3.2 represent a single image capture per

optimal planar pose. Results indicate that each user was able to replicate the

synthetic planar poses with sufficient accuracy to ensure good conditioning on

the CL constraint. The largest average error, recorded by user three, was 2.13◦

with a Standard Deviation (SD) of 1.06◦. This level of accuracy is sufficient

to obtain accurate GINs.
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Image Network Stability

This experiment was conducted to verify the stability of calibration results

obtained using GINs as opposed to RINs. The simulated experiments con-

ducted have shown GINs to outperform RINs, particularly in cases where few

input images are captured for the IN. Therefore, this experiment deals with

three and four image networks. Since there is no ground truth calibration data

available, the measurement used to quantify the performance of the GINs and

RINs is the estimated parameter uncertainty. This can be calculated from an

estimate of the Fisher information matrix (F) which is formed upon conver-

gence of the non-linear estimation process (Walter and Pronzato, 1997). The

Fischer information matrix is defined as,

F(R̂) =
1

σ2
i

n∑
i=1

δeT (ci, R̂k)

δR̂

δe(ci, R̂k)

δR̂T
(3.16)

where (ci, R̂) represents the cost function being minimised and σ2, the unknown

noise variance can be approximated as

σ2 =
1

nt − np

nt∑
i=1

e2i (3.17)

with nt being the number of measurement points and np the number of parame-

ters being estimated. The norm of the residuals from the estimation algorithm

is defined as e2i . With the approximation of F, the uncertainty in the param-

eters is found by taking an estimate of the standard deviation as the square

root of each diagonal element in F−1(R̂),

SD(R̂i) =

√
diagi(F−1(R̂)) (3.18)

Figure 3.12(a) presents the results of the uncertainty in the parameter esti-

mation for 27 RINs and GINs in a three IN configuration. Similarly, Figure

3.12(b) depicts the same parameters for 19 RINs and GINs with four input im-

ages. Calibration accuracy is given by the SD associated with the uncertainty

of the parameters estimated (in pixels). The estimated camera parameters em-

ploying GINs display superior stability to those of the RINs. This is a result

of the desirable image network geometry of GINs. On closer examination of

four image network instances, there is a noticeable increase in the stability of

RIN estimates, however, GIN estimates exhibit greater stability across all 4 IN

instances. Tabulated results of the average of the SD across all image network

instances is given in Table 3.3.
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Figure 3.12: Stability of intrinsic parameters for three (a) and four (b) image

RINs and GINs
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Table 3.3: Parameter uncertainty for three and four image networks. Note: Results

are given in terms of SD (in pixels)

f αf px py k1 k2

3 RIN 6.88 5.67 5.50 7.74 0.008 0.050

3 GIN 1.79 1.59 1.76 1.99 0.005 0.040

4 RIN 3.09 3.31 3.31 3.39 0.007 0.037

4 GIN 1.55 1.48 1.51 1.85 0.005 0.036

Experiments undertaken with optimal image networks have shown GINs to

improve the efficiency of planar camera calibration by taking the geometric

configuration of the planar targets into consideration. By choosing suitable

planar poses, independence in the planar calibration equations is achieved, thus

fitting a unique IAC and avoiding configurations which lead to singularities.

This is the key contribution of optimal image networks.

3.4 Discussion

This chapter addresses the issue of defining suitable images for planar camera

calibration. The geometric configuration of input images used for calibrating a

camera is an area which has largely been neglected. Degenerate configurations

have been identified in the literature, however, near degenerate configurations,

which also contribute to poor camera parameter estimates, are ever present

when choosing planar target orientations. The proposed IN strategy, optimal

image networks, addresses this issue by using the CL as a guide to identifying

images which contribute independently to solving the camera parameters. As

a result, planar calibration methods which employ OINs as an IN strategy can

obtain greater accuracy and stability when solving the camera parameters.

Section 3.1 provides an analysis, in terms of planar target orientation, of the

planar calibration problem. The criteria for independent image network geom-

etry is outlined. Additionally, image network configurations which are degen-

erate are illustrated. The relationship of the CL and planar target orientation

is detailed, which in turn highlights the applicability of the CL orientation

(in the image frame) with regard to the overall image network configuration.

Simulated experiments in Section 3.1.1 show that all degenerate and near de-
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generate configurations are identified by analysing the relative orientation of

image CLs. CLs which are equal by a reflection about a horizontal or vertical

axis in the image provide no additional constraints when estimating the IAC.

Thus, CLs which display these characteristics, will decrease the accuracy of

the camera parameter estimates.

Optimal image networks are presented in Section 3.2. The ideal geometry

of OINs is outlined and two subsequent strategies based on ideal geometry

are proposed. The first method employs the CL approach to select planar

calibration images from a large dataset of supplied images. A binary search

approach is taken by analysing the CLs of the images in the data set. SINs

are defined by forming an IN consisting of the selected images. The second

approach proposed employs the CL constraints to generate synthetic images

with ideal planar target orientations. This method is called generated image

networks, GINs. The main advantage of implementing GINs is the reduction

in input requirements in comparison to SINs, which require a large data set.

Furthermore, there is a possibility that the data set provided may not contain

images with ideal geometry. Thus, GINs ensure that the formed INs will con-

tain the desired geometric configuration to obtain accurate camera parameter

estimates.

Evaluation of OINs is completed in Section 3.3. As there is no standard method

of selecting planar target poses, a random selection strategy is implemented,

called random image networks. Pitch and yaw orientations are randomly drawn

over an interval of typical values i.e. values which do not hinder the feature

extraction process. The first OIN method, in the form of SINs, is evaluated

given a data set consisting of 300 frames captured by a webcam of a planar

calibration target. An image selection algorithm filters the data set to form

SINs. These INs are evaluated against RINs chosen from the data set. Results

demonstrate that the SINs clearly outperform the RINs for INs which contain

few images. Further experimentation, in the form of distortion correction,

is undertaken using the calibration results in the minimal case for both IN

configurations. The mean residual error in the case of SINs is less than that of

RINs, and it is clear that a greater quantity of the distortion has been removed

using the SIN results as opposed to the RIN results.

Section 3.3.2 examines the accuracy of GIN parameter estimation using real

and synthetic data. Simulated experiments show that GINs yield more accu-
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rate camera parameter estimates for each individual parameter, particularly

for INs of less than 6 images. Similar performance is achieved with RINs for IN

containing more than 6 images. An integral component of GINs is the ability

of the user to replicate the synthetically generated images of the ideal planar

target orientation. Consequently, an indicative experiment was undertaken in

which four non-expert practitioners completed the replication process for 25

images. Results demonstrate that the replication process is straightforward,

with each user capturing the synthetic pose with sufficient accuracy to form

GINs. Further investigation of INs with three and four images is conducted

with real data to demonstrate the stability of the camera parameter estimates

of GINs compared to those of RINs. Results indicate that GINs produce more

stable and efficient results across a large range of three and four INs.

The improved performance observed with OINs confirms that, by consider-

ing image network geometry when selecting calibration images, more accurate

calibration results can be achieved. This improved performance is primarily

observed for image networks with 6 or less images. As discussed in Section

3.1, each input image to the IN provides two constraints in the form of the

circular points to estimate the IAC. In the minimal case, two images provides

four constraints which is adequate to recover camera parameters. However, if

there is dependence between input images, a unique IAC may not be defined.

Thus, by enforcing maximum independence (geometrically) between input im-

ages, configurations which will lead to poor camera parameter estimates are

avoided. OINs provide such independence by manipulating geometric aspects

of the CL in the form of the angle between image CLs. As the number of

images in the IN increases, so too does the number of constraints on the IAC.

Therefore beyond 6 images, which is equivalent to 12 constraints on the IAC,

the difference in the IAC being estimated is minimal between OINs and RINs.

Therefore similar accuracy is achieved with both IN configurations. However,

the increase in accuracy of OINs for INs of less than 6 images greatly reduces

the input requirements to the planar calibration problem and guarantees that

degenerate and near-degenerate configurations are avoided.
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Multi-Pupil Imaging

Standard camera models used in the computer vision community are presented

in Chapter 2. The pinhole camera model, and its calibration, was shown to

lose depth information during the projection of 3D world points to 2D image

points. Traditionally, methods for obtaining depth information using the pin-

hole camera model involved employing stereo vision techniques. Early exam-

ples of this are reported in the robotics area, and are summarised by Faugeras

(1993). The main problem with stereo techniques from a practical sense was

that either two sensors, or two images with known rotation and translation

between both views, were required to recover metric information. Coupled

with the computational overhead the computer vision community sought al-

ternative methods to infer metric depth from images. Two such approaches to

depth recovery have been proposed in the forms of Depth from Focus (DfF)

(Grossmann, 1987, Ens and Lawrence, 1993) and DfD (Pentland, 1987). Both

methods make use of camera models which introduce optical elements to the

model such as focusing and aperture effects. Typically, multiple images are

required along with multiple camera configuration settings to recover metric

depth information. Additionally, the process of measuring image sharpness,

and image blur, has long been identified as an error prone process in the com-

puter vision community. Consequently the main goal of this chapter is to

develop a new camera model which is capable of retrieving metric depth infor-

mation from a single image, and avoids the tedious task of measuring optical

depth of field artifacts.

The significance of the aperture or pupil plane was highlighted in Chapter 2. In
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a thin lens capacity, it is the limiting factor for the rays entering and exiting the

imaging lens. It also dictates the amount of image blur and sharpness present

in the formed image. Experimentation in Chapter 2 revealed that a pupil plane

could be subsampled by a smaller circular pupil. By calculating the centre of

the bundle of rays which pass through the smaller pupil, it was shown that

this was equivalent to selecting a single ray centred at that pupil’s location

in the overall scheme of the pupil plane. It is this basic principle upon which

the multi-pupil imaging models are developed. Coupled with knowledge of the

imaging lens focal length, image sensor size and metric makeup of the pupil

plane, the proposed imaging models can retrieve metric depth information.

The Double Pupil Model (DPM) is proposed in Section 4.1. It consists of a

modified pupil plane containing two pupils separated by a known distance.

A complete characterisation of the proposed model is undertaken to identify

sensitivities of the depth estimation to model parameters. Industry standard

optical design software is also used for the purpose of validating the DPM.

Simulated results aim to demonstrate the accuracy of the proposed camera

model for the purpose of depth estimation.

Generally, the optical arrangement of imaging systems consists of predefined

glass surfaces and a number of stop/plane surfaces. The pupil plane of the

imaging system plays a key role in defining the quality of the formed image.

The location of the pupil plane within the system of lens elements is generally

fixed (for a fixed focal length lens). Furthermore, lens designers fix the pupil

plane location in such a way as to minimise certain aberrations present within

the imaging lens. Therefore, in order to apply multi-pupil imaging techniques

to standard imaging systems, the constraint on the placement of the pupil plane

within the imaging system must be relaxed. A shifted multi-pupil camera

model in the form of the Double Pupil Shifted Model (DPSM) is proposed

in Section 4.2. This model builds on the presented multi-pupil theory and

allows flexibility in the placement of the pupil plane. Axial shifts of the pupil

plane are permitted along the optical axis. Industry standard optical design

software is used to verify the DPSM. Subsequently, a complete characterisation

of the model is also presented along with simulated results for depth estimation

experimentation.

Camera calibration and its importance in recovering metric information from

images was introduced in Chapter 2 and further developed in Chapter 3. An

optimal scheme for selecting planar calibration targets was outlined for cameras
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which could be modelled with the pinhole camera model. Section 4.3 examines

the applicability of standard pinhole calibration methods to the multi-pupil

imaging framework. The main parameter to be recovered for the multi-pupil

imaging systems is the sensor depth. It is this parameter which defines the

focus configuration and subsequently the image disparity profile of the DPM

and DPSM systems. Calibration from both planar targets and spherical tar-

gets is implemented. These results are directly compared with a new proposed

calibration method for the DPM camera model. However, with the DPSM,

an additional parameter in the form of the pupil plane axial offset is required.

Consequently, a novel calibration algorithm is proposed for the DPSM imaging

system which recovers both sensor depth and pupil plane offset. Therefore, the

comparison with standard pinhole approaches can be completed with knowl-

edge of the pupil plane offset. Simulated experiments are carried out to identify

favourable conditions to conduct the proposed calibration procedures. Subse-

quent depth estimation simulations are conducted to quantify the accuracy of

the calibrations.

Experimentation with real data is undertaken in Section 4.4 to validate both

proposed multi-pupil imaging models and their calibration. Initially, the pro-

posed calibration algorithms are examined and their accuracy determined by

comparison with ground truth data for a general imaging system configura-

tion. Standard calibration approaches are also implemented and compared

with the proposed approaches as well as with the ground truth. Section 4.4.3

presents depth estimation results across an object depth range of approxi-

mately 4, 300mm. Results for the DPM and DPSM imaging models employing

calibration estimations of the standard approaches and the proposed multi-

pupil approaches are presented and discussed.

4.1 Multi-Pupil Camera Model

The main property of the multi-pupil camera model is the pupil plane of the

imaging system. A conventional pupil plane is generally located within the

system of lens elements. The pupil, located on the pupil plane, is the limiting

factor for light rays passing through the optical system. In Chapter 2, the

imaging geometry associated with a conventional and unrestricted pupil is

examined. It is shown that a conventional pupil, or aperture, can be sub-
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sampled by a pupil of lesser size located within the aperture region without

affecting the imaging geometry. Thus, for geometric image calculations, it can

be assumed that the sub-sampled aperture allows a single centred ray to pass

through the pupil plane at the location of the sub-sampling pupil.

The camera model developed in this chapter differs from the conventional

camera models in that it contains multiple pupils in the pupil plane. The effect

of each pupil is that of a single ray passing through an effective aperture at its

location. This is similar to selecting rays from certain parts of a conventional

aperture. Thus, the theoretical foundation on which the model is developed is

based on geometrical ray tracing.

Paraxial optics are assumed for development of the camera model. The pupil

plane, situated at the centre of the ideal system, contains two pupils separated

in the transverse axial direction. For any separation of this nature, the two

pupils can be seen as sampling the extreme rays in the pupil plane of an equiv-

alent aperture with a diameter of the given transverse separation distance.

Assuming on-axis objects, an optical system focused on a world point will

form an ideal focused point at the centre of the image plane. Conversely, an

object point not in focus will form a double image of the point with each pupil

of the pupil plane forming its own image of the object point. The relationship

between the transverse pupil separation and the image point separation, or dis-

parity, along with system optical properties, provides the basis for calculating

true object depth information.

4.1.1 Double Pupil Imaging Model

The double pupil imaging model is developed using the optical system pre-

sented in Figure 4.1. This system contains an ideal thin lens in which the

pupil plane is centrally located. Pupils of the optical system are separated by

the distance Pg and are assumed to be of a diameter that allows a single ray

to pass through the pupil plane. An axial object point is located at a distance

u0 from the pupil plane. The configuration of this optical system is such that

the image conjugate distance, v0, is less than the pupil plane to image plane

distance v (the sensor depth). Such optical configurations are known to be

“out of focus”, therefore the image plane will contain an image of the object

point emanating from each pupil. The distance between both image points is
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v0
u0

v

d
Pg

Figure 4.1: Double pupil imaging model.

known as image disparity and is represented by the d term.

The disparity, d, can be related to the object distance, u0, through manipula-

tion of the ideal lens model.

1

u0

+
1

v0
=

1

F
(4.1)

where F is the focal length of the lens. This equation can be rearranged to

yield a result for the object distance u0 in terms of the focal length and the

conjugate image distance.

u0 =
v0F

v0 − F
(4.2)

By comparing similar triangles, the triangle with the disparity d as its base

and the conjugate image point as its apex is similar to the triangle sharing

the same apex point and with the pupil separation distance Pg as its base.

An expression for the image conjugate distance v0 can be derived from this

similarity and is given by

v0 =
Pgv

Pg + d
(4.3)

By substituting the expression for v0 in Eqn. 4.3 into Eqn. 4.2, a result for the

object distance u0 can be derived

u0 =
PgvF

Pgv − F (Pg + d)
(4.4)

which relates the object depth to the disparity in the image, d, the pupil

separation distance, Pg, the focal length, F , and the pupil plane to image

distance, v.
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Given an image of a scene containing multiple on axis objects generated by any

optical configuration, i.e. any distance v, the object depth can be estimated.

A change in v equates to a change of optical focus within the system. Func-

tionality of the double pupil model relies on the disparity between the imaged

object point from each pupil of the pupil plane which is captured in a single

image.

Disparity generated at the image plane is dependent on three model parame-

ters, F , Pg, and v. All three properties must be known to recover scene depth

from a single image. The focal length and pupil separation distance are fixed

input parameters to the system, therefore the sensor depth must be calculated

for the optical configuration in use. This is achieved through a calibration

process (see Section 4.3). Assuming a system has been calibrated for v, the

last remaining challenge in terms of the practicality of the DPM is that of

feature detection and matching. Since an object point is imaged by each of

the pupils separately, in order to calculate the image disparity, the imaged

points generated by each pupil must be matched. The scale invariant feature

transform (SIFT) developed by Lowe (2004) is used to locate features and a

standard matching algorithm is used to match the imaged points. This is a

robust feature detection algorithm and generally accepted as the gold standard

within the computer vision community.

A closer examination of Figure 4.1 reveals that the DPM was developed with

the optical system focusing the image point between the image plane and the

lens element. The model could equally have been derived with the system

focusing the image point behind the image plane resulting in a sign change of

the disparity in Eqn. 4.4. This change in sign of the image disparity is critical to

overcome the problem of depth estimation when the magnitude of the measured

disparities are equal. Such ambiguities arise when an optical configuration is

focused at a fixed distance and the disparities being measured correspond

to object points which are equidistant on both sides of the focus plane (as

indicated in Figure 4.2 ). This problem has been avoided in the computer vision

community by assuming that all object points are on a single side of the focus

plane. The cost of this assumption is that the optical system is constrained to

focusing at infinity and thus loses flexibility of optical configurations.

The DPM overcomes the depth ambiguity by matching image points to the

pupil through which they have been projected. This allows for changes in sign
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Figure 4.2: Equidistant object points.

of the disparity to be identified and thus distinguishes between object points

which lie in front of the focus plane and object points which lie behind the focus

plane. Pupil and image point matching is accomplished by introducing colour

filters to the pupils in the pupil plane. By choosing appropriate wavelengths,

the image captured by the optical system can be separated into two images

- one from each pupil. This process also improves the feature detection and

matching algorithm. Since each pupil can be separated into its own image,

disparities of smaller magnitudes are easier identified. This would be a difficult

task to detect and match in a single image. The proposed solution to the depth

ambiguity ensures that the DPM maintains flexibility of optical configurations

within the imaging system.

4.1.2 Simulated Experiments

Experiments were carried out using simulated data to verify and evaluate the

DPM in terms of the overall accuracy of its depth estimates. Evaluation of

the depth estimates in the presence of pixel noise is performed along with

a characterisation of the model in terms of the sensitivity of its parameters.

The initial model verification is performed using the optical design software

package Zemax. The second experiment is conducted in order to identify

which parameters within the model are most sensitive to perturbations and

thus require greater accuracy when being estimated. The final experiment

evaluates the accuracy of the DPM when estimating depth from a scene with

varying input parameters and image noise. The model characterisation and

depth estimation experiments are performed using a simulated camera with

a pixel pitch of 4.5µm, and sensor length and width of 18mm and 13.5mm
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Table 4.1: DPM Zemax verification results for near, mid and far focus settings.

u0 (mm) Disparity (mm) Estimated Depth (mm)

Near focus Mid focus Far focus Near focus Mid focus Far focus

500 0 −2.9868 −3.18 500 500 500

1500 2.7309 −0.6637 −0.8833 1500 1500 1500

2500 3.2771 −0.1991 −0.424 2500 2500 2500

3500 3.5111 0 −0.2771 3500 3500 3500

4500 3.6412 0.1106 −0.1177 4500 4500 4500

5500 3.7239 0.181 −0.0481 5500 5500 5500

6500 3.7812 0.2297 0 6500 6500 6500

respectively. The corresponding lens diameter of the simulated imaging system

is set to 25mm as this is the physical diameter of the real lenses used in Section

4.4.3. The object depths are set between 300mm and 8, 000mm in steps of

50mm which covers the near/mid/far focus regions of a conventional imaging

system.

Zemax Verification

Verification of the DPM is performed with the Zemax software. Simulating the

DPM from first principles in Zemax is accomplished by specifying a paraxial

surface (thin lens) with a diameter of 25mm and focal length 85mm. A custom

pupil plane is designed containing a double pupil with a centred transverse

separation distance of 20mm and pupil diameters of 1mm. The optical design

of the system is shown in Figure 4.3(a). Another input parameter to the

system is the wavelength of light, which is set to the primary wavelengths of

the visible spectrum (0.486µm, 0.587µm, 0.656µm). Axial objects are set at

distances of 500mm to 6, 500mm in steps of 1, 000mm. Three focus distances

are taken to verify that the equal magnitude disparity condition is solved by

the DPM. Thus, v, corresponds to focus distances at 8, 500mm, mid-range

(3, 500mm) and near-focus (500mm). The aim of this simulation was to verify

the correctness of the DPM using the industry standard optical design software.

Figure 4.3(b) displays the output on the image plane of the DPM optical

system. This function of Zemax is typically used to analyse the PSF for a

given optical system. In this instance, it yields the image disparity as a result

of the double pupil on the pupil plane. For the purpose of measuring the

disparity, the rays displayed in Figure 4.3(b) are cut-off at the centroid of
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Figure 4.3: (a) DPM Zemax Verification Layout; (b) Point Spread Function

of the DPM.

the resulting image points on the image plane. This is necessary to calculate

the geometric distance between the imaged points within Zemax. For this

particular example, the geometric radius is 1755.59µm, thus the disparity is

twice this figure. Table 4.1 presents the results of the Zemax experiment. Since

an ideal optical system is simulated, there is no noise present in the system.

As a result, the estimated depth for each object point (u0) is found to be exact

and thus verifies that the DPM is indeed a valid imaging model. In addition,

these results also highlight that the imaging model overcomes the problem of

distinguishing between equidistant object distances from the focus plane due

to the sign of the disparity.

Model Characterisation

An analysis on the sensitivity of the DPM parameters is a key factor in de-

termining how accurately the model can estimate depth. There are four input

parameters to the DPM, F , Pg, v, and d. Two of these are known: The focal

length which is a given optical property of a lens, and the pupil gap which is

predefined via a manufacturing process. The remaining parameters, v and d,

are determined via calibration and from the image sensor respectively. This

analysis is completed in two stages. Initially the fixed parameters are exam-

ined in terms of the overall impact they have on the model. Subsequently,

the measured parameters are analysed and an overall characterisation of the

model parameters is presented.
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The choice of focal length for an imaging system varies depending on the

application. In terms of practicality, generally as the focal length increases with

respect to the lens diameter, an increase in object magnification is observed

in the image coupled with a decreased field of view. This observation is also

true with respect to the DPM. The influence of increasing or decreasing the

focal length in the DPM results in a magnification or increase/decrease in

the object disparities generated by the imaging system. Therefore the most

significant property of F in terms of the DPM is that it either increases or

decreases disparity, depending on its optical power. The limits to which it can

be increased or decreased depends firstly on the physical size of the imaging

sensor being used, and secondly, on the intended scene to be captured i.e. if

a relatively large field of view is required, a smaller focal length should be

chosen. The significance in choice of the pupil gap Pg is solely dependent on

other fixed properties of the imaging system such as the lens diameter and

focal length. The observed effect of increasing or decreasing the pupil gap in

the DPM equates to a scaling in the magnitude of the image disparities. In a

similar manner to the practical aspects which influence the choice of F , these

properties equally influence the choice of Pg.

Although the fixed parameters of the DPM are dependent on optical and phys-

ical properties of the imaging system, the sensitivity of the depth estimation to

perturbations in these parameters is examined. Table 4.2 presents the measure-

ment accuracy for each fixed parameter in the DPM as well as their sensitivity

to the depth estimation process. The measurement accuracy of the parameters

presented in Table 4.2 reflects the achievable resolution in respect to the exper-

iments carried out in Section 4.4.3. The resolution to which the focal length

and pupil gap are measured is in the order of micrometres. Therefore the net

error propagated through the system to the depth estimation is of a small mag-

nitude, particularly in the case of perturbations in the focal length. Figures

4.4(a)-(c) show the error profiles in the depth estimation process for variation

in the focal length at the measurement resolution. A range of focal lengths

between 35mm and 200mm in steps of 5mm are tested, which are within the

range of standard focal lengths used in conventional imaging systems. A single

pupil gap of 10mm is chosen (for 4.4(a)-(c)) as variations in Pg do not affect

the depth sensitivity to F (this is a result of the proportional increase/decrease

of disparity with pupil gap separation distance). The maximum depth estima-

tion error due to perturbations in F is less than 0.1mm across the three focus

105



Chapter 4 – Multi-Pupil Imaging

Table 4.2: DPM Parameter measurement accuracy and sensitivity.

DPM Parameter Measurement Accuracy Depth Sensitivity

F 10µm (Pgv)2

(Pgv−FPg−Fd)2

Pg 7.8µm −F 2dv
(Pgv−FPg−Fd)2

v Calibration −PgF 2(Pg+d)

(Pgv−FPg−Fd)2

d Sub-pixel PgvF 2

(Pgv−FPg−Fd)2

settings (sensor depths) for each focal length. Figures 4.4(d)-(f) present the er-

ror in u0 estimation due to perturbations in the pupil gap Pg. Three pupil gap

separation distances are chosen, 6mm, 10mm, and 20mm along with a fixed

focal length of 85mm. The focal length remains fixed for these experiments as

variations in this parameter do not affect the errors in depth estimation due

to perturbations in Pg. This is a result of the proportional change in disparity

with focal length. The maximum error induced in the depth estimation due

to a unit variation in Pg is 250mm at a depth of 8, 000mm which represents a

3.1% error (Figure 4.4(d)). This error is reduced with the increase in pupil gap

separation distance. At a separation distance of 20mm, this error is reduced

to 0.08% at the same object depth (Figure 4.4(f)). There are a number of

conclusions to be drawn from these simulations of the fixed model parameters.

Firstly, the model is applicable to any focal length within the constraints of the

given physical sensor dimensions. Secondly, depending on the lens diameter

of the imaging system, a larger pupil gap separation distance is favorable as

errors in measurement of larger gap distances induce less errors in the final

depth estimates compared to smaller Pg settings.

A deeper understanding of the measured parameters of the DPM is best gained

by initially analysing the image disparity profile of the DPM imaging system.

Figure 4.5 presents the disparity profile for a lens with focal length 85mm and

pupil separation distance 10mm using simulated data. The profile is repre-

sented in pixel units across all focus settings at every object depth. As previ-

ously noted, changing Pg has the effect of scaling the image disparity. Similarly,

changing the focal length simply scales the image disparities. However, the dis-

parity profile remains constant across all sensor depths regardless of changes in

F and Pg. There are two distinct image disparity profiles within the DPM, one

representing a near-focused system and the other a far-focused system. The

most significant difference is that image disparities increase with object depth
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Figure 4.4: DPM Depth estimation sensitivity to F and Pg (a) F : Near-

focus setting; (b) F : Mid-focus setting; (c) F : Far-focus setting; (d) Pg: For

Pg = 6mm; (e) Pg: For Pg = 10mm; (f) Pg: For Pg = 20mm
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for a near-focused system and decrease with depth for a far-focused system.

This plays an important role in choosing a sensor depth for the DPM. In order

to achieve accurate depth estimates, the magnitude of image disparities must

be independent at every object depth. Additionally, each disparity must be

distinct within the resolution of pixel measurement in the imaging system. On

examination of Figure 4.5, the areas of the profile which exhibit less sensitivity

(as the object depth increases) result in smaller differences in magnitudes of

image disparities. If the differences in disparity magnitudes for distinct ob-

ject depths is less than the measurement resolution of the imaging system,

then the DPM will be unable to discriminate between these object depths.

The measurement resolution of the DPM is to sub-pixel accuracy.1 Therefore

unless two image disparities are identical at a sub-pixel level, the DPM will

accurately estimate the corresponding depths. With the introduction of noise

to an imaging system, perturbations in the measurement of image disparities

can lead to errors in depth estimates, particularly as object depth increases

and the disparity difference decreases. Consequently, greater sensitivity of the

image disparity profile is desirable at larger object depths. With the two dis-

tinct profiles of Figure 4.5, this criteria is better served by larger sensor depths

with respect to the focal length i.e. the near-focused system. Although both

profiles exhibit reduced sensitivity at larger object depths, there is a greater

range of disparity and differences in disparity with a near-focused system in

comparison to a far-focused configuration.

The implications of the disparity profile are visible in the sensitivity analy-

sis performed for the sensor depth parameter v. Figures 4.6(a)-(c) show the

sensitivity of the estimated depth to a perturbation in v of a magnitude in

the order of the maximum resolution to which v can be estimated (see Sec-

tion 4.3). The simulation was performed with a fixed Pg of 10mm and three

focal lengths (35mm, 85mm, and 200mm) representing short, mid and long

focal lengths (changes in Pg have no effect on sensitivity of u0 to v due to

the proportionality between Pg and d. The results indicate that there is less

error in the estimated depth for systems which have larger sensor depth values

(shorter focus distances). This is in agreement with the disparity profile which

illustrates that a larger range of disparity is achieved with near-focused con-

figurations, thus the induced error due to v perturbations has less effect in the

1Achieved by calculating the centroid of the resulting imaged point emanating from each

pupil
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Figure 4.5: Image disparity profile of the DPM.

depth estimation at these configurations. In terms of choosing an operating

focal length, practical aspects must be taken into consideration. The larger

the focal length, the bigger the disparities and in turn, less error is propagated

through to the depth estimation due to errors in v. The main disadvantage of

choosing larger focal lengths is the increased magnification of objects on the

image plane which also yields a smaller field of view. Therefore a mid-range

focal length is most suitable for the DPM due to the minimisation of induced

error 0.2% error at 8m compared to 1.6% at the short focal length (35mm)

(see error at 8m in Figures 4.6(a) and (b)).

The sensitivity of the depth estimation to variation in d follows the observed

trend in the disparity profile. As such, with a large sensor depth, the induced

error in depth estimation is less compared with the far focused system. Figures

4.6(d)-(f) present the simulated data for a short, mid and long focal lengths

for all focus settings corresponding to the depth range within the experiment.

Similarly to the sensor depth analysis, the long focal length (200mm) yields

the least sensitive depth estimates. The medium and short focal lengths induce

errors of approximately 0.27% and 0.88% at the largest sensor depth setting.

Changes in Pg have the effect of increasing/decreasing the magnitude of the

image disparity. The results in Figures 4.6(d)-(f) represent a pupil gap of

10mm. The net result of increasing Pg is a scaling of the image disparity

magnitudes which in turn induces less error in the final depth estimates. With

Pg set at 10mm the largest error in depth estimation is 1% at 8m (with a

far-focused configuration and F at 35mm). This is reduced significantly by
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increasing Pg as well as choosing a near-focused configuration (0.4% at 8m

with Pg set at 20mm).

An insight into the sensitivities of the DPM has been gained through per-

forming the model characterisation. The input parameters are divided into

fixed and varying parameters. The choices for focal length and pupil gap dis-

tance (fixed parameters) play an important role in defining the accuracy of the

DPM depth estimation. These parameters are limited by the physical proper-

ties of the imaging system. Ideally the pupil gap distance should be maximised

within the diameter of the lens. Similarly, the focal length should be chosen

at a distance which will yield the largest range of object depths for which the

corresponding image disparities remain within the active area of the image

sensor. Accuracy of the varying parameters depends largely on the resolution

to which they can be measured. In the case of the image disparity, this can be

measured to sub-pixel accuracy which in turn leads to accurate measurements

of object depth. The sensor depth, which is a calibrated parameter, also af-

fects the DPM disparity profile. The DPM can be optimised to achieve depth

estimation over a large range based on the sensor depth. If a large sensor

depth is chosen, the optical system is in a near-focused configuration. It is this

configuration that yields the most favorable disparity profile for large range

depth estimation.

Depth Estimation

Robustness of the DPM depth estimation was evaluated using additive Gaus-

sian pixel noise to simulate perturbations in the measurement of image dispar-

ities, and to a lesser extent, image sensor noise. The simulated camera sensor

size was 18mm × 13.5mm with a pixel pitch of 4.5µm. The lens diameter

was set to 25mm with experiments carried out for focal lengths covering the

near, mid, and long focal ranges (35mm, 85mm, 200mm). Object depths were

set within the range 300mm to 8, 000mm in steps of 50mm. Two pupil gap

separation distances were simulated (15mm and 22.5mm) as well as two opti-

cal configurations for sensor depth corresponding to near-focus and far-focus.

Figure 4.7(a)-(f) and Figure 4.8(a)-(f) each represent a simulated camera of

a given F , Pg and v in which each point on the error surface is the mean

of 1000 simulated experiments. Additive noise with a SD between 0 and 5

pixels in steps of 0.1 is applied to each image before the depth is estimated.
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Figure 4.6: DPM Depth estimation sensitivity to v and d (a) v: F = 35mm;

(b) v: F = 85mm; (c) v: F = 200mm; (d) d: F = 35mm; (e) d: F = 85mm;

(f) d: F = 200mm.
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Table 4.3: DPM depth estimation results at 8, 000mm across various input

settings with additive Gaussian pixel noise (0− 5 pixels).

Input F (mm) 35mm 85mm 200mm

Parameters Pg(mm) 15 22.5 15 22.5 15 22.5

v (focus) Near Far Near Far Near Far Near Far Near Far Near Far

Depth Estimation Mean (mm) 102.13 114.93 67.68 76.09 33.97 47.22 22.56 31.63 6.71 19.98 4.47 13.40

Error (mm) SD (mm) 31.70 35.59 20.87 23.21 10.51 14.97 6.93 9.67 2.07 6.15 1.38 4.14

As discussed during the DPM characterisation, the profile of image disparities

becomes less sensitive as object depth increases. This results in smaller dif-

ferences in magnitudes of image disparities at the larger depths. For instance,

there is no experimental value in adding ∼ 15pixels of noise to an image dispar-

ity of similar magnitude. Therefore a normalisation is performed to ensure that

the added Gaussian noise in each experiment is apportioned correctly. This

consists of re-scaling the noise proportional to the object depth. A reference

object depth of 750mm is chosen as the scaling factor.

The results in Table 4.3 show the mean estimated error and its SD for a sin-

gle object depth of 8, 000mm. Each simulated configuration contains additive

Gaussian noise with SD between zero and five pixels. Since the image dis-

parities are least sensitive at this object depth, these figures represent the

worst case scenario depth estimates across all simulations. The depth error

varies from 114.93mm (F : 35, Pg : 15, v : far) to 4.47mm (F : 200, Pg :

22.5, v : near) depending on the camera configuration. Figures 4.7(a)-(f) and

4.8(a)-(f) are presented with the near-focus configurations in (a), (c), and (e)

while the far-focus configurations are shown in (b), (d), and (f). It is clear

that the near-focus configurations outperform the far-focus settings across all

DPM input parameters. This is in agreement with the observations made on

the characteristics of the DPM. The image disparity profile of the near-focus

configuration yields higher image disparity sensitivity across the object depth

range, which in turn, is more robust to the additive noise. An increase in the

pupil gap distance, which results in larger image disparities, similarly allows

more accurate depth estimates. Further refinement in the accuracy is observed

with an increase in focal length of the camera lens. This has the effect of mag-

nifying the image disparities and thus increasing their magnitudes.

The results presented in this section demonstrate the robustness and accuracy

of the DPM in estimating depth over a large range of object depths. De-

pending on the choice of input parameters, different levels of accuracy can be
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achieved. The largest error is seen at the shortest focal length. In a far-focused

configuration, the mean error is 114.93mm (SD 35.59mm) which represents an

overall depth estimation error of approximately 1.43% (SD 0.4%). If longer fo-

cal lengths are chosen, accuracy of less than 1% can be achieved in the depth

estimation. This level of accuracy enables flexibility in the choice of input

parameters to a DPM imaging system.

4.2 Shifted Multi-Pupil Camera Model

The multi-pupil camera model in the form of the DPM has been presented

with characteristics suitable for depth estimation, and the conducted simula-

tions demonstrate its good estimation accuracy. However, the limitation of

positioning the pupil plane either within the lens (during manufacturing) or

directly in front of the lens as an approximation, remains problematic when

considering integration of the DPM into consumer optical systems. This limi-

tation is overcome with the introduction of the Double Pupil Shifted Imaging

Model (DPSM). Generalisation of the axial pupil plane location, within the

imaging system is the fundamental property of the DPSM. Flexibility in posi-

tioning the pupil plane overcomes the practical issues raised with the DPM.

The general imaging systems considered in this chapter consist of an image

sensor, a thin lens, and a pupil plane. If the sensor depth is known (calibrated),

the location of the lens and pupil plane relative to the image sensor are also

known. The key difference with the DPSM is that the pupil plane is no longer

constrained by placement at the lens aperture. The amount by which the pupil

plane can shift depends on the sensor depth of the imaging system and the

physical diameter of the lens. For a given pupil gap separation distance, the

net effect of shifting the pupil plane is a magnification of the image disparities.

This suggests that a larger pupil gap is being observed at the lens plane, which,

is the case if rays are traced from the object point through the shifted plane

to the lens. Rather than trying to estimate the apparent change in the pupil

gap each time through a DPM system, an additional parameter is introduced

in the form of an (optical) axial shift. This represents the distance between

the pupil plane and the lens optical centre. If this distance is known along

with the pupil gap of the pupil plane, the principles of the DPM, in terms of

depth dependent image disparity, can be applied to the DPSM. Addition of
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Figure 4.7: DPM Depth estimation in the presence of pixel noise across a range

of input parameters (a) F : 35mm, Pg: 15mm, v: near-focus; (b) F : 35mm,

Pg: 22.5mm, v: far-focus; (c) F : 35mm, Pg: 22.5mm, v: near-focus; (d) F :

35mm, Pg: 22.5mm, v: far-focus; (e) F : 85mm, Pg: 15mm, v: near-focus; (f)

F : 85mm, Pg: 15mm, v: far-focus
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Figure 4.8: DPM Depth estimation in the presence of pixel noise across a range

of input parameters (a) F : 85mm, Pg: 22.5mm, v: near-focus; (b) F : 85mm,

Pg: 22.5mm, v: far-focus; (c) F : 200mm, Pg: 15mm, v: near-focus; (d) F :

200mm, Pg: 15mm, v: far-focus; (e) F : 200mm, Pg: 22.5mm, v: near-focus;

(f) F : 200mm, Pg: 22.5mm, v: far-focus
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the shifting parameter thus generalises the DPM camera model.

4.2.1 Double Pupil Shifted Imaging Model

The model parameters of the DPSM are presented in Figure 4.9. The imaging

system consists of a sensor at a distance v from the lens, a pupil plane which

is at a distance zp on the object side of the lens, and two imaging pupils with

separation distance Pg. The model is developed with the optical configuration

set to v > v0. This could equally have been developed with v < v0. Similarly to

the DPM, the depth ambiguity is overcome by applying the negative disparity

conditions. The object point is on-axis and at a distance u0 from the lens

with a conjugate image distance v0. Additionally, like the DPM, the pupil

plane generates a depth dependent image disparity based on the pupil gap

and the sensor depth. Within the DPSM framework, the pupil plane is shifted

zp towards the object point. Axial shifts occur on the object side of the lens

only. Axial shifts towards the image sensor would require knowledge of the

refractive properties of the lens which are not desirable for a general camera

model as outlined in Chapter 2.

On closer examination of the image disparity d, an increase in zp will result in

an observable increase in d. The increased disparity can also be attributed to

an apparent increased pupil gap of Ep situated at the lens plane. Therefore,

if an expression for the distance Ep is derived, the imaging system would be

reduced to a pupil gap on an apparent pupil plane situated in the lens. This

would allow the calculation of object depth based on the image disparity in a

similar fashion to the DPM.

An expression for Ep can be developed based on the similar triangles formed

by the rays emanating from the object point through the pupils, lens and

eventually intersecting the image plane. The triangle with the base Ep and

the object point at its apex is similar to the triangle that shares the same apex

with Pg at its base. By comparing these similar triangles, an expression for

the object depth, u0, is formed based on the apparent pupil gap Ep, the actual

pupil gap Pg, and the axial shift of the pupil plane zp.

u0 =
−Epzp
Pg − Ep

(4.5)

Based on the similar triangles with d and Ep as a base and the conjugate image
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Figure 4.9: Double Pupil Shifted Model.

point as a shared apex, the following expression is derived for u0 (the DPM

model).

u0 =
EpvF

Epv − F (Ep + d)
(4.6)

By setting Eqn. 4.5 equal to Eqn. 4.6 an expression for Ep is found in terms

of F , d, Pg, v, and zp.

Ep =
PgvF − FdzP
Fzp + vF − vzp

(4.7)

This expression for Ep is substituted back into Eqn. 4.6 which yields the DPSM

depth estimation.

u0 =
PgvF − FdzP

Pgv − F (Pg + d)
(4.8)

Therefore, similarly to the DPM, knowledge of the focal length, sensor depth,

image disparity, and pupil gap, coupled with the new axial shift parameter

allows object depth to be calculated. The DPSM is a natural extension of the

DPM model as can be seen by setting the zp parameter to zero, in which case

the resulting expression is the depth equation for the DPM.

Input parameters to the DPSM can be classified as fixed or varying. The fixed

input parameters are the focal length of the lens and the pupil gap separation

distance. Typically these parameters are chosen off-line to achieve the most

desirable disparity profile for object depth calculation. The identification and

separation of object points emanating from particular pupils is achieved by

adopting the same strategy as was applied to the DPM. The varying param-

eters are the sensor depth and the axial shift zp. These parameters must be

calculated without any prior knowledge, hence a calibration algorithm for per-

forming such a task is proposed in Section 4.3.3. The simultaneous calibration
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Table 4.4: DPSM Zemax verification results for various pupil plane shifts.

u0 (mm) Disparity (mm) Estimated Depth (mm)

zp = 0mm zp = 25mm zp = 50mm zp = 0mm zp = 25mm zp = 50mm

500 0 0 0 500 500 500

1500 2.7309 2.7772 2.8251 1500 1500 1500

2500 3.2771 3.3102 3.3440 2500 2500 2500

3500 3.5111 3.5364 3.5621 3500 3500 3500

4500 3.6412 3.6616 3.6821 4500 4500 4500

5500 3.7239 3.7410 3.7582 5500 5500 5500

6500 3.7812 3.7959 3.8106 6500 6500 6500

of v and zp is an important result as it lends the DPSM model well to general

optical configurations. This provides a flexible solution to acquiring accurate

depth information from a multitude of multi-pupil imaging systems.

4.2.2 Simulated Experiments

Evaluation of the DPSM is carried out using synthetic data on two fronts.

Initially the model validation is performed using Zemax. A full characterisa-

tion of the fixed and varying parameters is subsequently performed. The final

experiment benchmarks the accuracy of the DPSM in retrieving depth infor-

mation from the acquired images in the presence of varying levels of noise.

Experiments in this section are conducted using a simulated camera with a

pixel pitch of 4.5µm, and a sensor length and width of 18mm and 13.5mm

respectively. The simulated lens diameter is set to 25mm and object depths

are set in the range 300mm to 8, 000mm in steps of 50mm.

Zemax Verification

The DPSM is verified using industry standard optical design software in the

form of Zemax. The optical system is configured as presented in Figure 4.10.

A paraxial surface models the ideal lens and is set with a focal length of 85mm

and diameter 25mm. A fixed pupil gap separation distance of 20mm and a

single near-focus setting are used in the simulations. The pupil plane is a

custom surface containing the double pupil. This experiment is conducted

with the pupil plane in three separate locations: with zero translation, 25mm

translation, and 50mm translation. The results of the Zemax simulations

are outlined in Table 4.4. The image disparity is calculated by measuring

118



Chapter 4 – Multi-Pupil Imaging

X
Y

Z
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Shifted Pupil Plane

Figure 4.10: DPSM Zemax verification layout

the distance between the centroids of each object point’s image through its

respective pupil. With zp = 0mm the DPSM is reduced to a DPM as can

be verified from the results presented in Table 4.1. A magnification of the

image disparities is observed as the pupil plane offset is increased to 25mm

and 50mm. In each case the depth estimation is verified to be exact, within a

noiseless environment, thus confirming the DPSM as a valid model.

Model Characterisation

Sensitivity of the DPSM parameters is examined in two stages. Initially the

fixed input parameters are analysed followed by a characterisation of the vary-

ing and calibrated parameters. The addition of the zp parameter, in compari-

son to the DPM, plays a significant role in the behavior of the DPSM model.

The same criteria applies to the DPSM analysis as applied to the DPM ex-

amination in terms of the practical constraints imposed by sensor size, lens

diameter and magnification due to focal length. The resolutions to which the

fixed input parameters are measured are outlined in Table 4.5. The mea-

surement resolution of the focal length is in the order of microns therefore

perturbations of this scale have little effect on the depth estimation accuracy

Analysis of the the pupil gap separation distance reveals that the addition of

shifting the pupil plane has a multiplicative effect on the induced error in the

depth estimation. The effect of increasing the pupil gap separation distance has
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Table 4.5: DPSM Parameter measurement accuracy and sensitivity.

DPM Parameter Measurement Accuracy Depth Sensitivity

F 10µm (Pgv)2−Pgvdzp
(Pgv−FPg−Fd)2

Pg 7.8µm −F 2d(v+vzp−zp)

(Pgv−FPg−Fd)2

v Calibration PgF (dzp−Fd−PgF )

(Pgv−FPg−Fd)2

d Sub-pixel PgF (Fzp−vzp−Fv)

(Pgv−FPg−Fd)2

zp Calibration Fd
(Pgv−FPg−Fd)

been discussed in the DPM analysis. The same concept applies for the DPSM,

therefore larger separation distance induces less error in the depth estimation,

and therefore it is set fixed at 20mm for the Pg analysis. Varying the focal

length has no effect on the perturbations of Pg with respect to u0. This is a

result of the disparity and sensor depth varying in proportion with changes

in F. Therefore a fixed F of 85mm is chosen. Figures 4.11(a)-(c) present the

results of the sensitivity analysis of the Pg parameter for three axial shifts

of the pupil plane. A zero shift is included for comparison with the DPM

(Figure 4.11(a)), along with shifts of 10mm and 20mm in Figures 4.11(b)-(c)

respectively. With the pupil plane situated at the lens, the DPM exhibited

sensitive attributes to Pg, however these were of a small magnitude (less than

1% error at 8m). Shifting the pupil plane 10mm from the lens induces errors

which are an order of magnitude above the zero shift errors. This profile is also

visible for a 20mm shift of the pupil plane with a further increase of sensitivity

to Pg. On closer inspection of the sensitivity profiles, it is evident that the near

focused system induces the largest error in the depth estimation process. By

examining the practical implications of optical configurations and the disparity

profile of the system being modelled, the causes of this increased sensitivity

can be rationalised. As the pupil plane shifts further into object space, the

rays emanating from object points are projected through the lens at a greater

distance from its centre. Therefore, error in the estimation of Pg for large shifts

of the pupil plane into object space will result in larger disparity error on the

image plane. Naturally, in a near-focus configuration the disparity profile is

increased, therefore, the error is magnified for these configurations. The most

significant result from the analysis of Pg is that a near focused optical system

is not the ideal configuration for the DPSM for large depth (> 5m) range

estimation.
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Figure 4.11: DPSM sensitivity of depth estimation to perturbations in Pg (a)

zp: 0mm; (b) zp: 10mm; (c) zp: 20mm.

The disparity profile of the DPSM given in Figures 4.12(a)-(c) represent pupil

plane axial shifts of 0, 25mm and 50mm (zero shift equates to the DPMmodel).

The conclusions drawn from the DPM analysis were that all configurations led

to decreased sensitivity of the image disparities as the object depth increased.

A near-focused configuration is favourable with the DPM due to its slightly

increased sensitivity and broader range of disparities at larger object depths.

Shifting the pupil plane axially changes the disparity profile of the nearer

sensor depths. It is evident in Figures 4.12(b)-(c) that the profiles of the far-

focused configurations are increasing in sensitivity, thus, a broadening of the

image disparities is observed at the higher object depths. As a result, the

disparity profile of the DPSM is not restricted to a near-focused configuration

to achieve robust depth estimations. The DPSM image disparity profile in a

near-focused configuration meets the same criteria as the DPM profile in terms

of a broad magnitude of disparities at the larger object depths. However, in
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light of the sensitivity issues of the pupil gap distance in these configurations,

a mid to far focused setting is more desirable to avoid large errors in the

depth estimation process. The increasing sensitivity of Pg to particular optical

configurations is due to the magnitude of the error propagated through the

system coupled with the sensor depth setting. As outlined, regardless of the

sensor depth setting, there is reduced sensitivity of image disparities at large

objects depths. Therefore, perturbations in Pg which result in large changes in

the magnitude of image disparities, particularly at larger object depths, results

in large depth estimation errors.

An imaging system in a near-focus configuration magnifies image disparity

error due to Pg perturbations, particularly at large objects depths. This is a

result of the rays passing through the system intersecting the optical axis at

a larger distance from the image sensor. Large errors are not observed at the

lower object depth estimates due to high sensitivity of the disparity profile

in this region of object depths. In contrast, imaging systems in a far-focused

configuration force incoming rays to cross the optical axis closer to the image

sensor. Subsequently, perturbations in Pg result in disparity errors of similar

scale to the DPSM disparity profile at larger object depths. Therefore, the

perturbations in Pg propagate less error through the system which results in

more accurate depth estimates.

The sensor depth parameter, v, and the pupil plane axial shift parameter,

zp, are both estimated via the calibration algorithm developed and presented

in Sec. 4.3. The sensitivity analysis performed on the DPM in relation to

the sensor depth parameter identified that changes in Pg had little effect on

the depth estimation process. Similarly, it was shown if larger focal lengths

were chosen, increased accuracy in the depth estimations process was achieved.

Both of these results are equally applicable to the DPSM, therefore Figures

4.13(a)-(c) present the results for the sensitivity of the DPSM to v for a fixed

F of 85mm and a fixed Pg of 20mm for three separate axial shifts (zp : 10mm,

20mm, 30mm). The perturbation in v remains constant across all axial shifts

of the pupil plane. Thus, v is not sensitive to changes in zp in the context of

depth estimation. In each instance the maximum error induced in the depth

estimation is 25mm, at an object depth of 8, 000mm.

An expression for the sensitivity of the DPSM to perturbations in zp is given in

Table 4.5. The induced perturbation is in the order of millimeters. Similarly
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Figure 4.12: DPSM image disparity profile. (a) zp: 0mm; (b) zp: 25mm; (c)

zp: 50mm.

to the sensitivity of v, the pupil gap distance has a negligible effect on the

depth estimation process in the presence of perturbations in zp. Additionally,

changes in focal length do not increase the depth estimation error. This is due

to the proportional change in disparity with Pg and F . Therefore the input

parameters of the simulations presented in Figures 4.14(a)-(c) are for a single

focal length of 85mm and fixed pupil gap distance of 20mm. The only param-

eter which affects the sensitivity of the axial shift is the sensor depth. It is

clear from the error profile that the near-focused configurations are performing

worse than the mid to far focused settings. Albeit, the magnitude of the in-

duced error which is roughly 25mm at 8m, remains constant across the range

of axial shifts. Based on this analysis, choosing a near-focused configuration

would not be severely affecting the overall depth estimation process. However,

taking the sensitivity of the pupil gap distance into consideration, the DPSM

is best suited to a medium or medium-long focus distance.
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Figure 4.13: DPSM sensitivity to perturbations in v. (a) zp: 10mm; (b) zp:

20mm; (c) zp: 30mm.

The characterisation of the DPSM leads to a number of conclusions. Firstly,

if the axial shift of the pupil plane is set to zero, the model is equivalent to

a DPM imaging system. The same physical limitations as apply to the DPM

apply to the DPSM in terms of focal length magnification affecting sensor size

and pupil gap distance within the diameter of the imaging lens. As the pupil

plane is shifted linearly on the object side of the system, certain properties

of the imaging system become very sensitive to perturbations. The pupil gap

distance on the shifted pupil plane is one such parameter. As the pupil plane

shift increases, a magnification of the depth estimation error is observed in

near-focused configurations. It is this property which defines the ideal system

properties of the DPSM. Even though the remaining DPSM properties are less

sensitive in near focus configurations (with the exception of zp), the difference

in the magnitude of induced errors for these parameters, in comparison to mid-

far focused settings, are of a small magnitude in the overall system. Therefore
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Figure 4.14: DPSM sensitivity to perturbations in zp. (a) zp: 0mm; (b) zp:

10mm; (c) zp: 20mm.

the ideal DPSM settings for achieving robust depth estimation are constrained

by the focus distance. Similarly to the DPM, a maximised pupil gap distance

within the lens diameter along with a mid range focal length are the ideal

DPSM settings. In this configuration, the DPSM is well suited to accurately

estimating depth over a large object distance range.

Depth Estimation

Simulations are conducted to identify the accuracy of the depth estimation of

the DPSM. Additive Gaussian pixel noise is introduced to the experiment to

simulate perturbations in the input parameters and to evaluate the robust-

ness of the DPSM. Normalisation is applied to the additive noise in the same

manner as was applied in Section 4.1.2. Figures 4.15(a)-(f) represent the simu-
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Table 4.6: DPSM depth estimation results at 8, 000mm across various in-

put settings with additive Gaussian pixel noise (0-5 pixels SD). Pg is fixed at

22.5mm.

Input F (mm) 35mm 85mm 200mm

Parameters zp(mm) 5 15 25 5 15 25 5 15 25

v (focus) Mid Far Mid Far Mid Far Mid Far Mid Far Mid Far Mid Far Mid Far Mid Far

Depth Estimation Mean (mm) 74.89 75.45 72.96 73.66 71.60 71.66 30.28 31.13 29.36 30.35 28.86 29.63 12.31 13.23 12.05 12.91 11.74 12.51

Error (mm) SD (mm) 23.15 23.08 22.57 22.73 22.22 22.22 9.36 9.61 8.96 9.38 8.89 9.21 3.82 4.08 3.73 3.96 3.61 3.83

lations performed for a camera with focal length 85mm and pupil gap distance

of 22.5mm. The plots in (a), (c), and (e) are the results for a mid-focused

configuration while (b), (d), and (f) present a far-focused system. Near-focus

configurations were not considered due to their high sensitivity to perturba-

tions in the Pg parameter. Three pupil plane shifts have been examined for

these camera settings: a 5mm, 15mm and 25mm shift. Pupil plane axial shifts

larger than the diameter of the imaging lens are not simulated. Pupil plane

shifts beyond 25mm lead to axial rays emanating from the object points not

passing through the lens. This is due to the angle at which the axial ray meets

the shifted pupil plane.

The most significant result of these simulations is that shifting the pupil plane

does not reduce the accuracy of the DPSM depth estimation. The maximum

error observed across all shifts for an 85mm focal length is 60mm at an object

depth of 8, 000mm. This equates to less than 1% error in the presence of a

5 pixel SD in noise. The DPSM characterisation identified a change in the

disparity profile as the pupil plane was shifted axially. This observation is

confirmed in the results presented in Figures 4.15(a)-(f). As zp increases the

far-focused configuration error reduces. This effect can also be seen in the

error of the mid-focused setting. The reduction is a result of a broadening of

the image disparity profile at the larger object depths.

Results for DPSM depth estimation, at an object depth of 8m, for a number of

input settings is given in Table 4.6. A single pupil gap distance of 22.5mm was

chosen for these tests. Results are given for three focal lengths (35mm, 85mm,

20mm) and three pupil plane shifts (5mm, 15mm, 25mm). As expected, the

mean error and its SD improve as the focal length increases. This is due to the

increased magnitude of image disparities which become less sensitive to pixel

perturbations. A similar effect is observed with the increase in pupil plane

shift. For each focal length, the best results are obtained with the maximum

pupil plane shift. Overall, consistent depth estimates, with error less than 1%
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Figure 4.15: DPSM depth estimation in the presence of input pixel noise for

various focus settings and pupil plane shifts. (a) zp: 0mm, mid-focus; (b) zp:

5mm, far-focus; (c) zp: 15mm, mid-focus; (d) zp: 15mm, far-focus; (e) zp:

25mm, mid-focus; (f) zp: 25mm, far-focus.
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across all settings, are achieved at 8m which is the most sensitive depth region.

This section has validated the DPSM camera model and tested its accuracy in

estimating depth from a single image. The conducted experiments have shown

that good accuracy is achieved across all pupil plane shifts and focal lengths of

the imaging system. The pupil gap distance has been identified as a significant

parameter as it induces a level of error to the overall system depending on the

chosen optical configuration of the DPSM. Experiments show that mid to far

focused configurations are favourable due to their suppressive effect on the

induced pupil gap noise. The key benefit of using the DPSM camera model for

depth estimation is its pupil plane shifting properties. This offers invaluable

flexibility in optical system design.

4.3 Calibration of the Pupil Model

The calibration of a camera is the fundamental step to reconstructing Eu-

clidean information from images. Standard pinhole calibration methods were

introduced in Chapter 2 and an image network approach to calibrating pinhole

cameras was proposed in Chapter 3. The applicability of standard pinhole cal-

ibration to the DPM and DPSM camera models is investigated in this section.

However, there is a fundamental flaw in applying pinhole calibration methods

to the double pupil models. Pinhole methods are only applicable to a (sin-

gle) centrally located pupil on the pupil plane. Thus, in order to apply the

pinhole calibration methodology to the DPM or DPSM, the pupil plane must

be physically modified or removed to perform the calibration. Inherently, this

introduces uncertainty to the accuracy of the calibration and subsequently to

the accuracy of the depth estimation. Therefore, new calibration methods are

proposed for the recovery of the sensor depth parameter for the DPM, and

the DPSM camera models. Simulated testing is performed to compare and

evaluate the new methods to the standard pinhole methods in recovering the

sensor depth parameter.
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Figure 4.16: Calibration using a spherical object at a known distance.

4.3.1 Standard Pinhole Calibration Methods

The work presented on the characterisation of the DPM and DPSM has shown

that v must be estimated accurately to achieve reliable depth estimates. When

considering a calibration procedure to apply to the DPM and DPSM, it is the

sensor depth parameter, v, which must be estimated most accurately. Standard

pinhole calibration methods such as those proposed by Sturm and Maybank

(1999) and Zhang (2000) involve imaging planar targets with varying pose

while the work presented in Chapter 3 adds an additional step to these methods

by specifying the planar pose of the targets for increased accuracy. In the case

of planar calibration, all camera parameters are estimated. For the DPM and

DPSM we only require the sensor depth since it is the only parameter needed

to estimate object depth. Therefore, an alternative pinhole calibration method

is also implemented in which only v is estimated based on imaging a spherical

target at a known object distance.

The requirements for planar camera calibration have been well documented in

Chapter 3. The spherical object calibration setup is shown in Figure 4.16. A

spherical object of known diameter, B, is placed at a known distance u0 from

the centre of projection. An image of the sphere is formed on the image plane

where its diameter can be measured in pixels and subsequently converted to

millimeters (the pixel to millimeter conversion is available from the camera

manufacturer). Then by similar triangles, an expression for the sensor depth

parameter, v, is formed.

v =
du0

B
(4.9)

Both pinhole calibration methods discussed in this section are valid to cali-

brate the DPM and DPSM if the pupil plane can be modified in the case of the

DPM and, modified and shifted axially in the case of the DPSM. Simulated
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testing is performed in this section to evaluate the applicability and accuracy

of the pinhole calibration methods, under the ideal conditions of pupil plane

placement and modification, to the DPM and DPSM camera models. Due to

the nature of the physical constraints imposed by pinhole calibration methods,

it is desirable that a calibration method, from a practical perspective, would

not require the physical placement or movement of any internal components

to the imaging system. This is the objective in forming the DPM and DPSM

calibration methods.

4.3.2 DPM Calibration Method

The sensor depth parameter has been identified as an integral parameter to

both multi-pupil imaging models. The physical constraints in applying stan-

dard pinhole methods to these models warrants consideration due to the sen-

sitivity of the v parameter (as discussed in Section 4.1 and 4.2). Practicality

must also take precedence when developing a new calibration algorithm. Less

user input requirements equates to less error in the practical implementation

of the calibration and thus less error in the v estimation. It is within these

constraints that the DPM calibration algorithm is developed. Ideally the ba-

sic input requirements of the calibration algorithm should be a single image

captured without the need for any modification to the pupil plane location or

configuration. The parameters which are available off-line are the focal length,

F , the pupil gap distance, Pg, and the pixel pitch which allows the conversion

of image disparities from pixels to millimeters.

On examination of the DPMmodel (Eqn. 4.4) it is evident that with knowledge

of the off-line parameters it is possible to form an expression for the sensor

depth. However this expression contains the object depth which, ideally, should

be independent of the calibration process. Therefore the proposed DPM cali-

bration process makes use of two object depths in which only the translational

component between both is known. This benefits the practitioner as there is

no need to measure objects at various depths, in which experimental errors are

likely to arise. It allows the use of accurate equipment such as a translation

stage which allows the measurement of translational components to a reso-

lution of 0.1mm. Additionally this calibration process can be performed by

capturing a single image that contains both object points. Furthermore, the

pupil plane remains unmodified in the proposed method, resulting in a more
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natural calibration process for the DPM in comparison to applying pinhole

techniques.

The proposed calibration setup is presented in Figure 4.17. The DPM imaging

system is defined with pupil gap distance Pg for a lens of given focal length

F . The sensor depth, v, can be set to any distance for the calibration process.

A large sensor depth, which sets the system to a near focus configuration, has

been shown to be ideal for accuracy in the depth estimation (see Figures 4.6(a)-

(c)). Therefore the DPM should be configured in a near focus configuration

for the calibration procedure. A calibration target is set up which consists of

two feature points separated along the optical axis by a known distance uz. In

this configuration, the DPM images both object points as image disparities,

d0 and d1. By using the off-line knowledge of focal length, pupil gap distance,

calibration target properties, and pixel pitch along with the image disparities

d0 and d1, an expression can be developed for the sensor depth parameter.

In its basic form the relationship can be verified as u1 = u0 + uz where u0

and u1 correspond to both calibration target object depths. Substituting the

expression for DPM depth (Eqn. 4.4) into this relationship yields

PgvF

Pgv − FPg + Fd0
+ uz =

PgvF

Pgv − FPg + Fd1
PgvF + uz(Pgv − FPg − Fd0)

Pgv − FPg + Fd0
=

PgvF

Pgv − FPg + Fd1
(4.10)

which is an expression independent of object depths and dependent on the

known imaging system parameters and on the sensor depth. By further ma-

nipulation, an expression for the sensor depth can be found in the form of a

polynomial equation.

v2α+ vβ + γ = 0 (4.11)

where

α = P 2
g

β = F 2Pg(d0 − d1 − 2uzPg)− FPguz(d0 + d1)

γ = F 2uz(P
2
g + Pgd0 + Pgd1 + d0d1)

(4.12)

A solution for the sensor depth v can be found from Eqn. 4.11. As it is a

second order polynomial, two solutions for v are found. However, a basic test
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on both solutions confirms that only one value is in fact a valid solution. The

bounds on the sensor depth test are that the minimum value for v must be

no less than the given focal length. This equates to an imaging system that

is at least in a configuration focused at infinity. The calibration equations

developed in this section are formed with an imaging system in a near focused

configuration i.e. v > v0. The DPM calibration algorithm remains consistent

across all optical configurations as long as the negative disparity condition is

upheld (see Section 4.1.1). As a result, the imaging system can be set in any

optical configuration (within the above bounds) for the calibration process.

v

d
Pg

10 d

uz

Figure 4.17: DPM calibration setup.

Simulated Experiments

Simulated experiments are performed to validate the DPM calibration method.

The first experiment examines the DPM calibration setup in terms of varying

target object depths and thus the translation between both object points. The

second experiment compares the DPM calibration method to the standard

pinhole methods. Evaluation is quantified in terms of accuracy in v estimation

and accuracy in the corresponding estimated object depths.

The results for varying the calibration target properties, in terms of translation

between objects at various depths, are presented in Figures 4.18(a)-(f). The

simulated camera has an imaging sensor of dimensions 18mm × 13.5mm in a

near focused configuration in a system of focal length 85mm with pupil gap

20mm. Object depths are set in the range 300mm to 8, 000mm in steps of

50mm. The translational component uz is set in the range 100mm to 2, 000mm

in steps of 10mm. Each experiment takes an object depth within the range

as the initial DPM calibration target. For each initial target, a translational

component uz is added to generate the second object target. Subsequently,

the calibration is performed and v is estimated (Figures 4.18(a), (c), and (e))
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along with an estimation of actual object depth across the entire range using

the calibrated v (Figures 4.18(b), (d), and (f)). Three levels of pixel noise

are added to the image disparities to simulate image noise and evaluate the

robustness of the DPM calibration.

As expected, in areas where v is poorly estimated, the object depth estimation

is similarly inaccurate. This is in agreement with the analysis of the DPM in

Section 4.1.2. The areas which exhibit most sensitivity are those where small

translational components are applied at medium to long object depths. These

cases induce large error in v and subsequently object depth due to the nature

of the disparity profile of the DPM. Since the medium to long range depth

corresponds to the most sensitive area of the DPM disparity profile, any error in

measurement of the image disparity will be magnified and propagated through

the DPM system. Figures 4.18(b), (d) and (f) show how this error is magnified

as the SD of the pixel noise is increased. Therefore, careful consideration

should be given to choosing the calibration target translational component

and to a lesser extent, the initial calibration target depth. There is a large

area of robust estimation as the translational component is increased coupled

with a general increase in object depth. Calibrations performed under these

conditions resulted in the most accurate depth estimates even in the presence

of large amounts of noise. This trend in the calibration process was observed

across all focal settings and optical configurations. In a similar manner to

the DPM disparity profile, slightly more accurate results are achieved in near

focused configurations as opposed to far-focused configurations.

The second experiment examines how applicable pinhole calibration methods

are to the DPM and examines how they compare in terms of accuracy with

the DPM calibration method. The same simulated camera was used for each

calibration method to ensure a fair comparison was achieved. The camera has

a lens with focal length 85mm and sensor size 18mm × 13.5mm. The optical

system was set to a near focused configuration at 300mm thus yielding a large

sensor depth for calibration in each method. The methodology of the pinhole

approach is to initially calibrate with a single centred pupil on the pupil plane.

This calibrated sensor depth is then used to calculate depth estimated from a

DPM imaging system employing a double pupil with a Pg of 20mm. Gaussian

pixel noise with varying SD between 0.1 and 5 pixels is added to the calibra-

tion images, before the feature extraction process, to evaluate the robustness

of each calibration method. In order to ensure that the additive noise equally
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Figure 4.18: DPM Calibration accuracy in sensor depth along with the corre-

sponding depth estimation accuracy error. (a) Accuracy of v estimation SD

= 0.5 pixels ; (b) Accuracy of depth estimation SD = 0.5 pixels; (c) Accuracy

of v estimation SD = 1.5 pixels ; (d) Accuracy of depth estimation SD = 1.5

pixels; (e) Accuracy of v estimation SD = 3 pixels ; (f) Accuracy of depth

estimation SD = 3 pixels
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affects each calibration method, the calibration targets are synthesised to cover

the same area of the image sensor in each experiment. The first pinhole cal-

ibration method employed is that of Zhang (2000) with the image selection

strategy for a two IN as outlined in Chapter 3. The second method applied

is the pinhole calibration via a spherical object. The input parameters for

the DPM calibration are guided by the simulated experimentation conducted

and presented in Figures 4.18(a)-(f) so that the areas of highest sensitivity are

avoided. That is, calibration targets located greater than 5m from the camera.

A translational distance of 1, 000mm is chosen for a target at an initial depth

of 1, 600mm. For each level of noise introduced to the imaging system, 100

trials with random noise at this level are undertaken, and the mean calibrated

sensor depth is calculated. The calibrated sensor depth values are subsequently

used to estimate object depths in the range 300mm to 8, 000mm, which are

used to quantify the accuracy of the calibration.

The results in Figures 4.19(a)-(c) present the mean error across all estimated

object depths for each level of noise introduced into the imaging system. The

SD of the depth error is given at each level as a bar plot. On closer examination

of the results, the magnitude of the error for planar calibration (417mm; SD of

298mm) is far greater than the error in the spherical and DPM methods. The

proposed DPM calibration outperforms the spherical method with a maximum

mean error across all depths of 31.25mm (SD 25mm) compared to 83.6mm (SD

62mm) for the spherical method. A more detailed experiment is conducted

for each calibration method which presents the mean error at each object

depth. The results for this experiment are presented in Figures 4.20(a)-(c)

which correspond to the planar, spherical, and DPM methods respectively.

This experiment highlights the robustness of the proposed DPM method in

comparison to the planar and spherical methods. The magnitude of the error

in the depth estimation of the planar method indicates that the calibration

of the sensor depth is not of adequate accuracy to be suitable for the DPM

camera model. Improvement in the planar accuracy could be achieved by

increasing the number of input images to the calibration process, however

this would greatly increase the input requirements of the user and lessen the

flexibility of the calibration procedure. There is a large improvement with the

spherical calibration in comparison to the planar approach. The maximum

depth estimation error is ∼ 230mm at an object depth of 8, 000mm compared

to ∼ 1, 200mm with the planar method at the same object depth. The primary
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Figure 4.19: DPM Calibration method comparison. (a) Planar calibration; (b)

Sphere pinhole calibration; (c) Proposed DPM calibration.

drawback of the spherical approach is that exact measurements are required for

object distance as well as an accurate spherical calibration target.The depth

estimation error observed as a result of the proposed DPM calibration is ∼
90mm at 8, 000mm. One aspect that was not simulated in these experiments

was the additional noise element that is applicable to the pinhole calibration

techniques as a result of pupil plane movement and replacement. It is expected

that this would induce further error.

The conducted experiments in this section have examined the applicability of

standard pinhole calibration methods to the proposed DPM camera model.

It is shown that these methods lack the accuracy in sensor depth determina-

tion to reliably estimate depth in a DPM imaging framework. The proposed

DPM calibration algorithm is shown to outperform the standard methods and

achieve a high degree of accuracy in depth estimation (∼ 1% at 8, 000mm).
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(a) (b)

(c)

Figure 4.20: Proposed DPM calibration method comparison - depth recov-

ery. (a) Planar calibration; (b) Sphere pinhole calibration; (c) Proposed DPM

calibration.

The practical aspect of performing the calibration procedure also favours the

DPM approach as it requires less user interaction. Additionally, as it derives

naturally from the DPM imaging model, it does not require any modification

of the pupil plane location, which is a major source of error in applying the

standard pinhole methods.

4.3.3 DPSM Calibration Method

The DPSM model differs from the DPM in that it contains an additional

model parameter which represents the axial shift of the pupil plane, zp. Thus

the calibration method developed for the DPM is not applicable to the DPSM

as there is an additional parameter that requires calibration. However, by ex-

amining the DPSM model equation (Eqn. 4.8), a calibration algorithm can be

developed which adopts a similar approach to the DPM calibration procedure
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which can calibrate both the sensor depth and the pupil plane axial shift.

As was the case with the DPM calibration, the off-line parameters of the

DPSM model in Eqn. 4.8 are the focal length, the pupil gap distance, and

the pixel pitch. By choosing a calibration target which consists of two object

points separated by a known axial distance (uz), the DPSM equation can be

rearranged to form an expression which encapsulates the difference in image

disparity due to the axial shift of the object points.

PgvF − Fd0zp
Pgv − FPg + Fd0

+ uz =
PgvF − Fzpd1

Pgv − FPg + Fd1
PgvF − Fd0zp + uz(Pgv − FPg − Fd0)

Pgv − FPg + Fd0
=

PgvF − Fzpd1
Pgv − FPg + Fd1

(4.13)

where d0 and d1 are the image disparities generated by two object points

separated axially by the distance uz. This expression is further refined into

polynomial form

α0v
2 + α1v + α2zp + α3vzp = γ0

(4.14)

where

α0 = uzP
2
g

α1 = FPg(Fd0 − Fd1 − 2UzPg − uzd0 − uzd1)

α2 = F 2Pg(d0 − d1)

α3 = FPg(d1 − d0)

γ0 = uzF
2(P 2

g + Pgd0 + Pgd1 + d0d1)

(4.15)

As there are two parameters which require estimation, the single expression in

Eqn. 4.14 will not suffice to solve both parameters.

Therefore multiple object points translated axially will be required to form

multiple equations to solve the calibration parameters.

n∑
i=1

αi0v
2 + αi1v + αi2zp + αi3vzp = γi (4.16)

where n is the number of axial translations between object points. In order

to uniquely solve the DPSM calibration parameters (v, zp), three equations

138



Chapter 4 – Multi-Pupil Imaging

2d

uz1
uz2

v

d
Pg

3

0

d

uz0

1d

Figure 4.21: Proposed DPSM calibration setup.

are required (n = 3). Each new equation, i, in the system must contribute

independently to the overall system of equations to uniquely solve the calibra-

tion parameters. Consequently, the calibration setup required for the DPSM

camera model is presented in Figure 4.21. It consists of four distinct object

points which gives three axial shifts and thus yields three equations. Each pair

of disparities, for example d0 and d1, have a corresponding axial shift (uz0) and

form a new equation in the calibration system. Naturally, the number of object

points and resulting axial shifts can be increased to generate a larger system

of equations to solve the calibration parameters. Given that the calibration

equations are non-linear, a non-linear minimisation technique, in the form of

the Levenberg-Marquardt (LM) algorithm, is applied to solve the DPSM cali-

bration equations. This enables the calculation of the sensor depth and pupil

plane axial shift parameters. The function to be minimised by the algorithm,

F(v, zp) is,

F(v, zp) =
n∑

i=1

αi0v̂
2 + αi1v̂ + αi2ẑp + αi3v̂ẑp − γi (4.17)

which generally converges to a solution for v and zp within 10− 15 iterations.

The proposed DPM method is used as an initial estimate for v, while the

initialisation for zp is set to zero.

The likelihood of degeneracies arising during the parameter estimation process

is an important consideration for any calibration algorithm and requires in-

vestigation. The most obvious case of degeneracy is when there is dependency

between the calibration equations within the system. As shown in Figure 4.21,

four distinct object points are chosen for the calibration procedure. If a subset

of three of these object points were chosen, for example (d0, d1, d2), the third

equation would have to be generated via object points d0 and d2. This inher-

ently creates a dependency in the calibration equations which leads to failure

in the parameter estimation process. Therefore the minimum requirements of

the DPSM calibration setup is that there are four distinct object points to
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generate the three axial shifts and subsequent equations. Further examination

of Eqn. 4.17 indicates that there is a camera configuration which leads to a

degenerate solution for the DPSM calibration process. If the imaging system is

set to focus at infinity, then v = F , and the pupil plane axial shift parameter,

zp, will be eliminated from the calibration equation. This results in failure to

estimate the zp parameter and thus a failure of the calibration process. Conse-

quently, the sensor depth parameter must not be set to focus at infinity, which

is easily avoided when calibrating an imaging system. Additionally, the anal-

ysis of Section 4.2.1 led to the conclusion that a mid-far focus configuration

was best suited to the DPSM model for estimating depth across a large range.

Therefore the optimal calibration settings require that a focused at infinity

configuration be avoided.

Simulated Experiments

Two synthetic experiments are conducted to validate the proposed DPSM

calibration method. The first experiment tests the accuracy of the DPSM cal-

ibration algorithm in estimating the sensor depth and pupil plane axial shift

parameters. This test is conducted with varying input parameters and in the

presence of varying input noise to the imaging system. The second experiment

evaluates the accuracy of the DPSM calibration algorithm for various input

settings. Accuracy is assessed by examining error in the depth estimation us-

ing the calibrated parameters across a large object depth range. Experiments

are carried out using both a near focused and mid-far focused imaging config-

uration (300mm and 3, 000mm respectively). The object depth range is set

between 300mm and 8, 000mm. A pupil gap separation distance of 20mm is

chosen (lens diameter is 25mm) and the focal length of the imaging system is

85mm.

The DPSM calibration setup requires four distinct object depths to generate

three axial distances and the subsequent equations for estimating the camera

model parameters. The choice for calibration target object distances builds

on the experimentation conducted for the DPM calibration procedure in Sec-

tion 4.3.2. These results (Figures 4.18(b), (d), and (f)) highlighted that once

the translational component was large enough (roughly a quarter the object

distance) at any object distance, the physical setup of calibration targets was

sufficient to obtain an accurate parameter estimation. The addition of the zp
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parameter to the DPSM calibration means that two extra object distances are

required, which can be chosen based on the analysis in Figures 4.18(b), (d),

and (f). The only effect zp has on these error profiles is a broadening of the

pixel disparities which marginally reduces the error of the profiles in Figures

4.18(b), (d), and (f). The object distances chosen for the calibration targets

in both DPSM experiments are 500mm, 1, 000mm, 1, 500mm, and 2, 000mm.

The results for sensor depth and pupil plane axial translation calibration for an

imaging system in a near-focus configuration are presented in Figures 4.22(a),

(b), and (c). Each point on the error surfaces represents the mean error

recorded, for 100 experiments, at a particular zp in the presence of noise (with

a SD) across all object depths. The sensor depth calibration results are given

in Figure 4.22(a). The maximum mean error in v across all depths is 40µm

which is observed with the system under a noise level of 5 pixels SD. Results

for the estimation of zp are shown in Figure 4.22(b). The maximum error is

recorded at the translational components of lesser magnitude and is approx-

imately 90µm (at SD = 5 pixels). The resulting error in depth estimation

using the calibrated parameters is given in Figure 4.22(c). As the SD of the

pixel noise is increased, the error increases as expected. An error of 90mm is

the maximum depth error observed and corresponds to the least accurate esti-

mation of the DPSM parameters. Results for the same tests with an imaging

system in a mid-far focused configuration are given in Figures 4.23(a), (b), and

(c). The main difference with this imaging configuration is that v is estimated

marginally more accurately (∼ 30 − 33µm error) while zp is less accurate.

As the pupil plane axial translation is decreased towards its natural position,

at the lens, the imaging system becomes closer to a DPM than the DPSM.

Consequently, a mid-far focused system (in a DPM configuration) is more sen-

sitive to the induced noise in the imaging system. Thus the zp estimation is

less accurate, by approximately an order of magnitude, than the near-focused

configuration. However the increase in accuracy of the v estimation offsets

the additional induced error of zp as v is a considerably more sensitive param-

eter in the model when estimating depth. Thus the estimation of zp in the

mid-far focus configuration leads to a marginal increase in the overall error in

estimated depth. The maximum depth error observed in this configuration is

approximately 20mm greater than in the near-focus configuration.

The second simulated experiment in this section evaluates the accuracy of the

DPSM calibration for varying input parameters and quantifies the results based
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(a) (b)

(c)

Figure 4.22: DPSM Calibration - parameter estimates in a near-focus config-

uration. (a) Sensor depth error; (b) Pupil plane offset error; (c) Mean depth

error.

on the estimated depth at each object depth. Experiments are carried out for

both a near focus and mid-far focused configuration. Three pupil plane axial

translations are simulated (5mm, 15mm, and 20mm). Gaussian noise with

SD varying between 0.1 and 5 pixels is added to the imaging system to test

the robustness of the calibration algorithm. Each data point in the results is

the mean depth error of 25 calibrations at that particular level of noise for the

given camera settings. The mean estimated depth error at each object depth

is presented in Figures 4.24(a), (c), and (e) for the near focus configuration

and Figures 4.24(b), (d), and (f) for the mid-far focused system. As expected

the least accurate depth estimates occur when the noise level is above 4 pixels

SD when estimating object depths beyond 3, 000− 4, 000mm. The maximum

of the mean errors is approximately 95mm. This error corresponds to a short

pupil plane axial translation (zp = 5mm) in a mid-far focus configuration.

This error is in agreement with the observation that in a mid-far focused
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(a) (b)

(c)

Figure 4.23: DPSM Calibration - parameter estimates in a mid-far focus con-

figuration. (a) Sensor depth error; (b) Pupil plane offset error; (c) Mean depth

error.

configuration, the imaging system is more sensitive as it tends towards a DPM

(as zp decreases). On the other hand, the simulations with a near focus system

are less sensitive to the induced noise at zps of smaller magnitudes. As the

magnitude of the pupil plane axial shift increases, an improvement in the

accuracy of the depth estimation is seen with the mid-far focus configuration.

The maximum of the mean error for the mid-far focused system with zp =

20mm is less than 80mm in comparison with the near focused system for

the same settings which has error greater than 80mm. As zp increases, the

general trend is that the mid-focus system decreases in error of depth estimates

while the near focused system increases. This also confirms the findings in

Section. 4.2.1 which showed that the DPSM parameters were more sensitive to

perturbations in the image data for near focused systems in comparison to the

mid-far focused systems. The corresponding mean and SD across all object

depths for the plots in Figures 4.24(a)-(f) are given in Figures 4.25(a)-(f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.24: DPSM Depth estimation error using calibrated parameters. (a)

Near-focus configuration with zp = 5mm; (b) Mid-far focus configuration with

zp = 5mm; (c) Near-focus configuration with zp = 10mm; (d) Mid-far focus

configuration with zp = 10mm; (e) Near focus configuration with zp = 20mm;

(f) Mid-far focus configuration with zp = 20mm.
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Figure 4.25: DPSM Depth estimation error using calibrated parameters er-

rorbar plots. (a) Near-focus configuration with zp = 5mm; (b) Mid-far focus

configuration with zp = 5mm; (c) Near-focus configuration with zp = 10mm;

(d) Mid-far focus configuration with zp = 10mm; (e) Near focus configuration

with zp = 20mm; (f) Mid-far focus configuration with zp = 20mm.
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Experiments conducted in this section have examined various aspects of the

proposed DPSM calibration algorithm. The initial calibration target depths

are chosen based on the analysis of the DPM setup. It was found that pro-

vided the initial target depth was greater than 500mm, and the translational

component between the targets was at a minimum approximately one quarter

of that distance, a reliable parameter estimation is achieved. Naturally, as the

magnitude of the translational component increases, the robustness of the pa-

rameter estimates also increases. A thorough examination of the accuracy in

the parameter estimation was performed and it was determined that a mid-far

focus configuration was the optimal setting to perform the DPSM calibration

procedure. The increased performance was due to a more accurate determi-

nation of the sensor depth parameter, which is the most sensitive parameter

within the system. An increase in accuracy of the estimation of the pupil

plane axial translation was also observed in the mid-far focus configuration as

zp increased. This increase in performance as zp increased in the DPSM model

was also observed in the experiments conducted in estimating object depth

using the calibrated DPSM parameters. The worst case depth estimation was

recorded in the presence of 5 pixels SD Gaussian noise and had a mean error of

27.1mm (SD 16.7mm). Application of standard pinhole calibration methods

to the DPSM is likely to induce large error. The accuracy would be, at best,

similar to that outlined in the experimentation in the DPM section. However,

it is likely that these methods would lead to considerably less accurate esti-

mates than outlined in Section. 4.3.2. Due to the axial translation of the pupil

plane, calibrating with the standard pinhole methods would require manual

placement and measurement of the pupil plane from the natural position to

the translated position after the calibration. This further re-enforces the ap-

plicability of the DPSM calibration method since it is multi-pupil based, the

calibration process is a more natural process and, thus, produces more reliable

parameter estimates.

4.4 Real Experiments

The DPM and DPSM imaging models are tested using real data with respect

to the calibration of the camera and the resulting depth estimation process.

Standard camera calibration procedures are conducted and a resulting depth

estimation is performed in order to evaluate the DPM and DPSM imaging
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models.

4.4.1 Experimental Setup

The camera used for all experiments in this section is the Panasonic Lumix

DMC-G1, a Micro Four Thirds (MFT) format camera. The MFT format allows

interchangeable lenses without the need for internal mirrors and a pentaprism

such as those used in standard DSLR systems. Due to the decreased number of

components in the camera, the physical distance between the lens mount and

the image sensor is reduced. This allows smaller diameter lenses to be used,

which provides an ideal test bed in which to experiment with modified optical

components. These ideal conditions are enhanced by having a large image

sensor (17.3mm × 13mm) which allows images to be captured at 4, 000×3, 000

pixels yielding a pixel pitch of 4.3µm. Image pixel resolutions of this order

ensure that the choice of optical components will be the limiting factor in

resolving image details. An EO achromatic lens of focal length 75mm was used

for the conducted experiments. EO lenses were chosen for two reasons. Firstly,

from a practical aspect, the modification of the pupil plane requires direct

access to the primary elements of the imaging lens. Typically, conventional

imaging lenses are encased and difficult to disassemble without damaging the

lens. Secondly, the optical properties of the EO catalog are available in the

Zemax software. Consequently, the optical resolution of the lens is known:

70 lines/mm. The resolvable resolution of the image sensor can be calculated

using a machine vision primer (500/pixelsize) Stemmer (2011) and is found

to be ∼ 116 lines/mm. Therefore the resolution of the implemented system is

sufficient to capture detailed image projections through imaging lens.

An additional benefit of using a MFT format is “Live View”. This enables a

continuous stream of the current imaging configuration and scene. This feature

was exploited for the purpose of lens and pupil plane alignment. Pupil planes

are manufactured using aluminium sheets of thickness 0.35mm. Circular pupil

planes of diameter 25mm (same diameter as the EO lenses) are machined

using a LPKF ProtoMatR⃝ C30/S.2 Pupils of diameter 1mm are drilled into

the plane during the manufacturing process. Alignment of the image sensor

with the optical lens and pupil plane is achieved by modifying the MFT lens

2http://www.lpkf.com
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mount. A C-mount lens connector is centrally integrated to the MFT mount.

This enables the use of the full range of C-mount spacers and connecting tubes

which accompany the EO lenses. Alignment of the pupil plane is guaranteed

provided its diameter matches the lens and connector tube diameters. The

experimental setup in terms of the camera body, lens elements and connectors

is shown in Figures 4.26(a), 4.26(b), and 4.26(c).

Defining object points which are on the optical axis of the imaging system

was one of the main difficulties with the experimental setup. Alignment of

object points with the optical axis was acquired by using a laser. As shown

in Figure 4.26(d), the laser was mounted on a custom made bracket. Four

degrees of freedom are achieved using an electro mechanical rotation stage,

a mechanical rotation stage and two mechanical translation stages. The two

degrees which were dropped correspond to rotation about the optical axis and

translation along the optical axis, of which neither affect the axial alignment.

Alignment of the laser with the optical axis was a two stage process. Initially,

the camera was calibrated using a standard planar approach to identify the

intersection of the axis with the image plane i.e. the principal point. The

second stage involved manually aligning the laser (via rotation and translation

stages) with the marked principal point in the image. It was also necessary to

ensure that the laser was intersecting the centre of the lens. This was achieved

by visually aligning the laser spot with a custom made pupil plane with a

pinhole located at its centre. The resolution of the electro mechanical rotation

stage was 0.001o. The resolution of the manual rotation stage was 0.1o, while

the mechanical translation stages had a resolution of 0.01mm. Due to the

sensitivity of the optical axis alignment, consistency across all experiments

was maintained by mounting the camera body and laser on optical tables.

Object depth range was limited by the size of the laboratory in which the

experiments were conducted. This equated to a range of approximately 4.3m.

As a result of the laser and optical axis alignment, object depths were defined

by intersecting the axis with an orthogonal diffuse plane. This is illustrated

in Figure 4.26(e) where it can be seen that when the plane intersects the axis,

the laser beam spot is visible on the diffuser at that depth. Object depth was

measured via alignment of the diffuse plane with a measuring tape, which was

fixed parallel to the optical axis. The entire experimental setup is shown in

Figure 4.27.
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Figure 4.26: Experimental setup components. (a) Camera body with modified

lens mount; (b) Custom lens arrangement with pupil plane; (c) Multi-pupil

imaging system; (d) Laser setup; (e) Diffuse plane for enabling object depth

measurements.
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Figure 4.27: Experimental setup.

4.4.2 Calibration Procedure

When metric measurements are required from an imaging system, the sen-

sor depth is a fundamental parameter in completing this task. The sensor

depth describes the optical configuration of the imaging system. Coupled with

knowledge of the focal length and pixel pitch, it allows metric measurements

to be made from resulting image pixel disparities. Two new methods have

been proposed for calibrating the DPM and DPSM sensor depth. Simulated

results have shown these methods to outperform the standard methods (Sec-
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Figure 4.28: Ground truth sensor depth calibration.

tion 4.3.2). The aim of the experiments conducted in this section is to quantify

the accuracy of the DPM and DPSM methods in calibrating the sensor depth

in comparison to the pinhole approaches.

An initial experiment was conducted to obtain a ground truth for the sensor

depth parameter in the experimental configuration. Object points were imaged

every 10mm over an interval of 100mm within the region of the apparent focus.

Subsequently a smaller region, around the focused depth, was imaged in 1mm

steps over a range of 10mm. A Gaussian model was fitted to each imaged

object point in which the average of the 2D width was taken as the spot size.

The resulting minimum spot size over the entire interval was defined as the

object depth that was in focus, which along with the known focal length of the

lens allowed the sensor depth to be calculated. The results for this experiment

are shown in Figure 4.28. A second order polynomial was fitted in the region

corresponding to the minimum spot size to further refine the sensor depth

estimate. An object depth of 761.3mm was found to be the minimum spot

size distance. This corresponds to a sensor depth of 83.20mm.
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Standard Calibration Approaches

In a similar manner to the conducted simulated experiments, the standard

calibration methods of Zhang (2000) and imaging a sphere are carried out

with real data. In the case of the planar calibration, ten images of planar grids

with varying pose are captured. Imaging the planar grids around the focus

depth ensures features remain sharp and thus the feature extraction process

is straightforward. The calibrated sensor depth using the method of Zhang

(2000) was 82.618mm.

Calibration using a spherical object is conducted by centering a spherical object

of known diameter, which in this case is a black snooker ball, at the focus

distance. In addition to being centred at the focus distance, the sphere must

also be centred on the optical axis. Alignment is achieved by adjusting the

height of the sphere until the laser intersects it at its centre. Subsequently, the

scene is back lit using a light box, which increases the contrast between the

black snooker ball and the apparent white background. This aides with the

feature extraction process which in this case involves fitting an ellipse to the

edge detected, snooker ball silhouette. An example calibration image captured

in this procedure is presented in Figure 4.30. Since the calibration object being

imaged is spherical, an adjustment of the diameter is required due to the nature

of the experimental setup. Figure 4.29 illustrates where the adjustment is

needed. Since the point on the sphere being imaged is not at the exact centre

of the sphere, an adjustment of the depth is required. The adjusted object

depth u
′
can be found by examining the two right angle triangles with sides

(r, s, u0) and (h, s, u
′
). In reference to Figure 4.29, s =

√
u0

2 − r2, h = sr
u0

and

u
′
=

√
s2 − h2. Now the adjusted object depth (u

′
) and height (h) are used

for the sensor depth calculation, v = du
′

2h
. This experiment was conducted six

times for varying levels of camera exposure. The resulting average calibrated

sensor depth value for these experiments was 82.55mm.

Multi-pupil Calibration

The multi-pupil calibration methods proposed in Section 4.3 require an object

point on the optical axis at various depths to be imaged. In the case of the

DPM, two object depths are used in which the translation between object

points is known. This scenario can be captured in a single image, however,
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Figure 4.29: Adjusting the spherical calibration depth parameter.
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Figure 4.30: Example spherical calibration image (scaled to VGA).

the experimental setup outlined in this section only allows a single depth to

be imaged each time. Therefore two images are acquired with a translational

component of 1m between each object point (as suggested in Section 4.3.2).

Since each image only contains a single object depth, colour filters are not

required for feature extraction.

An example image produced by the DPM is given in Figure 4.31. Images are

captured in a dark room environment. Centroid localisation is implemented

by fitting 2D Gaussian functions to each pupil point respectively and finding

their centre. Centre of mass localisation was implemented but was found to

be less accurate particularly as the image disparity decreased and the pupil

points became less well defined/resolved. The DPM calibration was performed

by taking an initial object depth approximately 1.25m in front of the pupil

plane. The second object depth was 1m further on the object side. As noted,
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Figure 4.31: Example DPM image (scaled to VGA).

the actual object depths are not required, just an accurate measure of the

translation between them. The resulting calibrated DPM sensor depth was

83.19mm for a pupil gap separation distance of 10mm. An identical calibration

procedure was performed for the DPM with a pupil gap separation distance of

20mm. The calibrated sensor depth in this configuration was 83.18mm.

A DPSM imaging system was implemented with an axial translation of the

pupil plane (zp) by approximately 20.91mm (measured with digital calipers).

Two DPSM configurations were tested corresponding to pupil gap separation

distances of 10mm and 20mm. DPSM calibration differs from the DPM in

that four distinct object depths are required. Since two parameters are being

calibrated, sensor depth and pupil plane axial translation, additional object

depths are required to enable sufficient constraints to solve the calibration

equations. In this case, a minimum of four distinct object depths yields three

independent equations which enables the camera parameters to be calculated.

Images produced by the DPSM are similar to that presented in Figure 4.31.

The only difference is that the image pixel disparities are marginally increased

due to the pupil plane offset. As expected, and as is the case for the DPM, an

increase in the pupil gap separation distance increased the image pixel disparity

profile significantly. Object points for the calibration procedure were captured

at depths of 87mm, 1, 000mm, 1, 490mm, and 2, 290mm. A sensor depth of
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Table 4.7: Comparison of calibration techniques. Percentage error given in

brackets

Configuration Parameter Measured Zhang Sphere DPM DPSM

Pg = 10
v (mm) 83.20 82.62 (0.69) 82.55 (0.77) 83.19 (0.01) 83.33 (0.16)

zp (mm) 20.91 - - - 20.30 (2.93)

Pg = 20
v (mm) 83.20 82.62 (0.69) 82.55 (0.77) 83.18 (0.01) 83.29 (0.10)

zp (mm) 20.91 - - - 22.71 (8.6)

83.33mm and pupil plane axial translation of 20.30mm were calculated for a

pupil separation distance of 10mm. In a 20mm pupil separation configuration,

the sensor depth was found to be 83.29mm with a pupil plane axial shift of

22.71mm. The results of all calibrations performed along with the ground

truth data are presented in Table 4.7

Discussion

A single mid range focal length lens was chosen for the experiments (75mm) in

which the imaging configuration was set to a near-mid focus. Two pupil gap

separation distances were also tested: 10mm and 20mm. Simulated results

for both the DPM and DPSM model have shown this focal length and focus

range to yield the optimum conditions to implement both imaging models.

Both pupil gap distances were implemented to examine the results of different

image disparity baselines.

There are a number of conclusions to be drawn from the calibration results.

The accuracy at which the sensor depth is estimated has a profound effect

on the overall depth estimates of the multi-pupil imaging models. Simulated

results presented in Sections. 4.1.2 and 4.2.2 outlined the implication of poor

accuracy in the sensor depth estimation process due to the highly sensitive

nature of this parameter. Table 4.7 outlines the results for each calibration

experiment performed. It is clear that the multi-pupil methods are superior

to the standard methods for accurately estimating the sensor depth. Standard

planar calibration yields an error of 0.695% in comparison to the spherical

method which resulted in an error of 0.773%. Even though the error is small

in magnitude, it equates to modifying the focus of the entire imaging system

which, in turn, changes the disparity profile for the subsequent metric mea-

surements. The results for the DPM calibrations contain error of an order of
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magnitude less than the standard techniques. Errors of 0.013% and 0.017%

are recorded for pupil gap distance of 10mm and 20mm respectively.

In the case of the DPSM calibration, an additional model parameter is re-

quired from the calibration process. Therefore any perturbations within the

calibration environment will propagate through affecting both parameter es-

timates. A total of four distinct object depths are required to perform this

calibration, thus yielding three calibration target offsets (Eqn. 4.17). As noted

in Section. 4.3.3, as long as the translation between the grids was roughly a

quarter of the object distance, accurate results would be obtained in the pres-

ence of noise. During the initial experimentation, object distances similar to

that used for the DPM were chosen. Due to the additional calibration targets

required for DPSM calibration, some of the targets were located at the ex-

tremities of the depth range (∼ 4, 200mm). This area of the disparity profile

(corresponding to the large depths) is the least sensitive to changes in object

depth, therefore any perturbations in determining the disparity at this depth

will propagate through the calibration process to the estimation of the model

parameters (due to the assumption of known translation distances between

calibration objects). Therefore, an initial object depth situated in the most

sensitive region of the disparity profile was chosen, in the < 300mm region.

This ensured that the resulting calibration target disparities would not induce

large error in the overall procedure.

Simulated experiments in relation to the sensitivity of the pupil plane axial

shift parameter, zp, were presented in Figure 4.14(c). It was shown that re-

gardless of the magnitude of zp, the induced error in depth estimation remained

insignificant in comparison to induced error due to sensor depth inaccuracy.

However the dependence of sensor depth on zp within the DPSM calibration

framework gives rise to the importance of obtaining an accurate estimate for

the axial shift parameter. The results for zp estimation were 20.30mm and

22.71mm for Pg = 10mm and Pg = 20mm respectively. This represents an er-

ror of 2.9% and 8.6% of the measured value for zp respectively. Corresponding

sensor depth estimation results in error of 0.16% and 0.1% of the measured

value. In comparison to the DPM estimates, the error is approximately an

order of magnitude larger, but remains significantly less than the standard

calibration results.

The difference in performance between the standard calibration techniques
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and the multi-pupil approach can be partially accounted for by the fact that

there are aberrations present in the imaging lens. With the multi-pupil tech-

niques, the calibration targets remain on the optical axis of the camera, thus

only spherical aberration has an effect on the calibration targets. Since spher-

ical aberration remains constant on axis, it is partially accounted for by the

multi-pupil imaging models. An increase in Pg results in an increase in spher-

ical aberration. Thus larger error is seen particularly with the DPSM model,

as shifting the pupil plane has the effect of directing the incoming object

rays towards the periphery of the lens. This is where spherical aberration is

maximised in an imaging lens. As the object points move off axis, as is the

case for planar calibration and calibration using a spherical object, additional

abberations will distort the true corresponding image point locations. Thus

calibration results will become less reliable. Another factor to consider is el-

lipse fitting with the spherical calibration. Image blur renders this task quite

susceptible to noise in the ellipse fit which results in inaccurate sensor depth

estimates. Planar camera calibration will also suffer with feature detection

problems in the presence of lens aberrations. This also results in poor sensor

depth estimates. With regard to practicality, there are issues with adopting

the standard calibration approaches to a DPSM imaging configuration. Direct

modification of the imaging configuration is required by removing and replac-

ing the pupil plane during the calibration procedure. This process greatly

increases the chance of inducing error into the calibration process through

misplacement/misalignment of the pupil plane. Additionally, the likelihood of

modifying the sensor depth whilst performing manual alterations to the DPSM

is increased.

4.4.3 Depth Estimation

Depth estimation experiments were performed for each multi-pupil camera

model in both pupil gap separation distance configurations. The same imaging

systems which were examined in the calibration experiments were examined

for the depth estimation. Therefore, the depth estimation experiments also

quantitatively evaluate the calibration results obtained in Section 4.4.2. Each

experiment consisted of imaging an axial object point at various depths. A

total of 21 object depths were imaged across a range of 4, 300mm (22 depths

were measured for the DPSM in a Pg = 10mm configuration). Each captured
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Table 4.8: Depth estimation error using the calibration results of standard and

multi-pupil approaches. (S) corresponds to standard approaches applied with

measured zp.

Configuration Measurement Zhang Sphere Zhang (S) Sphere (S) DPM DPSM

Pg = 10
Mean (% error) 26.42 30.99 27.04 31.80 0.85 1.34

SD (%error) 17.40 21.04 18.24 22.11 0.73 1.07

Pg = 20
Mean (%error) 36.11 41.76 36.36 42.35 0.73 0.99

SD (%error) 26.42 31.58 27.61 33.11 0.62 1.11

image was subsequently processed by fitting Gaussian models to the imaged

object point intensities. This allowed the corresponding image disparities to

be calculated and subsequently fed into the multi-pupil imaging models for

object depth calculation. Sensor depth calibration results obtained using the

standard approaches were implemented in the multi-pupil imaging models for

comparison. In the case of the DPSM, where the pupil plane axial shift param-

eter (zp) requires estimation, the measured value of zp (21.91mm) was used

for calculating object depth using the standard calibration approaches.

Results for object depth estimation of the DPM and DPSM in configurations

with a pupil gap of 10mm are presented in Figure 4.32(a)-(d). Figures 4.32(a)

and 4.32(c) show the estimated object depths calculated using the calibration

results obtained from the standard approaches and the multi-pupil approaches.

The corresponding depth estimation errors are presented in Figures 4.32(b) and

4.32(d). It is clear from both sets of results that the multi-pupil calibration

models are considerably more accurate in depth estimation. The standard

planar approach of Zhang (2000) performs slightly better than calibration using

a spherical object. Table. 4.8 presents the mean and SD of the depth estimation

errors as percentages. DPM and DPSM mean error (SD) are 0.85% (0.73%)

and 1.34% (1.07%) respectively. These figures are an order of magnitude less

than the observed error in depth estimation when implementing the standard

calibration approaches. Planar calibration produces a mean error of 26.42%

(17.4%) in a DPM configuration and 27.04% (17.24%) in a DPSM system.

A poorer performance is recorded by employing the calibration results of the

spherical approach. Mean errors of 30.99% (21.04%) and 31.80% (22.11%) are

recorded in DPM and DPSM configurations using these calibration results.

The depth estimation results for a multi-pupil imaging system with a pupil

separation distance of 20mm are presented in Figures 4.33(a)-(d). Once more,
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Figure 4.32: Depth estimation results for Pg = 10mm (a) DPM Depth esti-

mation; (b) DPM Depth estimation error; (c) DPSM Depth estimation; (d)

DPSM Depth estimation error.

the DPM and DPSM calibrated systems are estimating depth at a level of ac-

curacy far superior to that of the standard calibration approaches. An increase

in the mean and SD of the error is observed with the standard approaches in

comparison to the 10mm pupil gap configuration. Planar calibration attributes

36.11% (26.42%) and 36.3% (27.61%) error with respect to a DPM and DPSM

system. A spherical calibration approach results in error increases to 41.76%

(31.58%) and 42.35% (33.11%). Therefore the depth estimation results pre-

sented in this section re-enforce the multi pupil approaches in calibrating a

multi-pupil imaging system.
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Figure 4.33: Depth estimation results for Pg = 20mm (a) DPM Depth esti-

mation; (b) DPM Depth estimation error; (c) DPSM Depth estimation; (d)

DPSM Depth estimation error.

Discussion

There are a number of factors to consider when analysing the depth estimation

results. As discussed in Section 4.4.2, the sensor depth is the most sensitive pa-

rameter of the multi-pupil imaging models. Poor estimates of the sensor depth,

in the order of > 0.6%, have a detrimental effect on depth estimation. Object

depth errors of 70% are recorded with the planar calibrated sensor depth, while

errors larger than 100% are seen with the spherical calibration. However, it

is noted that sensor depth errors of this magnitude have a smaller effect on

near-object depth estimation. Both standard approaches exhibit depth errors

less than ∼ 10% within a range of ∼ 1, 000mm. For configurations with a pupil

gap distance of 20mm this range is slightly reduced to ∼ 750mm. This ro-

bust performance is a result of the multi-pupil imaging system disparity profile
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which is highly sensitive to changes in depth at this range. DPM and DPSM

worst case depth estimates are 2.02% and 3.62% respectively which correspond

to depth errors of 78mm for the DPM and 152mm for the DPSM. Errors of

this magnitude are well within the bounds of acceptability, particularly across

a depth range of 4, 300mm. The mean and SD error in depth estimation

presented in Table 4.8, for the proposed calibration approaches, exhibits a

marginal increase in performance for both imaging systems in configurations

with a pupil gap of 20mm. In the case of the DPM, this occurs despite an

increase in the error between the measured and calibrated sensor depth (ad-

ditional ∼ 3µm). With the DPSM, there is an increase in the accuracy of

the sensor depth estimate, but, a decrease in the pupil plane axial translation

estimation accuracy. Again, the increase in accuracy is marginal, however it

is an important property of the multi-pupil imaging system. A closer exam-

ination of this behavior leads to the conclusion that the aberrations within

the imaging lens have a significant role in defining the accuracy of the multi-

pupil imaging models. The main difference between the multi-pupil imaging

models with Pg set to 10mm and 20mm, besides the increased image disparity

baseline, is an increase in spherical aberration. As discussed in Section 4.4.2,

spherical aberration is present in images of on-axis object points. Rays ema-

nating from object points passing through the pupils on the pupil plane strike

the lens at a radial distance from its centre. The greater the radial distance

of the ray striking the lens, the greater the spherical aberration observed on

the image plane. This is realised on the image plane as a marginal increase

in the magnitude of image disparities. Therefore, increasing the pupil gap

distance effectively increases the magnitude of spherical aberration present in

the imaging system. This is the reason why multi-pupil calibration approaches

are more accurate than standard approaches. As standard approaches become

even less accurate with an increase in Pg, the DPM and DPSM marginally

adjusts their calculation of the sensor depth to account for the spherical aber-

ration. Naturally, there are additional monochromatic aberrations present in

the imaging lens. However these are only realised for object points which

do not lie on the optical axis. This explains the inaccuracy of the standard

calibration approaches as both methods utilise off axis object points for the

calculation of sensor depth. Depth estimation results employing the standard

calibration approaches reaffirm their unsuitability for application to the multi-

pupil imaging framework. The DPSM results, in particular, demonstrate how

the multi-pupil model adapts its sensor depth calibration to account for the
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spherical aberration. Since there are two parameters being minimised in the

DPSM calibration equations (4.17), there is more flexibility in the minimisa-

tion to locate the local minimum which accounts for spherical aberration in

the imaging system. This effect is highlighted by the difference in magnitude

of the estimated sensor depths for a Pg of 10mm and 20mm in comparison to

the measured and DPM calibrated values in Table 4.7. Despite the apparent

increase in sensor depth error, the depth estimation results remain accurate to

a level comparable to the DPM system (Table 4.8).

Analysis on the sensitivities of both multi-pupil imaging models was conducted

in Sections 4.1.2 and 4.2.1. The depth estimation in this section has confirmed

those simulated results which characterised the model parameters. The accu-

racy to which the focal length of the imaging lens is known (.01mm) does not

affect the overall depth estimation accuracy. Pupil plane properties such as the

pupil gap separation distance, which was shown to be a sensitive parameter

in both multi- pupil models, is manufactured with sufficient precision (7.8µm)

to accurately estimate depth. The most likely source of error to be induced

in the system is in the measurement of image disparity. Image disparity can

be measured to a sub-pixel level of accuracy. It is the definition of the centre

of image intensities relating to each pupil which requires consideration. Ini-

tially, a simple centre of mass calculation was made for localisation, however

it was found during experimentation that this step lacked the required accu-

racy, particularly around the focus depth where both image “spots” become

difficult to separate. Difficulties were also observed at larger object depths

(> 3, 500mm) where the image disparity profile becomes less sensitive to ob-

ject depth changes. In order to increase the accuracy of the spot centre locali-

sation, Gaussian functions were fitted. This step was sufficient to increase the

resolution of the spot localisation in the difficult areas of the image disparity

profile. If the object depth range was extended beyond 4, 300mm, it is ex-

pected that the accuracy of the depth estimation would decrease based on the

resolution to which the image disparities could be estimated. This problem

could be addressed by using higher quality imaging lenses which resolve image

detail to higher degree of accuracy. This is a valid solution provided that the

pixel pitch of the image sensor is of equal or higher resolution than the optical

resolution. An alternative approach would be to increase the focal length in

the multi-pupil imaging system. The scalability of multi-pupil imaging sys-

tems was identified in the system characterisation (Section 4.1 and 4.2). It
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was shown that an increase in focal length of the imaging system increased

the magnitude of the image disparity profile. Increased magnification of image

disparity increases the baseline at larger object depth ranges. Thus localisa-

tion becomes less of an issue, however, a decrease in the Field of View (FOV)

is observed due to the image magnification effect of a long focal length. This

could be problematic in determining object depths on the near side of system

focus. It is these object depths which will correspond to the largest image

disparity, and thus may not necessarily fall on the image sensor. This could

have practical implications for both multi-pupil calibration procedures.

Accuracy of the multi-pupil depth estimation results also validates the optical

alignment process of the experimental procedure. Any error induced due to

non-alignment of the optical axis with the sensor are of a magnitude small

enough that it does not affect the overall depth estimation process. The ro-

tational alignment of the pupil plane with the image sensor is unaffected due

to the rotational symmetry of the imaging lens. The primary concern was

that the pupil plane was parallel to all other surfaces in the imaging system.

This constraint was guaranteed with the lens tubes and spacers used during

experimentation. The depth estimation experiments were carried out using a

75mm focal length lens. Simulations indicated mid range focal length as being

ideal to obtain accurate depth estimates for a near to far object depth range.

It was suggested in simulated results that the pupil gap distance should be

maximised within the lens diameter. Therefore two pupil gap distances were

examined during the depth estimation process. It was found that the increased

pupil gap introduces spherical aberration into the imaging system. However

the multi-pupil calibration algorithms naturally account for this aberration as

it is fixed across all object depths. In order to achieve accuracy in the sensor

depth, it is recommended that the pupil gap distance not be maximised within

the lens diameter. Therefore Pg’s in the order of 0.5 times the lens diameter

should be used. This will ensure that the effect of the spherical component is

maintained at acceptable levels within the imaging system.

4.5 Discussion

This chapter proposes a new imaging model capable of recovering metric depth

information from a single image. Two camera models are developed under the
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proposed multi-pupil imaging criterion. Both models build on modified prop-

erties of the pupil plane within the imaging system. The standard pinhole

camera model suffers a loss of depth information when projecting 3D informa-

tion onto a 2D image plane. With multi-pupil imaging, 3D object points are

captured by each pupil and imaged onto the 2D image sensor. Thus, the depth

information is encoded into the resulting captured multi-pupil image. This en-

coding takes the form of a local pixel disparity between the detected object

point imaged by each pupil of the pupil plane, within the captured image.

Images captured using the multi-pupil camera model contain depth dependent

image pixel disparities. With metric knowledge of pupil plane properties, and

basic information of the imaging system configuration such as focal length and

image sensor size, image pixel disparities can be used to recover metric depth

information for the detected object points in the multi-pupil image.

The first camera model, DPM, is presented in Section 4.1.1. It consists of two

pupils separated on the pupil plane by a known distance. An ideal lens is as-

sumed and the pupil plane is located at the lens centre. Simulated experiments

were performed to verify the DPM model. Zemax was also used to validate

the DPM. A full characterisation of the model parameters was completed in

which it was found that the sensor depth is the most sensitive model param-

eter within the system for depth estimation. A further examination of the

relationship between image disparity and object depth reveals that this profile

is defined by the sensor depth configuration of the imaging system. Therefore,

depending on the focus configuration of the imaging system, the profile of the

image pixel disparity could be advantageous in certain circumstances. Subse-

quent simulated depth estimation experimentation, with the DPM in Section

4.1.2 found such conditions to arise when the DPM was in a near-focus con-

figuration. This equates to an imaging system with a large sensor depth. It

was shown that the increased performance in the presence of noise was due to

a broadening of the image pixel disparities as a result of a large sensor depth.

Due to the requirements of the DPM camera model, in particular the place-

ment of the pupil plane exactly at the imaging lens surface, a second multi-

pupil model is proposed. This is realised in the form of a shifted multi-pupil

imaging system. The DPSM, presented in Section 4.2.1, relaxes the constraint

of locating the pupil plane at the imaging lens and thus enables more flexibil-

ity in the design of the imaging system. Placement of the pupil plane can be

freely located on the object side of the lens. This extension of the multi-pupil
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imaging criterion requires an additional model parameter to describe the pupil

plane axial shift. A complete characterisation of the DPSM camera model is

presented in Section 4.2.2 along with a Zemax verification. The image dispar-

ity profile of the DPSM varies depending on the magnitude of the pupil plane

axial shift parameter, zp, as well as the sensor depth distance. As zp increases,

the disparity profile broadens, particularly at the larger object depths, which

increases performance for imaging configurations in a far-focus setting. It is

shown that with zp set to zero, the DPSM becomes equivalent to a DPM sys-

tem. Thus the sensitivity analysis of the shared parameters remain consistent.

The additional parameter, zp does not exhibit significant instability within

the DPSM system, although it is shown to be sensitive to error in the pupil

gap separation distance in a near-focus configuration. However, this property

of the pupil plane is manufactured with sufficient precision to avoid any per-

turbations in the depth estimation. Simulated depth estimation experiments

confirm the robustness of the DPSM model in estimating object depth. Simu-

lations reveal that a mid-far focused configuration performs marginally better

than other tested configurations.

Camera calibration is a fundamental task in the recovery of metric information

from images. It comprises of estimating the camera model parameters which

describe the 3D to 2D projection from the world to the image plane. To this

end, Section 4.3 proposes two new calibration algorithms which recover the

DPM and DPSM model parameters. Standard pinhole methods are applied in

order to calculate the sensor depth for comparison with the proposed meth-

ods, however standard methods are not sufficient to calibrate the DPSM pupil

plane shift parameter. The proposed pupil calibration methods estimate the

sensor depth (and pupil plane shift in the case of DPSM) based on minimising

the error of a geometric cost function which describes a known metric trans-

lation between two object depths. In the case of calibrating a DPM system,

only a single translation is required. However, due to the additional param-

eter in the DPSM system, three object depth offsets are required to recover

both camera parameters. Simulated experimentation is conducted to identify

the most suitable calibration setup configuration with regard to object depth

offsets. Ideal calibration configurations are identified as object depths offsets

which are approximately one quarter the minimum object distance. This en-

sures that the image pixel disparity is more easily distinguishable between the

object depths. Simulated experiments also show that the multi-pupil calibra-
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tion methods recover the sensor depth parameter more accurately than the

standard approaches.

Section 4.4 presents the real experimentation conducted in this chapter. In

order to examine the standard and pupil calibration algorithms, a ground

truth sensor depth value is required. An initial experiment was undertaken

to recover this value which consisted of imaging a point light source at vari-

ous depths within the imaging systems’ depth of field. Subsequently, standard

pinhole calibration procedures along with the proposed pupil calibration meth-

ods were implemented. A ground truth value for the pupil plane axial shift

of the DPSM was measured using digital calipers. The calibration results

confirm that both pupil approaches are superior to the standard approaches

in recovering the camera model parameters. Depth estimation experiments

are presented in Section 4.3.3. DPM and DPSM imaging configurations with

pupil gap distances of 10mm and 20mm are examined. Camera parameters

estimated via the calibration experiments are used for estimating depth. Mean

depth estimation errors of less than 1.4% are recorded across all experiments

performed for both the DPM and DPSM calibrated configurations. Standard

calibration approaches were found to produce large error at the depth estima-

tion stage. This was due to poor sensor depth estimation. Further analysis of

the experimental results led to the conclusion that abberations present within

the imaging lens were having an effect on the results. In the case of standard

calibration approaches, non-axial object points will be distorted by multiple

aberrations which modify their true image point location. On the other hand,

multi-pupil calibration approaches deal with axial object points, which are only

affected by a fixed amount of spherical aberration, regardless of object depth.

Additionally, the magnitude of spherical aberration present within the system

is defined by the pupil gap separation distance. In configurations with Pg set

at 20mm, there is considerably more spherical aberration present. However,

the pupil calibration algorithm partially accounts for these effects. This can

be seen in the slight variation of the pupil calibrated sensor depth value in

both imaging configurations.

In conclusion, this chapter has developed new imaging models in the form of

multi-pupil imaging systems. Novel calibration algorithms have been proposed

which recover the camera model parameters with sufficient accuracy to acquire

metric information from images. Both camera models have been tested in

recovering object depth over a range of 4, 300mm and have been shown to
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achieve a high level of accuracy.
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Chapter 5

Aberration Modelling,

Calibration and Removal

Lens designers from all aspects of the imaging community, whether it be mi-

croscopic, telescopic, or photographic strive to design lenses which produce

images of high fidelity. The main difficulty in this process is that no optical

system can faithfully reproduce an image of a scene within the realm of Gaus-

sian imaging. The departure of optical systems from ideal Gaussian behaviour

is characterised by aberrations. The primary goal of this chapter is to demon-

strate how multi-pupil imaging can be applied to modelling, calibrating, and

removing monochromatic aberrations from optical systems.

Distortion aberration removal is a mature area with much work done in the

field of camera calibration to account for lens distortion influences on camera

parameter estimates (Tsai, 1987, Zhang, 1998). These methods employ grid

like feature points to calibrate the distortion. Chromatic aberrations have

been accounted for in a similar manner using grid point calibration objects

(Mallon and Whelan, 2007a, Kang, 2007). However, the remaining monochro-

matic aberrations are dependent on pupil plane intersection as well as field

location. An alternative approach to estimating all aberrations is to precisely

measure the PSF, which varies significantly, across the entire image (Schuler

et al., 2011). Subsequent deconvolution with the estimated PSF recovers the

abberation free image. Besides the practical issues with such a calibration

approach, error in the estimation of the PSF introduces ringing artifacts into

the recovered image. As a result of pupil plane dependence, these aberrations
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can be accounted for through a multi-pupil approach, which yields additional

information about the pupil plane in the imaging process. In addition to allow-

ing the estimation of pupil plane dependent monochromatic aberrations, the

multi-pupil approach accomplishes this using point feature correspondence.

Section 5.1 introduces monchromatic aberrations and examines the implica-

tions of each on the quality of an imaging system. Section 5.2 formulates a

multi-pupil approach to calibrate all monochromatic aberrations. Finally, Sec-

tion 5.3 examines the accuracy of the aberration calibration removal through

depth estimation and object reconstruction experimentation.

5.1 Optical Aberrations

There are two categories of optical aberrations, monochromatic and chromatic.

Monochromatic aberrations are generally caused by the geometric structure of

the lens and occur in colour systems as well as monochromatic systems. There

are five monochromatic aberrations which are spherical aberration, coma,

astigmatism, field curvature, and distortion. Typically, these aberrations de-

teriorate image quality and deform image structure. Chromatic aberrations

arise from the fact that refraction is a function of wavelength. Thus, for dif-

ferent wavelengths of light, the angle at which a ray passes through an optical

system will vary. Chromatic aberrations are usually visible as “colour fring-

ing” in the image. Compensation of aberrations is thus the primary concern

of the lens maker when forming an optical system. However, even for high

end photographic lenses, a significant amount of aberrations are present as no

single optimisation will adequately compensate for all aberrations within the

system. This chapter is concerned with the five monochromatic aberrations

and their compensation within a multi-pupil framework.

5.1.1 Aberration Formation

The fundamental theory of aberrations within an optical system was developed

by considering the wave nature of light. Thus, the propagation of light through

an optical system is seen as a wavefront or sphere, which for ideal imaging is

assumed to be Gaussian. A wavefront afflicted by aberration becomes dis-
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torted, and as a result, deviates from the ideal spherical shape. This allows

the aberration to be expressed in terms of the difference between the spherical

wavefront and aberrated wavefront. Therefore the general equation describing

aberration formation is in wave format. However, the relationship between a

wavefront and geometric rays is well known. Geometric rays approximate the

orthogonal trajectory of a wavefront emanating from an object point, which in

turn allows an expression for aberrations in terms of geometrical rays (Welford,

1986).

Image formation within a general optical system in Euclidean space is pre-

sented in Figure 5.1. A ray emanating from the object point Po passes through

the pupil plane, which has a local coordinate system of (ξ, η), and under ideal

imaging assumptions intersects the image plane at the point p = (x, y). In re-

ality, the ray is aberrated as it passes through the optical system and intersects

the image plane at p̃ = (x̃, ỹ), the observed image point. An expression for the

wave aberration in polynomial form is derived from the Seidel perturbation

eikonal as (Born and Wolf, 1980),

W = −1

4
B1ρ

4 +B2ρ
2κ2 −B3κ

4 − 1

2
B4r

2ρ2 +B5r
2κ2, (5.1)

where r2 = x2 + y2, ρ2 = ξ2 + η2, and κ2 = xξ + yη. The primary Seidel

aberrations are represented by each coefficient in Eqn. 5.1: spherical aberration

(B1), coma (B2), astigmatism (B3), field curvature (B4), and distortion (B5).

The x and y coordinates are the ideal image coordinates in Euclidean space

while the pupil coordinates (ξ, η) are normalised locally to the maximum pupil

diameter.

The relationship between the wavefront and geometrical ray aberration allows

an expression for the transverse ray aberration to be calculated. The transverse

ray aberration is the displacement of the observed image point (p̃) from its

Gaussian counterpart (p). This expression for transverse ray aberration is

found by taking the derivative of the wave aberration polynomial with respect

to ξ for x directional displacement and η for y displacement thus,

∆x = x− x̃ =
δW

δξ
, ∆y = y − ỹ =

δW

δη
(5.2)

which, in turn, yields polynomial expressions for the transverse ray aberrations.

∆x = B1ξ
(
ξ2 + η2

)
−B2

(
3xξ + xη2 + 2yξη

)
+ 2B3

(
x2ξ + xyη

)
+B4ξ

(
x2 + y2

)
−B5x

(
x2 + y2

)
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Figure 5.1: Image formation in a general optical system.

∆y = B1η
(
ξ2 + η2

)
−B2

(
3yη + yξ2 + 2xξη

)
+ 2B3

(
xyξ + y2η

)
+B4η

(
x2 + y2

)
−B5y

(
x2 + y2

)
(5.3)

This expression represents a third order approximation of the transverse ray

aberrations. Each aberration has a different effect on the resulting observed

image point. Third order approximation is sufficient to capture the predomi-

nant effects within an imaging system, however, distortion aberration of pho-

tographic lenses typically contains a significant fifth order component (C5).

This component can simply be added to Eqn. 5.3.

Spherical Aberration

Spherical aberration can be described as a variation of focus with pupil plane

diameter and is the only aberration which is present for on axis points. It

arises due to the fact that lens surfaces are spherical in nature. The B1 term

in Eqn. 5.3 is dependent solely on pupil plane position. Thus, with reference

to Figure 5.1, when considering an on axis object point, the image formed for a

ray which passes through the pupil plane at its periphery (large ξ, η) will focus
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Figure 5.2: Spot diagram for spherical aberration.

on front of the image plane. In contrast, rays which pass through the pupil

plane closer to its centre (small ξ, η) will form a focused image on the image

plane. The overall effect on the image plane, as the object point rays pass

through the pupil plane with increasing ξ and η, is that of a formed image

with a bright centre spot surrounded by subsequent halos of light. These

halos correspond to the blurred image being formed by the rays which are

spherically aberrated. This example is referred to as under-corrected spherical

aberration. Depending on the spherical properties of the lens surface, an over-

corrected aberration can also occur where the rays striking the margins of the

pupil plane will focus behind the image plane. Spherical aberration is uniform

across the field, thus the longitudinal focus difference between rays passing

through the periphery and centre of the pupil plane does not depend on the

obliquity of the incident rays.

An example spot diagram for an on axis point is presented in Figure 5.2. Each

point in Figure 5.2 represents the intersection of a ray, emanating from a single

on axis object point, passing through the pupil plane. The pupil plane has been

sampled with a square grid. The ideal point passes through the centre of the

pupil plane and intersects the image plane at (0, 0). Rays which pass through

the pupil plane further from its centre intersect the image plane at greater

distances from the Gaussian point.

172



Chapter 5 – Aberration Modelling, Calibration and Removal

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

X (mm)

Y
 (

m
m

)

Coma

Figure 5.3: Coma spot diagrams for a grid of object points.

Coma

Coma is represented by the B2 term in Eqn. 5.3. It is dependent on field

position as well as pupil plane intersection. Coma can be defined as a variation

of magnification with pupil plane. Therefore, as object height increases, the

bundle of rays passing through the periphery of the pupil plane will be imaged

at a different height than those passing through its centre. The magnitude

of comatic aberration varies for the tangential and saggital components at

the pupil plane. For an incident bundle of rays across the entire pupil plane,

the tangential component of the comatic aberration is larger than the saggital

component (Eqn. 5.3). However, approximately half of the entire incident light

is concentrated within the ideal point to saggital area on the image plane. This

difference in the saggital and tangential components gives the spot diagram

its distinctive comet shape. Figure 5.3 presents a spot diagram of comatic

aberration for a grid of object points passing through the pupil plane. The red

asterisk points represent the ideal image corresponding to each object point.

The blue points represent the intersection of the rays passing through the pupil

plane (sampled with a square grid). The difference in saggital and tangential

coma is most visible for the object points farthest from the optical axis, for

example, the top left spot diagram in Figure 5.3.
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Figure 5.4: (a) Astigmatism spot diagrams for a grid of object points; (b)

Field Curvature spot diagrams for a grid of object points.

Astigmatism and Field Curvature

Astigmatism is represented by the B3 term in Eqn. 5.3. This aberration is

related to the tangential and saggital planes of object space. Astigmatism

occurs when the tangential and saggital images do not intersect in the same

plane. In other words, the images of object points in these planes do not focus

at the same point. Thus, the image of a point, when a ray bundle of either

tangential or saggital nature is projected through the pupil plane, results in a

line. An example of astigmatism is given in Figure 5.4(a). Each grid point is

imaged as a line when projected through the (grid sampled) pupil plane.

Field curvature is represented by the B4 term in Eqn. 5.3. This aberration

arises as a result of refraction in a lens and the non ideal spherical shape of

lens elements in general. Thus, as object points further from the optical axis

are imaged, they focus on a curved surface rather than the planar image sensor.

Figure 5.4(b) presents the image of a grid of object points (red asterisk points).

The blue points represent the images of the rays emanating from each object

point and passing through a point on the pupil plane (ξ, η). It is evident,

as the object point distance from the optical axis increases, the rays sampled

through the pupil plane are more spread out (follow a radial line from the

centre of the image to the top left point). This has the effect of blurring the

image for object points further from the optical axis.
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Figure 5.5: (a) Negative distortion; (b) Positive distortion.

Distortion

Distortion is one of the more recognisable aberrations as it is typically present

in most photographic quality lenses. It is represented in Eqn. 5.3 by the

B5 term. The most defining characteristic of distortion aberration is that

straight lines in object space are not projected into the image as straight. The

magnitude of distortion is dependant on the radial distance from the optical

axis to the object point. Thus object points further from the axis will be more

distorted in the image. There are two main types of distortion modelled in

Eqn. 5.3, they are pincushion or positive distortion, and barrel or negative

distortion. Examples of both are given in Figures 5.5(a) and (b) where the

ideal image points are represented by the red circles and the distorted by blue

points. It is clear that the coordinates at which the object rays pass through

the pupil plane have no effect on the distortion.

5.2 Calibration

The aberrations which have received most attention within the computer vi-

sion community are distortion and chromatic aberrations. This is primarily

due to the fact that these aberrations can be well accounted for by means

of calibration algorithms using point/line correspondences (Stein, 1996, Tsai,

1987, Zhang, 1998, Mallon and Whelan, 2007a, Kang, 2007). The main issue

with calibration of spherical, coma, astigmatism, and field curvature is the de-
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pendence of each one on the location of object ray interception with the pupil

plane. Thus, feature points such as chessboard grid corners/edges and point

light sources do not allow the calibration of these aberrations. It is difficult to

ascertain which part of an extracted feature point corresponds to a particular

area of the pupil plane. An alternative approach to removing aberration arti-

facts from images is to accurately estimate the PSF across the entire image.

This is a difficult task and requires precise calibration in a controlled environ-

ment. Schuler et al. (2011) recently proposed such an approach to calibrate all

aberrations. The main problem with methods which model the PSF is that, in

order to remove the aberrations, a deconvolution operation is required. Thus,

any error in the PSF estimation is amplified in the deconvolution process and

results in ringing artifacts across the image. Additionally, the presence of all

monochromatic aberrations results in a PSF which varies greatly across the

image (as seen in Figures 5.2, 5.3, 5.4, and 5.5). Therefore multiple PSFs are

required for the deconvolution process which further increases the complexity

of the problem.

A key link between multi-pupil imaging and the overall effect of aberrations

within an imaging system can be explored for the purpose of aberration re-

moval. A freely located pupil is equivalent to sampling a single centred ray

of the pupil plane at its location (see Section 2.3.2). Thus, when employing

multiple pupils within the pupil plane, one can obtain an accurate sample on

the image plane of the aberrated image points due to pupil offset. As a result,

a calibration approach can be derived for correcting spherical, coma, astig-

matism, and field curvature utilising grid feature points. This eliminates the

requirement of accurately modelling and estimating a varying PSF across the

image and allows a calibration based on grid point feature extraction of all

monochromatic aberrations.

5.2.1 Multi-Pupil Formation

The role of monochromatic aberrations within an imaging system with respect

to multi-pupil imaging can be defined by examining Eqn. 5.3. Transverse ray

aberrations, with the exception of distortion, are dependent on the location

at which object rays pass through the pupil plane (ξ, η). Thus, multi-pupil

imaging offers an advantage over traditional methods in that the location of

pupils within the pupil plane are well defined. Consequently, expressions for

176



Chapter 5 – Aberration Modelling, Calibration and Removal

the aberrations can be defined in terms of the observed and ideal image points.

A pupil plane containing three pupils is designed as shown in Figure 5.6. Since

distortion (B5) is the only aberration not dependent on pupil location, a cen-

trally located pupil is defined for the purpose of its calibration. The central

pupil has local coordinates on the pupil plane of (ξ = 0, η = 0), which on

examination of Eqn. 5.3 results in an expression for transverse ray aberration

of,

∆xc = −B5x
(
x2 + y2

)
∆yc = −B5y

(
x2 + y2

)
(5.4)

where the c subscript defines the aberrations for the centrally located pinhole.

Given a grid of control points in object space, the image formed via the central

pupil (the observed points p̃) is given by

x̃c = x−B5x
(
x2 + y2

)
ỹc = y −B5y

(
x2 + y2

)
(5.5)

Two additional pupils are formed on the pupil plane at an equal distance of

5mm either side of the central pupil. This allows an expression for the images

formed through both pupils to be defined. The pupil plane contains a local

coordinate system which is normalised to the maximum diameter (as noted in

Section 5.1.1). However, in the case of multi pupils, the maximum diameter is

defined by the pupil which is farthest from the pupil plane centre. Therefore,

the local pupil coordinates are (ξ = -1, η = 0) and (ξ = 1, η = 0). Additionally,

as depicted in Figure 5.6, the pupil located at ξ = -1 is coloured green and the

pupil at ξ = -1 is red. This represents a colour filter which is placed at each

pupil in order to separate the respective images formed by each pupil. Since

the red and green pupil are not centrally located on the pupil plane, they form

images which contain all monochromatic aberrations.

x̃g = xg −B1 + 3B2xg − 2B3x
2
g −B4

(
x2
g + y2g

)
−B5xg

(
x2
g + y2g

)
ỹg = yg −B2yg − 2B3xgyg −B5yg

(
x2
g + y2g

)
(5.6)
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Figure 5.6: Multi-pupil formation.

x̃r = xr +B1 − 3B2xr + 2B3x
2
r +B4

(
x2
r + y2r

)
−B5xr

(
x2
r + y2r

)
ỹr = yr −B2yr + 2B3xryr −B5yr

(
x2
r + y2r

)
(5.7)

where the subscripts r and g represent the images formed through the pupil

of that colour. The distortion term in Eqns. 5.6 and 5.7 can be eliminated by

estimating B5 via the central pupil image. This leaves spherical, coma, astig-

matism, and field curvature as the remaining aberrations to calibrate. This is

the general approach taken with the multi-pupil calibration of monochromatic

aberrations.

5.2.2 Multi-Pupil Calibration

Calibration of the aberrations is achieved within a multi-pupil framework by

capturing a dense feature point set across the image. Assuming such a calibra-

tion object is used, and that each pupil image can be segmented from a single

captured image, numerical values for the monochromatic aberrations can be

calculated using Eqns. 5.5, 5.6, and 5.7. An inherent property of the aberra-

tions is wavelength dependency. As rays pass through the multi-pupils and

lenses, the angle at which they refract is a function of wavelength. Therefore,

estimation of the aberration coefficients must be completed separately for each

of the offset pupils.

The initial step in the calibration procedure is to separate the captured cal-

ibration image for each pupil respectively. An example calibration image is

shown in Figure 5.7. There are a number of calibration parameters which

are required a priori. The metric structure of the calibration plane must be

known along with the object distance as well as lens focal length, sensor pixel

pitch, and the metric structure of the pupil plane. It is also assumed that
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the sensor depth is fixed. This knowledge of the magnification factor accounts

for any image displacement due to an object depth which is not conjugate to

the image plane. Taking the centre pupil image, which is effectively a pinhole

image, it has been established that the sole aberration present in this image

is distortion. Thus, modelling the distortion to fifth order accuracy, an error

function can be formed,

Ec
i =

[
xci − x̃ci −B5xci (x

2
ci + y2ci)− C5xci (x

2
ci + y2ci)

2

yci − ỹci −B5yci (x
2
ci + y2ci)− C5yci (x

2
ci + y2ci)

2

]
(5.8)

where the subscript c relates to the pupil location (centre) and subscript i

indicates that it is the ith observed calibration target point. The ideal image

points can be calculated with the known structure of the calibration grid and

its object distance. Magnification (mz) can be calculated as −f/(D−f) where

f is focal length and D is object depth, which enables the calculation of the

ideal points as mzPo. However, there are practical issues with the orientation

of the physical calibration grid in object space. Slight in plane orientation is

observed (notice left side of grid in Figure 5.7 is marginally higher than the

right). Therefore an adjustment of the calculated points is required. The use

of planar homographies has been outlined in Chapters 2 and 3. They encode

information about the planar orientation of the calibration target in space (see

Eqn. 3.1). A planar homography can be calculated between the observed image

pixel coordinates and the ideal points in the canonical position on the image

sensor (in Euclidean space). The orientation (R component) of the actual

imaged grid can subsequently be approximated by manipulating properties of

the homography matrix. The orthonormal properties of the rotation element

of the homography allow an approximate rotation matrix to be formed as

Rapprox = [h1 h2 h1 × h2]. A more accurate rotation matrix is calculated using

Rapprox and forming the new rotation matrix R using SVD. The rotation matrix

is subsequently decomposed into its roll, pitch, and yaw components in which

the roll angle is taken and applied to the ideal image points. This ensures that

the ideal points (xci, yci) correspond to the true experimental data.

With the observed points (x̃ci,ỹci) and ideal points both represented on the

image sensor in Euclidean space1, the estimation of distortion (B5 and C5) is

1Observed points are converted into sensor coordinates in Euclidean space using the

calculated magnification and principal point. The optical axis is assumed to intersect the

image at its centre
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Figure 5.7: Calibration image for multi-pupil aberration calibration.

reduced to minimising the error function Ec over all n points.

min
n∑

i=1

(Ec
i )

2 (5.9)

Since distortion is constant across the pupil plane, the estimated distortion co-

efficients of the centre pupil can be used to eliminate the distortion component

from the respective red and green pupil images as,

x̂pupil =
x̃pupil

1−B5xpupil

(
x2
pupil + y2pupil

)
− C5xpupil

(
x2
pupil + y2pupil

)2
ŷpupil =

ỹpupil

1−B5ypupil
(
x2
pupil + y2pupil

)
− C5ypupil

(
x2
pupil + y2pupil

)2
(5.10)

where the pupil subscript indicates either the red or green pupil image. Using

the undistorted pupil images p̂r and p̂g, the four remaining aberrations can be

estimated by forming the appropriate functions (Epupil
i ) and minimising the

error similarly to Eqn. 5.9 using standard non-linear minimisation techniques.

Eg
i =

[
xgi − x̂gi −B1g + 3B2gxgi − 2B3gx

2
gi −B4g

(
x2
gi + y2gi

)
ygi − ŷgi −B2gygi − 2B3gxgiygi

]
(5.11)
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Er
i =

[
xri − x̂ri +B1r − 3B2rxri + 2B3rx

2
ri +B4r (x

2
ri + y2ri)

yri − ŷri −B2ryri + 2B3rxriyri

]
(5.12)

Abberation removal is subsequently performed given the calibrated values of

B1, B2, B3, and B4 for both red and green pupil images. This yields the

corrected image points p̄,

x̄g =
x̂g +B1g +B4gτ

1 + 3B2g − 2B3gxg −B5τ − C5τ 2

ȳg =
ŷg

1−B2g − 2B3gxg −B5τ − C5τ 2

(5.13)

and,

x̄r =
x̂r −B1r −B4rτ

1− 3B2r + 2B3rxr −B5τ − C5τ 2

ȳr =
ŷr

1−B2r + 2B3rxr −B5τ − C5τ 2

(5.14)

where τ =
(
x2
pupil + y2pupil

)
.

In summary, the calibration procedure can be outlined as,

1. Separate images according to pupil (colour plane)

2. Use centre pupil to calibrate distortion (Eqn. 5.9)

3. Undistort red and green pupil images (Eqn. 5.10)

4. Estimate spherical, coma, astigmatism, and field curvature for red and

green pupils by minimising Eqns. 5.11 and 5.12. The LM algorithm is

used to perform the minimisation with parameters initialised at zero.

5.3 Experiments

Experiments are conducted to validate the multi-pupil approach to modelling,

calibrating and removing aberrations. Quantitative results are obtained by

correcting aberrated images and subsequently estimating the depth of each

observed point using the theory developed in Chapter 4.
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5.3.1 Experimental Setup

The experiments carried out in this section are similar in setup to those out-

lined in Chapter 4. The Panasonic DMC-G1 was used in conjunction with the

EO 75mm focal length achromatic lens. The pupil plane is designed as depicted

in Figure 5.6. EO colour filters (red and green KODAK WRATTEN filters)

are attached on front of the off centred pupils. The experimental setup at the

pupil plane is shown in Figure 5.8(a). In order to calibrate all monochromatic

aberrations in the imaging system, a dense set of feature points is required in

object space. Additionally, the metric structure of the calibration target must

be accurately known. The calbration target used in all experiments is shown in

Figure 5.8(c). It consists of an LCD monitor (19 inch) in which the LC compo-

nent (and outer frame) has been removed, leaving a screen which acts as a light

box due to the high (and even) illumination needed for LCD screens. Feature

points are subsequently created using an opaque thin plastic, which contains an

adhesive side, and attaches to a planar surface. The LPKF ProtoMatR⃝ C30/S

prototyping machine is used to manufacture pinholes of diameter 0.3mm. A

rectangular grid of 23 × 17 pinholes is constructed with equal separation in

both directions of 12.5mm. The pinhole grid is subsequently attached to a

glass surface and mounted directly on front of the modified monitor. In order

to enable accurate alignment of the grid with the optical axis, the entire unit

is mounted on a tripod with three degrees of freedom (Figure 5.8(c)).

Orthogonal alignment of the planar calibration target with the optical axis is

required to ensure that each object point is at a single object depth. Therefore,

an alignment process is repeated for each object depth whereby a laser aligned

with the optical axis of the imaging system (see Chapter 4 Section 4.4.1) is

used to orthogonally align the planar grid. This is achieved by attaching a

planar reflective material to the rear side of the planar target. Pitch, yaw, and

roll adjustments are subsequently applied to align the reflected laser spot with

the emitting point. Figure 5.8(b) presents an example of the laser alignment

process. Calibration images are captured as shown in Figure 5.8(d) where,

after each alignment, object depth is referenced with respect to the range

tape.
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Figure 5.8: (a) Camera and pupil plane formation; (b) Alignment of Target;

(c) Target and stand; (d) Calibration setup.

5.3.2 Depth Estimation

Images of the calibration target were acquired at five separate depths between

approximately 870mm and 2,000mm. A precise range of object depths was

chosen because it is necessary to fill the image sensor with feature points for

the calibration process. This allows the aberration affects across the image to

be captured. The procedure outlined in Section 5.2.2 is followed. Thus, images

are initially separated into pupil images and feature points are extracted and

183



Chapter 5 – Aberration Modelling, Calibration and Removal

ordered in a traditional manner. Distortion parameters are estimated via the

centred pupil (Eqn. 5.9) and the remaining monochromatic aberrations are

estimated from the red and green pupil images (Eqns. 5.12 and 5.11).

The accuracy with which the aberration coefficients are estimated is evaluated

by reconstructing the planar target in object space. Object depth is calcu-

lated in a multi-pupil framework fashion (see Chapter 4). Hence, with the

known structure of the pupil plane, focal length, pixel pitch, and sensor depth

(calibrated value), object depth can be calculated using the red/green pupil

disparity (Eqn. 4.4). World x and y locations are reconstructed using the

centred pupil image (after undistortion) and the known magnification factor

(from the calibration phase). Image disparity, due to the red/green pupils is

calculated after aberration removal (Eqns. 5.14 and 5.13).

Depth estimation results are presented in Figures 5.9(a)-(e). The 3D points

are reconstructed from the original aberrated images (blue points), ground

truth (red points), and estimated points from the aberration corrected images

(green points). Subsequently, a best fit plane is calculated for each set of

3D points using a least-squares fit (plane colour matches points). It is clear

that there are significant aberrations present as indicated by the blue points.

As expected the centre of the image contains the least amount of aberration

(only spherical), however, as the object point increases its distance from the

optical axis, the depth varies by up to a metre in some cases. The aberration

corrected images produce depth estimates which are in better agreement with

the ground truth values. Figure 5.11 shows the Root Mean Square Error

(RMSE) of depth calculated for the corrected and un-corrected images at each

depth. The maximum RMSE error for the corrected images is 41.93mm (at

1,727.1mm) in comparison with 625.48mm (at 1,727.1mm) for the un-corrected

set. The minimum error is observed at the nearest depth (878mm) where the

RMSE is 7.46mm for the corrected and 142.51mm for the uncorrected.

Figures 5.10(a) and (b) present all depth estimates for the ground truth and

corrected planes. The primary contributor to the error in depth estimation

(of the corrected images) is the correction of points at the periphery of the

object grid. This can be partly explained by the process in which ideal grid

point alignment is achieved as outlined in Section 5.2.2. The orthogonal align-

ment of the calibration grid with the optical axis is likely to induce slight

pitch/yaw variation. Using the rotation matrix estimated from the planar ho-
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(a) (b)

(c) (d)

(e)

Figure 5.9: Depth estimation and best fit plane (a) 878mm; (b) 1070.2mm;

(c) 1535.2mm; (d) 1727.1mm; (e) 1995.2mm.
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mography, this variation was found to be minimal (<0.01◦) however, it is likely

to marginally increase/decrease the actual depths of the peripheral grid points

in the calibration process. Secondly, translational adjustments are not ac-

counted for in the orientation alignment process. Although the laser is aligned

with the optical axis, its primary function is to provide a means to orthogo-

nally align the calibration target with the optical axis. Thus, it can not be

used to align the centre of the calibration target with the optical axis (centre

control point with image centre). Therefore, ideal image points are aligned

with the observed image points by translating the ideal grid to the observed

image point nearest to the optical centre. This translational adjustment will

affect the distortion calibration since distortion increases with radial distance

from the optical centre. Thus, an increase in error is expected at the periph-

ery of the grids, which is the primary source of error in the corrected depth

estimation in Figure 5.11.

5.4 Discussion

This chapter highlights the benefits of applying a multi-pupil approach to cal-

ibrating monochromatic aberrations present in imaging systems. Multi-pupil

imaging holds a key advantage over traditional aberration removal methods

in that it provides a means to calibrate all monochromatic aberration using

point correspondences. This is achieved with the additional aberration infor-

mation that is available due to the structure of the multiple pupils in the pupil

plane. Aberrations which are dependent on the pupil plane (spherical, coma,

astigmatism, and field curvature) can be accurately estimated using a third

order model. A pupil plane containing three pupils is examined in this chapter.

Object reconstruction is performed after aberration correction using a centred

pupil for world (x, y) locations with object depth estimated employing the

remaining pupils within the multi-pupil framework.

The formation of monochromatic aberrations is presented in Section 5.1.1. An

expression for transverse ray aberration is derived from the general wave equa-

tion of aberrations in an optical system. The dependence of certain aberrations

on the location at which a ray from the object passes through the pupil plane

is outlined. Subsequently, the affect each aberration has on image formation is

examined. Simulated experiments show how a grid of object points are imaged
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(a)

(b)

Figure 5.10: (a) Estimated depths (green); (b) Side view of (a).
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Figure 5.11: RMSE of Depth for corrected vs un-corrected images.

when subjected to each aberration individually.

Calibration and removal of optical aberrations within a multi-pupil framework

is introduced in Section 5.2. A pupil plane consisting of three pupils is designed.

Two of the pupils are located symmetrically about the third which is placed

at the centre of the pupil plane. Colour filters are attached to the symmetrical

pupils which enables separation of the images corresponding to each of the

three pupils. Using the third order model for abberations introduced in Section

5.1.1, an image formation model for each pupil is formed (Eqns. 5.5, 5.6 and

5.7). A calibration procedure is devised in Section 5.2.2 where a planar grid

of control points is imaged at a known object depth. The centre pupil is used

solely for the calibration of distortion. This reduces the complexity of the

model equation for each of the off-centre pupils. Spherical aberration, coma,

astigmatism, and field curvature are subsequently estimated by minimising the

error in Eqns. 5.11 and 5.12.

Experiments are conducted in Section 5.3 to assess the quality of the aberration

calibration and removal. The accuracy of this process is quantified by recon-
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structing the object plane in world space. The calibration object was placed

at five object depths in the range 878mm to approximately 2,000mm. After

calibration and aberration correction of each image, object depth is estimated

using the off-centred pupils while spatial (x, y) information is reconstructed

using the centred pupil. Depth estimation results using the multi-pupil ap-

proach confirm the accuracy of the aberration removal which is shown to have

7.46mm RMSE for the near object depth and 40.11mm RMSE for the farthest

depth.

The work in this chapter has highlighted the benefits of adopting a multi-

pupil imaging approach for aberration removal. Firstly, all monochromatic

aberrations can be calibrated using point correspondences, and secondly, ob-

ject reconstruction can be achieved with only a single image.
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Conclusions and Future Work

Extracting metric information from images remains of significant interest to

the computer vision community, and as a result, new approaches to obtain-

ing this information are constantly being developed. Improvements in image

sensor technology are enabling the development of new imaging techniques

which capture data in a non-conventional manner and subsequently take ad-

vantage of the increased processing power available to render a new image or

new image data. In addition to improvements in speed, the physical size of im-

age sensors has reduced significantly which has advantages and disadvantages.

The reduced footprint has allowed access to imaging as a viable solution for

tasks which require metric information that previously availed of alternative

techniques. However, with reduction in size, optical quality of the imaging

system has decreased. Therefore, researchers are left with the task of devel-

oping techniques for a range of new imaging modalities whilst having to deal

with imaging systems afflicted by optical inadequacies. This thesis addresses

these issues with the development of a new imaging framework which allows

the recovery of metric information and corrects for optical aberrations present

within the imaging system.

In order to facilitate the development of the new imaging framework, limi-

tations of current camera models and their calibration is investigated. It is

evident from the literature that there is a trade-off between flexibility and

accuracy when the task of modelling and calibrating a camera arises. Conse-

quently, the simple pinhole model is consistently used for common computer

vision tasks. Similarly, the popularity of planar camera calibration methods
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within the computer vision community demonstrates the desire of practition-

ers to calibrate a camera with sufficient accuracy and little effort. The initial

work in this thesis examines properties of the pinhole and lens models as well

as the calibration of these models. Subsequently, an approach is proposed

which improves the accuracy of planar camera calibration whilst simultane-

ously reducing the input requirements of the practitioner.

Computational cameras, or non-conventional imaging models, have evolved

with improved image sensor technology. Capturing images in a non-conventional

manner has redefined the possibilities of what type of information can be ac-

quired from images. One of the drawbacks of implementing a pinhole or stan-

dard lens model is that the acquisition of metric depth information typically

requires multiple images or sensors. Thus, the multi-pupil imaging frame-

work developed in this thesis takes advantage of the non-conventional forma-

tion of image data to encode additional information for the retrieval of metric

depth from a single image. Furthermore, this new framework contains inherent

properties which enable it to deal with issues of optical quality within imaging

systems. Consequently, new calibration approaches are developed, and demon-

strated in this thesis, which enable the recovery of camera model parameters

as well as correcting for optical aberrations present in the system. The results

presented in this thesis have significant implications for the development of

camera models in the fast changing environment of image sensor technology.

The multi-pupil imaging framework offers a flexible solution to metric infor-

mation retrieval, particularly in the area of compact imaging solutions which

naturally contain optical systems of lesser quality.

The contributions and outcomes of the thesis are summarised in Section 6.1

and a list of publications resulting from the thesis work is presented in Section

6.2. Possible directions for further work are outlined in Section 6.3.

6.1 Thesis Contributions

This thesis deals with both traditional and non-conventional camera models

as well as their calibration. For each problem a solution is proposed, evaluated

through real and simulated experimentation, and then validated by the results

from these experiments. Integral to these solutions are other less significant
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contributions. The contributions are summarised in the following sections.

6.1.1 Efficient Camera Calibration

Planar camera calibration has been established as the dominant and preferred

type of calibration for cameras modelled as pinhole. Compared to the tradi-

tional techniques, which require high precision calibration objects and setup,

input requirements are relaxed. Imaging a plane in a minimum of three un-

known orientations provides full recovery of all intrinsic and extrinsic camera

parameters. Chapter 2 presents the foundations on which planar camera cal-

ibration is formed. A geometric invariant in the form of the IAC is the tool

used to perform the calibration. The camera intrinsics are recovered by esti-

mating the IAC using planar homographies between the calibration plane and

its images. Five points are required to uniquely define a conic, therefore, three

images provide sufficient constraints. A minimal case of two images (providing

four points) can be used with a zero skew constraint. An alternative geometric

interpretation in the form of the centre circle constraint is presented in Chapter

2. Although based on the constraints of the IAC, it provides a more intuitive

framework in which to analyse the calibration method.

The sensitivity of planar camera calibration is investigated and outlined in

the initial part of Chapter 3. Degenerate configurations correspond to planar

target orientations which do not contribute independently to estimating the

IAC, thus, the calibration fails. Additionally, planar target orientations which

are close to degenerate contribute to poor intrinsic estimates. A key link

between these configurations and the estimation of the IAC is presented. It

is shown that a real geometric entity, in the form of the image CL can be

utilised for the identification of such configurations. Conducted experiments

demonstrate that, in the two-plane case, properties of the image CL can be

used to detect the manifold of all degenerate configurations.

Consideration of the planar target orientation within the network of calibration

images is an area which has received little attention. As a result, calibration

practitioners often capture many input images which are, in effect, redundant

in the camera parameter estimation stage. The latter part of Chapter 3 intro-

duces a novel framework for the formation of input images for efficient planar

camera calibration. Image networks which contain ideal geometry for estimat-
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ing a unique IAC are proposed. The method focuses on increasing camera

parameter estimation accuracy whilst reducing the input requirement load.

This is achieved by enforcing geometric constraints on image CLs. GINs, pre-

sented in Section 3.2.1, require an initial input calibration image supplied by

the user. Based on the geometric configuration of this seed image CL, ideal

synthetic calibration images are formed for user replication and subsequent

calibration. An alternative approach based on an image selection strategy is

proposed in Section 3.2.2. This method, SIN, searches through a large IN and

selects the images which contain the most favourable geometry for the camera

parameter estimation process.

Extensive experimentation was conducted to highlight the advantages of using

GINs and SINs over conventional image network approaches. SIN experiments

show an overall increase in accuracy of camera parameter estimates for INs

containing less images than the standard approach. Distortion correction is

also performed which demonstrates the superior intrinsic parameter estimation

using SINs. Section 3.3.2 details experiments conducted utilising GINs. The

accuracy to which non-expert practitioners can replicate the synthetic images

is examined and shown to be sufficient to obtain accurate camera parameters.

Increased accuracy in the calibration of the intrinsic parameters is observed

for image networks containing less than 5 images. Additionally, the stability

of the intrinsic parameter estimations are evaluated. Increased stability is

observed using GINs over the conventional technique. A key advantage of the

GIN method is that, as well as specifying optimal planar target orientation, it

also aids the practitioner in capturing this configuration.

6.1.2 Multi-Pupil Imaging

Certain scene information is lost in the imaging process using the pinhole

model, specifically object depth information. There is scope within the con-

text of computational/non-conventional imaging to encode this information

in a suitable manner for subsequent retrieval. However, this requires the for-

mation of a new imaging model. Multi-pupil imaging is such a model and

the foundations upon which it is built are described in Chapter 2 and further

developed in Chapter 4.

The equivalence of the pinhole model and lens models is outlined in Chapter
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2. It is seen that with the introduction of a lens to the imaging system, optical

phenomena which provide depth cues in captured images are available which

are not modelled via a pinhole. Specifically, depth dependent blur can be

modelled with a lens model. Consequently, it is the pupil plane within an

imaging system which defines the quantity of blur introduced to an imaging

system. Experimentation, using Zemax, was conducted in which both the

location of the pupil plane within an imaging system, and the location of a

pupil within the pupil plane, were examined in terms of the effect each had on

the system PSF. Two conclusions were drawn from these experiments. Firstly,

a pupil plane located in object space is desirable due to the sensitivities of

placement in image space. Furthermore, image space placement results in an

entrance iris which is not proportional to the magnitude of blur observed on

the PSF. Secondly, it is shown that the pupil plane can be sub-sampled by use

of smaller pupils (fractional in diameter compared to the conventional pupil)

which results in accurate image observations of pupil ray data.

The multi-pupil imaging framework is proposed, utilising both pupil plane

results, in Chapter 4. Multi-pupil imaging is achieved by modifying the pupil

plane of an imaging system. The DPM, introduced in Section 4.1, consists

of a pupil plane placed at the lens, and contains two pupils. A relationship

for object depth is developed based on the structure of the pupil plane and

imaging system properties. This allows depth information to be recovered

from a single image of a scene. Extensive model characterisation is carried

out using simulated data, in which the sensitivities of all model parameters

to depth estimation in the presence of Gaussian noise are evaluated. This

allows the identification of optimal imaging configurations, in a multi-pupil

framework, for depth estimation. The DPSM presented in Section 4.2 relaxes

the constraints on pupil plane location. Thus, the pupil plane can be shifted

axially in object space. A depth estimation equation is derived from the model

parameters, and similarly to the DPM, comprehensive model characterisation

is conducted to validate the model.

The importance of camera calibration has been highlighted throughout this

thesis. In this regard, novel calibration approaches to determine the multi-

pupil imaging parameters required for depth estimation are presented in Sec-

tion 4.3. The calibration object/target consists of object points situated on

the optical axis of the imaging system. In the case of the DPM, two object

points with known translation distance (between both points) are required.
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For DPSM calibration, four object points with known translation are required

(due to the additional model parameter for pupil plane location). Multi-pupil

calibration is benchmarked against standard approaches. Extensive experi-

mentation and evaluation using real data is presented in Section 4.4. The

multi-pupil calibration approach is shown to outperform standard approaches.

Subsequent depth estimation is performed using the calibrated model param-

eters for each calibration approach. There are two conclusions to be drawn

from the depth estimation results. Firstly, they validate the multi-pupil imag-

ing approach for depth estimation. Secondly, they confirm the accuracy of the

proposed multi-pupil calibration procedure. The primary contribution is the

ability to accurately estimate object depth from a single multi pupil image.

6.1.3 Aberration Modelling, Calibration, and Removal

Despite the best efforts of lens designers and manufacturers, residual optical

aberrations are present in all imaging systems. This has the effect of deviating

object rays from their true path under ideal imaging conditions. As a result,

the formed image is typically blurred in certain areas and generally deformed.

With the growing use in the smartphone and tablet market, imaging systems

are undergoing a transformation which requires high resolution cameras that

are extremely compact. Naturally, there is a trade-off with the optical quality

of the camera. Consequently, there is an increasing need for software correction

solutions. Standard approaches to removing optical aberrations from images

require precise modelling of the system PSF. Depending on the aberrations

present within the imaging system, the PSF can vary greatly across the image.

Thus, errors in the PSF estimation are amplified when the corrective decon-

volution process is applied to the image (causing ringing artifacts). Other

approaches make use of standard control points in object space. However, due

to the nature of certain aberrations, which depend on pupil plane location,

correction can not be achieved for all aberrations.

The outlined problems with aberration removal can be addressed with the

implementation of multi-pupil imaging. Chapter 5 demonstrates how multi-

pupil imaging can be applied to modelling, calibrating, and removing optical

aberrations from imaging systems. With the multi-pupil approach, abber-

ations which are pupil plane dependent can be accurately modelled due to

the unique structure of the modified pupil plane. This enables the forma-
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tion of an accurate multi-pupil plane model of all monochromatic aberrations.

Section 5.2.2 outlines a novel aberration calibration approach which utilises

object control points to estimate all monochromatic aberrations. This allows

a feature-correspondence-like calibration, an approach which was not previ-

ously possible. Experimentation is conducted using a grid of control points

captured over a range of object depths. The accuracy of the calibration and

subsequent aberration removal is quantified by performing object depth and

structure estimation. It is concluded that the application of the multi-pupil

framework to aberration modelling and calibration is a viable approach to

aberration removal.

6.2 Publications Arising

All publications are full length papers that have been peer reviewed.

Efficient Planar Camera Calibration via Automatic Image Selection,

Byrne, B. P., Mallon, J. and Whelan, P. F., ‘Proceedings of the 4th Inter-

national Conference on Computer Vision Theory and Applications, Lisbon,

Portugal’, Vol. 1, pp. 90–94, 2009.

Optimal Image Networks for Planar Camera Calibration,

Byrne, B. P., Mallon, J. and Whelan, P. F., ‘Proceedings of the IEEE Irish Ma-

chine Vision and Image Processing Conference, Dublin, Ireland’, 2011. (Best

Paper Award)

6.3 Directions for Future Research

Each of the main topics investigated in this thesis has potential for further

examination in order to achieve additional improvements. Some ideas for these

directions are outlined below.
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6.3.1 Camera Calibration

Optimal image networks have been outlined in Chapter 3 and shown to obtain

camera parameter estimates with greater accuracy and stability than those

calibrated with conventional imaging strategies. Although this image network

strategy is defined for constant internal parameters, it would be a natural pro-

gression to consider varying internal parameters. Thus, changes in sensor depth

and principal point such as those seen with zoom lenses could be calibrated

with a single data set, rather than calibrating each zoom setting separately.

One of the main benefits of optimal image network strategies is the simplifi-

cation of the calibration image capturing process. Given that synthetic poses

(with ideal target orientation) are provided to the user, the replication process

lends itself well to alternative imaging media such as smartphones and tablets.

Coupled with adjustments for varying intrinsic parameters, an optimal image

network application could be developed for such imaging media with a view

to providing accurate camera parameter estimates for mobile computer vision

applications.

6.3.2 Multi-Pupil Imaging

Experimentation and evaluation of the multi-pupil imaging models was con-

ducted using pupils with a diameter of 1mm. Therefore, a longer than normal

exposure was required to form the multi-pupil images. An interesting route

of exploration would be to replace the pupil plane with a programmable LCD

or similar. With a programmable pupil plane, two possible approaches could

be taken to increase the intensities captured at the image plane. Firstly, a

time coded pupil plane could be deployed within a single exposure. If one of

the time coded pupils had the form of a conventional pupil (at the maximum

diameter) it would provide additional scene radiance to the image sensor. Us-

ing a multi-pupil within the exposure period would thus maintain the depth

dependent disparity and allow the multi-pupil imaging model to be applied for

depth estimation. However, a significant challenge with this approach would

be the segmentation of conventional pupil data from the multi-pupil data as

there would be an overlap of frequency information captured from both pupils.

The second possible route using a time coded pupil plane is to capture two

separate images. An image would be captured for each pupil within the pupil
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plane. Although this approach require two images, no movement of the cam-

era is necessary and the issues of segmentation are avoided. Therefore, it still

maintains advantages over traditional stereo techniques.

The method of aberration calibration and removal outlined in Chapter 5 uses

colour filters (red and green) to aid in the identification of image features which

correspond to projection through certain pupils of the pupil plane. Therefore,

the calibration procedure requires estimation of the aberrations for each wave-

length. Consequently, the aberration removal process must also be applied to

each pupil image separately. This is a direct result of chromatic aberration

present in imaging systems. Therefore, an interesting extension to the meth-

ods described in Chapter 5 would be to include additional pupils within the

pupil plane for the purpose of calibrating chromatic aberration. This would

enable a single estimation of the aberration parameters, and similarly, a single

operation to remove all pupil plane dependent aberrations from the image.

Finally, it is envisaged that the multi-pupil imaging framework could be applied

in many fields which require depth estimation and metric measurement. Since

the imaging model generates depth dependent disparity based on the focusing

properties of an imaging system, it is highly scalable. This would allow the

implementation of multi-pupil imaging systems in areas which use physically

small sensors, such as medical endoscopy, and physically large configurations,

such as industrial robotics used for line automation.
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Appendix A

Additional OIN Results

An experiment was conducted were a single calibration image was captured

and its CL angle calculated. Subsequently, a number of images were manually

selected (from a large database of calibration image captured with the same

camera and same settings) with CLs corresponding to the ideal angle, which in

the case of a two image network is 90 degrees, and also with CLs corresponding

to non-ideal angles. Tables A. 1 and A. 2 present the calibration results ob-

tained with image networks containing favourable geometry (ideal and close to

ideal angle between image CLs) and the networks with non-optimum angles be-

tween the image CLs. These parameter estimates with ideal and close to ideal

CL orientation produce stable calibration results compared to those achieved

with the non-optimum orientations. These indicative tests demonstrate the

benefits of considering the image CL as a guide to selecting calibration images

and avoiding poor image network geometry.

Table A.1: Results for calibration with image networks with non-optimum angle

between CLs. Parameter estimations and SD given in pixels

Angle (deg) u0 v0 fu fv

5 808.2 617.4 1796.5 1794.1

10 806.9 607.7 1789.4 1787.9

15 812.2 638.6 1808.5 1798.0

20 804.85 609.8 1791.4 1790.3

25 792.1 620.9 1801.2 1803.7

SD 7.6159 12.2738 7.7210 6.2809

A–1
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Table A.2: Results for calibration with image networks with optimum angle and

close to optimum angle between CLs. Parameter estimations and SD given in pixels

Angle (deg) u0 v0 fu fv

80 802.4 617.6 1800.2 1797.8

85 801.2 619.3 1798.8 1795

90 804.1 620.9 1803.5 1801.7

95 802.6 619.6 1805.5 1802.7

100 803.5 620.1 1803.5 1801.4

SD 1.1104 1.2227 2.7285 3.2244

A–2
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