

Vision Systems Laboratory

Vision Systems Laboratory, School of Electronic Engineering,
Dublin City University, Dublin 9, Ireland.

Tel: +353 1 700 5489 Fax: +353 1 700 5508 Email: paul.whelan@eeng.dcu.ie

PhD Thesis

Copyright

This PhD thesis is copyright © 2000 by its respective author and/or the Vision Systems
Laboratory, Dublin City University.

Permission is hereby granted to private individuals to access, copy and distribute this
work, for purposes of private study only, provided that the distribution is complete and
unmodified, is accompanied by this copyright notice, and that no charges are levied.

The work may not be accessed or copied, in whole or in part, for commercial purposes,
except with the prior written permission of the author.

All other rights reserved.

ACTIVE MESHES FOR MOTION TRACKING

BY

DEREK MOLLOY (B.ENG.)
(DEREK.MOLLOY@EENG.DCU.IE)

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

(ELECTRONIC ENGINEERING)

SUPERVISED BY DR. PAUL F. WHELAN

SCHOOL OF ELECTRONIC ENGINEERING

DEPARTMENT OF ENGINEERING AND DESIGN

DUBLIN CITY UNIVERSITY

MARCH 2000

 Active Meshes for Motion Tracking

 ii

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Doctor of Philosophy is entirely my own work and has

not been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the text of my work.

Signed:_______________________ Date:________________

 Active Meshes for Motion Tracking

 iii

Acknowledgement

I wish to express my sincere gratitude to my supervisor, Dr. Paul F. Whelan for his constant support and

advice. I wish to thank Charles McCorkell and the School of Electronic Engineering, DCU, for encour-

aging and supporting me during this research. I have benefited from many discussions with Ovidiu Ghita,

Robert Saldleir and Alex Drimbareau. I value the help and advice that they have given me, and thank

them for constructive comments on my work. I also wish to thank my parents for their support and Sally

for her patience, love and proof reading skills.

I would also like to thank the external examiners Prof. Fionn Murtagh and Dr. Conor Hennigan for the

time that they put into the examination of this work and for the suggestions that they made.

 Active Meshes for Motion Tracking

 iv

Abstract

Active Meshes for Motion Tracking

Derek Molloy

Under the supervision of Dr. Paul F. Whelan

at Dublin City University
Submitted in partial fulfilment of the requirements for the degree

of Doctor of Philosophy at Dublin City University, 2000

This thesis presents an integrated approach to modelling, extraction and tracking of de-

formable contour meshes through image sequences, with the aim of extracting motion

information about the viewed scene. The thesis begins by reviewing the area of motion

estimation in computer vision, leading to a review on the formulation and initialisation

of active contour models. From this review the thesis develops and provides as its major

contribution an active mesh structure that may be used for motion estimation. This ac-

tive mesh structure approach is combined with feature matching to provide a stable, de-

formable motion tracking system for real-world scenes. This system is tested on various

real-world scenes and varying conditions to provide extensive and rigorous experimen-

tal proof of the validity of the formulation. Further extensions to the system are imple-

mented, including the use of multiple and region based active meshes. Future directions

of research are also suggested.

 Active Meshes for Motion Tracking

 v

Table of Contents

CHAPTER 1 - INTRODUCTION .. 1

1.1 MOTIVATION... 1

1.2 CONTRIBUTIONS.. 2

1.3 ORGANISATION ... 3

CHAPTER 2 - METHODS FOR EXTRACTING MOTION INFORMATION 4

2.1 INTRODUCTION.. 4

2.2 TRADITIONAL APPROACH OF OPTICAL FLOW.. 4

2.2.1 Assumptions... 5

2.2.2 Optical Flow with Added Constraints ... 6

2.2.3 The Constant Velocity Constraint ... 6

2.2.4 The Smoothness Constraint ... 7

2.2.5 Rigid Motion in the Image Plane .. 8

2.2.6 Difficulties with Determining Optical Flow.. 10

2.2.7 Second Order Optical Flow Techniques ... 10

2.2.8 The Global Approach to determining Optical Flow. 11

2.2.9 Local Approach to determining Optical Flow .. 11

2.3 OPTICAL FLOW - RECENT APPROACHES.. 12

2.3.1 Velocity Tuned Filters ... 12

2.3.2 Energy Outputs of Velocity Tuned Filters... 13

2.3.3 Phase Outputs of Velocity Tuned Filters... 13

2.3.4 Improving Results Using Kalman Filtering Over Image Sequences............. 14

2.3.5 Discussion on Optical Flow Techniques ... 15

2.4 TRADITIONAL APPROACH OF FEATURE MATCHING... 17

2.4.1 Point Matching.. 18

2.4.2 Line Matches ... 19

2.4.3 Correspondence .. 20

2.4.4 Constraints in Feature Matching .. 21

2.4.5 Detection of Features of Interest... 22

2.5 EDGE EXTRACTION ... 22

2.6 CORNER, JUNCTION AND FEATURE POINT DETECTION.. 23

 Active Meshes for Motion Tracking

 vi

2.6.1 Curvature Based Approaches.. 24

2.6.2 The SUSAN Corner Detector .. 31

2.6.3 Discussion on Feature Detectors .. 37

2.7 MODEL BASED TRACKING... 38

2.8 DISCUSSION... 39

2.8.1 Correspondence of Points of Interest.. 40

2.9 ASSET-2 AND OTHER NAVIGATION IMPLEMENTATIONS 41

CHAPTER 3 ACTIVE CONTOUR MODELS... 49

3.1 INTRODUCTION.. 49

3.2 FORMULATION AND INITIALISATION ... 50

3.2.1 Formulation... 50

3.2.2 Initialisation .. 52

3.2.3 Internal Energy ... 54

3.2.4 External Energy... 57

3.2.5 Regularisation ... 60

3.2.6 Scale Space.. 62

3.2.7 Constraint Functional ... 63

3.3 ENERGY REDUCTION... 63

3.3.1 The Finite Differences Method (FDM) ... 63

3.3.2 The Finite Element Method (FEM) ... 64

3.4 SNAKES AND MOTION (DYNAMIC CONTOURS).. 66

3.5 OTHER FORMS OF ACTIVE CONTOUR MODELS.. 68

3.5.1 Deformable Templates and Active Shape Models (ASMs)............................ 68

3.5.2 The Balloon Model .. 71

3.5.3 B-splines .. 71

3.6 TERMINATING CONDITION .. 73

3.7 APPLICATIONS AND VARIATIONS .. 74

3.7.1 Snakes and Stereo.. 75

3.7.2 Recent Applications... 76

3.8 DISCUSSION... 76

CHAPTER 4 - METHODOLOGY - THE ACTIVE MESH IMPLEMENTATION

.. 79

4.1 INTRODUCTION.. 79

 Active Meshes for Motion Tracking

 vii

4.2 PRIMARY APPROACH INVESTIGATED... 79

4.3 THE ACTIVE MESH.. 86

4.3.1 Mesh Generation ... 86

4.3.2 Voronoi Diagrams... 87

4.3.3 Delaunay Triangulation .. 88

4.3.4 The Incremental Algorithm ... 90

4.3.5 The use of Delaunay and Voronoi in Computer Vision 93

4.3.6 Discussion on the Mesh Structure Used.. 95

4.4 THE FORCE EQUATIONS .. 97

4.4.1 The Internal Forces ... 100

4.4.2 The External Forces .. 103

4.5 THE FINAL ALGORITHM .. 108

4.6 THE ADAPTIVE ACTIVE MESH... 109

4.7 THE MULTIPLE ACTIVE MESH APPROACH .. 111

4.8 THE REGION BASED INITIALISED ACTIVE MESH ... 113

4.9 NOTES ON THE ACTIVE MESH ... 115

4.9.1 The Search Space .. 115

4.9.2 The Terminating Condition ... 116

4.9.3 The SUSAN Corner Detection... 117

4.10 SUSAN PRE-FILTER MODIFICATIONS.. 118

4.10.1 Addition of Median Pre-Filtering ... 121

4.11 DISCUSSION... 123

4.12 THE JAVA APPLICATION DEVELOPED.. 124

CHAPTER 5 – IMPLEMENTATION, TESTING AND RESULTS 127

5.1 INTRODUCTION.. 127

5.2 SIMPLE OPERATION OF THE MESH... 127

5.2.1 Translation Results.. 127

5.2.2 Point Displacement Results... 131

5.2.3 Point Displacement with no External Forces ... 137

5.3 RESULTS ON TEST TEMPLATES.. 139

5.3.1 Test on Scene Translation ... 140

5.3.2 Sub-Area Translation .. 140

5.3.3 Multiple Sub-Region Translations .. 143

5.3.4 Rotation of the Scene... 144

 Active Meshes for Motion Tracking

 viii

5.3.5 Distortion .. 145

5.3.6 Another Non-Linear Image Distortion .. 147

5.3.7 Results from Scaling.. 148

5.4 RESULTS IN REAL WORLD SEQUENCES ... 149

5.4.1 The Corridor 1 Sequence .. 149

5.4.2 The Laboratory Sequence.. 151

5.4.3 The Corridor 2 Sequence ... 153

5.4.4 Testing the Adaptive Active Mesh ... 155

5.4.5 The Laboratory 2 Sequence (CMU Database).. 157

5.5 THE REGION AND MULTIPLE MESH APPROACHES... 159

5.5.1 The Test Template Results... 159

5.5.2 The Junction Image Sequence (CMU Database) .. 161

5.6 OTHER STANDARD TEST SEQUENCES.. 164

5.6.1 The Cup Sequence ... 164

5.6.2 The Parking Sequence... 164

5.6.3 The Shrubbery Sequence ... 165

5.6.4 The Town Sequence... 166

5.6.5 The Building Sequence .. 166

5.6.6 The SRI Laboratory Sequence... 167

5.6.7 The College Sequence ... 167

5.6.8 The ‘Trouble’ Teddy Bear Sequence. .. 168

5.7 THE MODIFIED SUSAN (DSUSAN) RESULTS ... 169

5.7.1 The Effect of modifying the user-defined parameter αs. 173

5.8 HAND COMPARISON OF RESULTS .. 175

5.9 3-D RE-CONSTRUCTION USING ACTIVE MESHES .. 178

5.9.1 Stereo Imaging .. 178

5.9.2 Stereo Correspondence ... 179

5.10 COMPARISON WITH THE ACTIVE MESH TECHNIQUE.. 182

CHAPTER 6 - SUMMARY AND FUTURE WORK ... 184

6.1 RESEARCH CONTRIBUTIONS .. 185

6.1.1 Major Contributions.. 185

6.1.2 Minor Contributions.. 185

6.2 GENERALITY OF THE METHOD .. 186

6.3 FUTURE WORK.. 186

 Active Meshes for Motion Tracking

 ix

6.3.1 3-D Active Meshes... 187

6.3.2 Use of B-Splines as the mesh lines .. 188

6.3.3 Use of Kalman Filtering for Active Meshes .. 188

6.3.4 Improvements to the Region Based Active Mesh .. 189

BIBLIOGRAPHY….………………………………………………………………..190

APPENDIX A – VISION TECHNIQUES…………………………………………203

APPENDIX B – IMPLEMENTATION ISSUES OF THE SELF-ADAPTIVE AC-

TIVE MESH…………………………………………………………………………214

APPENDIX C – FULL IMAGE RESULT SETS………………………………….220

APPENDIX D – ALGORITHM CLASS DIAGRAMS……………………………227

AUTHOR’S PUBLICATIONS……………………………………………………..236

 Active Meshes for Motion Tracking

 x

Table of Figures

FIGURE 2-1. OPTICAL FLOW CONSTANT VELOCITY CONSTRAINT. .. 7
FIGURE 2-2. VELOCITY FIELD FOR ROTATION IN THE IMAGE PLANE, UNDER ROTATION AND TRANSLATION

(HILDRETH, 1984). ... 9
FIGURE 2-3. GEOMETRIC RECONSTRUCTION (HILDRETH, 1984), WHERE THE CONSTRUCTION OF THE

VELOCITY FIELD CAN BE PERFORMED WHEN THE DIRECTION OF VELOCITY IS KNOWN AT POINTS P1
AND P3 IT CAN THEN BE COMPUTED AT P2... 9

FIGURE 2-4. ILLUSTRATION OF THE APERTURE PROBLEM. ... 10
FIGURE 2-5. COMPONENTS OF MOTION (A) AND (B) ILLUSTRATING TWO EXAMPLES OF FLOW FIELDS THAT

ARE DIFFICULT TO RELATE TO TRUE MOTION EVENTS... 17
FIGURE 2-6. LINES AS FEATURES (A) ILLUSTRATES TWO VIEWS OF A LINE SEGMENT WHEREAS (B) SHOWS

AN ACCURATE ESTIMATION OF THE 3-D LINE USING 3 VIEWS (MODIFIED FROM FAUGERAS (1993)).. 20
FIGURE 2-7. (A) THE MODEL AND (B) THE SCENE. ... 20
FIGURE 2-8. THE GRAPHS ASSOCIATED WITH THE MODEL (A) AND SCENE (B) TO BE EXAMINED. 21
FIGURE 2-9. EDGE DERIVATIVES.. 23
FIGURE 2-10. A GREY LEVEL CORNER, DEFINED BY NAGEL AS THE LOCATION OF MAXIMUM PLANAR

CURVATURE IN THE LOCUS LINE OF STEEPEST GREY LEVEL.. 25
FIGURE 2-11. APPROXIMATE CIRCULAR MASK USED BY SUSAN. ... 31
FIGURE 2-12. SUSAN SAMPLE DATA CASE (DERIVED FROM SMITH, 1992)... 31
FIGURE 2-13. EFFECTS THE TYPE OF CORNER DETECTED BY CHANGING THE BRIGHTNESS THRESHOLD (T)

AND THE GEOMETRIC THRESHOLD (G) .. 34
FIGURE 2-14. A POSSIBLE FALSELY DETECTED CORNER USING THE SUSAN ALGORITHM AND MASK, PRIOR

TO THE CALCULATION OF THE CENTRE OF GRAVITY. ... 35
FIGURE 2-15. THE NEIGHBOURHOOD OF THE NUCLEUS AND THE LINEAR POSITIONS USED. THE POINTS P

AND P’ ARE ON AN ARBITRARY LINE L, THAT MAY BE ROTATED AROUND THE MASK. NOTE THAT THE
MASK USED IS OF THE SAME FORM AS THE SUSAN ALGORITHM 5 X 5 WITH 3 ADDED TO THE EDGES IN
THE LARGEST CASE. .. 36

FIGURE 2-16. SOME EXAMPLE CASES, REPRESENTATIVE OF THE USAN OF THE MASK. 36
FIGURE 2-17. THE ASSET-2 TRACKING ALGORITHM IN AN UNCONSTRAINED IMAGE SEQUENCE. (IMAGE IS

FROM THE SMITH ASSET-2 REPORT (SMITH, 1995)). .. 43
FIGURE 2-18. THE ASSET-2 TRACKING ALGORITHM IN A FIXED CAMERA SCENE, WHERE THE GROUND

PLANE HAS BEEN IDENTIFIED BY HAND AND MASKS ONLY THE ROADS... 45
FIGURE 2-19. THE ASSET-2 SYSTEM OVERVIEW. ... 46
FIGURE 3-1. AN EXAMPLE OPEN ENDED ACTIVE CONTOUR MODEL. FIGURE (A) SHOWS THE SNAKE BEING

PLACED IN PROXIMITY TO THE OBJECT TO BE TRACKED AND FIGURE (B) SHOWS THE SNAKE HAVING
CONVERGED TO THE OBJECT. .. 49

FIGURE 3-2. AN EXAMPLE STRUCTURE OF A CLOSED ACTIVE CONTOUR .. 51
FIGURE 3-3. THIS FIGURE SHOWS AN EXAMPLE OF HOW A USER MIGHT INITIALISE A SNAKE WHEN OBJECTS

ARE VERY CLOSE TOGETHER. UNFORTUNATELY, BECAUSE THE OBJECTS ARE CLOSE, THE USER MUST
OUTLINE THE CONTOUR VERY CAREFULLY, OTHERWISE IF THE SNAKE COMES CLOSE TO UNDESIRABLE
OBJECTS THEN INCORRECT SOLUTIONS MAY OCCUR... 53

FIGURE 3-4. THE METHOD OF NEUENSCHWANDER ET AL (1994) BEGINS BY PLACING THE SNAXELS AT EACH
END OF THE SNAKE, AS CLOSE TO THE DESIRED OBJECT AS POSSIBLE, THEN ALLOWING EACH
SUCCESSIVE PAIR OF SNAXELS TO CONVERGE IN AN ORDERED FASHION TOWARDS THE CENTRE
SNAXEL OF THE SNAKE. WHEN THE TWO ACTIVE SNAXELS MEET AT THE SAME SNAXEL LOCATION THE
OPTIMISATION METHOD IS COMPLETE AND ALL SNAXELS ARE FROZEN IN PLACE EXCEPT FOR THE TWO
ACTIVE SNAXELS... 53

FIGURE 3-5. MINIMISED ENERGY OF THE OPEN CONTOUR WITH FIXED END POINTS AND THE SECOND ORDER
TERM REMOVED. ... 56

FIGURE 3-6. (A) THE VOLCANO PUSHING THE CONTOUR AWAY AND IN (B) THE SPRING FORCE ATTACHED TO
A SNAXEL ON THE CONTOUR. .. 58

FIGURE 3-7. AN EXAMPLE OF AN ACTIVE CONTOUR WITH A LINEAR SEARCH SPACE FOR EDGE STRENGTH. 59
FIGURE 3-8. THE LOG-LIKELIHOOD SEARCH OF ETOH ET AL (1993) .. 60
FIGURE 3-9. EFFECTS OF REGULARISATION. IN PAIR 1, THE SNAKE FAILS TO CAPTURE THE CORNER

INFORMATION, BUT IS ROBUST TO NOISE. IN PAIR 2, THE SNAKE CAPTURES THE CORNER
INFORMATION, BUT IS HIGHLY NOISE SENSITIVE. PAIR 3, SHOWS AN ILLUSTRATION OF THE CHOICE OF
THE OPTIMUM VALUES OF λ I.. ... 61

 Active Meshes for Motion Tracking

 xi

FIGURE 3-10. CURWAN AND BLAKE (1992) COARSE-TO-FINE SCALE-BASED SEARCH FOR AN IMAGE
FEATURE (MODIFIED FROM CURWAN AND BLAKE (1992)). ... 62

FIGURE 3-11. THE DYNAMIC PROGRAMMING TECHNIQUE OF AMINI ET AL (1990)...................................... 65
FIGURE 3-12. DYNAMIC CONTOURS WITH PREDICTION.. 67
FIGURE 3-13. SHOWING A DYNAMIC CONTOUR TRACKING AN OBJECT. IN THE TOP CASE THE FLEXIBLE

CONTOUR SLIDES AROUND THE OBJECT AS IT MOVES TO THE LEFT. IN THE BOTTOM CASE, THE
COUPLED B-SPLINE IS ATTACHED AND FOLLOWS THE REAL MOTION OF THE OBJECT. 68

FIGURE 3-14. (A) THE DEFORMABLE TEMPLATE OF THE EYE, YUILLE ET AL (1989). (B) THE LEEDS PEOPLE
TRACKER MODEL. ... 69

FIGURE 3-15. THE BALLOON ACTIVE CONTOUR MODEL (COHEN, 1991). THE BALLOON IS INFLATED FROM
THE INSIDE AND EXPANDS, OVERCOMING ISOLATED VALLEYS AND NOISE GIVING BETTER RESULTS
THAN SNAKES COULD IN PARTICULAR CASES. IN (A) THE ALGORITHM BEGINS WITH A SIMPLE CURVE
(OPEN OR CLOSED) PLACED CLOSE TO THE INTENDED CONTOUR. EXTERNAL FORCES CAUSED BY THE
IMAGE ENERGIES ARE APPLIED TO THE MODEL, AND IN (B) THE FINAL POSITION OF THE MODEL
CORRESPONDS TO THE MINIMUM OF THE MODELS ENERGY. ... 71

FIGURE 3-16. CONSTRUCTION OF B-SPLINES, THE SPLINE FUNCTIONS ARE WEIGHTED BY WEIGHTS X0 TO X4
AND COMBINED TO OBTAIN SPLINE FUNCTION X(S). .. 72

FIGURE 3-17. B-SPLINE EXAMPLE. (A) AN EXAMPLE B-SPLINE BASIS FUNCTION B0(S) WITH KNOTS AT
S=0,1,2,3 AND OTHER BASIS FUNCTIONS ARE TRANSLATED COPIES OF B0(S). (B) AN EXAMPLE OF A
CLOSED CURVE CONTOUR WITH FOUR CONTROL VECTOR POINTS... 73

FIGURE 3-18. AS CAN BE SEEN IN THIS FIGURE, THE INTERNALLY INITIALISED SNAKE IS EXPANDING AND
THE EXTERNALLY INITIALISED SNAKE IS CONTRACTING. FROM THIS IMAGE ENERGY DIAGRAM A
NUMBER OF LOCAL ENERGY MINIMA ARE VISIBLE, HOWEVER THE OBVIOUS (TO A HUMAN VIEWER)
OPTIMUM MINIMUM IS AT POINT 4. WHEN BOTH CONTOURS BECOME STATIONARY (IN THIS CASE THE
INTERNAL SNAKE BEGINS AT 1 AND THE EXTERNAL SNAKE AT 7), THE CONTOUR WITH THE HIGHEST
ENERGY IS MINIMISED WITH AN ADDITIONAL FORCE PUSHING IT TOWARDS THE OTHER CONTOUR.
THIS LOCAL SNAXEL FORCE IS ALWAYS IN THE DIRECTION OF THE EQUIVALENT SNAXEL ON THE
OTHER CONTOUR AND DERIVED FROM THE DISTANCE BETWEEN THEM. THIS ALLOWS THE CONTOURS
TO ‘CLIMB OUT’ OF WEAK LOCAL MINIMA. IN THIS EXAMPLE THE INSIDE AND OUTSIDE SNAKES PULL
EACH OTHER UNTIL THEY EVENTUALLY REACH THEIR TERMINATION CRITERIA AT POINT 4. 75

FIGURE 3-19. NOISE REDUCTION IN THE SNAKE USING THE TECHNIQUE OF HASHIMOTO ET AL (1994)........ 77
FIGURE 4-1. REAL-WORLD EXAMPLE OPERATION OF SUSAN – A WHITE GRID IS SUPERIMPOSED ON THE

IMAGE FRAMES (A) AND (B) TO HELP DEMONSTRATE THE SCENE MOTION BETWEEN THE TWO IMAGE
FRAMES... 80

FIGURE 4-2. THE EXTRACTED MOTION VECTORS USING THE DEVELOPED ALGORITHM. 81
FIGURE 4-3. THE OUTPUT AFTER PRE-MEDIAN FILTERING IN (A) AND THE USE OF POST-MEDIAN FILTERING

IN (B), WITHOUT PRE-MEDIAN FILTERING. .. 82
FIGURE 4-4. DEVELOPED EDGE LINKING ALGORITHM EXAMPLE AND EXTRACTED TABLE. 83
FIGURE 4-5. DETECTION OF CLOSED LOOPS FOR A TEST TEMPLATE (LOOPS IN BRIGHTEST INTENSITY). 84
FIGURE 4-6. APPLICATION OF THIS ALGORITHM TO DETECT CLOSED CONTOURS IN A REAL-WORLD IMAGE.

(A) REAL-WORLD IMAGE WITH EDGES SUPERIMPOSED AND (B) CLOSED CONTOURS DISPLAYED
BRIGHTEST ON EDGE IMAGE.. 85

FIGURE 4-7. SNAKES AS THEY ARE INITIALISED ON THE REAL-WORLD IMAGE... 86
FIGURE 4-8. MULTI-BLOCK STRUCTURED MESH. ... 87
FIGURE 4-9. THE CONSTRUCTION OF A VORONOI POLYGON AND THE VORONOI DIAGRAM FOR SOME

RANDOM SCATTERED POINTS. ... 88
FIGURE 4-10. THE RELATIONSHIP BETWEEN THE VORONOI DIAGRAM AND THE DELAUNAY TRIANGULATION.

.. 88
FIGURE 4-11. DEGENERACY IN THE VORONOI DIAGRAM WITH FOUR CO-CIRCULAR POINTS........................ 89
FIGURE 4-12. (A) THE RELATIONSHIP BETWEEN THE DELAUNAY TRIANGLES AND THEIR CIRCUMSCRIBING

CIRCLES, AND (B) THE RELATIONSHIP BETWEEN THE VORONOI DIAGRAM AND ITS CIRCUMSCRIBING
CIRCLES. ... 90

FIGURE 4-13. THE TRIANGLE IS NOT A DELAUNAY TRIANGLE SINCE A POINT P LIES WITHIN ITS
CIRCUMCIRCLE. .. 90

FIGURE 4-14. THE MAX-MIN ANGLE CRITERION FOR A DELAUNAY TRIANGULATION, STATES THAT; IF THE
DIAGONAL OF ANY STRICTLY CONVEX QUADRILATERAL FORMED BY ANY TWO ADJACENT TRIANGLES
OF A DELAUNAY TRIANGULATION IS REPLACED BY THE OPPOSITE VERTEX, THE MINIMUM ANGLE OF
THE SIX INTERNAL ANGLES DOES NOT INCREASE. IN THIS FIGURE THE VERTEX A IS REPLACED BY THE
VERTEX B TO GIVE THE MAXIMUM VALUE FOR THE MINIMUM ANGLE. ... 91

FIGURE 4-15. THE CREATION OF THE DELAUNAY TRIANGULATION USING AN INCREMENTAL ALGORITHM. 92
FIGURE 4-16. CURVATURE BASED SUBDIVISION, AS SUGGESTED BY BOWDEN ET AL (1997). 94
FIGURE 4-17. VOLUMETRIC SEGMENTATION APPROACH OF BOWDEN ET AL (1997). 94

 Active Meshes for Motion Tracking

 xii

FIGURE 4-18. THE STRUCTURE OF THE MESH USED, SHOWING THE MESH TRIANGLES BROKEN DOWN INTO
LINES AND NODES AT THE TOP OF THE ILLUSTRATION. THE EQUIVALENT SOFTWARE STRUCTURES ARE
SHOWN BELOW THE PHYSICAL MESH STRUCTURE... 96

FIGURE 4-19. THE TEMPLATE IMAGES AFTER THE MESH GENERATION HAS BEEN PERFORMED, USING THE
DELAUNAY TRIANGULATION ADDING THE CORNER POINTS ITERATIVELY TO THE MESH. (A)
ILLUSTRATES THE TEST TEMPLATE USED FOR TESTING AND (B) ILLUSTRATES THE GENERATION OF A
MESH FROM THE SUSAN TEST IMAGE (FROM SMITH (1992)). THE NUMBERS IN THE TRIANGLES
REPRESENT THE PIXEL AREAS OF THE TRIANGLES. THE CURRENTLY SELECTED NODE IS HIGHLIGHTED
IN RED AND THE LENGTHS OF THE LINES GIVEN IN YELLOW BOXES. ... 97

FIGURE 4-20. MULTIPLE FORCES BEING APPLIED TO A SINGLE NODE, THE COMBINATION OF WHICH IS
CALCULATED USING THE FORCE STRENGTH AND THE NODE DISTANCE OF THE FORCING NODES FROM
THE CENTRE NODE. ... 98

FIGURE 4-21. AN EXAMPLE COMBINATION OF FORCES, WITH RELATION TO THE FORCE CLASS................. 100
FIGURE 4-22. AN EXAMPLE OF A MESH LINE DEFORMITY IN (A) HOW A RIGID MESH (I.E. 0≅Iα) MIGHT

REACT AND IN (B) HOW A DEFORMABLE MESH (I.E. 0>Iα) MIGHT REACT. 101
FIGURE 4-23. THE OUTLINE OF THE OVERALL ACTIVE MESH ALGORITHM. .. 108
FIGURE 4-24. THE ADAPTIVE MESH OVERALL ALGORITHM.. 110
FIGURE 4-25. THE MULTIPLE MESH ALGORITHM SEGMENT.. 112
FIGURE 4-26. THE HAND GENERATED MASK REGION IMAGE IS SHOWN AS IN (A) AND THE RESULTANT

MULTIPLE MESH OUTPUT IS SHOWN IN (B). ... 114
FIGURE 4-27. (A) SHOWS A COMMON APPROACH OF LINEAR SEARCH SPACES FOR IMAGE EDGES WHEN

DEALING WITH ACTIVE CONTOURS (B) ILLUSTRATES THE DISCRETE IMAGE FORM OF A LINEAR
SEARCH... 115

FIGURE 4-28. THE SUSAN ALGORITHM AS IMPLEMENTED IN JAVA. IN (A) TESTED ON A TEST TEMPLATE
FRAME AND IN (B) TESTED ON THE ORIGINAL TEST FRAME GIVEN BY SMITH (1992), TO TEST
CONSISTENCY WITH THE ORIGINAL ALGORITHM... 116

FIGURE 4-29. THE SUSAN ALGORITHM APPLIED TO THE SAME IMAGE USING DIFFERENT THRESHOLD
VALUES. IN (A) THRESHOLD = 32, (B) THRESHOLD = 16, AND IN (C) THRESHOLD = 8................... 118

FIGURE 4-30. THE SUSAN MASK AND MASK POINTS OF THE CALCULATIONS... 119
FIGURE 4-31. SHOWING SOME EXAMPLE CASES FOR THE PRE-FILTER AND WHETHER THEY PASS TO THE

NEXT STAGE OR FAIL THE TEST. .. 120
FIGURE 4-32. THE SUSAN TEST TEMPLATE USED BY SMITH (1992) (A) SHOWS THE TEST TEMPLATE AFTER

THE SUSAN ALGORITHM HAS BEEN PERFORMED [280MS]. (B) SHOWS THE TEMPLATE AFTER THE
MODIFIED SUSAN HAS BEEN PERFORMED [81MS]. .. 120

FIGURE 4-33. THE MOST COMMON MEDIAN FILTER MASKS (A) SQUARE (B) X AND (C) CROSS SHAPES. 121
FIGURE 4-34. THE SUSAN CORNER DETECTOR WITH PRE-FILTERS. .. 122
FIGURE 4-35. GENERAL FORM OF THE IMPLEMENTATION ENVIRONMENT.. 125
FIGURE 5-1. SHOWING THE FIRST AND SECOND FRAME OF THE TRANSLATION. THE IMAGE OBJECT AND THE

MESH ARE CAPTURED DIRECTLY FROM THE ACTIVE-MESH APPLICATION. .. 127
FIGURE 5-2. THE SEQUENCE OF ITERATIONS (AT 0, 5, 15 AND THEN 35 ITERATIONS) LEADING TO A

SUITABLE SOLUTION. .. 128
FIGURE 5-3. THE VECTOR RESULTS FROM FIGURE 5-2, OVERLAID ON THE IMAGE IN (A) AND WITHOUT THE

IMAGE IN (B). .. 129
FIGURE 5-4. THE EXTERNAL FORCES AND THE DISTANCE DISPLACED AT NODE 2. 129
FIGURE 5-5. THE DISTANCE OVER 30 ITERATIONS FOR DIFFERENT EXTERNAL ENERGY VALUES, AS SHOWN

IN THE KEY ON THE RIGHT OF THE GRAPH. THE RESULTS WERE CALCULATED BASED ON NODE 2 IN
THE PREVIOUS EXAMPLE, WHERE A VALUE OF 0.1 WAS USED... 130

FIGURE 5-6. ILLUSTRATING THE EFFECT OVER 30 ITERATIONS OF A FORCE APPLIED BEFORE ITERATION 0.
THE RED LINES REPRESENT THE MESH LINES. THE BOXES WITH THE NUMBERS GIVE THE SETLENGTH
AND THE CURLENGTH AS DESCRIBED PREVIOUSLY... 131

FIGURE 5-7. SHOWING A SUMMARY OUTLINE OF THE EFFECTS OF THE INTERNAL AND EXTERNAL FORCES ON
THE MESH LINES AND AT THE MESH NODES. THE GRAPHS ARE NUMBERED SO THAT THEY CAN BE
REFERRED TO IN THE FOLLOWING PAGES. ... 132

FIGURE 5-8. GRAPH 1 AND 2; ILLUSTRATE THE EFFECTS OF THE INTERNAL FORCES AT LINE 1 AND AT LINE 5
RESPECTIVELY. ... 133

FIGURE 5-9. THE INTERNAL FORCES AT LINE 2 ARE SHOWN IN GRAPH 3 WITH THE EQUIVALENT FORCES AT
THE NODES SHOWN IN GRAPH 4. ... 133

FIGURE 5-10. GRAPH 5, SHOWING THE INTERNAL FORCES AT LINE 3 AND GRAPH 6 SHOWING THE FORCES
AT BOTH OF THE LINE 3 NODES. .. 134

FIGURE 5-11. GRAPH 7, SHOWING THE INTERNAL FORCES AT LINE 4 AND GRAPH 8, SHOWING THE FORCES
AT BOTH OF THE LINE 4 NODES. .. 134

 Active Meshes for Motion Tracking

 xiii

FIGURE 5-12. SHOWING THE EXTERNAL FORCES OCCURRING AT NODE 2 IN FIGURE 5-7. 135
FIGURE 5-13. ILLUSTRATES THE VARIOUS FORCES OCCURRING ON THE MESH AT A PARTICULAR TIME

ITERATION. (A) SHOWS THE MESH ITSELF, (B) DISPLAYS THE EXTERNAL FORCES OCCURRING ON THE
MESH, DUE TO THE MESH NODES BEING PULLED TOWARDS THE DETECTED CORNERS IN THE IMAGE.
(C) SHOWS THE INTERNAL FORCES ON THE INDIVIDUAL MESH LINES, TRYING TO MINIMISE THE
DIFFERENCE BETWEEN THE SETLENGTH AND THE CURLENGTH. (D) SHOWS THE DIFFERENT FORCES
CANCELLING EACH OTHER OUT AND (E) DISPLAYS THE RESULTING FORCE...................................... 136

FIGURE 5-14. THE SEQUENCE OF ITERATIONS WHEN A POINT IS DISPLACED AND THE OBJECT HAS BECOME
OCCLUDED. ... 137

FIGURE 5-15. THE RESULTS FROM THE POINT DISPLACED SEQUENCE WHEN THE OBJECT BECOMES
OCCLUDED AND THERE ARE NO EXTERNAL FORCES POSSIBLE. THE VECTORS DISPLAY THE
DISPLACEMENT BETWEEN FRAMES. .. 138

FIGURE 5-16. THE PARAMETER FOR SETTING THE INTERNAL ENERGY VALUE AS APPLIED TO THE EXAMPLE
IN SECTION 5.2.2. WITH THE DISPLACEMENT SHOWN AS IN FIGURE 5-6, WHERE (A) SHOWS THE
SETLENGTH OF THE MESH LINE, WHEREAS (B) SHOWS THE CURLENGTH OF THE MESH LINE. 138

FIGURE 5-17. THE EXAMPLE TEMPLATE USED.. 139
FIGURE 5-18. (A) DISPLAYS THE VECTOR FIELD OVERLAID ON THE IMAGE OBJECTS AND (B) SHOWS THE

SAME IMAGE WITH THE ADDITION OF THE MESH THAT WAS GENERATED FROM THE CORNER POINTS.
THE NUMBERS IN (B) ARE FOR DISPLAY PURPOSES ONLY SHOWING THE AREA OF THE TRIANGLE (IN
PIXELS) WHERE THAT VALUE IS SITUATED. THE AREAS ARE USED AT A LATER STAGE TO DETERMINE
THE SCALING OF A PARTICULAR REGION... 140

FIGURE 5-19. DISPLAYING THE OPERATION OF THE MESH-TRACKING ALGORITHM. WHERE INT (ααααI) REFERS
TO THE VALUE OF THE INTERNAL REGULARISATION PARAMETER, EXT (ααααE) REFERS TO THE VALUE OF
THE EXTERNAL REGULARISATION PARAMETER, LEN (ααααLINE) IS THE VALUE OF THE LENGTH FACTOR
(USUALLY 3.0), TLEN IS THE VALUE OF THE LENGTH UPDATE VALUE, SEARCH REPRESENTS THE
SEARCH AREA RADIUS (R) OF THE SNAXELS (IN PIXELS) AND THE ITER VALUE IS THE NUMBER OF
ITERATIONS TO PERFORM USING THE ITERATE BUTTON.. 141

FIGURE 5-20. (A) SHOWS THE MESH OVERLAYING ON THE NEW FRAME BEFORE ANY ITERATIONS HAVE
TAKEN PLACE. IN (B) THE MESH HAS UNDERGONE 60 ITERATIONS AND HAS SETTLED ON THE NEW
IMAGE. .. 142

FIGURE 5-21. THE RESULTING VECTORS OVERLAID ON THE SECOND FRAME OF THE SEQUENCE, FROM
FIGURE 5-20. .. 143

FIGURE 5-22. DISPLAYS THE EFFECTS OF THE MOVEMENT OF THE OBJECTS IN THE BOTTOM RIGHT OF THE
SCENE. (A) SHOWS THE MESH AFTER IT HAS SETTLED ON THE SCENE AND (B) DISPLAYS THE VECTORS
OVERLAID ON THE SECOND FRAME. .. 143

FIGURE 5-23. DISPLAYS AN EXAMPLE ROTATION OF THE SCENE, WITH THE MESH AND VECTORS OVERLAID
ON THE SECOND FRAME. THE ROTATION WAS SIMULATED USING A STANDARD IMAGE EDITING
PACKAGE. ... 144

FIGURE 5-24. (A) SHOWS THE VECTORS OVERLAID ON THE IMAGE FRAME AND (B) DISPLAYS THE VECTORS
ON THE IMAGE WITHOUT THE IMAGE ITSELF, SHOWING A FAIRLY CONSISTENT ROTATION PATTERN.
.. 145

FIGURE 5-25. (A) SHOWS THE DISTORTION OF THE SCENE WHERE THE SINGLE PIXELS REPRESENT THE
POSITION OF THE CORNERS IN THE PREVIOUS NON-DISTORTED IMAGE, AND (B) DISPLAYS THE MESH
AFTER IT HAS SETTLED ON THE DISTORTED IMAGE. .. 145

FIGURE 5-26. (A) SHOWING THE VECTORS OVERLAID ON THE IMAGE AND IN (B) SHOWING THE VECTORS
WITHOUT THE IMAGE. ... 146

FIGURE 5-27. THE RESULTING VECTOR FIELD IS SUPER-IMPOSED ON THE IMAGE IN (A) AND SHOWN
WITHOUT THE IMAGE IN (B). ... 147

FIGURE 5-28. THE SCALED IMAGE AND THE RESULTING MESH THAT HAS CONVERGED TO A SOLUTION AFTER
60 ITERATIONS.. 148

FIGURE 5-29. (A) DISPLAYS THE VECTOR FIELD OVERLAID ON THE IMAGE AFTER SCALING AND (B) SHOWS
THE SAME FIELD WITHOUT THE IMAGE.. 148

FIGURE 5-30. SHOWING 6 IMAGES FROM AN IMAGE SEQUENCE USED FOR TESTING. THE IMAGES ARE LAID
OUT LEFT-TO-RIGHT FROM TOP-TO-BOTTOM. THE GRID IS SUPERIMPOSED OVER THE IMAGE TO ALLOW
A BETTER IMPRESSION OF THE MOVEMENT BETWEEN FRAMES. .. 149

FIGURE 5-31. A DETAILED COMPLEX MESH FOR THE CORRIDOR SEQUENCE. THIS MESH HAS 600 MESH
NODES... 150

FIGURE 5-32. TWO TRACKED FRAMES FROM THE SEQUENCE IN FIGURE 5-30.. 151
FIGURE 5-33. THE VECTOR FIELDS CALCULATED FROM TWO FRAMES. THE TOP IMAGE SHOWS THE PURE

VECTOR FIELD, WHILE THE BOTTOM IMAGE SHOWS THE FEATURES FROM THE PREVIOUS FRAME IN

 Active Meshes for Motion Tracking

 xiv

GREEN AND THE CURRENT FRAME FEATURE POINTS IN DARK RED. NOTE THAT SEVERAL VECTORS ARE
MISSING EITHER A PREVIOUS OR CURRENT FEATURE POINT. ... 152

FIGURE 5-34. THE EFFECT OF DECREASING THE FEATURE DETECTION THRESHOLD VALUE, THUS
INCREASING THE NUMBER OF MESH NODES .. 153

FIGURE 5-35. TWO FRAMES FROM THE CORRIDOR 2 SEQUENCE... 153
FIGURE 5-36. TWO FRAMES WHERE A PERSON IS MOVING RELATIVE TO THE SCENE.................................. 154
FIGURE 5-37. 12 FRAMES FROM THE CASTLE IMAGE SEQUENCE (SUSAN THRESHOLD 35). 155
FIGURE 5-38. 12 FRAMES FROM THE CASTLE IMAGE SEQUENCE (SUSAN THRESHOLD 24). 156
FIGURE 5-39. TWO FRAMES WITH CALCULATED FLOW VECTORS... 157
FIGURE 5-40. 5 FRAMES OF THE LABORATORY 2 IMAGE SEQUENCE. ... 158
FIGURE 5-41. THE TEST TEMPLATE MULTIPLE MESHES IN (A) CREATED USING THE TEST REGION MAP

(CREATED BY HAND) IN (B)... 159
FIGURE 5-42. (A) THE REGION MAP FOR THE CORRIDOR DETERMINED USING THE K-MEANS ALGORITHM AND

(B) THE MESH CREATED USING REGION 1, THE BRIGHTEST REGION. ... 160
FIGURE 5-43. THE THREE MESHES ARE SHOWN IN (A) AND THE VECTORS CALCULATED FOR EACH OF THE

MESHES, SHOWN IN DIFFERENT COLOURS IN (B). .. 160
FIGURE 5-44. THE JUNCTION IMAGE SEQUENCE WITH INITIALISED MESHES. ... 161
FIGURE 5-45. THE PROBLEM WITH THE CAPTURED IMAGES IN THE JUNCTION SEQUENCE IN (A) AND IN (B) A

GAUSSIAN SMOOTHED VERSION OF THE SAME FRAME.. 162
FIGURE 5-46. THE CLUTTER IN THE JUNCTION SCENE, WITH THE NEW FEATURE POINTS DISPLAYED IN RED.

.. 162
FIGURE 5-47. THE JUNCTION RESULTS (ZOOMED BY 1.5), WITH THE VECTOR HEADS LOCATED ON THE

POSITION OF THE OBJECTS IN THE CURRENT FRAME, POINTING TOWARDS THE EXACT POSITION OF
THAT FEATURE IN THE NEXT FRAME. EACH SET OF VECTORS (CLUSTERED TO MESH) ARE
REPRESENTED USING DIFFERENT COLOURS... 163

FIGURE 5-48. THE MUG SEQUENCE (A) THE MESH AS INITIALIZED ON THE FIRST FRAME, (B) THE MESH
RESULTING ON THE 12TH FRAME OF THE SEQUENCE AND (C) THE VECTOR PATHS SHOWN OVER 12
FRAMES. THESE IMAGES ARE SHOWN IN DETAIL IN APPENDIX C (FIGURE C-1, FIGURE C-2, FIGURE C-
3). ... 164

FIGURE 5-49. THE PARKING SEQUENCE (A) THE MESH AS INITIALIZED ON THE FIRST FRAME, (B) THE
RESULTING VECTORS CALCULATED FROM THE TWO IMAGE FRAMES. THESE IMAGES ARE SHOWN IN
DETAIL IN APPENDIX C (FIGURE C-4, FIGURE C-5).. 165

FIGURE 5-50. THE SHRUBBERY SEQUENCE (A) THE VECTOR PATHS CALCULATED USING 24 IMAGE FRAMES
AND (B) THE VECTOR PATHS CALCULATED USING ONLY THE FIRST, MIDDLE AND LAST FRAMES. THESE
IMAGES ARE SHOWN IN DETAIL IN APPENDIX C (FIGURE C-6, FIGURE C-7). 165

FIGURE 5-51. THE BUILDING SEQUENCE SHOWING THE VECTOR PATHS CALCULATED OVER 20 IMAGE
FRAMES. THIS IMAGE IS SHOWN IN DETAIL IN APPENDIX C (FIGURE C-10). 166

FIGURE 5-52. TWO SECTIONS OF THE TOWN SEQUENCE (A) THE VECTOR PATHS CALCULATED USING ONLY 2
IMAGE FRAMES AND (B) THE VECTOR PATHS CALCULATED USING ONLY 2 IMAGE FRAMES. THESE
IMAGES ARE SHOWN IN DETAIL IN APPENDIX C (FIGURE C-8, FIGURE C-9). 166

FIGURE 5-53. THE SRI LABORATORY SEQUENCE RESULTING VECTORS. THIS IMAGE IS SHOWN IN DETAIL IN
APPENDIX C (FIGURE C-12). .. 167

FIGURE 5-54. THE COLLEGE SEQUENCE RESULTING VECTORS. THIS IMAGE IS SHOWN IN DETAIL IN
APPENDIX C (FIGURE C-13). .. 167

FIGURE 5-55. THE TEDDY BEAR SEQUENCE RESULTING VECTORS.. 168
FIGURE 5-56. THE AIRPORT IMAGE TEST (A) THE AIRPORT IMAGE AFTER THE SUSAN CORNER DETECTOR

HAS BEEN PERFORMED AT A THRESHOLD VALUE OF 35 TAKING 310MS AND (B) THE AIRPORT IMAGE
AFTER THE MODIFIED SUSAN CORNER DETECTOR HAS BEEN PERFORMED AT A THRESHOLD VALUE OF
35 TAKING 120MS... 169

FIGURE 5-57. SHOWING THE NUMBER OF CORNERS DETECTED BY THE SUSAN AND DSUSAN (SUSAN
WITH PRE-FILTER) FILTERS (ααααS=1.0)... 170

FIGURE 5-58. THE AIRPORT IMAGE, TIME COMPARISON GRAPH, SHOWING THE TIME IN MILLISECONDS THAT
THE ALGORITHMS TAKE TO EXECUTE (ααααS=1.0). .. 170

FIGURE 5-59. TIME COMPARISON ON THE LABORATORY 2 SEQUENCE – THE SUSAN (REGULAR) AND
DSUSAN (MODIFIED SUSAN) ARE SHOWN. THERE IS A CONSISTENT IMPROVEMENT IN THE
EXECUTION SPEED OF THE CORNER DETECTOR (ααααS=1.0)... 171

FIGURE 5-60. THE COMPARISON BETWEEN THE NUMBER OF CORNERS DETECTED BY THE SUSAN AND
DSUSAN CORNER DETECTORS (ααααS=1.0) IN THE LABORATORY 2 IMAGE SEQUENCE. 172

FIGURE 5-61. DISPLAYS A FRAME FROM THE LABORATORY 2 IMAGE SEQUENCE AT A THRESHOLD OF 25.
THERE ARE 4 MORE CORNERS DETECTED BY THE ORIGINAL SUSAN CORNER DETECTOR AND THESE
ARE SHOWN HERE. .. 172

 Active Meshes for Motion Tracking

 xv

FIGURE 5-62. A ZOOMED VERSION OF THE FOUR MISSING CORNERS.. 173
FIGURE 5-63. THE LABORATORY 2 IMAGE AND THE EFFECT OF THE USER DEFINED PARAMETER ααααS. 173
FIGURE 5-64. THE AIRPORT IMAGE AND THE EFFECT OF THE USER DEFINED PARAMETER ααααS. 174
FIGURE 5-65. (A) ILLUSTRATES THE MOTION IN THE SCENE AND (B) SHOWS THE VECTORS CALCULATED IN

THE SCENE USING THE ACTIVE MESH ALGORITHM. ... 175
FIGURE 5-66. (A) ILLUSTRATES THE MOTION IN THE SCENE AND (B) SHOWS THE VECTORS CALCULATED IN

THE SCENE USING THE ACTIVE MESH ALGORITHM OVERLAYED ON (A)... 176
FIGURE 5-67. HAND-DRAWN ESTIMATE OF MOTION IN THE CASTLE SEQUENCE.. 177
FIGURE 5-68. CALIBRATING TWO CAMERAS. ... 178
FIGURE 5-69. THE DOUBLE NAIL ILLUSION. ... 179
FIGURE 5-70. THE STEREO MATCHING RESULTS OF THE ACTIVE MESH .. 180
FIGURE 5-71. STEREO CORRESPONDENCE SEARCH SPACE (A) SHOWS THE SEARCH SPACE AND (B)

ILLUSTRATES A CLOSE UP OF THE MEASUREMENTS MADE. ... 181
FIGURE 5-72. DEPTH ESTIMATION (A) ILLUSTRATES A STRAIGHT ON VIEW OF WHAT APPEARS TO BE A CUBE.

IN (B) THE DEPTH IS ESTIMATED AT THE CORNER POINTS. HOWEVER IN (C) IT IS APPARENT FROM THE
VIEW FROM ABOVE THAT THE TRUE SHAPE OF THE CUBE CURVES OUT TOWARDS THE OBSERVER. .. 181

FIGURE 5-73. THE ASSET-2 PROBLEM VECTORS (IN BLUE), LABELLED BY HAND. 182
FIGURE 6-1. THE B-SPLINE ACTIVE MESH APPROACH. ... 188

 Chapter 1 - Introduction

 1

Chapter 1 - Introduction

1.1 Motivation

In a scene that is being viewed by a digital camera, movement of objects in the scene, or

the camera itself, will in general result in changes to the intensity values in the image

being viewed. On the basis of these intensity changes, motion-tracking algorithms at-

tempt to deduce the actual motion of the objects in the scene, or of the camera, that

caused these changes. There are three possible motion situations: a stationary camera

with moving objects, a moving camera (termed egomotion) with a stationary scene and

a moving camera with moving objects.

To further avoid confusion over the use of the term ‘motion’, Nagel (1990) defined four

categories of motion, to clarify the distinction between motion in the 2-D projected im-

age plane and motion in the actual 3-D scene. These categories are:

• The real velocity of a 3-D point on a time-varying curve,

• The apparent velocity of the 3-D point on this curve,

• The real motion of the image of a point in the image plane,

• The apparent motion of a grey-level structure in the image plane.

Frequently motion approaches fail to make explicit which type of motion is being

measured. In the case of Optical Flow, for example, it is the fourth type that is being

calculated, but often under the mistaken assumption that it is the projection of the real

motion of the 3-D velocity field onto the image plane (case three), that is being calcu-

lated.

Many methods are available for motion tracking, each with their own individual fea-

tures and failings. Traditional methods such as optical flow and feature matching are

well established, with numerous approaches available and currently in development.

More recently, research in deformable templates has provided promising results in mo-

tion tracking, using weak models, such as ‘snakes’, that deform in response to salient

image features.

 Chapter 1 - Introduction

 2

The abilities of motion detection, tracking and estimation are essential for automation of

the tasks of automatic vehicle guidance, traffic speed control (automatic ticketing) and

traffic analysis (e.g. junctions, roundabouts). Other applications include characterisation

of human motion, medical imaging, and data rate reduction for image compression and

satellite imagery. The initial application area of this research was vision-based aids for

the visually disabled1 with primary research and ideas discussed in Molloy et al (1994).

If the camera is static in respect to the scene then the task of extracting motion informa-

tion is substantially simplified. Techniques such as image frame differencing will in this

case provide clear cues about the movement (or at least provide regions of interest)

within the sequence, greatly aiding the determination of motion information. There is no

such assumption being made in this work, where more dynamic (and indeed interesting)

scenes are to be examined, such as scenes in which the observer may be moving, the

objects in the scene may be moving or indeed the entire scene may be moving. For this

form of motion analysis to be useful for real-world applications, it is necessary for the

computation involved to be very efficient.

1.2 Contributions

This thesis presents an integrated approach to modelling, extracting and tracking de-

formable meshes directly in real-world image sequences. It begins by performing a re-

view of current motion tracking techniques, developing these techniques for combina-

tion with deformable models to provide the basis of this work. The theories are devel-

oped for the approach and the validity is examined through extensive testing on syn-

thetic and real-world image sequences.

The immediate contribution of this work is the overall method that provides an innova-

tive approach to helping solve the motion-tracking problem, combining a self-

initialisation technique, automatic modelling and unstructured meshes with suitable

force handling to develop an active weak model approach. The technique was further

extended to multiple meshes, region meshes and applied to depth estimation. Java tech-

nology was applied to computer vision applications, finding useful aspects of the lan-

guage and possible difficulties for further use. The SUSAN2 corner detection algorithm

1 More recently other implementations in this area of research can be found in Image and Vision Comput-
ing, April 1998, a special issue on “Vision-Based Aids for the Disabled”.
2 Smallest Univalue Segment Assimilating Nucleus – Discussed in detail in Section 2.6.2.

 Chapter 1 - Introduction

 3

(Smith, 1992) was modified using pre-filters for improved computational performance

and was also implemented within an active contour model framework.

1.3 Organisation

The organisation of this thesis is as follows: Chapter 2 presents a review of the ‘classic’

approaches to motion estimation, including methods such as optical flow that attempt to

compute a measure of velocity at every point in the image. Feature matching is also dis-

cussed, that attempts to compute motion from matching distinct image features between

frames. Feature extraction methods are also discussed in some detail. Chapter 3 dis-

cusses active contour models, including the formulation and initialisation aspects that

are associated with them. The discussion further expands on the different forms of ac-

tive contour models that are available and describes some current applications. Chapter

4 details the active mesh approach, providing a discussion on the structure, the energy

formulation and the various ‘flavours’ of this approach. Chapter 5 gives an extensive set

of results to support this method, including simulated and real-world image sequences.

Finally, Chapter 6 summarises the work and suggests future research directions.

Chapter 2 - Methods for Extracting Motion Information

 4

Chapter 2 - Methods for Extracting Motion Information

2.1 Introduction

There is no single technique that can solve the motion analysis problem for all scenarios

and indeed each technique presented here works only if certain conditions are met. Prior

knowledge of the scene, such as information about the movement of the camera and the

frame rate can help reduce the complexity of the analysis, helping choose the best tech-

nique for a particular application. Traditionally, there have been two approaches to the

motion estimation problem: Optical Flow and Feature Matching. This chapter will dis-

cuss these techniques and introduce some less traditional approaches.

2.2 Traditional Approach of Optical Flow

Optical flow techniques are concerned with the apparent motion of grey value structure

in the image plane. Optical flow analysis consists of two distinct stages:

• The first stage is to assign a 2-D vector to the grey value structure at each pixel in

the image by examining its neighbouring points. At this stage no attempt is made to

relate this apparent local motion to the motion of real objects in the scene. The Opti-

cal Flow Field is calculated, and can be defined as: the 2-D vector field of apparent

velocities of grey-value structure in the image plane.

• The second stage is to use this flow field to compute as much information as possi-

ble about the physical motion in the scene, i.e. to interpret the estimated flow field.

For example, discontinuities in a flow field can help segment images into regions

that correspond to different objects. This is a complex problem that is not aided by

the difficulty in computing an accurate optical flow field.

The optical flow field cannot be computed at a point in the image independent of

neighbouring points without introducing additional constraints. This is because the ve-

locity field at each image point has two components while the change in image bright-

ness at a point in the image due to motion gives only one constraint (Horn and Schunck,

1981). The relationship between the optical flow in the image plane and the velocities in

the real world is not always obvious. For example, a uniformly coloured sphere when

rotated around its centre axis gives a zero optical flow field at all points in the image, as

Chapter 2 - Methods for Extracting Motion Information

 5

the shading pattern does not rotate with the surface but is caused by the direction of the

surface of the sphere (Nagel, 1987).

2.2.1 Assumptions

In the method of Horn and Schunck (1981), to avoid variations in brightness due to

shading effects, it is initially assumed that the image surface is flat and uniformly lit.

The brightness at a point in the image is taken to be proportional to the reflectance of

the surface at the corresponding point on the object. It is assumed that the reflectance

varies smoothly and has no spatial discontinuities, thus allowing the image brightness to

be differentiable (discontinuities in reflectance will occur at object boundaries and are

thus excluded). In this simple situation described, the motion of the brightness patterns

in the image relate directly to the motion of the objects and computing the motion of the

objects is a case of simple geometry.

Providing that these assumptions are made then the following theory results: If the in-

tensity of a point (x,y) at time t is I(x,y,t), optical flow theory assumes that the same

point displaced by motion will have the same intensity at time t+∆t, when it is moved to

the point (x+∆x,y+∆y), therefore:

 I(x,y,t) = I(x+∆x, y+∆y, t+∆t) 2-1

Using a Taylor expansion, we can approximate this by3:

 I(x,y,t) = I(x,y,t) + Ix∆x+ Iy∆y + It∆t + higher order terms 2-2

Neglecting higher order terms,

 Ix∆x + Iy∆y + It∆t = 0 2-3

Dividing by ∆t and taking the limit as ∆t→0 we obtain

 Ixu + Iyv + It =0 2-4

This gives one equation with two unknowns, where Ix, Iy and It are the estimated partial

derivatives at every point in the image and u = dx/dt , v = dy/dt the unknown velocities

in the x and y directions, as required. This implies that the optical flow field cannot be

computed at a point in the image independently of neighbourhood points without intro-

ducing additional constraints.

3 For an image I(x,y), this work will use the notation

2

22

2

2

 , , , ,
y

II
yx
II

x
II

y
II

x
II yyxyxxyx ∂

∂=
∂∂

∂=
∂
∂=

∂
∂=

∂
∂=

Chapter 2 - Methods for Extracting Motion Information

 6

2.2.2 Optical Flow with Added Constraints

Three of the possible assumptions that are commonly made are:

• Constant Velocity Constraint.

• Smoothness Constraint.

• Rigidity Constraint.

The next three sections explain these constraints.

2.2.3 The Constant Velocity Constraint

Much of the work on optical flow has assumed that velocity is constant over small

patches of an image and so can be approximated by pure translation. If the projection of

a scene onto the image plane is orthographic, the constant velocity constraint is strictly

valid only when objects undergo pure translation (Hildreth, 1984). It is not strictly valid

for rotations under orthographic projection or for any motion under perspective projec-

tion (Schunck, 1986). Let the image brightness at the point (x,y) in the image plane at

time t be denoted by E(x,y,t).

Now consider what happens when the pattern moves, the brightness of a particular point

in the image in the pattern is constant (Schunck, 1986), so that:

dE
dt

= 0

Using the chain rule:

0=∂+∂+∂
t
E

dt
dy

y
E

dt
dx

x
E

∂∂∂
 2-5

Letting u
dx
dt

= and v
dy
dt

= ,

results in a linear equation with two unknowns u and v, where u represents the x com-

ponent of velocity and v represents the y component of velocity.

E u E v Ex y t+ + = 0 2-6

The constraint on the local flow velocity expressed by this equation is shown in Figure

2-1. This equation may be rewritten as:

()E E u v Ex y t, ,• = − 2-7

Thus the component of the movement in the direction of the brightness gradient

E Ex y, is:

Chapter 2 - Methods for Extracting Motion Information

 7

 −
+

E
E E

t

x y
2 2

 2-8

2.2.4 The Smoothness Constraint

The smoothness constraint is the second type of constraint assumption. If every point in

the image were to move independently then there would be little point in trying to cal-

culate motion in the scene. The basis of the smoothness constraint is that in general

neighbouring points on the same object have similar velocities, assuming that the world

consists of solid objects whose surfaces are smooth compared to the distance to the ob-

server. Assuming that a smooth surface in motion generates a smoothly varying velocity

field then the smoothness constraint aims to find the velocity field that varies as little as

possible. Discontinuities in flow can be expected, for example, in the case where one

object occludes another.

Horn & Schunck (1981) use this additional constraint by minimising the square of the

magnitude of the gradient of the optical flow velocity,

∂
∂

∂
∂

u
x

u
y









 +











2 2

and
∂
∂

∂
∂

v
x

v
y







 +











2 2

 2-9

Another technique used to measure the smoothness constraint was the sum of the

squares of the Laplacians of the x and y components of the flow. The Laplacians of u

and v are defined as:

∇ = +2
2

2

2

2u
u

x
u

y
∂
∂

∂
∂

 and ∇ = +2
2

2

2

2v
v

x
v

y
∂
∂

∂
∂

. 2-10

In the simple case, both Laplacians are zero. If the viewer translates parallel to a flat

object, rotates about a line perpendicular to the surface or travels orthogonally to the

v

u
Constraint Line

(u,v)

(Ex,Ey)

Figure 2-1. Optical flow constant velocity constraint.

Chapter 2 - Methods for Extracting Motion Information

 8

surface, then the partial derivatives of u and v vanish (Horn and Schunck, 1981). This

formulation breaks down when motion boundaries occur in the image, such as at the

object boundary where the pixel belonging to the object will have non-zero velocity,

while a pixel belonging to the stationary background will have zero velocity. This is in

direct violation of the smoothness constraint and large errors occur at these motion

boundaries. This is undesirable since motion boundaries often contain more information

about the motion involved than the actual area of the object. Nagel (1987) tried to over-

come this problem by supporting an ‘oriented’ smoothness constraint, designed so that

in areas of strong grey-value gradient, the variation of the vector field is in the direction

along the contour lines of constant grey value.

2.2.5 Rigid Motion in the Image Plane

Some motion measurement schemes allow objects to undergo rigid motion and transla-

tion in the image plane. Suppose a rigid curve undergoes a general motion in space. The

motion may be described as the combination of:

• A rotation with angular velocity ω about a single axis in space which can be denoted

by the unit vector n = [nx,ny,nz]T (i.e. transposed).

• A translation, denoted by t = [tx,ty,tz]T.

Let the curve be given by C = (x(s), y(s), z(s)), where s denotes arc-length. The location

of a point on the curve may be given by the position vector r = [x(s), y(s), z(s)]T
. If it is

assumed that the axis of rotation passes through the origin of the coordinate system, the

velocity of a point given by the position vector r is equal to the cross-product of r with

the vector ωn. Hildreth (1984) lets the optical axis lie in the z-axis, and claims that the

2-D velocity field is given by:

()V M r n t() ()
()

()s z s
n
n n

y s
x s

t
t

y

x
z

x

y
= × + = −

−








 −

−







 +









ω ω ω 2-11

where M denotes the matrix that performs the orthographic projection. The first term

denotes the component of the velocity field due to rotation in depth about an axis paral-

lel to the image plane (the axis n = [nx,ny,0]T). The second term denotes the component

due to rotation in the image plane (the axis n = [0,0,nz]T) and the third term denotes the

translation component. Consider the restricted case of rigid motion in the image plane,

giving a translation, and rotation about n = [0,0,1]T , thus V(s) becomes

V()
()

()s
y s

x s
t
t

x

y
= −

−







 +









ω 2-12

Chapter 2 - Methods for Extracting Motion Information

 9

V(s) is a simple translation, rotation and scaling of the image curve (x(s),y(s)), as shown

in Figure 2-2.

A simple geometric reconstruction can now be used on this velocity field, so that if the

true direction of velocity is known at two points on the contour, then the direction of

velocity can be computed everywhere by:

• At the two known points (P1 and P3), construct perpendicular lines to the direction

of velocity (see Figure 2-3).

• Calculate the intersection of these two lines, q.

• From every other point (e.g. P2) on the contour, construct the line to the intersection

point q, and the true direction of velocity is perpendicular to this line.

Hildreth (1984) uses the assumption that all significant motion information in an image

is contained in the contours or edges, so the motion should only be calculated along

these contours. This is a more general case of the ‘cornerness’ method used by Nagel

(1987) as shown later. This approach has a very high computational load (of the order

of O(N2), where N≈1000). It also has difficulty in dealing in junctions that result from

occlusion, as they are represented as a single contour that crosses motion boundaries.

Appendix A describes the estimation of the partial derivatives and the minimisation of

errors in optical flow techniques.

Figure 2-2. Velocity field for rotation in the image plane, under rotation and translation (Hildreth, 1984).

q

P3

P1

P2

Figure 2-3. Geometric Reconstruction (Hildreth, 1984), where the construction of the velocity field can
be performed when the direction of velocity is known at points P1 and P3 it can then be computed at P2.

Chapter 2 - Methods for Extracting Motion Information

 10

2.2.6 Difficulties with Determining Optical Flow

In general the solution is most accurately determined in regions where the brightness

gradient is not too small and varies in direction from point-to-point. On the other hand,

if the gradient is too large then the estimation of the derivatives will be corrupted by

under-sampling and aliasing, thus a good tightness of constraint is required. An area in

which the brightness gradient is small leads to uncertain, noisy estimates that are esti-

mated from the surrounding values.

One problem with optical flow in general, is that it suffers from the aperture problem.

In Figure 2-4, the local movement as in the optical flow technique is to be examined.

Suppose there is an extended line moving across this aperture from left to right, and the

optical flow technique used determines a vector V⊥⊥⊥⊥ to describe this motion. It is not suf-

ficient to describe this motion as V⊥⊥⊥⊥ , since the true velocity could be anyone of the infi-

nite velocity vectors V. Most optical flow techniques compute only this orthogonal ve-

locity V⊥⊥⊥⊥ . Nagel (1987) tries to overcome the problem by having a ‘cornerness’ measure

in areas where the aperture problem cannot usually occur (e.g. corners). He then inter-

polates between these points in conjunction with the normal velocity measured between

these points.

2.2.7 Second Order Optical Flow Techniques

Differential techniques for optical flow compute velocity from spatiotemporal deriva-

tives of image intensity. This problem is under-constrained and hence must be con-

strained using one of the previous three techniques described. Second order optical flow

techniques use the second order derivatives to constrain the 2-D velocity. However, due

to noise sensitivity and the aperture problem, results are in general less accurate than the

first order methods, according to Barron et al (1992).

V

V

aperture

Figure 2-4. Illustration of the aperture problem.

Chapter 2 - Methods for Extracting Motion Information

 11

2.2.8 The Global Approach to determining Optical Flow.

Optical flow computation is based on two assumptions; (1) the observed brightness of

any object point is constant over time, and (2) nearby points in the image move in a

similar manner. This means that optical flow computation will be violated where there

are dramatic changes in intensities, such as in highly textured areas or around moving

boundaries. Unfortunately, real-world applications often have to deal with this problem.

The global approach attempts to smooth the velocity field consistent with the entire im-

age, reducing the problems with the above assumptions. Local constraints are propa-

gated globally, although usually beneficial, can also cause local estimation errors to be

propagated globally. A small number of problem regions will cause the errors to propa-

gate and lead to bad optical flow estimates.

Torr and Murray (1992) suggest an interesting global approach where they examine the

movement of the background as global flow. Areas of the image that do not obey the

characteristics of the global flow of the background are marked as regions of interest.

These areas are then examined using other optical flow techniques. Reasonably good

results are recorded and their algorithm helps localise areas of interest within image se-

quences.

2.2.9 Local Approach to determining Optical Flow

The local approach to determining optical flow is based on the same principle as the

global approach, where the optical flow assumptions are reinforced, in this case by

breaking the image into small regions where the assumptions hold. Local based meth-

ods combine local estimates of the normal velocity through space and time. The method

of local optimisation estimates optical flow by solving a group of gradient constraint

lines obtained from a small region of the image as a system of linear equations. It has

also been performed by fitting the local neighbourhoods to a 2-D velocity field (a low

order polynomial model in (u,v) using a least squares fit).

This solves the error propagation problem of the global approach but there are problems

where the spatial gradient changes slowly as the local approach becomes ill-conditioned

due to a lack of motion information. The global approach would have little trouble with

this region, as information from neighbouring locations would propagate into this re-

gion, giving a reasonably good estimation of the flow.

Chapter 2 - Methods for Extracting Motion Information

 12

Kearney et al (1987) produced an approach with continuous adaptation to errors. By

understanding how the errors occur, they attempt to define the inherent limitations of

the local approach, obtaining estimates of the accuracy of the technique and enhancing

the performance of the technique. Their basic local optimisation method performs a

least squares minimisation on an over-determined set of gradient constraint equations to

estimate optical flow at each point. Each image is Gaussian blurred to reduce noise in

the image and to linearise the brightness function. They note that local optical flow

techniques have problems with the following types of regions:

• Largely homogeneous regions.

• Highly textured regions that are moving.

• Areas with large discontinuities in the flow field.

Murray & Buxton (1987) attempt to merge the local and global approaches. The local

approach suffers from the disadvantage that the ‘resulting mosaic’ of tiny pieces must

be pieced together, using similar motion and structure, into larger surfaces. Taking a

global view of this problem is beneficial to the combination of the ‘resulting mosaic’

and results are given for small regions.

2.3 Optical Flow - Recent Approaches

2.3.1 Velocity Tuned Filters

Velocity Tuned Filters are a more recent approach that is similar to optical flow in that

it computes the velocity at a large number of points in the image. The velocity-tuned

filters examine the motion phenomena in the frequency domain4. The method behind

this may be explained by looking at the case of a 1-D sine wave grating that seems like

horizontal bars, moving across the image. At any particular point in an image, the spa-

tial intensity of the point will vary as the horizontal bars move across the point. The rate

of change of intensity of the point ƒt increases both with the velocity of the grating v

and its spatial frequency ƒx. This relationship may be given simply as ƒt = vƒx which

may be written as:

 v f
f

t

x
= , 2-13

4 The frequency domain refers to either the temporal frequency domain or the spatial frequency domain.

Chapter 2 - Methods for Extracting Motion Information

 13

In the spatiotemporal frequency domain, with ƒx and ƒt as the axes, this equation de-

scribes a slope defined by the velocity of the grating. Combining a vertical spatial fre-

quency fy that can move with a velocity u, results in a ‘checked’ pattern that can move

in 2-D, giving the equation:

 f uf vft x y= + , 2-14

a plane in the spatiotemporal frequency domain, with orientation given by u and v. This

means that the velocity of a translation in the image plane will be equivalent to a plane

of high power in the frequency domain. The problem of estimating velocity in the im-

age plane becomes; take small regions of the image plane and fit a plane to each of their

power spectra in the spatiotemporal frequency domain (Simoncelli and Adelson, 1991).

2.3.2 Energy Outputs of Velocity Tuned Filters

One of the most common models is the Elaborated Reichardt Detector (ERD) model, in

which responses from two spatial locations are multiplied together. The input stages

include spatial-frequency-tuned receptive fields, such as Gabor filters5 with pairs that

differ in phase or position by about 90° to build a motion detection unit. It is also possi-

ble to develop direction sensitive filters, by carefully selecting these filters. The method

of Heeger (1998) uses 12 Gabor filters at each spatial scale to formulate the problem as

a least squares fit of the filter energies to a plane in frequency space (Barron et al,

1992). That is, it takes small spatiotemporal windows from the image sequence to find

the plane in which the energy resides and thus the motion. A least squares estimate is

used to minimise the difference between the predicted and estimated energies, thus

solving for u and v. This method does not suffer from the aperture problem as calcula-

tions are performed at a number of scales, however smoothing occurs at motion bounda-

ries.

2.3.3 Phase Outputs of Velocity Tuned Filters

An alternative approach to dealing with the output of velocity-tuned filters is to exam-

ine the phase of the outputs exclusively. In general, algorithms for determining the best

value of u and v in the spatiotemporal domain will obtain only one value. It would how-

ever be useful to determine more than one velocity, such as in the case of motion

5 Gabor filters - Gabor, D., Nobel Prize winner and inventor of holography. A 1-D odd-phase Gabor filter
is a sine wave multiplied by a Gaussian window. Its power spectrum is a pair of Gaussians centered ±ω,
thus a band pass filter. Heeger uses a 3-D version, with 2 spatial and 1 temporal dimension. Band pass
filters are used to decompose the input signal according to scale, speed and orientation.

Chapter 2 - Methods for Extracting Motion Information

 14

boundaries. The method is similar to the energy approach using 3-D Gabor filters al-

though it examines the phase output of the filters. This method proposed by Fleet and

Jepson, is described in Barron et al (1992), as looking at the phase of the outputs; they

consider space-time surfaces of constant phase, which evolve due to the motion field.

The phase output of the filters may be related to the normal velocity quite easily as

shown in Byrne (1992).

2.3.4 Improving Results Using Kalman Filtering Over Image Sequences

One technique, which has been implemented successfully in a range of applications, is

that of Kalman Filtering. It is used in areas where noise is present and repeated meas-

urements are made for more accurate estimation. Kalman filtering allows the estimate to

be incrementally updated with every measurement, while also providing a reduction in

uncertainty for the measurement variable. This allows the velocity measurements of

each frame to be integrated with previous ones, allowing a progressive reduction in un-

certainty and a measure of uncertainty to be attached to the velocity of each point. This

gives confidence in the attachment and accuracy of measurement in different areas of

the image. Problems do exist however; as the initial measurement is relatively inaccu-

rate, it takes time to build up confidence in the measurements. This means that scenes,

in which objects are constantly entering and leaving, might not have enough time to

build up an accurate estimate. Ancona (1992) applies the method of Kalman filtering to

stabilise the estimates in the calculation of the focus of expansion6 for obstacle detec-

tion. He defines an obstacle for his method as a plane lying on the ground, orthogonal to

it and high enough to be perceived.

Another attempt at improved optical flow estimation is motion coherence theory. It is

clear that regions moving together tend to belong to the same object, but this was not

accounted for in prior theories of motion estimation. Yuille & Grzywacz (1989) present

theories of motion correspondence and attempt to develop them mathematically. For

example, if features are located spatially close then they tend to move together, so they

define a Gaussian filter that falls off with distance from each feature for linking those

features together. Secondly, local motion may be inaccurate, so they introduce a cost

6 The focus of expansion (FOE) is often used to determine the direction of motion. See McQuirk et al
(1998) for an up-to-date discussion on the FOE and time to collision (TTC) algorithms.

Chapter 2 - Methods for Extracting Motion Information

 15

function for smoothness that integrates this local measurement over a large area, to im-

prove performance. Their approach worked well on artificial images.

2.3.5 Discussion on Optical Flow Techniques

Each approach to optical flow analysis has been found to have its own individual

strengths and weaknesses. According to a key paper on performance of optical flow

techniques by Barron et al (1992) the differential methods of Horn & Schunck (1989)

proved poorly in accuracy. This seemed due to the smoothness term, which produced

attractive, but inaccurate flow fields. The local based approach was found to be ‘en-

couraging’, also providing a good measure of the accuracy of the estimated flow. Gra-

dient-based methods that locally solve for optical flow suffer from three principle

sources of errors:

• The brightness gradients will be poorly estimated in regions of high texture.

• Variations in optical flow will violate the constant local flow assumption.

• There must be sufficient local variation in the brightness gradient to avoid the poor

error propagation characteristics that are associated with ill conditioned systems.

On the test sequences used in Barron et al (1992) the energy-based methods proved

quite successful, and performed better than the general differential based flow methods,

but not quite as good as the local based flow methods. The energy-based method can

overcome the aperture problem (as previously described), as the image is processed at a

number of scales and not just locally. However, due to Gaussian convolution and other

factors, the velocity resolution is ‘smoothed-over’ in local regions, giving rise to errors

at motion boundaries.

Phase based methods have some advantages over the energy-based methods in velocity

tuned filters:

• Velocity resolution is preserved by also taking responses from neighbouring filters.

• There is sub-pixel accuracy.

• Phase information is more robust, especially with regard to changes in speed and

contrast. Thus, this method is relatively insensitive to changes in viewing directions

and lighting directions.

Unfortunately, in retaining velocity resolution in small areas this method suffers from

the aperture problem. Results were found to be more accurate than the gradient based

approach, but it is only the normal velocities that are computed, and not the full veloci-

Chapter 2 - Methods for Extracting Motion Information

 16

ties as in Heger’s method. It was quite sensitive to aliasing and corruption at high fre-

quencies especially when a number of frames less than 15 were available (Barron et al,

1992).

Various techniques have tried to segment scenes by identifying motion discontinuity

boundaries in the optical flow that measures the image motion in each individual pixel

in the scene. There are several problems with this:

• First of all, optical flow is quite difficult to determine accurately and robustly.

• Along image edges only one component of the flow can be calculated due to the ap-

erture problem.

• Smoothing is often used at these points, and this smoothes across the motion bound-

ary, causing loss of information.

• Motion discontinuity boundaries do not necessarily correspond to the boundaries of

independently moving objects (they could be rotating edges on an object).

• Image motion is often too small to show up the motion boundaries.

These problems suggest that an approach with the following characteristics should be

taken (Wiles et al, 1995):

• Image motion should be measured only at strong image features. A feature is an im-

age measurable, the image motion of which can be measured more accurately, such

as corners, edges, regions and textures.

• An appropriate mathematical framework must be used to cluster observed features

into rigid objects.

• The features must be tracked over an extended period of time.

In Figure 2-5, the vectors along the contour represent the local perpendicular compo-

nents of motion that may be extracted. To compute the true motion of this region a sec-

ond stage is required, that combines these local measurements. This combination stage

faces huge theoretical difficulties, since the movement of elements in an image is not

determined uniquely by the patterns of changing intensity. Thus, the true velocity is not

determined uniquely from the initial local motion measurements. This can be attributed

to two main factors; firstly the loss of information due to the projection of the 3-D

world onto a 2-D image (different surfaces undergoing different motions, may translate

to the same 2-D image), and secondly a loss of information due to the projection onto a

Chapter 2 - Methods for Extracting Motion Information

 17

pattern of changing intensity (e.g. a uniformly shaded sphere, rotating around its central

axis).

Most optical flow algorithms rely on taking derivatives. This is a noise enhancing proc-

ess; so many optical flow algorithms work well on artificial images but break down

when exposed to noisy real world images.

2.4 Traditional Approach of Feature Matching

Optical flow computes a dense velocity field, but in direct contrast to this approach fea-

ture matching is based on the extraction of a relatively sparse, but highly discriminatory

set of features in the image, such as corners, edges, or even grey-level regions. By proc-

essing image features, the volume of data is reduced by orders of magnitude compared

to the original data volume, which is particularly important for an application executing

in real-time.

The choice of the feature type may depend on the availability of that type of feature in

the image and the reliability of its measurement. Feature matching, also known as mo-

tion correspondence may be described as: given n frames taken at different time in-

stants, and given m points in each, map a point in one frame to another point in the next

frame such that no two points map onto the same point.

There are two distinct problems to be addressed by feature matching techniques. The

first is extracting and maintaining correspondence between the features extracted from

Flow Field Flow Field

Possible
causePossible

cause

True motion True
Motion

(a) (b)

Figure 2-5. Components of motion (a) and (b) illustrating two examples of flow fields that are difficult to
relate to true motion events.

Chapter 2 - Methods for Extracting Motion Information

 18

one frame and the features extracted from the subsequent frame. The second is to com-

pute the 3-D structure and/or motion of objects in the scene based on the calculated cor-

respondences. The effects of occlusion and disocclusion, further add difficulty.

In solving the first problem there are two distinct steps. The first is to find the features

in two or more consecutive frames, reducing the amount of information to be processed

and hopefully providing a higher-level of understanding of the frame by removing the

information that is less useful. The second step, in its simplest form, is to match the fea-

tures in these two sets of features, to provide a single set of motion vectors.

2.4.1 Point Matching

Originally an orthographic or parallel imaging model was assumed whereby points in

the scene were orthographically projected onto the image plane. Ullman (1979) showed

that if three distinct images of four points in motion were taken, it was possible to de-

velop a set of linear equations that could be solved to find the position and motion of

the four points. However, this is not practical for real-world applications that require

perspective (a pinhole camera model) and not just parallel projection, greatly increasing

the complexity of the problem.

Perspective projection involves taking a 3-D scene and projecting it onto a 2-D surface,

taking into account the effects of distance on its appearance. Generally with the

perspective model the pinhole camera model is used, where the projection centre is

taken as a point in space, with the image plane located between the optical centre and

the scene being viewed. Roach and Aggarwal (1979) examined the situation of a static

scene and a moving camera, to see if it would be possible to determine the position of

the matched points in space, and the translational/rotational motion of the camera. They

showed that it is possible if a minimum of five point matches are obtained between two

views, but this however requires solving 20 non-linear equations (Faugeras & Maybank,

1990). Other researchers came forward with a similar formulation that resulted in a set

of linear equations. The price for linearity was an increase in the number of matches

from five to eight points for each set of frames. This method was unfortunately found to

be quite sensitive to noise when the minimum number of points was used. For a com-

plete review of early work, see Tsai & Huang (1981).

Chapter 2 - Methods for Extracting Motion Information

 19

If the positions of feature point pairs are located without error, then each matched fea-

ture-point pair provides a single constraint on the camera parameters. In dealing with

egomotion, using only image data, only five of the camera motion parameters are de-

terminable, due to the speed-scale ambiguity. According to Harris (1987), using 5 fea-

ture points pairs, the motion parameters may be solved exactly in ideal cases. However,

in real-world images the matches may not be determined as accurately, leading to large

errors and an ill-conditioned problem. The more points that are available, the better

conditioned the problem becomes. Some of the latest approaches that perform feature

matching are discussed in the section on ASSET-2 (see Section 2.9).

Yao and Chellappa (1995) address the problem of tracking a set of features over a long

sequence of image frames. They propose a localised feature-tracking algorithm that has

the merits of two frame and long-sequence based approaches. The algorithm allows for

the inclusion of new features to be tracked from subsequent frames. However, the algo-

rithm is limited, in that it is explicitly designed to track feature points to determine the

ego-motion of the camera. A correlation approach is used to identify the corresponding

points in subsequent frames and so it is not a suitable algorithm for tracking feature

points on the boundary of independently moving objects.

2.4.2 Line Matches

An alternative approach is to use lines or edges instead of points as features. Many fac-

tors such as lighting and surface reflection often cause a change in the position of points

in an image. Lines are usually less sensitive to these effects and a line-fitting algorithm

along a sequence of edge points can generally determine the location and orientation of

a line. Therefore long lines are preferred and so the more edge points, the more accurate

the measurement of the line position. When matching lines, it is necessary that at least

three views be taken, rather than the two views needed for points. This is because lines

possess an extra degree of freedom. This causes a large increase in difficulty when try-

ing to use this method. Kalman filtering is often used to solve the non-linear equations

involved in obtaining the best estimate of the motion parameters. In Figure 2-6(a),

matching l and l’ simply defines a 3-D line L, but puts no constraint on the relative posi-

tion of C1 and C2. However, in Figure 2-6(b), three frames provide constraints about the

motion. From C3 it is apparent that the line is tilted in the z-direction, an observation

that is not apparent from (a). See Medioni and Nevatia (1984).

Chapter 2 - Methods for Extracting Motion Information

 20

2.4.3 Correspondence

Davis (1979) introduces shape matching using relaxation techniques as a useful ap-

proach that attempts to solve the problem of finding matches of shapes to other shapes.

The shapes to be matched are usually represented by polygonal approximations (see

Figure 2-7). During matching, figures of merit are assigned to the matches between

pairs of angles on the two shapes. Relaxation methods are then used to find acceptable

combinations of these matches.

If structure is added to the object scene descriptions then they may be represented by

graphs. The nodes of the graphs represent the primitives Mi and Sj, and there are la-

belled features attached to the primitives. These arcs represent relationships between the

primitives, e.g. adjacency, nearness, parallelism, perpendicularity, etc. See Figure 2-8,

where arcs marked a indicate adjacency, whereas arcs marked p indicate parallelism.

These features attached to each segment include, for example, midpoint, length, orienta-

tion etc. Recognising the model M in the scene S is equivalent to finding that the graph

representing M is isomorphic7 to the graph representing S (i.e. ∃ a one-to-one corre-

7 There is a one-to-one correspondence between the elements of two or more sets, and between the sums
or products of the elements in one of these sets and those of the equivalent elements of the other set or
sets.

C1 C2

L

l l’

C1 C2

L

l l”

C3

l’

(R,t) (R’,t’)

y

x
z

(a) (b)

Figure 2-6. Lines as features (a) illustrates two views of a line segment whereas (b) shows an accurate
estimation of the 3-D line using 3 views (modified from Faugeras (1993)).

Model
Scene

M4

M5

M1 M2

M3

S5
S4

S3
S2

S1

(a) (b)

Figure 2-7. (a) The model and (b) the scene.

Chapter 2 - Methods for Extracting Motion Information

 21

spondence between nodes that preserves the graph structure). In practice, due to partial

occlusion, only part of the model is present in the scene. The real problem then becomes

finding the subgraph of M isomorphic to a subgraph of S. The vertices of the graphs to

be manipulated are usually labelled with numerical values that are derived from the fea-

tures of the corresponding geometric primitives. The values of these vertices should

also be taken into account, in that the features attached to both sets of vertices should be

‘close’ in value. See Bhanu & Faugeras (1984) for more detail.

2.4.4 Constraints in Feature Matching

Due to the combinational increase in matching from a small increase in n (the number

of frames) or m (the number of point matches) it is useful to introduce constraints to

limit the search space. Some of these constraints include proximal uniformity, maxi-

mum velocity, small velocity change (smoothness of motion), common motion, consis-

tent match, rigidity, etc. (Cédras and Shah, 1995). Some of the methods that have been

employed to convert these constraints into formal cost-functions are as follows:

• Tracking the 3-D position of points from a stereo view of the scene based on the

smoothness constraint that the position, velocity and direction of motion are virtu-

ally unchanged from one frame to the next.

• The proximal uniformity constraint states that most objects in the real world follow

smooth paths and cover a relatively small distance in a small amount of time.

• Another method put forward was the use of a two-stage approach. The first stage is

a forward search calculating trajectories as usual, but the second stage is rule based,

moving backwards over the trajectories correcting bad correspondences.

Note that all these methods rely on the smoothness constraint, which although quite rea-

sonable, is not however true in all cases, likely causing these algorithms to fail (Sethi &

Jain (1987)). See Cox (1990) for a review of the statistical data association techniques

M4

M3

M2

M5

M1

S5

S4

S2

S1

S3
a

a
a

a

a

a

a

a

a

a

p
p

(a) (b)

Figure 2-8. The graphs associated with the model (a) and scene (b) to be examined.

Chapter 2 - Methods for Extracting Motion Information

 22

required for feature correspondence. This information can also be successfully com-

bined with a model based tracking approach to further increase the reliability of the

matches.

2.4.5 Detection of Features of Interest

A fundamental stage in computer vision is the generation of descriptions of images,

more useful than a large set of pixels. The main aim of this feature extraction is to re-

duce this large set of pixels into a list of features that are distinct from surrounding por-

tions of the image so that the information available in the scene becomes more manage-

able. For example, in the case of feature matching, the distinctiveness of these points

limits the potential matches in the following frames. Therefore, these points must more

than likely correspond to significant features in the real-world scene, such as ‘real’ cor-

ners, ‘real’ boundaries or edges or significantly textured regions. Most image segmenta-

tion techniques are based on the search for local discontinuities or on the detection of

regions in the image with homogeneous properties. The trajectories derived from locat-

ing particular feature points on an object, through time, are popular because they are

relatively simple to extract.

The generation of motion trajectories from a sequence of images typically involves the

detection of features in each frame, and the correspondence of such features from one

frame to another. These features need to be distinct enough for detection and stable

enough to be found in each frame. Features may include edges, corners, interest points,

and regions (Nerriec et al, 1994). False features are also problematic, derived from

noise, occlusion and lighting effects, the behaviour of which is usually impossible to

predict. Some of these feature detection methods are now discussed.

2.5 Edge Extraction

Edges have many uses in image analysis as they characterise object boundaries, and so

are useful for segmentation and identification of objects in scenes. Edge points are

points in the image where there is a large change in grey level intensity within a small

spatial distance, i.e. step discontinuities in the image signal. In the case of a binary im-

age, edge points can simply be defined as black pixels with at least one surrounding

white pixel. In greyscale images the method of localising these discontinuities becomes

one of finding local maxima in the derivative of the image, or zero-crossings in the sec-

ond derivative of the image. Edge detectors usually try to compute two properties for an

Chapter 2 - Methods for Extracting Motion Information

 23

edge; a direction, which is aligned in the direction of maximal grey-level change, and a

magnitude describing the abruptness of the change. See Appendix A.5 for a further ex-

planation and Jain (1989) and Ballard (1982) for a more detailed introduction.

Since edges are a high-spatial-frequency phenomenon, edge detectors are quite sensitive

to high-frequency noise (such as ‘snow’ on a TV). After the extraction of the edge

points, they should be represented by lines, as in feature matching, otherwise there will

be a return to the case of too much information. The representation process is faced with

difficulties in points where the edge ‘breaks’, or where noise will cause non-existent

lines to be created. Curves are also difficult to represent with lines, as to get a perfect

discrete curve the representation again returns to a pixel description. The line represen-

tation of edges also suffers from the aperture problem when dealing with local opera-

tions, such as optical flow. Common applications with relevance to motion applications

are given in Kim (1990).

2.6 Corner, Junction and Feature Point Detection

The term ‘corner’ is quite vague, and can be defined no more accurately than: a position

in the 2-D array of brightness pixels which humans would associate with the word ‘cor-

ner’ (Smith, 1992). Mathematically, corners are points where the gradient direction

changes rapidly, and corresponds to the physical corners of objects, i.e. there is a strong

2-D intensity change and so is well distinguished from neighbouring points. Corners

and junctions are 2-D image features, the identification of which provides important

information for computer vision applications, such as stereo-vision, motion detection

and scene analysis.

Historical approaches to determining image corners involved segmenting the image into

regions, extracting the boundaries as a chain code and then identifying areas where di-

f(x) f'(x) f''(x)

Smoothed
Step Edge

First
Derivative

Second
Derivative

zero crossing

Figure 2-9. Edge Derivatives.

Chapter 2 - Methods for Extracting Motion Information

 24

rections changed rapidly. This approach is very complex and relies on region segmenta-

tion, which is in itself a complex process.

The first well-known algorithm for extracting ‘interest’ points was the Moravac algo-

rithm (Moravec, 1977), which consists of three main stages (Noble, 1989). At a point in

the image I(i,j):

1. A window W of a specified size is displaced from each point in the four directions

{(1,0),(1,1),(0,1),(-1,1)}.

2. In each direction a measure of change C(dx,dy) is computed. The window W is

shifted by (dx,dy) and the following measure is computed:

C dx dy w x y I x dx y dy I x y
x y W

(,) (,) (,) (,)
(,)

= + + −
∈

∑
2

2-15

where the weight w has the value of 1 if (x,y) is inside the window W and a value of

0 if it is outside W and x,y represent a position within the window W with respect to

the origin of that window.

3. The minimum value of C over these four directions is taken as the local measure of

interest. A threshold is then performed over the entire image to define the points of

interest.

Moravac defined points of interest as points where there is a large variation in intensity

in every direction. As the variation is computed in only four directions, it is sensitive to

strong edges only under certain directions and is very sensitive to noise.

2.6.1 Curvature Based Approaches

In simple scenes grey level corners of 2-D objects may be modelled as the junction

point of two or more straight-line edges (step changes in intensity). For 3-D object grey

level corners, this is generally more difficult. Nagel (1987) defined the grey level corner

as: the location of maximum planar curvature in the locus line of steepest grey level, by

the following reasoning:

If the intensity gradient is a maximum then,

∇ + =I Ix y
2 2 0 , 2-16

 which can be written as (using the chain rule):

0=



















y

x

yyyx

xyxx

I
I

II
II

 2-17

Chapter 2 - Methods for Extracting Motion Information

 25

If the x,y axes are aligned with the principle axes then Ixy=Iyx=0. The second derivatives

(Ixx and Iyy) are also directly proportional to the principle curvatures κ1,κ2, giving:

0
0

2

1

=∝
=∝

yyyy

xxxx

III
III

κ
κ

 2-18

There are four ways by which these conditions may be satisfied:

1. Both principle curvatures and thus the Gaussian curvature, are zero,

021 === Kκκ

2. Gradient components are zero ∇ =I 0

3. One principle curvature is zero, the other crosses zero, or is non-zero.

κ
κ
κ

1

2

2

0

0 0

=
⇒ =

≠ ⇒ =









 crosses zero I
I

y

y

max

4. The most interesting case, where one principle curvature crosses zero and the

other is non-zero

κ
κ

1

2 0 0
 crosses zero ⇒ =
≠ ⇒ =





I
I

x

y

max

Thus the grey level corner is defined by:

I

I
I

I

y

yy

x

xx

= ≠

=
=

= ≠













max

max

0

0
0

0

This is shown as in Figure 2-10.

X

Y

Z

Figure 2-10. A grey level corner, defined by Nagel as the location of maximum planar curvature in the
locus line of steepest grey level.

Chapter 2 - Methods for Extracting Motion Information

 26

One problem with this model of corners is that the assumption that corners appear at a

maximum of the gradient 2-16, implying that low gradient but highly curved corners

will be overlooked. This is likely to be a common corner in real-world images. Nagel

demonstrated that this definition of a corner could be used as a feature point in motion

estimation, and claims that a grey level corner provides a link between the continuous

approach and the feature based approach to motion analysis.

Corners may also be detected by locating the points of high curvature along the edge or

boundary contours. There are two stages to this approach:

1. Edge detection and grouping.

2. Curve representation.

In this approach, directional and non-directional operators will effect the detection of

curves and corners. Directional operators perform better at localising edges and sharp

corners, as non-directional operators such as the Laplacian introduce a rounding effect.

Noble (1989) derives an equation for the total curvature for a Laplacian edge as,

() ()
2

2

3

2

⊥

∇==
n

I
g
I

lapTT ∂
∂κκ , 2-19

where g I Ix y
2 2 21= + + . In general, for large gradients g I2 2≅ ∇ , from this she shows

that many ‘supposed’ individual corner detectors, with individual mathematical deriva-

tions, all break down to have the general form of:

 κ
∂
∂T I

I
n

≅
∇ ⊥

1 2

2 2-20

Showing that most corner detectors are based on second order derivative schemes com-

puting the strength of the corner based on the product between the rate of change of gra-

dient direction along an edge and the gradient magnitude.

Another method for corner detection is based on a ‘cornerness’ approach. This method

involves using non-linear second derivative operators, instead of the Laplacian, since

the Laplacian method incorrectly often obtains corners at other features, such as edges,

and is responsive to noise. The determinant of the Hessian matrix is a simple operator

(C I I Ixx yy xy= − 2) and gives a high response in regions of image curvature. Other meth-

ods involve taking the ‘cornerness’ measure as the change of gradient direction along an

Chapter 2 - Methods for Extracting Motion Information

 27

edge contour multiplied by the local gradient magnitude, i.e. requiring an edge and a

corner. The expression for corner strength is given as (Nobel, 1989):

22

22 2

yx

xyyyxxyyxx

II
IIIIIII

C
+

+−
= 2-21

The use of second order derivatives has however the unfortunate property of amplifying

image noise. This approach is also not very suitable for handling other types of junc-

tions, such as T, X, or Y junctions.

The Harris algorithm (or Plessey algorithm) (Harris, 1987) is based on the Moravac in-

terest operator. Importantly, it uses first order derivatives to approximate the second de-

rivatives. The algorithm consists of three main stages:

- Compute the partial derivatives of the image Ix and Iy and compute the local

Gaussian smoothed products ,, 22
yx II and yx II .

- Compute the eigenvalues λ1, λ2 of the matrix a 2x2 matrix (called the A matrix)

where A =














2

2

yyx

yxx

III
III

- Mark points as corners where the product λ1λ2 divided by (λ1 + λ2) is greater

than a threshold (as below where k is usually 25), i.e. a corner exists when both

eigenvalues are large.

A corner response function (CRF) is formulated where

()
()2

2
det

1
AA Trace

k
kR −
+

= =
()

()2
212121

λλλλ +−
+

=
k

kR

so,
() 





 +−−

+
=

222222
21 yxyxyx IIIIII

k
kR 2-22

If both eigenvalues are large (i.e. R is large) the pixel is flagged as a corner. The algo-

rithm is reasonably computationally expensive, as the Gaussian is applied three times.

The Harris algorithm is used in the DROID system (to be discussed later in Section

2.9), however, Wang and Brady (1995) claim that the detector is not well localised and

Smith (1992) finds dislocation at T-Junctions. Nobel (1989) claims that it is only useful

for L-junctions.

Wang and Brady (1995) suggest a fast algorithm for corner detection that is based on

the observation that curvature is proportional to the second order directional derivative

Chapter 2 - Methods for Extracting Motion Information

 28

in the direction tangential to the edge normal and inversely proportional to the edge

strength. They state that for points with a strong gradient the total curvature may be ap-

proximated as:

 0 ,1 2
2

2

>>∇
∂
∂

∇
= II

I t
κ 2-23

Where 22 tI ∂∂ is a directional derivative along the unit tangent vector t, perpendicular

to the edge normal n, computed using a linear approximation for the pixel values along

the line (() 22222 2 IIIIIIIItI yyxxyyxxxy ∇+−=∂∂). Equation 2-23, has difficulty in

dealing with image quantisation and noise effects. A Gaussian convolution could be

added to reduce this effect but more importantly they show that Gaussian convolution

causes linear signal displacement along the edge normal. Equation 2-23 assumes that

02 >>∇ I , which means that the algorithm is only interested in corners that lie near

pixels where the image gradient magnitude is high, causing a reduction in the amount of

computation and reducing the effect of false corners. F denotes the grey-level image I

after Gaussian Smoothing Convolution (σ = 0.5) to reduce the effect of noise and quan-

tisation. Corners are points where κ is high and a local maximum. Wang and Brady

(1995) define the corner operator as points where the following conditions are fulfilled

(derived by assuming κ2> S):

















>Γ>∇

=
∂
∂

∇−








∂
∂=Γ

21
2

2

2

2
2

2

2

,

0

maximum a is

TTF

F

FSF

n

t

 2-24

Γ is a Corner Response Function (CRF) where S is a user-defined threshold measure of

image curvature and T1 and T2 are user-defined thresholds on edge and corner strengths

that depend on the context of the image. The first condition of Equation 2-24 explains

the main operation: The first term of the right hand side is the squared second order tan-

gential derivative, at which corners as well as edges will respond well in the false corner

case. The second term is the edge strength that responds well at edge pixels (including

false corners). The difference of these two terms cancels the false corner response and

leaves a clean corner response.

Chapter 2 - Methods for Extracting Motion Information

 29

The Curvature Scale Space (CSS) corner detector is based on the Canny edge detector

and was suggested by Mokhtarian et al (1998). From the resulting Canny edge map,

gaps are filled and ‘T-junctions’ are determined and marked, using a local rule-based

approach. The curvature is computed at the highest scale and corner candidates are de-

termined by comparing the maximum of the curvature to a defined threshold and the

neighbouring minima (i.e. the curvature of a corner should be twice that of one of the

neighbouring local minima). Corners are then tracked to the lowest scale to improve the

localisation of the corner using a simple curvature comparison and the knowledge that

the corners will not move dramatically.

Some other techniques to determine the corners and junction points in an image include

template matching, which involves a large set of templates where the search is per-

formed using an adapted Hough transform. This is a very computationally intensive

method on which not very much work has been developed. Fitting B-splines (to be dis-

cussed in Section 3.5.3) to corners has also been mentioned as a possible approach to

estimate edge curvature after a suitable edge detector has been used, where corners are

identified as the points of local maxima of the curvature of the spline. This approach is

not suitable for junctions or fine detail and the computational overhead of an erroneous

edge segmentation algorithm is also required. Nobel (1989) developed a detector based

on morphological curvature. It has a high computational load and has problems with

tails appearing at ‘T’ junctions. Other morphological techniques are discussed in Soille

(1999).

Many techniques do not tackle the problem of corner orientation. A common solution is

to calculate the mean gradient orientation over a small neighbourhood area, which is

only accurate to 20° and not good at handling junctions, according to Chabat et al

(1999). Chabat et al (1999) make the assumptions that: 1) like all edge points, corners

and junctions have a strong intensity gradient and 2) unlike straight lines, corners and

junctions do not have a single dominant orientation. They use a measure of anistropy

(uni-directionality) at each point in the image, of which the orientation is defined by:

() 2

2
tan

2
1),(

22
1 πθ +

−
=

∫ ∫
∫ ∫

Ω

Ω−

dxdyII

dxdyII
yx

yx

yx

2-25

where Ω is a small neighbourhood of the point (x,y), the strength of which is defined as:

Chapter 2 - Methods for Extracting Motion Information

 30

()

() 222

2222 2
),(

∫ ∫

∫ ∫∫ ∫

Ω

ΩΩ

−

+−
=

dxdyII

dxdyIIdxdyII
yxg

yx

yxyx

2-26

Notice that only single derivatives are used and so this method is less sensitive to noise

than many other methods. The value of []1,0),(∈yxg , where 1 is a strong orientation

pattern (straight edges) and is 0 for isotropic regions (corners). Chabat et al (1999) de-

fine a function sc(j)(x,y), calculated at each point Mi in a small neighbourhood Γ around a

labelled corner point Cj that signifies the likelihood of a pixel being part of the edges

associated with that corner:

()α3
)(cos),(),(),(yxIyxgyxs jc ∇= 2-27

and α = (u,v) where u is the direction of uni-directionality at Mi, derived from θ in

Equation 2-25 and v is defined as: ijMC=v (the direction is compatible with the direc-

tion of the point Mi to the corner Cj). For each corner, the value of sc(j)(x,y) is calculated

and a histogram is constructed, the analysis of which (the local maxima) gives the

dominant direction of the edges associated with the corner, where 2 peaks define a cor-

ner and 3 peaks define a junction. Further information on the analysis of the histogram

is available in Chabat et al (1999).

Matas & Kittler (1992) suggest a novel approach to junction and corner detection. First

of all, they attempt to recover the projected 3-D lines. Using the property that these 3-D

projected lines are, by definition, the projection of 3-D edges, and therefore must termi-

nate at the intersection of two projected lines. They then use a Direche filter (Deriche,

1987) for edge detection and a line detector based on the Hough transform. Junction

detection is then performed using probabilistic relaxation labelling, which in their case

works quite successfully. They then stretch line segments to junctions, also performing

gap bridging post-processing. They achieve excellent results, but their test results are

based on images with purely quadrilateral models, e.g. blocks, the gable end of a house

etc. (with the exception of any circles, spheres, and cylinders). Many of the methods

examined here (with the exception of Wang and Brady (1995)) are not useful for motion

analysis. They are inadequate, as they do not compute the curvature in the images relia-

bly and are quite sensitive to noise.

Chapter 2 - Methods for Extracting Motion Information

 31

2.6.2 The SUSAN Corner Detector

Noble (1989) showed that many different corner detection algorithms had unique defi-

nitions of a ‘corner’ and unique mathematical approaches, but derive very similar

mathematical conclusions. The ‘Smallest Univalue Segment Assimilating Nucleus’

(SUSAN) by Smith (1992) is a form of corner detector that is quite unique.

The principle behind SUSAN is as follows: It begins by taking a small mask, usually a

small circular mask and sequentially moves its centre across every pixel in the image set

and examines the local information at each step. The intensity of the pixel at the centre

of the nucleus of the mask is determined and all pixels surrounding this point with simi-

lar intensity values (within a threshold t) are then grouped together and termed a ‘Uni-

value Segment Assimilating Nucleus’ (USAN). Figure 2-12, displays some sample

cases for the SUSAN corner detector algorithm and in Table 2-1 the USANs are dis-

played (always represented in white). The Smallest-USAN is the point where the corner

exists. One of the main advantages of this algorithm is that since there are no brightness

spatial derivatives, the ‘snow’ noise in the image is not amplified. Many other corner

detection methods have attempted to reduce the noise in the image by smoothing the

image before performing the detection algorithm, but this leads to local distortion and a

loss of local information (Smith, 1995).

Figure 2-11. Approximate circular mask used by SUSAN.

E

B

C

D
A

Boundary of Mask Nucleus of Mask

Figure 2-12. SUSAN sample data case (derived from Smith, 1992).

Chapter 2 - Methods for Extracting Motion Information

 32

Mask USAN
diagrams

Detect Explanation

A

In this case the USAN (in white) has a small area, less
than half the mask area, thus a corner is correctly de-
tected here, at the pixel in the centre of the nucleus. This
small area is usually taken as 2/5 of the mask area.

B

In this case the USAN has a large area, and so does not
meet the conditions. No corner detected.

C

The USAN in this case has an area of exactly half that
of the mask, but this does not detect a corner at the nu-
cleus of the mask. No corner detected.

D

Clearly the USAN area is too large. No corner detected.

E

In this case again the USAN is too large, and so a corner
is correctly not detected at the Nucleus of the mask. No
corner detected

Table 2-1. The USAN (Univalue Segment Assimilating Nucleus) for the corners presented in Figure
2-12.

The SUSAN algorithm usually uses a 5 x 5 mask, with 3 pixels added to each edge, giv-

ing a reasonable approximation to a circle (see Figure 2-11). In the creation of the

USAN a brightness threshold (t) is used to link pixels to the USAN area. For example,

if all the pixels currently under the mask are within 15 grey levels of the centre pixel

and the brightness threshold is 16 then all those pixels will be linked to the USAN. A

rigorous mathematical evaluation of this algorithm is not really possible, as it is more

‘intuitively picturesque’ than analytic, according to Smith (1992). This entire process is

quite computationally efficient, taking approximately one tenth of a second using a

256x256 pixel image8. This computation duration varies according to the number of

likely corner features, as a significant part of the computation is involved in further

processing the possible corners. In this calculation ~300 corners were eventually ex-

tracted.

In simulated scenes the above description would suffice and also work quite well, how-

ever when dealing with real-world images the algorithm invokes a noise filter and the

8 Calculated experimentally during this research using the GNU ‘C’ implementation of the regular
SUSAN algorithm on a SUN Sparc II (with the dual processor not used) 266MHz. Result will vary de-
pending on the number of corners determined.

Chapter 2 - Methods for Extracting Motion Information

 33

algorithm evolves to: Compare the brightness of each pixel in the mask to the central

pixel using the comparison:

()
() () 6

0

100, 0








 −
−

= t
rIrI

errc

��

��

,
2-28

 where: 0r
� is the position of the nucleus in the 2-D image,

 r� is the position of any other point within the mask,

 ()rI � is the brightness of any other point within the mask,

 t is the brightness difference threshold and

 c is the output of the comparison.

According to Smith (1992) this equation allows a pixel’s brightness to vary slightly

without having a large effect on c. For speed purposes it was possible to implement a

lookup table on this comparison, i.e. () ()0rIrI �� − can only produce a value of –255 to

+255 in a greyscale image of 256 levels (since t has only one value (usually 20-25),

determined at run-time by the user). This lookup table adds greatly to the computational

speed of the algorithm, as 512 values need only be computed instead of 65535 opera-

tions in the case of a 256x256 image of 256 greyscales. For each pixel in the mask (37

pixels) as described in Figure 2-11 a running total is computed of the form:

 ()∑=
r

rrcn
�

��

0, 2-29

n is then compared with a fixed geometric threshold g. As the maximum value of this

computation is (37 pixels in mask x 100 (i.e. 100 is the max value of c)) = 3700. Smith

chooses

 3700 / 2 = 1850 as the threshold value.

The brightness threshold t does not have the same effect as this threshold value. The

brightness threshold effects only the contrast allowed in the detected corners and so af-

fects the number of corners detected in the image. The threshold g affects the shape of

the corners detected; by lowering this value it in effect forces sharper corners. See

Figure 2-13.

Chapter 2 - Methods for Extracting Motion Information

 34

The next step is to remove any false positives that might occur. For example, Figure

2-14, shows an example mask, in which the area of the USAN is indeed less than 2/5 of

the area of the mask, however, it is not appropriate to classify it as a corner. To combat

this problem a relatively simple solution is to calculate the centre of gravity of the re-

gion within the mask. In Figure 2-14, the centre of gravity is very close to the centre of

the mask. This however is not the case when a corner is detected. This simple addition

to the algorithm need only be calculated when the threshold is reached and so does not

add significant computation to the overall algorithm. There is one further step to reduce

the case of false positives. All the points between the centre of the mask and the centre

of gravity must belong to the USAN for a corner to be detected. This insures a degree of

uniformity in the USAN and thus in the corner being detected.

The effect of the Brighness Threshold (t)
on the type of corners detected

Strong Medium weak

t=mt>m t<m

Strong Medium weak

The effect of the fixed Geometric Threshold (g)
on the type of corners detected

g>ng=ng<n

m = nominal value (e.g. 16)

n = nominal value (e.g. 3700 x 1/5)

Figure 2-13. Effects the type of corner detected by changing the brightness threshold (t) and the geo-
metric threshold (g)

Chapter 2 - Methods for Extracting Motion Information

 35

An independent review of the SUSAN algorithm by Trajković et al (1998) has esti-

mated the complexity of the algorithm at a total cost of 48.3 additions and 0.8 multipli-

cations per pixel (based on a 25% transfer from stage one to stage two processing).

Trajković et al suggest a new approach that uses a similar algorithm structure to

SUSAN. Instead of calculating the areas of the USAN masks (involving a large number

of operations), this approach calculates the intensity differences between points on the

circumference of the mask and the nucleus of the mask, to provide information about

the presence or absence of a corner.

The aim of this approach is to be computationally efficient and so uses a multi-stage

approach. At the first stage a computation of the Curvature Response Function (CRF) is

performed of the form:

 () ()2
'

2min CPCPN ffffR −+−= , 2-30

where fC refers to the image intensity at the centre point, fP refers to the image intensity

at the point P, and this is calculated for different lines. Referring to the three cases in

Figure 2-16, in Case (a) there is at least one line l where the points P and P’ both belong

to the USAN so the min value of RN is low. In case (b) there is a single case where the

line l is parallel to the edge of the USAN where the value of RN is very low. In case (c)

the value of the CRF RN is high as there are no points P and P’ along the line l where

they can both belong to the USAN.

False Detected Corner

Centre of Gravity

Figure 2-14. A possible falsely detected corner using the SUSAN algorithm and mask, prior to the calcu-
lation of the Centre of Gravity.

Chapter 2 - Methods for Extracting Motion Information

 36

In practice however this approach has to deal with problems due to strong edges, with

directions different than in Figure 2-16. The horizontal and vertical intensity variations

are first calculated using:

 () ()2
'

2
CACAA ffffr −+−= 2-31

 () ()2
'

2
CBCBB ffffr −+−= 2-32

Then the CRF is calculated as:

 ()BA rrR ,min= 2-33

If the value of R is less than a certain threshold then the current point is not a corner and

no further computation is performed. If R is greater than that threshold then an inter-

pixel approximation is applied to check for diagonal edges, and the CRF is derived as:

A

BrR A

2

−= 2-34

The value of BrrA AB 2−−= and B is defined as B = min (B1, B2) where,

 ()() ()()CAABCAAB ffffffffB −−+−−= '''1 ,

B

B'

AA'
C

P

P'

Figure 2-15. The neighbourhood of the Nucleus and the linear positions used. The points P and P’ are
on an arbitrary line l, that may be rotated around the mask. Note that the mask used is of the same form
as the SUSAN algorithm 5 x 5 with 3 added to the edges in the largest case.

B

B'

AA'
C

P

P'

B

B'

AA'
C

P

P'

B

B'

AA'
C

P

P'

(a) (b) (c)

Figure 2-16. Some example cases, representative of the USAN of the mask.

Chapter 2 - Methods for Extracting Motion Information

 37

 ()() ()()CAABCAAB ffffffffB −−+−−= '''2 ,

provided that B<0 and A+B > 0. A circular inter-pixel approximation is also available.

This value R from Equation 2-34 is calculated for every pixel that conforms to the ini-

tial comparisons. The last stage is to find the pixels with the locally maximal CRF and

mark them as corners, noting that several pixels around the vicinity of a corner will

have a high value of CRF. This process is called non-maximum suppression and is also

carried out at the end of the SUSAN algorithm.

2.6.3 Discussion on Feature Detectors

To be useful for feature matching in motion tracking applications a feature detector

should satisfy the conditions of:

• Accuracy: Features should be detected as close as possible to the true image

plane position

• Stability: The features should be detected consistently and should not move

when multiple image frames of the same scene are captured (insensitive to varia-

tion of noise)

• Speed: For applications where real-time implementation is required, the detector

must be very efficient.

An examination of published literature on corner detectors has allowed the determina-

tion of the results of Table 2-2.

Algorithm Accuracy Stability Speed9

Trajković (MIC) Good Good Very Fast
Harris
(Plessey)

Good for L junctions, not for other types
Poor localisation according to Wang.

Very Good Slow

Smith (SUSAN) Good (more accurate with pre-filtering) Good Fast
Wang and Brady Good Good Fast
Mokhtarian
(CSS)

Good V.Good Reasonable

Table 2-2. A general comparison between different corner detectors.

The SUSAN algorithm was chosen as feature detector for the primary implementation

in this research as it performs well, localising consistently features in image sequence

9 The Smith (1992) SUSAN and Wang and Brady (1995) corner detectors have been used in real-time
applications (see Section 2.9). The Trajković (1998) MIC algorithm is theoretically more computationally
efficient, however has not been used in any real-time applications to date.

Chapter 2 - Methods for Extracting Motion Information

 38

frames. The computational speed aspect of the algorithm is also examined and im-

proved later by the author in Section 4.10.

2.7 Model Based Tracking

Model-based tracking uses prior knowledge of the structure and appearance of particu-

lar objects before the interpretation of a scene. The aim is to try to correspond these pre-

defined models to actual objects in a real-world scene. In general, these models consist

of precise 3-D geometrical representations of known objects (commonly vehicles) that

may be rotated and examined in any position or direction. Often very carefully cali-

brated camera models are used. Using the known camera and scene geometry, it is pos-

sible to project this 3-D model onto a 2-D image plane, and a confidence of match may

be determined by comparing the features of the translated model to the physical image

to be examined.

In the case of Worrell et al (1991), they apply a ‘goodness-of-fit’ value to the score ob-

tained in matching the physical image to the translated model image. At each position

and orientation, they evaluate this goodness-of-fit value, using a search in position

space and orientation-space to speed up the evaluation of this score. Once a maximum

value is found and claimed to be successful, it is used to estimate the position and orien-

tation for the same object in the next frame. Thus, if they obtain the initial position of a

specific object to track in the first frame, then it may be possible to track this object eas-

ily through subsequent frames, calculating the position and orientation of this object.

They have applied this technique to tracking a vehicle through a sequence of images,

breaking the process into stages:

• ‘Goodness-of-fit’: in this stage the model is translated and rotated to the appropriate

position in the real world and each line of the model is projected onto the image.

These visible line features are then evaluated in the Gaussian smoothed image using

a process called iconic evaluation (as introduced by Brisdon et al (1988)), and the

scores from all the lines are aggregated to give an overall score for the model in the

given position.

• Pose recovery: Here they determine the pose of the vehicle, by locating the peaks

that indicate likely matches in the six-degree of freedom function that they use.

Chapter 2 - Methods for Extracting Motion Information

 39

They minimise the computation by assuming that the object is on the ground plane,

with two dimensions of translation and one degree of rotation.

• Separated gradient ascent: this iterative algorithm is applied to find the peaks in the

evaluation function, where each iteration consists of three 1-D searches taking place

a number of samples either side of the initial position.

Large problems result due to occlusion, where models can drift and be applied to ob-

jects other than the vehicle in question. In their case, they showed an unrecoverable er-

ror while tracking where the model of the vehicle became trapped on a roadside

advertisement.

2.8 Discussion

In Section 2.3.5 the various optical flow techniques were examined and it was found

that for many problems gradient-based methods offer greater performance than match-

ing techniques. Matching techniques are sensitive to ambiguity between the features to

be matched, but optical flow may only be calculated accurately at distinct feature points

in the image, and so can provide a very sparse number of points in the image. Although

it is reasonable not to desire a large number of points for computational reasons, insuf-

ficient points can lead to inaccurate results. Gradient-based approaches avoid the some-

times-difficult task of finding distinguishable points or regions. The differential ap-

proaches (all except local), have been found to be quite inaccurate in results for extract-

ing motion information. As discussed, according to the literature the local approach and

the energy and phase approaches have been found to be the most accurate flow tech-

niques. This is important especially at this stage, as errors will be further multiplied

when segmentation is attempted.

The use of feature matching techniques using line segments as features has two main

advantages over other matching techniques:

• The number of primitives to be matched is usually much smaller, than for example

the number of edge pixels.

• In matching symbolic primitives attached properties may be used, such as geometric

properties that are robust and reliable.

And two main disadvantages:

Chapter 2 - Methods for Extracting Motion Information

 40

• It assumes that objects have a polyhedral structure. If not, then the curves introduce

extra lines, which introduce errors, such as lines flickering (appearing and disap-

pearing).

• The density of correspondences is less than with other methods, but however these

correspondences are generally more accurate.

The number of views required for the line-based method is undesirable over that of the

point-based methods.

Unfortunately all matching methods are computationally expensive. While some effi-

ciency is possible, much effort is placed in the avoidance of false matches and the

matching of points densely enough to be useful. The ‘coarse to fine’ strategy is quite

often used, where initial accurate matches are made, then finer resolution matching are

performed by other matches, using the information gained by the accurate matches. In

the case of the unconstrained motion sequences to be examined in this work, it is not

feasible to use a traditional model based tracking method. Objects to be examined in-

clude humans, and unknown obstacles that must be avoided. In the case of human ‘ob-

jects’, the models required would have to be deformable and a set of models to allow all

possible shapes of the human body would be very difficult, using standard model based

techniques. This is examined to some extent in Section 3.5.1 on the Leeds people

tracker, using active shape models (Heap and Hogg, 1996).

A basic assumption that is often made in computing optical flow is that the image

changes enough from frame to frame so as the motion can be tracked, but not so much

that the correspondence cannot be realised. Edge and corner feature points can be com-

puted rapidly and reliably in images and they are in general stable over image se-

quences. As discussed earlier, corner points also provide more constraint than edge

points.

2.8.1 Correspondence of Points of Interest

The task of maintaining a correspondence of points of interest between multiple frames

has proven difficult. This task is made more difficult by features being occluded, false

features appearing and current features disappearing.

Chapter 2 - Methods for Extracting Motion Information

 41

There are two different ways to match these features. One way would be to extract a set

of features from the first frame and try to find the same features in subsequent 2nd, 3rd,

4th frames etc. The second way is to extract features with certain attributes from the first

frame and then match these in the second frame, similarly for the 2nd and 3rd.

There are several image motion assumptions that are commonly made:

• Maximum Velocity – Assume that a point in one frame of an image sequence must

lie within a certain distance of that point in the next frame. This assumes that the

point has a maximum velocity.

• Common Movement – Points on the same object move in a common way.

• Rigid Motion – Points on a rigid object are related to each other from one frame to

the next provided there is no occlusion or disocclusion.

Tomasi and Kamade (1992) track corner features over many frames using a nearest

neighbour strategy that assumes the frame-to-frame motion is very small. This method

worked well; however, if significant frame-to-frame motion occurs then ambiguities

quickly arise. Partial occlusion and significant changes in the background of the frame

can be problematic for these methods (Cox and Hingorani, 1996). These methods are

suitable for tracking existing features and are not suitable for determining new trackable

features on a frame-by-frame basis. Cox and Hingorani (1996) develop an efficient ap-

proximation implementation of Reid’s multiple hypothesis-tracing (MHT) algorithms

for tracking features over long image sequences. The MHT is computationally exponen-

tial (O(N4)) in both time and memory, so they implement an approximation to the MHT.

They achieve impressive results, however their algorithm still involves a high level of

computational complexity.

2.9 ASSET-2 and Other Navigation Implementations

There have been many attempts in recent years at implementing an autonomous vehicle

navigation system. Many of these implementations require structured environments,

such as near ‘perfect’ road edges, leading to problems in the navigation of narrow, clut-

tered country roads.

NavLab, developed by Thorpe et al (1988), is a self-contained mobile platform for use

in outdoor environments. It was used primarily for integrating perception and naviga-

tion capabilities, with colour vision and 3-D vision capabilities. The main algorithm in-

Chapter 2 - Methods for Extracting Motion Information

 42

volved the use of edge and region detection algorithms, where the edges were extracted

and fitted to a road shape model. The region information was extracted and grouped ac-

cording to colour and texture information, with road pixels being grouped together and

off-road pixels being grouped together. Unfortunately, the road-extraction problem is a

difficult one, with the shadow edges often being the strongest edges, and the shadowed

area of the road having different colour intensity values than the road itself. The initial

resolution of the captured image is 480 x 512 pixels, but they reduce this to 30 x 32 sub-

regions by averaging, to improve computation and to smooth the regions. The devel-

oped algorithm searches for the vanishing point of the road using the edge information

(assuming that the road edges are parallel) and the colour and texture information using

adaptive colour classification to classify the image points as either ‘road’ or ‘non-road’

values. The vanishing point of the road is calculated as the point where the calculated

road edge lines intersect in the ground plane, providing the road’s direction relative to

the observer. In the calculation of the texture image the gradient is normalised by divid-

ing a high-resolution gradient of the image by the mean pixel value of the image sub-

region and a low-resolution gradient of the image. The division by the mean pixel value

is performed to handle shadow interiors and the low-resolution gradient removes

shadow boundaries. The calculated sub-region colour and texture values are compared

to pre-defined classes determined from a training set of 50 images, to provide a classifi-

cation as ‘road’ or ‘off-road’ and also to provide a confidence value of this label.

The algorithm functions well, using a laser range finder to calculate the 3-D information

required. By using this range information and grouping pixels that are expected to be-

long to the same surface the algorithm attempts obstacle detection. The speed of the ve-

hicle was limited to 10 cm/sec, due mainly to the computational requirements of the al-

gorithm. No motion information cues were calculated, such as the optical flow informa-

tion and the algorithm functioned, however, it is unclear as to how it would deal with

other vehicles, occlusions due to leaves, snow, wet and dry, sun flashes (dramatic

changes in illumination on a frame-by-frame basis) and other environmental factors that

change the perceived texture and colour of the road and road edges.

Dickmanns and Graefe (1991) also develop an algorithm for their mobile test vehicle,

VaMoRs and manage to drive the vehicle at speeds of up to 96 km/hr for lengths of

more than 20km. Again however, the algorithm is limited to well structured motorways,

Chapter 2 - Methods for Extracting Motion Information

 43

with small radii of curvature, determining navigation using the edges and usually lane

markings.

With regard to the more complex tasks such as obstacle avoidance and badly defined

country roads the guidance technique must be capable of calculating 3-D structure and

motion information. The DROID Image Processing System10 provides real-time 3-D

scene measurements at localised areas within the image. It uses 2-D features over time,

using a Kalman filter for the 3-D tracking of each point (Charnley and Blissett, 1989).

The search regions around each pixel in this application were of the order of 3 or 4 pix-

els and this greatly simplified the matching process. However, the large number of fea-

tures used (typically 300 - 500 for a 256 x 256 image) allowed an accurate reconstruc-

tion of the scene using their structure from motion technique.

The ASSET-211 (A Scene Segmenter Establishing Tracking, Version 2) tracker imple-

ments a more complex algorithm that avoids the need for advanced road texture and

colour models. Motion information is calculated using feature-based image motion es-

timation. The features that are used for the implementation are 2-D features (corners),

with edges often used to refine the results. Feature matching is performed on the image

plane, with the corners calculated using either the SUSAN or Harris corner detectors

(see Section 2.6.1). The Harris detector was used along with the SUSAN detector, as a

hardware implementation of the detector was available to the research group at the time.

10 Developed at Roke Manor Research Ltd.
11 Developed largely at Oxford University and Defence Research Agency, Farnborough, Hampshire.

Figure 2-17. The ASSET-2 Tracking algorithm in an unconstrained image sequence. (Image is from the
Smith ASSET-2 report (Smith, 1995)).

Chapter 2 - Methods for Extracting Motion Information

 44

Smith (1995) uses a list of cluster groups of flow vectors, which have been segmented

according to the similarity of the flow vectors. The boundaries of these clusters are fur-

ther refined to use image edges if they are available (i.e. edges could be derived when

tracking a mobile vehicle, but maybe not when examining general background informa-

tion). The segmentation algorithm is based on first-order flow fields, where the distance

function is defined as:

σ+
+

−
=

2
m

m

uu
uu

D
��

��

 2-35

This compares the candidate flow vector u� with the estimate vector mu� from the con-

stant flow model. This distance function allows small vectors to be matched to each

other without bias by including a noise term into the fractional vector error. σ is of the

order of the error estimate of the flow vector derived from the flow model (as described

in Smith (1995)). The feature tracking is performed using simple 2-D motion models,

where either constant velocity or constant acceleration models are assumed. Smith

claims from implementation experience that there are very few benefits in using the

more complex constant acceleration model. A threshold Dmax is used to decide if the

new flow vector should be added to the current cluster. Each flow vector is initially

placed in a list, once it is added to a cluster it is removed from that list, so that it does

not get added to more than one cluster (Smith, 1995). Once the list of independent clus-

ters is established, properties are calculated for the cluster, such as bounding box, cen-

troid and motion model. The ASSET-2 system then tracks these clusters over time using

a radial map representation of the cluster shape to update information about the inter-

frame differences and to attempt to detect occlusion.

Chapter 2 - Methods for Extracting Motion Information

 45

The application implementation is of a vehicle travelling along a road taking video pic-

tures of what is in front of it. In the case of ASSET-2 implementation moving vehicles

were required to be extracted (or segmented) from the background, so that navigation

could be performed safely on busy roads. The list of spatially and temporally significant

clusters is used to provide information about the motion of the objects being viewed by

the camera. The 3-D positions and motions of the objects are estimated by making as-

sumptions about the real world (see Sinclair et al (1992)). The complete system runs in

real-time, requiring no calibration and no knowledge of the camera’s motion.

The algorithm used in the ASSET-2 method was extended to the ALTRUISM (Auto-

matic Local Three-Dimensional Representation Using Image-based Scene Measure-

ments) (Smith, 1995b). The ALTRUISM approach attempts to use the information from

the ASSET-2 implementation and the 3-D structure measurements to provide a useful

level of understanding about the scene, in particular the location of areas where it is safe

to drive an autonomous vehicle. The implementation included a large array of hardware

image processing devices connected to the Charnley and Blissett (1989) DROID system

(as discussed at the beginning of this section).

Figure 2-18. The ASSET-2 tracking algorithm in a fixed camera scene, where the ground plane has
been identified by hand and masks only the roads.

Chapter 2 - Methods for Extracting Motion Information

 46

A similar approach to robotic navigation (as a part of the DROID team) involved using

localised feature points for computing the scene structure over image sequences and

was suggested by Brady and Wang (1992). In particular, they use corner points, with

the correspondence being computed using the intensity values and gradients of the cor-

ners. The system computes structure from motion by tracking corners over a sequence

of images and uses corners as ‘seed’ points for computing optical flow. Another version

of the DROID system is discussed as in Shapiro et al (1992) that uses a basic form of

the corner detector discussed in Wang and Brady (1995) along with a feature-matching

algorithm based on a two-frame approach. The algorithm constructs a search window

around each corner in frame 1 and lists each corner in frame 2 that exists within that

search space window. A local patch correlation is performed on the candidate corner

matches and the match corner is the corner with the best match correlation, provided

that a certain threshold is reached. The correlation measure that is used is of the form:

() ()∑∑

∑

==

=

−−

−−
=

n

i i
n

i i

n

i ii

pptt

pptt
c

1
2

1
2

1
))((

 11 ≤≤− c 2-36

where ti and pi are the intensity values of the template and of the patch and t and p are

their means. This measure has the advantage of being invariant to a linear change be-

tween the data sets, so c compares the structure of the patches rather than individual in-

tensities of the patch. The main problem with the approach of Shapiro et al (1992) is

Digitised video sequence

Extract Corner List

Match New Corners with
Corners from Previous
Flow Vector List

Calculate Flow Vector List
Cluster Similar Flow Fields

Update Previous Flow
Vector List

Have List of Independent
Moving Objects

Plot

Interpret into 3D Information

AND/OR

ASSET-2 System Overview

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2-19. The ASSET-2 system overview.

Chapter 2 - Methods for Extracting Motion Information

 47

that features moving in the real world do not always project to simple trajectories in the

image plane and so the linear predictors in the algorithm will fail.

Wiles and Brady (1995) suggest an algorithm for feature matching as follows:

• Extract features.

• Predict feature’s image locations based on previous frames information only.

• For each trajectory search for strong matches locally about the predicted image

location.

• While new matches have been found:

o For each cluster containing new matches, validate the cluster (are

matches consistent with clusters structures) and transfer all unmatched

and mismatched features into the current image to give new predicted

feature locations.

o For each trajectory with a new predicted feature location, search for

forced matches about the predicted image location, if forced matching

fails record trajectory as a zombie.

• Destroy old clusters and trajectories.

• Update trajectory descriptions and strengths.

• Initialise new trajectories.

This technique is motivated by the need to track independently moving objects in an

image sequence, again using clustering. Other autonomous vehicle implementations in-

clude Nashashibi et al (1994), who suggest an approach for outdoor navigation in un-

structured terrain.

The approach taken in this thesis is largely performed by matching 2-D image features,

which has the strong advantage of not suffering from the aperture effect. 2-D image fea-

tures are well localised and have been shown to be consistently detectable between im-

age frames. The motion vectors calculated from these feature points also represent the

true motion of the points in the image plane. For this implementation, computational

complexity should be minimised and one way to reduce this is to perform operations on

a subset of important image points. It therefore follows that this strong set of image fea-

tures should provide the highest level of motion information possible, and for this task

corner points are ideal.

Chapter 2 - Methods for Extracting Motion Information

 48

The use of corners as feature points provides low-level information for a feature match-

ing technique, with no facilities other than matching based on feature properties. This

can be erroneous when similar features appear. Therefore, it is logical that a higher-

level approach be developed, and for this ‘active contour models’ were examined.

Chapter 3 – Active Contour Models

 49

Chapter 3 Active Contour Models

3.1 Introduction

Active Contour Models (ACMs) are a popular method for tracking ‘regions’ as features

through image sequences, using a similar method to the way in which humans observe

the scene of a moving vehicle. Humans often focus on a particular feature point of the

vehicle and then rapidly refocus (optokinetic nystagamus) to follow a different point on

the same vehicle. Developed largely by Kass et al (1987), snakes12 are ACMs that use

an energy-minimising spline to help solve numerous computer vision problems, such as

the analysis of dynamic image data, image segmentation and image understanding. The

model is active as it is always attempting to minimise its energy function, showing dy-

namic behaviour. They are an example of the generalised technique of matching a de-

formable model to an image using energy minimisation techniques, where the shape of

the contour determines its internal energy and the external energy is determined by the

spatial location of the contour within the image plane. External forces are used to attract

these contours towards image features, such as edges, lines, corners and image regions

(Figure 3-1).

There are several different types of deformable contours that may be used, such as the

snake model suggested by Kass et al (1987) that ‘wraps around’ image features, or the

12 Named as ‘snakes’ by Kass et al (1987), in part due to the way that the models ‘slither’ while minimis-
ing their energy values.

Converges

Object

SnaxelOpen
Active
Contour

(a) (b)

Figure 3-1. An example open ended active contour model. Figure (a) shows the snake being placed in
proximity to the object to be tracked and figure (b) shows the snake having converged to the object.

Chapter 3 – Active Contour Models

 50

balloon model introduced by Cohen (1991) that expands to locate desired image fea-

tures. Staib and Duncan (1992) deal with another method, elliptic Fourier decomposi-

tion for objects with shape irregularities, where a Fourier shape model is used that

represents a closed boundary as a sum of trigonometric functions of various frequen-

cies. They then use an iterative energy minimisation technique to fit the model within

the image. This technique is limited to closed boundaries and does not always provide

an appropriate basis for capturing shape variability.

Some of these methods deal with different types of problem; for example, Kass et al

(1987) deal with local deformations only, while Staib and Duncan (1992) deal with

global deformations. Global deformations might be described by scaling, rotation,

stretching or dilation of a contour (rigid motion) in space, whereas local deformations

might be caused by some higher level complex motion, such as the movement of human

lips, living cell deformation and other deformations related to the shape of the feature

and not just its 3-D spatial location. There are indeed two separate problems to be ex-

amined. Global deformations of rigid objects are too varied to be described adequately

by single shape attributes such as bending energy or elasticity, while these descriptions

may be adequate for local deformations in deformable objects.

3.2 Formulation and Initialisation

3.2.1 Formulation

Marr’s Paradigm (Marr et al, 1978) treats boundary extraction as two independent prob-

lems, low-level edge extraction followed by higher-level edge linking. The edge detec-

tor (as discussed in Section 2.5) acts directly on the image intensities to produce an edge

map that contains information such as the location of the edges, direction of edges and

the strength of the edges. This edge map is then passed to an edge-linking algorithm that

has numerous predefined rules to improve the continuity of detected edges. While much

research has been carried out in both areas, many problems exist with this approach,

such as: (Marr, 1978)

• There is no single solution to the edge extraction problem, with many different

edge detectors producing quite varying results (the problem is ill-posed).

• Errors from the edge detection stage are passed directly to the edge linking stage

without the opportunity for correction.

Chapter 3 – Active Contour Models

 51

• To model a contour, the contour must first be extracted from the image. How-

ever, without prior knowledge of the contour of interest the extraction is an ill-

posed problem (Lai, 1994).

Active contour models were proposed as an approach to solving the ill-posed edge de-

tection problem. Kass et al (1987) claim that the low-level process of edge detection

should provide sets of possible alternate solutions for the higher-level process of edge

linking, rather than forcing forward a single unique solution. They propose an energy

minimisation framework as a solution, designing energy functions with local minima

that provide alternate solutions for the higher-level edge linking process, resulting in an

active model that minimises to the desired solution when placed spatially close to that

solution.

The structure of a snake is an ordered set of control points (or snaxels13) of the form

[]nvvvV ,,, 21 �= where each snaxel { }Myxyxi ,,2,1,:),(�==∈ Iv , allowing every

snaxel to have a 2-D coordinate position on the image plane, I (see Figure 3-2).

Alterations to the location or shape of the snake are possible by moving the position of

the individual snaxels. The number of snaxels is chosen by selecting an appropriate

internal distance h. This value is chosen on an application specific basis, where the

coarseness of fit of the snake to the object is the defining factor. The smaller the value

of h, the greater the number of snaxels that are required and the more tightly defined the

minimised snake will be to the image object.

A snake can either be structured as open or closed, with a closed snake having the end

points connected, so snaxel vn is connected to v1 (i.e. vn+1 = v1). Allowing the snake to

13 For the rest of this chapter ‘snaxel’ will be used to refer to such points or elements of the snake. The
term is derived from a contraction of the term “snake elements”.

V (x,y)1

2

3

4

5

6

7

V

V

V

V
V

V
h

Closed Contour V
with n=7 snaxels

Figure 3-2. An example structure of a closed active contour

Chapter 3 – Active Contour Models

 52

be open in structure leads to difficulties in determining the desired energy at the first

and last snaxels. Sometimes however, for certain applications, it may be necessary to

require the end points to remain at specific pre-defined image locations.

3.2.2 Initialisation

Many methods for developing active contour models have emerged in recent years,

since the introduction of snakes by Kass et al (1987), with many applications including

Staib and Duncan (1992) and Leymarie and Levine (1993). However, in most of these

applications it is assumed that the initial position of the snake is relatively close to the

desired solution, in fact often initialised by a human operator (such as the method of

Etoh et al (1993), Cohen (1991)). While this might be a suitable assumption in some

cases, automated initialisation is required for many vision applications, including most

motion based applications.

The initialisation of the snake is a difficult problem that has a significant impact on the

outcome of the snake minimisation. If the snake's initial position is spatially distant

from the desired solution, it is quite common for the snake to become trapped in local

energy minima, due to irrelevant edge information or noise. The snake is also limited in

spatial movement since the snake's own potential energy prevents the snake from

moving far from its current position (Neuenschwander et al, 1994). Many methods

require the user or other mechanisms to place the initial snaxels near the desired

boundaries of the object to be tracked. If the snake is placed close to an intended image

object, its energy minimisation behaviour will force the correct solution. Snakes do not

attempt to solve the problem of detecting prominent image contours, but rely on other

methods to place the snake near the desired contour. Some of these methods include:

• The Hough transform is commonly used for the extraction of the initial

estimates of the contour position for rigid objects. These rigid templates cannot

account for deformations that may occur, thus a rigid template chosen a priori

cannot produce satisfactory results in all cases. Lai (1994) shows that

performance actually degrades with deformation, so they use the generalised

Hough transform to provide the initial contours when substantial prior

knowledge is available.

Chapter 3 – Active Contour Models

 53

• Short snakes may be initialised at strong edges and allowed to expand and even

overlap until the entire boundary is covered.

• If enough computational power is available thousands of randomly initialised

snakes may be placed on the image, until a suitable solution is found, however,

this is rarely practical.

Neuenschwander et al (1994) have an interesting approach to the initialisation problem

by first allowing a user to pick the beginning and end point of the snake. They then

‘turn on’ the image component at the end points individually, followed by ‘turning-on’

the other snaxels progressively from both ends towards the center, causing the snake to

find the smoothest path. They term these snakes ‘static snakes’. After the snake has

been correctly initialised the dynamic component can then be activated. See Figure 3-3

and Figure 3-4.

This method is implemented successfully for both synthetic and real-world images,

showing their results closer to the desired result than a standard initialisation in many

Initial Postion of Snake

Incorrect MinimisationIncorrect Minimisation

Figure 3-3. This figure shows an example of how a user might initialise a snake when objects are very
close together. Unfortunately, because the objects are close, the user must outline the contour very
carefully, otherwise if the snake comes close to undesirable objects then incorrect solutions may occur.

Represents snaxels where image forces are 'turned on'

Figure 3-4. the method of Neuenschwander et al (1994) begins by placing the snaxels at each end of the
snake, as close to the desired object as possible, then allowing each successive pair of snaxels to converge
in an ordered fashion towards the centre snaxel of the snake. When the two active snaxels meet at the same
snaxel location the optimisation method is complete and all snaxels are frozen in place except for the two
active snaxels.

Chapter 3 – Active Contour Models

 54

cases. They use an optimisation method to smooth over the snake’s potential energy to

remove small gaps, without removing valleys. Their method still requires a user to place

the starting and ending snaxels very close to the object to be examined, however it is

more forgiving that the method of Kass et al (1987) where an ‘expert user’ is required

to place the entire snake, snaxel by snaxel.

Conditions might be defined for the use of the snake, such as: the feature to track might

form a closed contour and be smooth. A snake might be placed around the outside of

this feature by a priori knowledge or the initialisation of the contour might receive in-

formation from the Hough transform, if its shape is known. The snake must then be al-

lowed converge around the object, or evolved to have certain properties such as

smoothness.

The energy function for a snake consists of three distinct parts, internal, external and

constraint energies:

 ConstraintExternalInternalSnake EEEE ++= 3-1

EInternal depends on the properties of the snake such as length or curvature, EExternal de-

pends on factors such as image structure and EConstraint determines the constraint energy

that the user can impose.

As ())(),()(sysxsv = the snake energy may be written:

 ()∫=
1

0
)(dssvEE SnakeSnake 3-2

 so,

 () () ()[] dssvEsvEsvEE ConstraintExternalInternalSnake ∫ ++=
1

0
)()()(3-3

over the length of the snake, i.e. the linear parameter s is usually defined in the closed

interval [0,1] and increases as the snake is traversed.

3.2.3 Internal Energy

The internal energy of the snake is determined by the intrinsic properties of the snake,

such as its length or curvature. A snake will in general be better behaved if the control

points are equally spaced around the object to be enclosed (smoothness), with the closer

Chapter 3 – Active Contour Models

 55

the points the more tightly the object can be enclosed. In other words, the internal spline

energy imposes a smoothness constraint on the spline.

The internal energy of the contour may be written as:

 () 22)()(
2
1)(sssInternal vsvssvE βα += 3-4

where
s
vvs ∂

∂≡ and 2

2

s
vvss ∂

∂≡ . The first order term 2)(svsα causes the snake to behave

like a string (or membrane) so that it resists stretching, while the second order term
2)(ssvsβ causes it to behave like a rod (or thin plate) that resists bending. Adjusting the

weights ()sα and β(s) controls the importance of the string and rod terms. Large values

of ()sα will cause an increase in the internal energy as the snake is stretched, while

small values of ()sα will make the internal energy function insensitive to the amount of

stretch. Large values of β(s) will cause an increase in the internal energy as the snake

curves or bends, whereas small values of β(s) will make the external energy function

insensitive to the bending of the snake. Small values of both ()sα and β(s) will place

little constraint on the size or shape of the snake.

Setting the β(s) term to be zero at a single point causes the snake to become second or-

der discontinuous at that point and possibly develop a corner (Kass et al, 1987). The

values of ()sα and β(s) can alter the minimisation solution quite dramatically, for ex-

ample:

If ()sα = 1 and β(s)= 0 are chosen,

 0
2
1 2 += sInternal vE = 0 when v(s) = v(0) 3-5

This means that the contour will collapse down to a single point, to minimise the inter-

nal energy.

If ()sα = 1 and β(s)= 0 are chosen and the end points are fixed at different spatial loca-

tions EInternal = 0 cannot be achieved, since the contour cannot collapse down to a single

Chapter 3 – Active Contour Models

 56

point. However, the energy would be minimised by a straight line between the two

points:

)()(010 vvsvsv −+= ,

as in Figure 3-5.

If ()sα = 0 and β(s)= 1 are chosen,

 20
2
1

ssInternal vE += 3-6

is required to minimise vss(s), but vss(s) = 0 for a straight line of the form bassv +=)(,

providing the optimal solution.

To define the discrete form of the internal energy function (Blake et al, 1992):

 22)()(
2
1

sssInternal vsvsE βα += 3-7

may be written in the form:

 ∑
=

+−− +−+−=
N

i
iiiiiiiInternal vvvvvE

1

2
11

2
1 2

2
1 βα

3-8

Approximating by the Finite Difference Method (to be discussed in Section 3.3.1) the

first derivative vs may be represented by 1−− ii vv and the second derivative vss may be

represented by 11 2 +− +− iii vvv , where ()iii yxv ,= and 222 yxv += . Rewriting this

equation in terms of x and y gives:

() ()

() ()∑

∑

=
+−−

=
+−−

+−+−

++−+−=

N

i
iiiiiii

N

i
iiiiiiiInternal

yyyyy

xxxxxE

1

2
11

2
1

1

2
11

2
1

2
2
1

2
2
1

βα

βα

3-9

The primary purpose of EInternal is to impose a smoothness constraint on the snake. In

the absence of any external forces, EInternal should cause the snake to minimise its form

V(s)

s

V(1)=v

V(0)=v

1

0

Figure 3-5. Minimised energy of the open contour with fixed end points and the second order term removed.

Chapter 3 – Active Contour Models

 57

to a line in the case of an open snake and minimise its form to a circle in the case of a

closed snake.

3.2.4 External Energy

External forces determine the relationship of the snake to the rest of the image. The way

in which the image I(x,y) might be considered is as a potential surface, where the snake

is constrained to lie on I(x,y) under the action of a gravitational force g that has a con-

stant magnitude. This means that the snake has a weight that causes it to fall down the

slopes of the surface I(x,y), where the surface might correspond to image intensities or

to contrast values.

The external energy may be expressed as a combination of the functionals of the form:

 �+++= CornerCornerEdgeEdgeLineLineExternal EkEkEkE 3-10

Adjusting the user definable constants allows the exact attraction behaviour of the snake

to be controlled.

Two very different forms of force, pushing and pulling may affect the external energy

EExternal. Kass et al (1987) suggested springs and volcanoes to model these two types of

force. A spring is typically used to force the snake to attach to desirable features, while

a volcano is used to push them away from undesirable features or noise. After determin-

ing the image location to apply these external forces, the strength and type of the forces

must also be calculated.

The spring force is best determined from the points where the force is to be placed,

rather than examining the energy term that will result. There are two points that must be

known for the spring force; the fixation point and the snaxel to which it will be

attached. The force can then be evaluated easily, based on the distance between the

points, as:

 22)(2)(2 fifiSpring yykxxkE −+−= , 3-11

where),(ff yx is the fixation point,),(ii yx represents the snaxel to which it is attached

and k is a constant for a particulart spring. In the case of the volcano this is much

different. A volcano constraint involves a number of snaxels on the snake and so it is

not practical to determine the force between each individually effected snaxel and the

volcano. Instead a local cone of energy EVolcano may be added to the constraint energy

Chapter 3 – Active Contour Models

 58

term EConstraint. The slope of the edge of this local cone will then determine the repulsive

effect of the volcano.

There are several different functionals that may be used for determining external ener-

gies, such as:

1. The Line Functional

One of the simplest forms of external forces is the line functional. It may be useful in

certain circumstances to have the snake attracted to lines of a particular intensity.

 ∑
=

±=
N

i
iLine vIE

1
)(

3-12

where the sign that is chosen attracts the snake to either light intensity (-ve) or dark in-

tensity lines (+ve). The snake will attempt to align itself with the nearest lightest or

darkest line.

2. The Volcano Functional

Volcanoes are a way of adding high-level information to the image. The volcano could

be assigned to an area of the image that is known a priori to be problematic. In medical

imaging applications volcanoes can be placed in identified areas to prevent the snake

from leaving the organ region of interest. In this case springs could be added to contain

the snake within an area of interest and the volcanoes placed in regions to avoid.

 ∑
= −

=
N

i i
Volcano vv

E
1

1 ,
3-13

where v is the point where the volcano is placed. A volcano is usually formed by locally

deforming the potential surface, often by adding a conic surface; see Figure 3-6(a).

V

Vi

Volcano

Active Contour

V
V

Active Contour

Spring

Fixation Point

Attached Snaxel

(a) (b)

Figure 3-6. (a) The volcano pushing the contour away and in (b) the spring force attached to a snaxel
on the contour.

Chapter 3 – Active Contour Models

 59

3. Edge Functional (Edge loving)

For this functional the snake is to be attracted to contours with large image gradients.

This can be defined as:

 ∑
=

∇−=
N

i
iEdge vIE

1
)(

3-14

See Figure 3-7 for an edge-loving contour minimising to a desired object.

4. Corner Functional (Corner Loving)

 ∑
=

−=
N

i
iCorner vCE

1
)(

3-15

This functional may be used to find the terminations of line segments and corners. Kass

et al (1987) use a slightly smoothed version of the image to remove high frequency

noise and they denote the gradient directions along the snake in the smoothed image C

as),(yxψ . Let

 ()),(sin),,(cos),(yxyxyxn ψψ= and 3-16

 ()),(cos),,(sin),(yxyxyxn ψψ−=⊥ 3-17

be unit vectors along and perpendicular to the gradient directions),(yxψ . The curva-

ture of the level contours in the smoothed image C can be written as (Kass et al, 1987):

nC
nC

n
ECorner ∂∂

∂∂
=

∂
∂= ⊥

⊥ /
/ 22ψ

3-18

so

2

322

22 2

yx

yxxyxxyxyy
Corner

CC

CCCCCCC
E

+

+−
=

3-19

Normal Defined
Search Space

Active Contour

Edge
Strength
Along
Normal

emax

V4
V4

-dX +dX

-dX +dX

Figure 3-7. An example of an active contour with a linear search space for edge strength.

Chapter 3 – Active Contour Models

 60

5. Image Regions

Etoh et al (1993) have developed a method to precisely determine the contour that

should be extracted from a roughly drawn initial contour (see Figure 3-8). The method

uses region extractors (using colour information and position) to determine the regions

of the initial contour. An active contour model is then developed based on a log-

likelihood strategy. In general for pixels in the object region the log-likelihood descrip-

tion: θin

 outoutinin ylyl θθ ,, RR > 3-20

where θin is the mixture density description of the object region Rin and θout is the mix-

ture density description of the background region Rout. The Maximum Likelihood Es-

timate (MLE) position is where the sum of the log-likelihood of Rin and Rout is maxi-

mised. This should identify the boundaries between image regions, however in real-

world images another measure is used to insure accuracy, the maximum gradient posi-

tion of the log-likelihood. The closer these two measures, the more accurately this algo-

rithm performs.

3.2.5 Regularisation

To encourage the active contour model to be more robust and stable it may be necessary

to regularise the terms of the dynamic equations. This can however cause restrictions on

the action of the contour. For example, the snake is usually required to be short and

smooth. Figure 3-9 describes the effects of regularisation on an open snake. If

regularisation is strongly encouraged (in Figure 3-9 (pair 1)) then the snake will fail to

capture the corners but will be very robust to noise. If the regularisation parmeter is set

too low (in Figure 3-9 (pair 2)) then the snake will capture the corners, but will be very

sensitive to noise. A suitable compromise is given in Figure 3-9 (pair 3). It is however

MLE

Inside Outside

edge

log-likelihood of
the inside

log-likelihood of
the outside

l (y | R , in in l (y | R , out out

Position on the normal
to the contour

Figure 3-8. The Log-likelihood Search of Etoh et al (1993)

Chapter 3 – Active Contour Models

 61

difficult to select this parameter exactly. Kass et al (1987) originally proposed snakes as

a regularisation approach to the ill-posed edge detection problem. As described

previously, the Internal Energy (EInternal) imposes continuity and smoothness constraints,

while the External Energy (EExternal) attracts the snake to image features. In this case the

snake V is required where:

 () 






 −+= ∑
=

n

i
iExternaliiInternali vEvE

1
)(1)(min λλ

V
V

3-21

and []1,0∈iλ are the regularisation parameters. Setting)1(ii λλ −> strengthens the

regularisation at each snaxel, providing noise-resistant models, and inversly, small

values of λ i allow the models to capture features but to be noise sensitive.

Lai (1994) (and Lai and Chin, 1998), develop a method called g-snakes14, using a local

minimax criterion of Equation 3-21 (shown as in Figure 3-9) to develop a tradeoff at

each location along the boundary, of the form:

 () ()()






=Λ ∑
=

n

i
ie

1

** maxmin, vEV
V

3-22

Pair 1. High value of λ Pair 2. Low value of λ

Pair 3. Optimum value of λ

Figure 3-9. Effects of regularisation. In pair 1, the snake fails to capture the corner information, but is ro-
bust to noise. In pair 2, the snake captures the corner information, but is highly noise sensitive. Pair 3,
shows an illustration of the choice of the optimum values of λ i..

Chapter 3 – Active Contour Models

 62

where the solution snake V* and the solution regularisation parameters *Λ (where

{ }nλλλ ,,, 21 l=Λ) are calculated by finding the snake V with the minimum energy

determined by the sum of the maximum of () () () ()iExternaliiInternalii EE vvvE λλ −+= 1 for

each snaxel vi by choosing the appropriate value of iλ local to that snaxel. Their

solution allows automation in the selection of suitable regularisation parameters and

they obtain results that were not possible without some form of local automation. Figure

3-9 shows the effect caused by the choice of optimum values of λ i.

3.2.6 Scale Space

One advantage of active contours is the way in which a group of snaxels pulled towards

a low energy image feature will allow the internal energy of the snake to pull

neighbouring snaxels towards a possible continuation of the feature. The same effect

may be produced in a scale-based approach where the snake may be allowed to achieve

equilibrium on a blurred external energy functional, and then by reducing the blurring,

the result is minimisation by scale-continuation (Kass et al, 1987).

This approach will limit the snake from becoming locally ‘trapped’ on certain pixel lo-

cations (possibly due to noise). Instead the snake will be attracted to the local minima

from a greater spatial distance, initially providing a poor localisation of the edge, but

improving as the blurring is reduced. Gaussian blurring is often used for this task, how-

14 g-snakes – generalised-snakes, using a generalised method, based on the minimax criterion.

Current Scale

New Scale

Image
Intensity

Image Position

y(-2)
y(-1)

y(0)

y(1) y(2)

Figure 3-10. Curwan and Blake (1992) coarse-to-fine scale-based search for an image feature (Modified
from Curwan and Blake (1992)).

Chapter 3 – Active Contour Models

 63

ever Curwen and Blake (1992) suggest that large blur implies considerable computa-

tional power for real-time tracking and is unnecessary. Instead, they use a controlled-

scale search along linear paths originating from the contour. Their feature search algo-

rithm is recursive and operates with a coarse-to-fine strategy. At each scale, finite dif-

ference approximations to the image gradient are calculated at the search point and sur-

rounding points. The new search point is the point with the greatest calculated gradient.

The scale is then halved, as in Figure 3-10 with the search bracket moving towards

)0()2(yy − .

3.2.7 Constraint Functional

The external energy component of the snake can have contributions other than directly

from image energy functionals. The indirect constraint energy is often included and de-

termined by the user or some form of pre-analysis. A particular image point might pull

the snake as a form of power assisted operation (Young, 1995). This might also be nec-

essary if the snake settles (becomes trapped) in a local energy minimum, due to noise or

a local feature, that a higher-level process (such as a human operator) determines to be

incorrect. In this case, an area of high EConstraint may be placed at this location to force

the snake to converge to a different local minimum. To evaluate the constraint forces

caused by this constraint energy, the directional derivatives of the constraint energy are

often used, i.e.
xConstraintE− and

yConstraintE− . This is equivalent to calculating the slopes

in the x and y directions at each snaxel for the last known position in the image, so as to

force the snaxel to move by following the steepest slope in the constraint energy field in

the neighbourhood of each snaxel.

3.3 Energy Reduction

3.3.1 The Finite Differences Method (FDM)

The original method to reduce the energy in Equation 3-10 was developed using the

Euler method with finite differences. The contour is represented as in Figure 3-2, as a

set of snaxels, connected together by an elastic, stiff link. The image forces act on the

snaxels to alter the snake from its natural shape. However, its two immediate

neighbours, representing elasticity and its nearest four neighbours representing stiffness,

are also acting upon each snaxel. The solution involves solving N equations of N un-

knowns. The system of equations is repeated iteratively, with each iteration moving

closer to a stable solution. The algorithm requires O(n) time, i.e. an iterative technique

Chapter 3 – Active Contour Models

 64

using sparse matrix methods, with each iteration taking Euler steps with respect to the

internal energy and implicit steps with respect to the external and constraint energies

(Kass et al (1987)).

Difficulties with this approach include:

• The image is only sampled at the snaxels, so to make the contour sensitive to

fine detail the number of snaxels and so number the of equations to be solved

increases.

• If the number of equations N is increased, then the gap between the snaxels must

also be reduced, causing the effect of stiffness to occur only on a local scale.

This could cause the snake to become trapped on undesirable features or noise.

This could be overcome in part by changing the weight of the stiffness term.

In the original method of Kass et al (1987), variational calculus was used to minimise

the energy functionals, which in some cases can become unstable, causing many snaxels

to bunch up on strong edge features.

3.3.2 The Finite Element Method (FEM)

Another approach to solving the minimisation problem involves the Finite Element

Method (FEM), suggested by Sullivan and Baker (1992), where all the forces are al-

lowed to find their own local minimum. The position of the contour (x(s),y(s)) at each

snaxel is described by a low order polynomial in s. They allow successive elements to

be connected together by constraints, which try to enforce low-order continuity in x and

y at their links. The problem then becomes solving 2N equations with 2N unknowns,

where N is the number of elements. The image forces act along the entire element in

this method, not just at the discrete snaxels, so the Gauss-Legendre n-point rule is used

for choosing the sample points for numerical integration, and their relative weights, as it

is an optimal solution for approximating integrals (Press et al, 1995). They use the FEM

with an adaptable order of integration to give a method that allows better use of the lo-

cal image information, without being over-sensitive to noise. It was found that integra-

tion along the elements is much less computationally expensive than increasing the

number of elements in the finite difference method, to achieve a more localised solu-

tion.

Chapter 3 – Active Contour Models

 65

Leymarie and Levine (1993) claim that the FDM is appropriate for use in tracking with

active contours, since its convergence and numerical stability are adequate. However,

for more difficult problems, such as active surface models, they recommend the use of

the FEM. Cohen and Cohen (1993) argue for the use of the FEM, even in dealing with

active contours. This was essential for reducing computational cost in their application,

which involved constructing 3-D models from multiple 2-D contours. They discovered

that when using the FEM, the solution became less sensitive to deformations in the

model than the FDM, and that the FEM has better level of complexity, as a larger step

size is possible, resulting in a linear system of a smaller size.

Amini et al (1990) point out some of the problems involved in the method of solution of

Kass et al (1987). They propose an algorithm using dynamic programming that allows

the addition of ‘hard’ constraints that cannot be violated, allowing the algorithm to be

numerically stable. The optimisation problem is set-up as a discrete multistage decision

process that is solved using a discrete ‘time-delayed’ dynamic programming algorithm,

aiming to bypass local minima. They discretise the integral term to the form:

 () ()()∑
−

=

+=
1

0

n

i
iExternaliInternalTotal vEvEE ,

3-23

to take advantage of the discrete nature of the problem, treating the minimisation as one

of a finite set of stages with each stage having a finite set of possible solutions (see

Chandran and Potty (1998)). The algorithm takes the form of Figure 3-11.

The variational methods for energy minimisation have several restrictions:

• High order derivatives of discrete data are required. This can cause instabilities

unless the image is smoothed (leading however to poor localisation).

• If no image forces are available the contour will minimise to a point or line.

Algorithm of the form:
1) Find the total energy of the minimal
 contour for the set of pixels surrounding
 each snaxel
2) If the total energy has not changed
 then exit
3) Move point to new location
4) Loop.

Snaxel

Possible positions

Figure 3-11. The Dynamic Programming Technique of Amini et al (1990).

Chapter 3 – Active Contour Models

 66

• If the contour is not placed near to the desired feature, it will not be extracted.

• It is important to note that the external field changes with each frame iteration.

Amini et al (1990) state that unless this field remains constant that this can also

cause instability in the variational approach.

Computation requirements of the dynamic programming approach are however linear,

which increases to O(nm3) in the algorithm of Amini, where n is the number of snaxels

on the snake, and m is the number of possible locations that a snaxel may move in a

single iteration. The memory requirement also increases from n x m to n x m2 when

considering 2nd order terms. This method is claimed to give a more controlled contour

where convergence is guaranteed and so the optimality of the solution. It is however not

suitable for a scale based approach and will become more complex as the image resolu-

tion increases.

3.4 Snakes and Motion (Dynamic Contours)

Snakes can be applied statically to single images, or dynamically to a sequence of im-

ages. Once a snake has ‘locked on’ to a salient image feature, the snake will follow this

feature if it moves slowly from its location. If the object accelerates too quickly for the

snake to track, it can cause the snake to localise to a different local minimum, losing

track of the object. Snakes are particularly useful for tracking deformable objects as the

structure of the snake can deform with the object over time. A simple way to add inter-

frame constraints would be to give the snake a mass property (another level of model-

ling), which would improve the motion tracking, by allowing a prediction of the next

location of the snake based on its current velocity. As shown in Figure 3-12, the dy-

namic contour becomes a two-step process. In the first step, the dynamic model is used

for prediction, to calculate motion from one frame to the next and predict the next loca-

tion. This predicted position is refined in the next step using the external image forces

and subsequently used in the next iteration.

It is possible to attach a dynamic component to a snake to allow it to track objects in an

image sequence. Momentum might be added to allow it to move in the same direction

from one frame to the next. A dynamic snake may be represented by introducing a time-

varying mapping v(s,t) and a kinetic energy,

 ∫
1

0

2)(dsvs tµ ,
3-24

Chapter 3 – Active Contour Models

 67

where)(sµ is the mass density, and
t
vvt ∂

∂≡ , which results in an equation for the snake

of the form:

�

dsvvsvsvsE
ExternalInternal

sss

Kinetic

tTotal)()()()(
2
1 22

1

0

2 ρβαµ −−−= ∫
OOO NOOO MLONOML

,
3-25

where)(vρ includes all external potentials that attract the snake to edges, corners and

also including any constraint energy that might be added (Terzopoulus and Szeliski,

1992). Using this formulation it is possible that the snake may oscillate around a solu-

tion unless some form of damping is used. One such method is using the Rayleigh dis-

sipation functional

∫=
1

0

2

2
1)(dsvvtD tγ ,

where)(sγ is the damping density.

Terzopoulus and Szeliski (1992) develop a technique called Kalman snakes for motion

tracking to allow the tracking of non-stationary objects. They found that the probabilis-

tic approach of using Kalman filtering proved successful in dealing with noisy meas-

urements and allowed them to combine measurements from multiple sensors and over

time sequences. Predictive models require probabilistic treatment in order to avoid forc-

ing forward an incorrect solution and they still include a level of uncertainty to prevent

the prediction from dominating the calculation. The Kalman snake that they develop

allows the prediction of possible motions and optimally extracts measurement in uncer-

tain noisy cases. Peterfreund (1999) proposes a new Kalman filtering approach that uses

the image gradient and optical flow measurements along the contour as system meas-

Last Position

Prediction

Object Motion

New Estimate

Prediction

(a) (b)

Figure 3-12. Dynamic contours with prediction.

Chapter 3 – Active Contour Models

 68

urements for calculating the velocity of the snake. Velocity measurements that are not

consistent with the previous estimation of motion and the corresponding edge informa-

tion are rejected during the update step. This method shows the combination of optical

flow measurement and active contour models may be performed.

Curwen and Blake (1992) point out a problem with the assumption of uniform velocity

in defining a contour with inertia. In Figure 3-13, no assumptions are made about the

contour, and it tends to flow around the shape (reluctant to move). However, when a

shape assumption is added the contour moves along correctly with the shape. This as-

sumption is created by allowing a standard flexible contour to relax on the object. It is

then frozen and becomes the template shape (Curwen and Blake, 1992).

A second B-spline curve, identical to the first, is then initialised and coupled to the first.

The second B-spline is allowed to deform, but is constrained by the template spline so

that it can only deform slowly.

3.5 Other Forms of Active Contour Models

3.5.1 Deformable Templates and Active Shape Models (ASMs)

Classical template matching attempts to match a template mask to an image. Deform-

able templates attempt to solve the problems associated with template matching, such as

failing if the object in the image is slightly deformed or if the lighting conditions vary.

The deformable template approach of Yuille et al (1989) involves three main stages.

The generation of 1) a ‘geometrical model’, 2) an ‘imaging model’ that specifies the

Snake

Object

Flexible Contour

Coupled B-spline

Figure 3-13. Showing a dynamic contour tracking an object. In the top case the flexible contour slides
around the object as it moves to the left. In the bottom case, the coupled B-spline is attached and follows
the real motion of the object.

Chapter 3 – Active Contour Models

 69

image intensity properties of the template and 3) an algorithm that determines the good-

ness-of-fit between the template and the image. Figure 3-14(a), shows the deformable

template model of Yuille et al (1989), where a geometric model and an image model are

created. The geometric model is parameterised by all the geometric measures from the

figure g=(xc,xt,r,a,b,c,θ,p1,p2). The image model assumes that the iris corresponds to a

valley in the image intensity and the whites to a peak and the boundaries to image

edges. This model is then successfully applied to tracking the human eye through image

sequences. However, these models are ‘hand-built’ and the models and energy minimi-

sation techniques have to be developed for each individual application.

Cootes and Taylor (1992) suggest ‘Active Shape Models’(ASMs) that allow initial es-

timates of pose, scale and shape of an object in an image to be refined, using a Point

Distribution Model (PDM)15 that is derived from sets of training examples. At each

point on the ASM a motion value is calculated that would improve the position of that

point. The overall position, orientation and scale of the model that will satisfy all the

displacements is then calculated, while always taking care that the global shape con-

straints are enforced by ensuring that the shape parameters remain within appropriate

limits. The search for new positions is usually performed by a search for close edge

points. They apply this method to finding resistors on printed circuit boards and the lo-

cation of human hands. The method fails if the strong edges are outside the search space

area.

15 A Point Distribution Model is a way of representing an object (or indeed a class of an object) using a
flexible model of carefully located labelled points.

(x ,y)

r
b

a

c

image y

image x

white

iris & pupil
p

p

1

2

(x ,y)
c c

t t

(a) (b)

Figure 3-14. (a) The deformable template of the eye, Yuille et al (1989). (b) The Leeds people
tracker model.

Chapter 3 – Active Contour Models

 70

The Leeds People Tracker16 uses flexible 2-D a priori models to recognise and track

pedestrians in image sequences. The shape model is automatically created from test

shapes from training images created using image subtraction. Each shape is traced by a

cubic B-spline with equally spaced control points. A set of ‘modes of variation’ is de-

termined from the variability observed in the training data (see Figure 3-14(b)). This

variability is especially large at the arms and legs of the pedestrian model. Each object

in the scene is represented by a set of parameters (the object centre, the scale, the orien-

tation and a small set of shape parameters that are the weights for the eigenshape basis

vectors) and Kalman filtering is used for model fitting and tracking. The contour has

regularly spaced sample points along the B-spline contour, where suitable features are

searched for along the line normal to the contour direction. Using the Kalman filter

equations the measurements are combined to update the parameter estimates and the

uncertainties (Baumberg, 1996). A motion-based event detector is used that is based on

image frame subtraction with a dynamically updating background image. The motion

regions of the image are then extracted with the top of the bounding box corresponding

to the person’s head and the bottom of the bounding box representing the person’s feet.

A fitness measure is determined for the model and if it is high for several frames then it

is accepted and tracked. The system can deal with partial occlusion, such as when a per-

son walks behind a car and results are very encouraging17. Heap and Hogg (1996) use

similar techniques to construct 3-D PDMs from 3-D MRI volumetric training images

where key features are located by hand. Tracking is performed on a human hand and the

results displayed are noise-free. One point to mention is that the modes of variation

used are linear, but they had begun the development of a non-linear PDM.

16 The Leeds People Tracker – developed at the University of Leeds –
http://www.scs.leeds.ac.uk/vislib/imv/
17 For more work on deformable templates and occlusion see Mardia et al (1997), a computationally in-
tensive method based on a Bayesian recognition system (applied to automated mushroom picking).

Chapter 3 – Active Contour Models

 71

3.5.2 The Balloon Model

Another approach to the energy minimisation process was suggested by Cohen (1991)

based on the Galerkin solution of the FEM. The Galerkin solution of the FEM has the

advantage of greater numerical stability and better efficiency (see Press et al (1992)).

This approach is applied to the closed contour case and finds exceptionally good stabil-

ity. He attempts to overcome the problems associated with the original snake, including

the behaviour of minimising to a straight line, when not placed in close proximity to a

desired object. The balloon model uses an additional inflation force, so that the balloon

constantly inflates, passing through edge fragments that are too weak to contain the

inflation, but resting on stronger edge features. The applications are clear for the

balloon model, such as medical imaging, tracking closed internal organs (such as the

heart) in noisy image scans (using noisy ultrasound and magnetic resonance images). It

is very important in dealing with the balloon model, that it be prevented from

overstepping the edges of the feature of interest. Cohen uses the FDM and prevents a

step size of more than 2 pixels. The algorithm works very accurately in the example

application of tracking the contractions of the left ventricle of the human heart.

3.5.3 B-splines

B-splines allow a compact parametric representation of active contours. A spline of or-

der n is a piecewise polynomial function, consisting of concatenated segments, each of

some polynomial order n, joined together at breakpoints. Polynomials that make up

these splines can be of any degree, but higher-order polynomials can have undesirable

Balloon initialised Balloon minimised

Attraction

Inflation

(a) (b)

Figure 3-15. The balloon active contour model (Cohen, 1991). The balloon is inflated from the inside and
expands, overcoming isolated valleys and noise giving better results than snakes could in particular cases.
In (a) the algorithm begins with a simple curve (open or closed) placed close to the intended contour. Ex-
ternal forces caused by the image energies are applied to the model, and in (b) the final position of the
model corresponds to the minimum of the models energy.

Chapter 3 – Active Contour Models

 72

non-local properties. A spline function x(s) is constructed from a weighted sum of NB

basis functions Bn(s), n=0,1,…,NB-1. In the most straightforward case, each basis func-

tion has d polynomials, each defined over a unit length of the s axis. The unit lengths of

the polynomials are joined together at knots. See Figure 3-16.

Blake et al (1998) set out the framework for using B-splines for motion tracking. If a

snake were required to represent a desired object very closely then using the original

snake form would require a snake with hundreds of elements. At every iteration of the

snake’s position it would be necessary to solve a matrix equation with several hundred

variables, being quite computationally intensive. The spline function is:

 ∑
−

=

=
1

0
)()(

BN

n
nn sBxsx 3-26

where xn are weights applied to each basis function. See Figure 3-17.

2.0

1.5

1.0

0.5

2.5

1 2 3 4 50

x

s

2.0

1.5

1.0

0.5

2.5

1 2 3 4 50

x

s

x B (s)

x

x

x

x
x

x

x

x
x

x

x B (s)

x(s)

1

1

0

0 0

0

2

2

3

3

4 4

4

4

Figure 3-16. Construction of B-splines, the spline functions are weighted by weights x0 to x4 and com-
bined to obtain spline function x(s).

Chapter 3 – Active Contour Models

 73

Using B-splines, real-time tracking has been performed at video rate. There are some

problems with B-splines, such as the difficulty involved in matching splines over image

sequences, especially when re-parameterisation occurs.

3.6 Terminating Condition

It is necessary to obtain stable snake behaviour and this can involve choosing a suitable

terminating criterion for obtaining the optimum solution in the shortest possible time.

Often the terminating condition for a snake is when none of the snaxels move, i.e. the

snake has reached it lowest possible potential energy.

Leymarie et al (1993) propose a steady-state criterion, requiring a minimal stable height

of a snake based on the potential surfaces topography and not on the internal or external

energies of the snake. At each snaxel and snaxel interval, they calculate the sum of the

local heights of the snake along its length and divide this by the snake length - they

wish to minimise:

∫

∫= 1

0

1

0
)(

)(
dsv

dsvE
vE

s

Field
Length

3-27

which is designed to cause the length of the snake to have little effect on the determined

stable state, providing only a terminating condition where the variation in ELength(v) is

tracked, until:

1.0

0.2

0.4

0.6

0.8

0 1 32
s

B (s)
0

0.75 - (s - 1.5)
2

(s - 3)

2

2

s

2

2

0
0

(a) (b)

Figure 3-17. B-spline example. (a) An example B-spline basis function B0(s) with knots at s=0,1,2,3
and other basis functions are translated copies of B0(s). (b) An example of a closed curve contour
with four control vector points.

Chapter 3 – Active Contour Models

 74

 ε<∆)(vELength 3-28

When the magnitude of the difference is below a certain threshold ε then the algorithm

terminates to prevent oscillatory behaviour in the snake.

3.7 Applications and Variations

Kass et al (1987) applied snakes to track the local deformations of a speaker’s lips

through image sequences. Leymarie and Levine (1993) applied snakes to the problem of

tracking deformable cell movement, as they believe that living cells provide an ideal

testing situation for active contours since their boundary can deform simultaneously or

adopt any form in the image plane. They find however that snakes provide solutions to

the segmentation and tracking problems only in constrained cases. They experienced

problems in selecting bounds for the forces (necessary to obtain a stable snake) and se-

lecting a suitable terminating criterion.

Gunn and Nixon (1997) suggest a dual active contour, where one active contour ex-

pands from the inside of the desired feature and another active contour contracts from

the outside, where it is assumed that the two contours are placed inside and outside of

the desired feature respectively. Kass et al (1987) require the initial contour to lie out-

side of the feature of interest and contraction forces to cause the snake to converge to

the desired solution. Cohen (1991) proposed the balloon technique that requires the ini-

tial contour to lie within the feature of interest, with an inflating contour that reduced

the sensitivity to noise. The technique of Gunn and Nixon (1997) technique helps re-

duce the sensitivity to initialisation of a desirable solution, by allowing a comparison

between the two contours energy, allowing a selective rejection of weak minima solu-

tions. They apply this technique to very noisy scenes and the dual active contour con-

verges to a desired solution where other methods do not. This confronts some of the

problems associated with initialisation, as the inner and outer contours do not have to be

placed very accurately in the image.

Etoh et al (1993), do not expect the user to outline the contour exactly, rather they use a

snake that determines a precise boundary by using sub-regions, created from clustering

of colours and positions. They use region description techniques to determine if

contours are stably obtained as boundaries or background regions. They use the

Chapter 3 – Active Contour Models

 75

dynamic programming technique of Amini et al (1990) to minimise the contour energy

that is based on these region descriptions.

Cohen and Cohen (1993) define another form of approach to the use of active contours.

Unlike the method of Kass et al (1987) they extract the global edge information using a

good local edge detector and a global active contour model. They use the balloon

model, with an added internal pressure force pushing out the boundary. They use the

FEM to take advantage of the subdivisions between the snaxels without the added

computationally complexity associated with a large number of elements in the FDM

(See Section 3.3).

3.7.1 Snakes and Stereo

Snakes can be applied to the problem of stereo matching. If a pair of stereo views with

two corresponding contours is available then the disparity should vary smoothly along

the length of the contours. A constraint could be added of the form:

2

)()(svsvE R
S

L
sStereo −= 3-29

Where this constraint would cause information obtained by the contour in one view to

be passed to that corresponding constrained contour in the other stereo view. Kass et al

1
2

3

4

5

6
7

E
image

Out

Out

Out

In
In

In

Inside Expansion Outside Contraction

Figure 3-18. As can be seen in this figure, the internally initialised snake is expanding and the exter-
nally initialised snake is contracting. From this image energy diagram a number of local energy min-
ima are visible, however the obvious (to a human viewer) optimum minimum is at point 4. When
both contours become stationary (in this case the internal snake begins at 1 and the external snake at
7), the contour with the highest energy is minimised with an additional force pushing it towards the
other contour. This local snaxel force is always in the direction of the equivalent snaxel on the other
contour and derived from the distance between them. This allows the contours to ‘climb out’ of weak
local minima. In this example the inside and outside snakes pull each other until they eventually
reach their termination criteria at point 4.

Chapter 3 – Active Contour Models

 76

(1987) used this method to extract a true 3-D representation of a scene containing a

piece of paper. Cohen (1991) also applied the balloon model to the extraction of stereo

views in medical images with impressive results.

Terzopoulos et al (1987) propose a 3-D reconstruction algorithm based on snakes using

a monocular sequence of a scene, with the snakes providing silhouettes of the objects of

interest. They propose deformable models that are matched to the 2-D images using the

external forces derived from those images.

Cohen and Cohen (1993) use MRI images of sequential slices across the left and right

ventricles to construct a true 3-D model. On each image slice the 2-D model is applied

and assuming that the variation from one slice to the next is very small they use the

information from frame to frame. The inflation force that is associated with the balloon

model is only used in the first frame, as in subsequent frames, it is assumed that the

derived contour is very closely related to the previous contour.

3.7.2 Recent Applications

Schnabel and Arridge (1998), use active contours for active shape focusing, where

multi-scale techniques are used. A high scale (very blurred) version of the shape is

where a cubic B-spline is initialised. Slowly the scale is reduced and the B-spline is al-

lowed to evolve to the shape, even more accurately using an increased number of

snaxels. At each scale the shape and number of snaxels is recorded on a ‘shape stack’,

allowing further investigation of shape changes across scale for future use. The internal

energy curvature mechanism is relaxed using a non-parametric soft constraint to allow

the contours to accurately deform to the desired shape.

3.8 Discussion

Active contour models have provided a uniform treatment to a collection of problems,

historically treated differently under Marr’s paradigm (as discussed in Section 3.2.1).

They provide an integration of image data, an initial estimate, desired contour properties

and knowledge-based constraints, in a single extraction process (Gunn and Nixon,

1997). They also provide a uniform framework for localisation of objects, motion track-

ing and the stereo approach.

Chapter 3 – Active Contour Models

 77

Active contour models can change their role within the scene by providing additional

external information in the form of the constraint energy. This allows a higher-level

process to decide if the task is being performed correctly or actually add information to

find a more localised response.

The snake model has several difficulties according to Leymarie and Levine (1993):

• The snake tends to shrink due to its intrinsic bias towards solutions that reduce

its length.

• There are no bounds imposed on the snake, possible leading to chaotic oscilla-

tion of the snake.

• The steady-state criterion for the termination of the optimisation is quite strong,

possibly leading to oscillations and invalid solutions. An appropriate terminating

criterion would allow the snake to find a suitable solution in the shortest possi-

ble period.

Hashimoto et al (1994), suggest a useful technique for reduction of noise on the snake,

by ‘cutting off’ sections of the snake that are not useful. In Figure 3-19, it is visible that

when non-neighbour snaxels are very close such a condition exists. By removing the

snaxels that are between these two neighbouring snaxels the noise is removed from the

snake, hopefully allowing the snake to converge more closely.

It should also be remembered that snakes are relatively computationally cheap, allowing

them to be combined with other techniques to improve their performance. Active con-

tour models have other advantages over classical feature extraction methods:

• It is a higher-level approach that can help ignore missing boundary information,

which is not possible in a local approach.

Contour

Noise Object

Valid Object

Contour

Noise Object

Valid Object

Figure 3-19. Noise reduction in the snake using the technique of Hashimoto et al (1994).

Chapter 3 – Active Contour Models

 78

• Can be made sensitive to scale by adding Gaussian smoothing in the image en-

ergy functionals.

• Snakes are self-adaptive, even changing role.

• They are easy to manipulate, using constraint forces, such as springs or volca-

noes.

• They can be used for spatial location tasks or temporal tracking with little modi-

fication.

However:

• Snakes require a suitable a priori knowledge to achieve good results.

• Snakes can become trapped in local minima.

• The accuracy is governed by convergence criteria, which involves more compu-

tation, but provides more accuracy.

• Snakes can smooth over minute features.

To solve some of these problems, some methods have tried to combine multiple meth-

ods such as Zhu et al (1995) that attempt to combine active contours models, region

growing and Bayesian (Geman and Geman, 1984) or MDL (Minimum Description

Length) for image segmentation using energy function criteria. Each individual method

has disadvantages and advantages. Local edge detection cannot guarantee continuous or

closed edges. Active contour models only give information along the border and require

good initial estimates. Region growing gives image information within the region but

often generates irregular boundaries and small holes. Global optimisation techniques

such as the Bayes or MDL have global criteria but it is difficult to find the minima.

An approach is suggested in the next chapter that attempts to deal with some of these

problems. An active mesh is suggested that:

• Requires little a priori information for initialisation.

• Has representation within image boundaries.

• Does not become trapped on local minima.

• Retains the advantages of active contour models, such as multi-scale implemen-

tation, self-adaptive ability, force based manipulation, and can be used for spa-

tial location or temporal tracking.

Chapter 4 – Methodology – The Active Mesh Implementation

 79

Chapter 4 - Methodology - The Active Mesh Implementation

4.1 Introduction

Most of the methods examined in the previous chapter exhibit advantages for use in dif-

ferent situations and applications. It became apparent from an early stage that a combi-

nation of techniques would be best suited to developing a solution to the moving cam-

era, moving scene-tracking problem.

4.2 Primary Approach Investigated

The initial approach that was examined was the use of corners as features for feature

matching. For motion analysis using feature-matching techniques, the detection of fea-

tures must be:

• Consistent, in that features to be used as features must be detected consistently

through image frames, if they are to be used as the basis for subsequent higher level

processing.

• Accurate, in that these features must be located precisely from frame to frame. This

is especially important in structure from motion techniques where an error will be

dramatically magnified into 3-D space.

• Non-complex, in that computational complexity is a very important issue for real-

time applications, in which this primary stage of corner detection must be performed

at each iteration of the algorithm.

Edges have the advantage of being more stable than feature points in real-world scenes

as they are less affected by lighting conditions. The use of edges was however dis-

missed, due to the difficulty in curve fitting and the local based aperture problems that

can occur. These problems suggested point features as more suitable features for feature

matching. As discussed in Section 2.6.2 the SUSAN corner detector was chosen as the

primary feature detector based on the work of Smith (1992) and practical implementa-

tion has shown it to be a very suitable corner detector for examining motion in image

sequences, as it is fast, stable, producing well-localised corners, and also performing

well in the presence of image noise (again, partly due to the fact that there are no second

order derivatives used). After testing the SUSAN corner detector on sequences of im-

ages (such as those shown in Figure 4-1) it was found by hand that corners were consis-

tently detected from one frame to the next. Smith (1995) used this corner detector in a

Chapter 4 – Methodology – The Active Mesh Implementation

 80

motion tracking application, calculating the optical flow vectors at the corner points.

This is discussed in the ASSET-2 approach in Section 2.9.

After examining the results obtained by using the SUSAN corner detector on the se-

quence as shown in the two frames of Figure 4-1, it could be seen that many of the cor-

ners determined in the first frame had a possible match corner in the subsequent frame,

even thought the frame had undergone a substantial translation. A primary algorithm

was developed and discussed in Molloy and Whelan (1996) to determine possible

matches using the 3x3 pixel area surrounding each corner, template matching and

maximum velocity assumptions. The basis of the algorithm was the assumption that

when a corner was found in the first frame of an image sequence the surrounding pixel

intensities would be similar to that same corner determined in the subsequent frame

(this assumption is discussed further in Section 4.4.2). This algorithm was implemented

in Khoros18. During the implementation stage of this research, the SUSAN algorithm

was modified and re-written for Khoros, to take advantage of the visual environment

and to allow its integration into a full modular system.

18 Khoros, A product of Khoral Research Inc. (http://www.khoral.com)

(a) (b)

Figure 4-1. Real-world example operation of SUSAN – a white grid is superimposed on the image frames (a)
and (b) to help demonstrate the scene motion between the two image frames.

Chapter 4 – Methodology – The Active Mesh Implementation

 81

Resultant vectors calculated from the corner-matching algorithm are shown in Figure

4-2, with the results superimposed on the scene image. The vectors are plotted in the

form of a square head positioned on the feature in the initial frame with the tail pointing

to the exact location of the matched feature in the subsequent frame. This technique was

quite successful, showing all the vectors that were determined between the two frames.

The stray vectors represent the inability of a corner at a particular point to determine a

possible match corner in the subsequent frame. Approximately 20% of the vectors are

‘stray’ in Figure 4-2 and can be easily removed using a tolerance of match threshold,

based on a 3 x 3 intensity patch difference.

Numerous steps were taken to optimise the corner-matching algorithm, such as:

• A distance threshold was implemented that defined the maximum distance that a

corner may move between two frames, to prevent the case in which a corner is

matched to a corner that is visible in one frame, but subsequently in the next frame

becomes occluded, or fails to be detected. This basic measure can be calculated dy-

namically based on the general movement of the corners in the sequence. When

feedback is used, it allows the use of a constraint such as velocity smoothness.

• The addition of a factor of importance of distance also improved results in certain

cases, where the distance between a detected corner in one frame and in the subse-

quent frame allowed the discrimination between similar match cases.

Figure 4-2. The extracted motion vectors using the developed algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 82

• The addition of a pre-median filter was also found to improve results. A median

filter implemented before the SUSAN algorithm removes some problem texture in-

formation, without smoothing over the corners in the image. This was found to re-

move weak detected corners, and improve the overall results of the matching block.

It does however reduce the density of vectors, but if the threshold is lowered, this is

not problematic. See Figure 4-3(a).

• The addition of a post-median global filter dramatically improved results, but this

was found especially applicable to the motion sequence used (i.e. uniform transla-

tion). It was expected to implement a local approach to perform the same filter,

without the error propagation of the global approach. The vector field is sparser than

the previous results, but using a ‘coarse-to-fine’ strategy could improve the overall

results of the algorithm. See Figure 4-3(b).

More information on these filter algorithms is available in Molloy and Whelan (1996).

The global filtering results were promising but especially applicable to this particular

case. Under rotation or scaling this form of filtering is difficult to compute and so will

fail. It was decided that some form or relationship needed to be determined between the

features in the image if a suitable form of global filtering was to be performed. A few

options were examined for this:

 (a) (b)

Figure 4-3. The output after pre-median filtering in (a) and the use of post-median filtering in (b), without
pre-median filtering.

Chapter 4 – Methodology – The Active Mesh Implementation

 83

• A form of relational database based on relative position in the scene. However, due

to the presence of moving objects it was not clear how such a database would han-

dle the relationship between multiple moving segments of the database.

• A model approach based on relative position was also considered but due to the

non-rigid behaviour of the scene, also proved difficult.

Edge linking was examined to determine this relationship. The edge detection algorithm

that was used was also based on the SUSAN algorithm of Smith (1992), as it was found

to be fast and accurate, with the corner points localised on the edges. It also applies fil-

ters to the edge map to attempt to close broken edges in line segments. An edge-linking

algorithm was developed to attempt to extract the relative position of the connected cor-

ners within the image. This algorithm had the following form (examining Figure

4-4(a)): For each feature point detected (identified in any order, but placed in a sorted

list) – follow the edges until each possible direction is found and the linked feature

points are identified. A list is created of the form of Figure 4-4(b) and this list is then

passed to the next algorithm.

From this table, a routine is then called to follow all the possible paths that may exist.

Examining feature � there is only one path to �, which in turn breaks into two direc-

tions towards � and �, but since it came from � it ignores � and goes to feature �.

At feature �, it then examines all the directions except in the direction of feature �, so

there are four more paths that are possible �,�,� and �. Each path is examined in

turn in the same way. This routine attempts to find closed loops within the path list with

greater than two steps (as this would be a line). It also attempts to find the longest path

if a closed loop does not exist. The rational for this is so that these contours can be con-

12

3 0

4

5

6

7

Feature
Point

Connected to Feature

0

1

2

3

4

5

6

7

2

3 4 5 6

7

7

6

1

0

0

2

2

2

2

5
(a) (b)

Figure 4-4. Developed edge linking algorithm example and extracted table.

Chapter 4 – Methodology – The Active Mesh Implementation

 84

verted into the initialisation of closed and open snakes. This algorithm was quite com-

plex to develop and involved significant computation to calculate the contours. The cal-

culation only has to be performed at the beginning of a sequence, or after significant

changes in the scene. It was written in ‘C’ and implemented using Khoros as the GUI

front-end.

In Figure 4-5(a), the sample image used by Smith to demonstrate the SUSAN algo-

rithms is shown and the edge detection and following algorithm that was developed is

then used to generate the feature list and connectivity list as previously described. In

Figure 4-5(b), the output of results from the algorithm is displayed where the closed

loops are detected within the image. These closed loops are indicated in the figure by

being double the intensity of the edge-linked detection.

On examining the figure, it is clear that more than one loop exists in some of the shapes

in the image, however the algorithm only identifies one loop for a given set of feature

points. It could easily be altered to determine multiple loops or the loop with the largest

number of corner points if required, but was thought unnecessary in this particular case,

since more than one contour may not be needed to track a single object in the scenes.

Figure 4-6(a) shows the algorithm being applied to a real-world corridor scene, where

the edges that are detected are outlined with a white pixel on either side of the point

where the edge exists. Figure 4-6(b) shows the closed contours displayed over the edge-

linked corner image. Clearly, the windows in the centre of the figure show the clearest

(a) Standard test template for SUSAN (b) Output of results after detection

Figure 4-5. Detection of closed loops for a test template (loops in brightest intensity).

Chapter 4 – Methodology – The Active Mesh Implementation

 85

closed loops. In other areas of the image closed loops are detected, but are not clearly

visible. This is because the number of corner points in the loop is quite low.

Figure 4-7, displays an enlarged simulated view of the initialisation of the closed active

contour models from Figure 4-6. The primary snaxels are placed on the detected corner

points in the image frame. When the distance between the corner-initialised points is

greater than a certain threshold, more snaxels are placed equidistant on the edge-

followed path between the points. The snake is allowed to form itself around the edges

of the object, by minimising the external energies constrained by image edges.

Once the initialisation is performed, the process of tracking the features is assigned to

the multiple initialised snakes. When the number of open and closed active contours in

the sequence falls below a certain threshold the algorithm halts, re-initialises a new set

of contours for the current frame and then continues. This may occur when multiple

contours are lost due to severe occlusion or features that leave the view of the camera.

After new contours are initialised, an attempt is made to match the contours extracted in

the new initialisation with the contours that still existed at the end of the previous image

frame. This method attempted to track multiple features with automated initialisation,

however it suffered from several difficulties (Molloy and Whelan, 1997a, 1997b).

• One problem is that the multiple snakes drift into each other and begin to track the

same image features. This can be explained by examining Figure 4-7, where a sudden

(a) (b)

Figure 4-6. Application of this algorithm to detect closed contours in a real-world image. (a) Real-world
image with edges superimposed and (b) closed contours displayed brightest on edge image.

Chapter 4 – Methodology – The Active Mesh Implementation

 86

motion jerk to the left or right, can cause the contours surrounding the windows to

drift onto each other as they are very similar.

• There is no direct relationship between each individual snake and so the solution is

less global than would be expected.

• The process of edge following is erroneous due to gaps in edges, which can be filled

to some extent, but not perfectly. One of the main advantages of using active contour

models is they are a higher level approach to edge detection. This approach removes

that advantage to some extent.

Subsequent to the difficulties in this approach, Park and Han (1998) managed to provide

a solution for the problem of multiple contours in image sequences. By first comparing

the curvature distributions of the contours and matching extreme curvature points, then

using these points as a basis along the contour, they match the changes in curvature,

with the criteria of minimum curvature differences. The assumption that is made is that

curvature distribution changes smoothly, no matter what the contour motion. The con-

tours in Figure 4-7 would still provide difficulty due to the similar curvature of each

snake.

4.3 The Active Mesh

4.3.1 Mesh Generation

Mesh generation may be described as the process of breaking up a physical domain into

smaller sub-domains in order to facilitate the numerical solution of a partial differential

equation. Surface domains can be subdivided into triangle or quadrilateral shapes, while

volumes may be subdivided into tetrahedral or hexahedra shapes. Meshing is used in a

wide variety of applications, from mathematical simulation to 3-D graphics applica-

Snakes initialised around
the windows in the
corridor scene

Figure 4-7. Snakes as they are initialised on the real-world image.

Chapter 4 – Methodology – The Active Mesh Implementation

 87

tions. There are two main forms of mesh, structured and unstructured. Structured

meshes (see Figure 4-8) have regular connectivity (i.e. the same number of neighbours),

such as simple, boundary fitted and multi-block, whereas unstructured meshes have ir-

regular connectivity such as advancing front and Delaunay meshes.

4.3.2 Voronoi Diagrams

The Voronoi diagram, named after mathematician M.G. Voronoi, is widely used in

geometrical construction. These diagrams, sometimes called the Dirichlet or Thiessen

tessellation, represent the regions of a plane, which are closer to a particular point in the

plane than any other point. If { }npppP ,,, 21 l= is a set of points in the 2-D Euclidean

plane, where partition in the plane is developed by assigning each point to its nearest

site then those points assigned to the site pi form the Voronoi region V(pi), where V(pi)

represents all the points at least as close to pi as any other site.

 () jixpxpxpV jii ≠∀−≤−= ,: 4-1

Some of these points do not have a unique nearest site and are called Voronoi edges or

vertices. In Figure 4-9 the Voronoi polygon is displayed, defined by the lines that bisect

(perpendicularly) the centre of the lines joining a site pi and its surrounding sites. After

applying this rule to every site in the area, an area remains that is completely covered by

adjacent polygons. The polygons at the boundary of the area are ‘open’ because they

have no neighbouring sites in that direction.

Figure 4-8. Multi-block structured mesh.

Chapter 4 – Methodology – The Active Mesh Implementation

 88

4.3.3 Delaunay Triangulation

Given a set of data points, the Delaunay triangulation produces a set of lines connecting

each point to its natural neighbours. Delaunay triangulation is very closely related to the

Voronoi diagram. The Voronoi diagram can be used as a basis for constructing the De-

launay triangulation by drawing lines between the points in adjacent polygons. Delau-

nay proved that when the dual graph of a Voronoi diagram is drawn with straight lines,

it produces a planar triangulation of the Voronoi sites. This can be seen in Figure 4-10.

It may not be suitable in many cases to determine the Voronoi diagram before determin-

ing the Delaunay triangulation. This is especially true in the case of implementation us-

ing computer programming, as the Voronoi diagram is often more complicated to con-

struct than directly determining the Delaunay triangulation. A Delaunay triangulation is

Pi

Pj

Pi

Pj

Open Polygons around boundary

All points chosen
at random

When performed for all points:

Figure 4-9. The construction of a Voronoi polygon and the Voronoi diagram for some random
scattered points.

Pi

Pj

Voronoi
Diagram

Delaunay
Triangulation

Figure 4-10. The relationship between the Voronoi diagram and the Delaunay triangulation.

Chapter 4 – Methodology – The Active Mesh Implementation

 89

desirable for approximation applications because of its general property that most of the

triangles are almost equiangular and also because there is a unique triangulation for a

given set of points. The main rule for the Delaunay triangulation may be formulated as:

A Delaunay network in two dimensions consists of non-overlapping triangles where no

points in the network are enclosed by the circumscribing circles of any triangle. The

basic properties of a Delaunay triangulation D(P) are:

• D(P) is the straight line dual of the Voronoi diagram V(P) (by definition).

• D(P) is a triangulation if no more than three points of P are co-circular.

• Each face of D(P) corresponds to a vertex of V(P).

• Each edge of D(P) corresponds to an edge of V(P).

• Each vertex of D(P) corresponds to a region of V(P).

• The boundary of D(P) is the convex hull of the sites.

• The interior of each face of D(P) contains no sites.

If only three points exist on each circle in the mesh, the Delaunay triangulation is

unique, however, if more than three points exist on each circle the mesh is still a Delau-

nay triangulation, but not unique (see Figure 4-11).

Classical algorithms for constructing the Delaunay triangulation may be classified as

either incremental or divide-and-conquer algorithms. The incremental algorithms con-

struct the triangulation by starting with a single point and then adding the remaining

points step-by-step. The divide-and-conquer algorithm recursively splits the data set

into equally sized subsets until triangles are obtained. Incremental algorithms have a

maximum O(n2) time complexity, while the divide-and-conquer algorithms have an op-

4 cocircular points
Circumcircle

Voronoi
Diagram

Possible non-unique
Delaunay Triangulations

Figure 4-11. Degeneracy in the Voronoi diagram with four co-circular points.

Chapter 4 – Methodology – The Active Mesh Implementation

 90

timal O(n log(n)) time complexity (Brown, 1995). The incremental algorithm was cho-

sen, so that nodes could be added to the active mesh dynamically.

4.3.4 The Incremental Algorithm

Unlike many other algorithms for determining the Delaunay triangulation, the incre-

mental algorithm has the main advantage of keeping the triangular network as a Delau-

nay triangular network during the actual triangulation process. The initial starting point

of the algorithm is a single triangle (and so valid) and each point is included in the net-

work at each iteration, re-organising the network until the circle criterion is met for all

triangles in the network.

• The initial triangular network is created, so the convex hull is used for this purpose

(see Figure 4-15). The triangular network must meet the max-min angle criterion as

given in Figure 4-14 and the circle criterion as given in Figure 4-13.

Pi

Pj

Voronoi
Diagram

Pi

circumscribing
circles

center of grey
circumscribing
circle

Delaunay Triangles

Pj

(a) (b)

Figure 4-12. (a) The relationship between the Delaunay triangles and their circumscribing circles, and
(b) the relationship between the Voronoi diagram and its circumscribing circles.

P

Circumcircle

Non Delaunay
Triangle

Figure 4-13. The triangle is not a Delaunay triangle since a point P lies within its circumcircle.

Chapter 4 – Methodology – The Active Mesh Implementation

 91

• The first point in the interior of the network is included. This point is then connected

to its enclosing triangle by three new edges, as in Figure 4-15(b).

• The quadrilaterals that have the previous edges as their diagonals are tested using

the max-min angle criterion – where if they do not meet the criterion then their di-

agonals are swapped (as in both quadrilaterals in Figure 4-15(c)). If they are

swapped then the new opposite edges to the inserted point will be recursively exam-

ined as diagonals in their quadrilaterals (see Figure 4-15).

• The Delaunay network now contains one more point and is a true Delaunay

triangulation. Any further points are then added in the same way.

Several different forms of the incremental algorithm were researched according to the

work of Shewchuk (1997):

• The Bower-Watson algorithm - which starts with a large triangle enclosing all

the points to be triangulated. Each point is added, one-by-one to the triangula-

tion. The algorithm finds and deletes all existing triangles, where the circumcir-

cle is intersected by the new point and joins this point to all the vertices on the

boundary of the cavity created. This algorithm has a worst-case complexity of

O(N2), but also has the problem that all point positions must be known in ad-

vance.

• Green and Sibson's algorithm - an efficient approach that uses Voronoi regions,

where each region has a list of its boundary neighbours. Each point is added

point-by-point to the region and the new point ‘wins territory’ from the list of

neighbouring points. This updated region adds all the neighbours to its list and

A
B

Min Angle

New Min
Angle

Swap Vertices

Figure 4-14. The max-min angle criterion for a Delaunay triangulation, states that; if the diagonal of any
strictly convex quadrilateral formed by any two adjacent triangles of a Delaunay triangulation is replaced
by the opposite vertex, the minimum angle of the six internal angles does not increase. In this figure the
vertex A is replaced by the vertex B to give the maximum value for the minimum angle.

Chapter 4 – Methodology – The Active Mesh Implementation

 92

the neighbours add the new point to their lists. The overall level of complexity

can be as low as O(N log N).

• De Floriani’s algorithm - does not make the same assumptions about a convex

hull being present as many other algorithms and is mainly applied to terrain

modelling. The algorithm is based on a software stack approach and takes ad-

vantage of the push and pop type operations where the triangle that encloses the

new (iteratively added) point is identified. This triangle is split into sub-triangles

around this point. The new edges are then examined for validity under the De-

launay criteria, being modified (swapping vertices etc.) until all points are

added.

• Guibas and Stolfi's algorithm - give another Delaunay triangluation algorithm

that has divide-and-conquer and incremental versions. This approach is concep-

tually quite difficult but quite easy to implement.

The Delaunay triangulation that was developed for this implementation was based

around a contraction of the De Floriani and the Bower-Watson Algorithm, taking ad-

vantage of the Vector class structure of Java. The algorithm has tested to be very stable

but was not developed to be as computationally efficient as possible. The Bower-

Watson algorithm was not used entirely as the assumption is made that all the points to

be added are surrounded by a single large triangle. This assumption could not be made

The Initial Network

A
B C

D E F

Insertion of the
First Point Check Vertices

using the
max-min
criterion

Swap vertices to
give correct Delaunay
Triangulation

Continue until all points are
added and Delaunay
Triangulation is complete

Figure 4-15. The creation of the Delaunay triangulation using an incremental algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 93

for this application, as the location of the points was not known in advance. The Green

and Sibson algorithm was not used, as it requires an intensive use of the Voronoi re-

gions, which are difficult and computationally intensive to calculate. The De Floriani

algorithm and Guibas and Stolfi algorithm were not used entirely as the convex hull was

to be used as part of the mesh and because of their difficulty of implementation. It is

however very likely that some of these algorithms are more computationally efficient

than the algorithm used and could be implemented at a later stage as an implementation

improvement. It is worth mentioning that the mesh generation stage is only carried out

once at the start of the sequence and points are only added and removed as the sequence

progresses. The current algorithm developed in Java executes in 180ms for a mesh of

300 nodes19. The transition to Java as the development environment is discussed in Sec-

tion 4.12 .

4.3.5 The use of Delaunay and Voronoi in Computer Vision

There have been several different applications that use the Delaunay and Voronoi meth-

ods in computer vision applications to-date. Guan et al (1992) use the Voronoi tech-

nique as a measure in place of the more commonly used Euclidean distance (Euclidean

skeleton) using segments, rather than points as the basic units of operation. A distance

map can be easily created from the segment list representation of the Voronoi diagram.

Bowden et al (1997) use the Delaunay triangulation along with the Balloon model of

Cohen (1991) as the basis of a volumetric reconstruction algorithm. An initial triangular

mesh is placed within the boundary of the object and allowed to expand in all directions

until it is constrained by the boundary of the object. Importantly, it uses no explicit at-

traction forces to image features, but is constrained to stay within the boundary of the

object.

Bowden et al (1997) suggest a novel curvature based subdivision approach (see Figure

4-16) that aims to maximise the number of snaxels in the areas of high curvature on the

snake. This approach allows the segmentation approach to perform better than possible

with a uniformly distributed mesh.

An example operation of this approach is given in Figure 4-17, where the initial contour

is allowed to expand under the balloon energy model, giving the approximation to the

19 On a Pentium Pro II 233MHz using JIT compilation (Sun Java JRE1.2 using native threads)

Chapter 4 – Methodology – The Active Mesh Implementation

 94

object as shown. At the edges of the object border the number of snaxels increases as

described to allow a closer approximation to the shape. A 2-D application is shown

here, but the algorithm works with 3-D objects also.

The Delaunay triangulation has also been used in numerous video coding applications

where an approximation to image regions with similar intensities is performed using a

Delaunay triangulation, with the approximation being improved by increasing the mesh

complexity.

Another such active mesh implementation is that of Wang and Lee (1994). Their ap-

proach uses a quadrilateral structured mesh that is applied to video coding. The energy

minimisation approach that is used allows non-uniform area samples of image se-

quences to predictively describe that image sequence. They do not apply this mesh to

motion tracking or estimation, but do however suggest that an active mesh representa-

tion would be a suitable technique. Sclaroff and Isidoro (1998) suggest ‘Active Blobs’

as a region-based approach to nonrigid motion tracking. They use a mesh model, from

Balloon Model

(a) (b) (c)

Mesh Subdivided based
on Curvature Causes more Snaxels to

be added at the front

Figure 4-16. Curvature based subdivision, as suggested by Bowden et al (1997).

Outer Border

expand

Sub-divide at edges2-D Example

Figure 4-17. Volumetric Segmentation approach of Bowden et al (1997).

Chapter 4 – Methodology – The Active Mesh Implementation

 95

which they capture the object shape and the colour texture map that describes the ob-

jects image properties. They then apply an energy based minimisation technique, based

on the reverse projection of the texture information onto the image, taking advantage of

OpenGL hardware architecture. The bounding area of the ‘active blob’ is drawn by

hand and has been shown tracking and deforming to confectionary item wrappers.

4.3.6 Discussion on the Mesh Structure Used

The Mesh structure that is used in this algorithm is based around an iterative Delaunay

triangulation algorithm, adding each point, point-by-point, and structuring the mesh,

until all points are added. Once the mesh is constructed using the triangulation algo-

rithm, it is then initialised as an Active Mesh. This was initially attempted using an edge

following algorithm, but proved difficult due to problems with incomplete edges and

image noise.

In this implementation the mesh lines have no image feature relationship, i.e. the mesh

lines do not correspond to feature edges or lines within the image. However, physical

representation is not required for motion tracking using this approach. In this algorithm

the energy calculations take place only at the mesh nodes (vertices) and the mesh lines

represent the spatial relationship of these nodes. As can be seen in Figure 4-19(a) at the

bottom centre of the image, there are numerous mesh lines with no possible connected

image features. However, in the bottom left of the image the mesh lines follow closely

the edges of the object. In this mesh structure:

• The spatial relationships of multiple objects are apparent and can be described by

the relationship and connections of the mesh lines.

• The mesh can provide reasonable region estimation since the points used for creat-

ing the mesh are on the boundaries of objects. If a more defined mesh is required

then the number of feature points can be increased.

• The mesh is bounded by a convex hull that may be defined in advance of the algo-

rithm to have a certain size or position (i.e. the mesh can be initialised within a cer-

tain region of the image frame, see Section 4.8).

If the mesh had physical representation within the image, it is possible that it could aid

in helping to deal with occlusion. The mesh lines could represent physical image edges,

and it would be likely that the various objects in the scene could be completely bounded

by a subset of the mesh.

Chapter 4 – Methodology – The Active Mesh Implementation

 96

The mesh is constructed as a set of triangles, each triangle referencing 3 different mesh

nodes and 3 different mesh lines (see Figure 4-18). The referencing is performed to al-

low a node's properties to be altered without having to locate that node on each triangle

or alter a triangle. Instead the reference is modified and so updated on each triangle

without having any prior knowledge about each triangle. All the nodes exist in a Java

vector list20 of nodes, where a force may be applied to each node without having to ap-

ply the force to the individual triangles. The lines also exist in a separate vector list,

where each line again references two nodes.

This independence of data objects allows forces to be applied to nodes, mesh lines to be

updated or modified and triangles to be altered independently. This gives efficiency in

the overall algorithm, as there are no search processes to run to find particular nodes or

vertices. For example, to update all the node forces the code is simply outlined as for all

nodes 1 to N, update forces, rather than for all triangles, find the triangle mesh lines, for

all of these lines, find the two mesh nodes, for each mesh node update forces.

20 A vector list in Java is a way of storing unformatted objects, in a link-list like structure, only more care-
fully and in a more structured manner. The Vector class is used to replace stack operations that would
likely be required in other language implementations of the algorithm.

Delaunay Triangles

P(x,y)

P(x,y)

P(x,y)

1

2

3

1

2

3

iT

L

L

L

p1

p1

p2

p2

p3

p3

1

2

3

Node (Vertex) List

x y

x

x

x

y

y

yp1 p1

p2p2

p3p3

1

2

P

P

P3

Line List

L

L

L

from to

1T

Tn

L1 LL 2 3

LLLx y z

Triangle List
reference

multiple references
to the same point

Ti

Triangle is a reference
of 3 lines

Line is a reference
of 2 nodes

Node has true values

Figure 4-18. The structure of the mesh used, showing the mesh triangles broken down into lines and
nodes at the top of the illustration. The equivalent software structures are shown below the physical mesh
structure.

Chapter 4 – Methodology – The Active Mesh Implementation

 97

One of the main advantages of the incremental mesh algorithm is the way that mesh

vertices can be added or removed from the mesh as required. This may be necessary

when points in the mesh leave the viewable area of the image frame or when particular

features disappear for a number of frames due to occlusion or image noise. The way in

which the mesh is currently structured allows this to be performed without a large effect

on the structure of the mesh. Figure 4-19 displays the Delaunay triangulation algorithm

being performed on two test templates, using the SUSAN corner detector to locate mesh

nodes.

4.4 The Force Equations

The method presented here initialises the mesh using feature points extracted from the

initial image frame to provide the initial node locations of the mesh. Not only is it nec-

essary to place the snake in its initial position, the force equations must be initialised

such that the mesh is created in a state of equilibrium.

Once the mesh structure is available the internal and external forces within the mesh are

established at each node and mesh line, so that the mesh is initially in equilibrium with

no internal structure or external image forces being applied. The mesh will then remain

(a) (b)

Figure 4-19. The template images after the mesh generation has been performed, using the Delaunay tri-
angulation adding the corner points iteratively to the mesh. (a) Illustrates the test template used for testing
and (b) illustrates the generation of a mesh from the SUSAN test Image (from Smith (1992)). The numbers
in the triangles represent the pixel areas of the triangles. The currently selected node is highlighted in red
and the lengths of the lines given in yellow boxes.

Chapter 4 – Methodology – The Active Mesh Implementation

 98

in equilibrium until a change in the underlying image structure occurs as the ‘active-

mesh’ is designed so that it deforms in response to salient image features.

 To allow for the complexities involved in dealing with ‘active-meshes’ as opposed to

regular contours, the mesh algorithm must allow for varying numbers of line connec-

tions to each node and provide a method for dealing with the numerous forces that will

be applied at each node. Originally it was decided for each connected node to have an

equal effect on the central node, however, it was discovered experimentally that this

was not suitable. It was found that connected nodes at a greater distance should have a

smaller structural impact on the central node, since distant nodes could in fact exist on

different objects. The closer connected nodes are more likely to exist on the same object

or image region. For this reason a formulation was developed to allow greater weighting

on the forces caused by the closer connected nodes (see Figure 4-20).

This algorithm was developed to deal with the varying number of connected nodes, re-

sulting from the initialisation algorithm, with a method of combining the effects of the

forces from the connected nodes on a particular node. Examining the centre node

),(0 yxn with connected nodes Nnnn �,, 21 the combination is of the form:

 () ()2
0

2
0

1

)()()()(where,1 ynynxnxnD
D

D
iiiN

i
i

i
i −+−=−=

∑
=

β 4-2

 () ∑
=

=
N

i
ii xFxF

1
0)(β

4-3

n
n

n

n

n

n

n

n

n

1

2

3

4

5

6

7

8

0

Forces applied from each node

Sum the forces at
the central node

Total Force

The Connected Mesh

Combined Force

F

F

F

F

F

F

F

23

4

5

6
7

1

determined using the
values D to D 1 7

n0 n0
D1

D2D3

D4

D5

D6 D7

Figure 4-20. Multiple forces being applied to a single node, the combination of which is calculated using
the force strength and the node distance of the forcing nodes from the centre node.

Chapter 4 – Methodology – The Active Mesh Implementation

 99

 () ∑
=

=
N

i
ii yFyF

1
0)(β

4-4

where F0 is the force on the centre node. The larger the distance of the node applying

the force from the current node, the smaller the effect it has on the movement of the cur-

rent node. These forces being applied from the surrounding nodes can be caused due to

those nodes being pulled away from or towards salient image features, or indeed from a

structural correction of the mesh. The algorithm to compute the forces on all the nodes

is given as in Algorithm 4-1.

For each node in the vector node list the total sum of all the lengths of the lines separat-

ing the connected nodes causing the forces is calculated. This is the basis of the Force-

Factor value calculation, allowing forces applied from nodes that are closer to the cur-

rent node to have a greater impact on the current node. Figure 4-21 shows an example

of the way in which multiple nodes might have an effect on the single node at the cen-

tre. Each force represents an instance of the MeshForce class with dx and dy represent-

ing the x and y components of the force to be applied. The length state of the class

represents the distance that the force is being applied from. In the same figure the nu-

merous forces are shown that have to be applied. At this stage the forces are stored,

without being applied or combined in a list at the node. Algorithm 4-1 is used to sum

these forces together after calculating the ForceFactor for each force and then summing

the forces based on this force factor.

For each Node
For each MeshForce Stored at this Node

 ForceLengthSum = ForceLengthSum + ForceLength
For each MeshForce Stored at this Node



















−=

hSumForceLengt
hForceLengtrForceFacto 1

 SumForceDx = SumForceDx + (ForceFactor x ForceDx)
 SumForceDy = SumForceDy + (ForceFactor x ForceDy)

Algorithm 4-1. The node force combination algorithm

Chapter 4 – Methodology – The Active Mesh Implementation

 100

4.4.1 The Internal Forces

For the internal forces a rigid/elastic formulation is used, where every node is pulled or

pushed by the connected nodes. The mesh-lines have an elastic property so that the

mesh can deform when required over a number of time iterations, to track deformations

in the scene, the scene objects or deformations due to scaling. There is no requirement

for the higher order ‘rod’ term associated with snakes, as they would have no relation to

the structure of the active mesh. The elastic properties give the mesh its flexibility while

the rigid properties give the mesh structure. The rigid properties of the mesh lines cause

the lines to attempt to return to their determined length. This determined length is per-

mitted to expand or contract slowly over a time period, and is influenced by the elastic

properties of lines. In other words, if the mesh is stretched by a number of consistent

external forces for a significant number of iterations then the mesh will slowly assume a

new default shape. This default shape is now the rigid shape of the mesh and will re-

main so, until similar forcing conditions arise. For each line in the mesh:

 






 −=
curLine

curset
curx L

LLxLF
α

)(
4-5

 






 −=
curLine

curset
cury L

LLyLF
α

)(
4-6

n0

F

D 2

2

Sum =

60 70

65

65

70

80

45

455

 2
df = 1 - (D / Sum)

2
= 0.85

F2 = x F2df2

F is reduced to 85% of its strength2

Do same for all other forces

dx = F (x)

dy = F (y)

length = D

7

7

7

New Force at Node 7

Apply to
Class

F7

F1
n0

Figure 4-21. An example combination of forces, with relation to the Force class.

Chapter 4 – Methodology – The Active Mesh Implementation

 101

where L(x), L(y) represent the x and y components of the mesh line lengths. The internal

forces are determined by the current-length of each individual mesh line in comparison

to the set-length of that mesh line. The constant Lineα is a factor that is user definable in

the algorithm and represents a factor on the size of the forces to be applied. The mesh

line has two node references 1n and 2n where,

 ()yxn FFF −−= ,
1

 and ()yxn FFF ,
2

= 4-7

At each iteration:

 ()setcurIsetset LLLL −+= α 4-8

where Iα is the user-defined factor for mesh line deformity as displayed in Figure 4-22.

The algorithm for the internal energy calculation is given as in Algorithm 4-2. Each line

in the mesh is examined individually. The setLength of the line is the rigid component

of the structure of the mesh and the curLength is the current length of that line. When

the curLength is equal to the setLength then there is no need to apply forces to the nodes

to reduce the difference between these two values. If there is a difference between these

lengths then there is a need to apply forces to the two connected nodes to cause these

two lengths to equalise.

CurLength = C
SetLength = S

C=100, S=100

C=130, S=100

C=100, S=100

C=120, S=100

No Deformity Allowed

1

t

t+δt

n

T
i

m
e

I
t
e
r
a
t
i
o
n

Deformity Allowed

C=110, S=110

C=120, S=105

Case (A) Case (B)

Iteration

.

.

.

.

.

.

Apply external force
and hold for dx iterations

Same initial lengths

Internal forces act to
preserve mesh structure

Final resting Length

.

.

.

C=100, S=100

C=130, S=100

Figure 4-22. An example of a mesh line deformity in (a) how a rigid mesh (i.e. 0≅Iα) might react and

in (b) how a deformable mesh (i.e. 0>Iα) might react.

Chapter 4 – Methodology – The Active Mesh Implementation

 102

If the mesh structure is rigid then the setLength would be ‘set’ at the initialisation of the

mesh and would remain constant at each time iteration. In Figure 4-22(a) an example is

given of these two lengths on the line at (iter.1) the initialisation point of the mesh,

where the setLength is equal to the curLength and the mesh component line is stable.

However in (iter.t) if two opposite forces are applied for a short number of iterations δt

(where 1≥tδ iteration) to the nodes of the line causing the curLength to stretch to a lar-

ger value then in (iter.t+δt) the line will shrink until the two values are equal as in

(iter.n).

The method of shrinking is shown as at the start of Algorithm 4-2. If on the other hand

the mesh is allowed to be deformable to some extent as in Figure 4-22(b) then applying

the same force to the same length segment (iter.t) may cause the setLength of the mesh

to expand as in (iter.t+δt), so that while the curLength will eventually equal the

setLength the line will have expanded slightly at (iter.n). This formulation allows the

structure of the mesh to be deformable, but still defined by a time factor, so that the

mesh cannot deform too quickly. This is similar to the method of the dual active B-

spline method, discussed previously in Section 3.7. This allows the prevention of a

noisy or inaccurate measurement from altering the structure of the mesh, while still al-

lowing deformation of the mesh in the case of stable, consistent forces.

In each iteration

For each Line

Get curLength, setLength, toNode, fromNode










×
−=

curLength
curLengthsetLengthForce

α

 tempForceDx = Force x (toNode.X – fromNode.X)
 tempForceDy = Force x (toNode.Y – fromNode.Y)
 toNode.addForce(tempForceDx, tempForceDy, curLength)
 fromNode.addForce(-tempForceDx, -tempForceDy, curLength)

For each Node
 Compute Forces on curNode using Algorithm 4-1
 tempForceDx = forceFactor x curNode.Dx
 tempForceDy = forceFactor x curNode.Dy
 curNode.Push(tempForceDx, tempForceDy)

For each Line

lengthDifference = curLength - setLength
setLength = setLength + (lengthFactor x lengthDifference)

Algorithm 4-2. Internal Energy Algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 103

4.4.2 The External Forces

The external forces are applied to the mesh nodes independent of the mesh lines and are

derived from the image data. These image forces pull the mesh nodes towards suitable

feature match points that are found within the circular image search space of the mesh

nodes. If a suitable match feature appears within the circular search space then the node

is pulled towards that feature point by a force magnitude determined by the suitability

of the match feature. This in turn pulls the connected mesh nodes (due to the internal

forces of the interconnecting mesh lines) in the direction of the new feature. There is a

choice of several matching techniques that have been implemented:

Correlation Matching

One of the implemented matching algorithms, the best match corner, is found by com-

paring the 5x5 area surrounding the current node n0 with the 5x5 area surrounding the

possible match corners cn detected within the circular search space of radius Sα .

So,),(yxcn∀ where the distance from 0n the current mesh node,

 () ()2
0

2
0)()()()(ynycxnxcd nn −+−=

4-9

is less than the search space of radius Sα , the total intensity difference is:

 ∑∑
−= −=

++−++=
1

1

1

1
,,min

00
0 i j

ccnnnT jyixIjyixII
nn

4-10

For a 5x5 area the corner point nc is chosen that minimises the value of TI in the range 0

to 6375 (i.e. 255 x 25 pixels). Based on this intensity difference, match strength is es-

tablished. The larger this value the weaker the match strength and a factor is estab-

lished:

 








×
−=

25525
1 T

M
IS

4-11

A larger value of TI implies a weaker intensity patch match, averaged over 25 pixels

and over the maximum intensity value 255, so [] 11,0 =∈MS for the best match and 0 for

the worst match.

The method of correlation of small intensity patches is a popular method used in track-

ing applications. However, the theoretical justification of using the correlation-based

method in this method is weak as the features are often formed at the physical corners

Chapter 4 – Methodology – The Active Mesh Implementation

 104

of objects, where the background is moving and will occupy a large proportion of the

patch. This may lead to a poor correlation between the background area components of

the intensity difference patches, and indeed for a corner with high curvature on the bor-

der of an object the background may occupy as much as ¾ of the total area.

Feature Structure Method

Another implemented method uses the information about each feature derived from the

feature extraction process. If it is possible to have a three or four parameter description

of the feature rather than needing 25 differencing operations, the computation aspect

may be reduced. This is especially important at the matching stage, as this is the aspect

of the algorithm that is performed frequently, at each feature in the surrounding search-

space of each mesh node, at each iteration of every frame.

Some of the feature parameters that were examined (particularly for corner features)

were:

• The centre of gravity (COG) of the feature. In the case of corner features, this

will not occur at the corner point and gives information about the direction of

the corner and the shape of the corner. In the case of the algorithm used, the

COG is a useful measure as its calculation is required in the later stages of the

SUSAN algorithm. The COG is calculated with respect to the origin at the cen-

tre of the corner. The COG measure is rotation variant, but the distance between

the COG and the centre of the mask is rotation invariant.

• The area of the corner as it is used in this algorithm refers to the sum of the in-

tensities of the pixels within the mask connected (i.e. within a threshold) to the

located corner point. This measure is almost invariant to rotation, however due

to the discrete nature of the mask it is slightly affected.

• Direction of corner, as discussed previously defines the gradient direction of

the corner and is seriously affected by rotation.

• Intensity difference (or contrast) of the corner defines the gradient strength of

the corner, calculated by averaging the intensity over the ‘connected-corner’ and

‘non-connected-corner’ regions of the mask. The intensity difference is reasona-

bly invariant to rotation and because it is a difference it is moderately unaffected

by global changes in scene intensity.

Chapter 4 – Methodology – The Active Mesh Implementation

 105

A number of different combination formulations of the measures described where used

as the feature comparison techniques.

• The first was a straightforward differencing method between the various pa-

rameter descriptions using (i) the distance to the centre of gravity from the cen-

tre of the corner (C), (ii) the area of the corner (A) and (iii) the contrast of the

corner (I), to try to make the matching process as unaffected as possible by rota-

tion and global intensity changes. These values were normalised over the range

0-1 to allow an equal contribution from each value.

C, distance to the COG from the corner centre; 0 < C < 3.5

A, area of corner; 3 < A < 18 (normalised over the 37 pixels)

I, contrast of corner; t < I < 255 (where t is the SUSAN brightness threshold)

Normalise these metrics over the range 0-1:








=
5.3

' CC , 








−
−=

318
3' AA , 









−
−=

t
tII

255
'

() () ()2'
2

'
1

2'
2

'
1

2'
2

'
1 3

1
3
1

3
11 IIAACCSM −+−+−−= , 4-12

so SM is normalised in the range]1,0[∈MS , where 0 is the weakest and 1 is the

strongest match.

• The second was a constrained version of the first using user-defined factors of

importance of the particular feature properties:

() () ()2'
2

'
1

2'
2

'
1

2'
2

'
11 IIAACCS IACM −+−+−−= λλλ , 4-13

where λC, λA and λI]1,0[∈ and 1=++ IAC λλλ , tailored by the user to specific

needs. Again SM is normalised in the range]1,0[∈MS , where 0 is the weakest

and 1 is the strongest match.

The following matching percentage measure was used to test the performance of the

feature matching techniques and can be computed simply as:

Chapter 4 – Methodology – The Active Mesh Implementation

 106

matchescorrect ofnumber possible maximum
matchesincorrect ofnumber - matchescorrect ofnumber 100 percentage matching ×=

 4-12
which will be dependent on the pair of images chosen but as a measure it gives the es-

timated performance of the matching technique. The maximum possible number of cor-

rect matches defines the number of matches that is possible, assuming that certain fea-

tures cannot be matched as they disappear and appear between image frames. This value

was calculated by hand, with a small Java application used for matching between the

two frames by the user choosing correct pairs of features.

It is worth noting that the measure above is defined for regular matching techniques and

in the case of the active mesh algorithm the measure is better defined as:

∑

∑∑
+

×=
strengthsmatch incorrect correct

 strengthsmatch incorrect -strengthsmatch correct
 100 percentage matching

 4-13
as the effect of the matching on the overall mesh will be determined by the calculation

of the strengths of the matches rather than just the number of matches as this is the true

effect of the match performance on the movement of the mesh.

From the relationship developed for matching the external forces may be calculated by

the following equations:

 






 −=
r

drxdSF MExext)()(α
4-14

 






 −=
r

drydSF MEyext)()(α
4-15

where Eα is a user-defined factor to allow the external forces to have a larger or

smaller effect on the mesh (i.e. similar to the regularisation parameter as discussed in

Section 3.2.5) and r is the search space radius. The last term weights the distance of the

force as weaker the further the distance from the examined node.

Chapter 4 – Methodology – The Active Mesh Implementation

 107

The active mesh allows constrained feature matching to take place on a frame-by-frame

basis in an image sequence. Once the features have been correctly matched the real-

motion of the image of selected points in the image plane are available as vectors.

The external forces are caused by the spatial position and match strength of the mesh

corners detected in the new frame relative to the current mesh nodes. For each detected

corner in the area around the node (determined by the search area), a comparison is

computed between the similarity of the corner and the stored node information (from

the initial computation of the mesh). This comparison of similarity between corners and

nodes is performed using an intensity patch comparison or the other comparisons out-

lined that return a match strength value between 0 and 1, where 1 implies an ideal

match. The force is then calculated for the node as shown in Algorithm 4-3, based on

the distance of the best match corner from the current node. This algorithm allows

forces that are further away from the node to apply a smaller force on the current node.

It is likely that matches closer to the current node are more correct. However it is

important not to discount the forces that are a large distance from the node. For

example, if the scene undergoes a large translation then a large number of small forces

could pull the mesh towards a possible correct solution.

Set the searchSpaceArea
For each Node (curNode)
 Search CornerList for best match corner to curNode
 bestCorner = the best match corner returned
 pullFactor = factor based on the strength of the match
 distance = the distance between curNode and BestCorner
 distanceFactor = (searchSpaceArea – distance) / searchSpaceArea
 matchStrength = pullFactor x distanceFactor
 diffX = bestCorner.X – curNode.X
 diffY = bestCorner.Y – curNode.Y
 if (diffX not equal 0.0)
 unitX = diffX / (absolute value of diffX)
 if (diffY not equal 0.0)
 unitY = diffY / (absolute value of diffY)
 distanceXFactor = ExternalForceFactor x (absolute value of diffX)
 distanceYFactor = ExternalForceFactor x (absolute value of diffY)
 theForceX = distanceXFactor x unitX x distanceFactor x pullFactor

theForceY = distanceYFactor x unitY x distanceFactor x pullFactor
push curNode by (theForceX, theForceY)

Algorithm 4-3. External energy algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 108

4.5 The Final Algorithm

The completed general algorithm may be described as follows, referring to Figure 4-23.

• Load the initial frame.

• Perform the feature detector on the image (usually using the SUSAN corner detector

with a modified 5x5 mask). The threshold value is chosen as appropriate for the im-

age sequence, decided by a desired number of features, but it was found that this

value does not vary significantly for the real-world image sequences used.

• If this is the primary frame, a mesh is built using the Delaunay triangulation from

the features that are detected. Each feature point is added to the mesh, point-by-

point, becoming a node independent of the image feature. The energy formulation

that is used causes the mesh to be initially in equilibrium.

Feature Detection Mesh Generation

Energy Initialisation

External Forces

Internal Forces

Load Next Frame

Vectors Stored

Load Primary Frame

> Max Number Iterations

< Pre-defined Distance

OR

Allow

Allow

Iterate

YES

NO

Combine Forces

Is First Frame?
Yes

No

START

Obeys Terminating
Condition?

Any More Frames?

YES

NO

END

Iterate

Force
Iteration
Block

Frame
Iteration
Block

Figure 4-23. The outline of the overall active mesh algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 109

• The mesh is applied to the image and is set active. Initially there should be no

change in the mesh as the mesh is minimised, with the external forces being zero

and the mesh line lengths at their desired values. A parallel thread is then started

that:

• Calculates the internal forces as in Algorithm 4-2, attempting to minimise the in-

ternal energy of the overall mesh.

• The external forces that are caused by the change of the image are calculated

and the external energies are minimised as in Algorithm 4-3.

• All the forces are combined.

• Is the mesh terminated? If not, then repeat last step otherwise go to next step.

• The node positions of the mesh are recorded at each iteration and stored in a

time-tagged array.

• If there are more frames, repeat.

4.6 The Adaptive Active Mesh

The adaptive mesh algorithm is very similar to the general active mesh algorithm but

with a few extensions. The concept behind the adaptive mesh is to allow features to be

added or removed from the mesh as they become available or unavailable in the image

sequence. This property can be added to the mesh algorithm as shown in Figure 4-24.

• Drop features: If the mesh is tracking a set of features for several frames, it

should drop the features that are weakening the matching by being inconsis-

tently detected over image frames. So the following cases should cause features

to be dropped:

• Weak features: features that are inconsistently detected.

• Features that go out of scope: features that are tracked may leave the image

view and should be removed from the mesh. This is application dependent,

as the mesh can maintain information outside the image bounds quite suc-

cessfully, but often these features should be removed.

• Features that become occluded may also be removed. Again, it is application

dependent. In fact using this algorithm the relative position of these features

can be maintained until they re-appear, but these features must be tagged as

occluded.

Chapter 4 – Methodology – The Active Mesh Implementation

 110

• Add features: If the mesh is tracking a set of features for several frames, it can

also add features to the mesh. The following cases might cause features to be

added:

• Dis-occlusion of image features. Features might appear in the image frame

due to an object moving and revealing previously occluded features.

• New frame edge features will likely be detected at the edges of the image

frame when the observer view moves to the left or right of the original view.

• New moving object. The entrance of a new independently moving object

may cause new features to appear.

Feature Detection Mesh Generation

Force Initialisation

External Forces

Internal Forces

Load Next Frame

Vectors Stored

Load Primary Frame

> Max Number Iterations

< Pre-defined Distance
OR

Allow

Allow

Iterate

YES

NO

Combine Forces

Is First Frame?
Yes

No

START

Obeys Terminating
Condition?

Any More Frames?

YES

NO

END

Iterate

Energy
Iteration
Block

Update Mesh? No

Mesh Update
add/remove nodes

Yes

are there:
- new strong features?
- redundent nodes?

Figure 4-24. The adaptive mesh overall algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 111

It was important to modify the active mesh to be capable of changing in structure as the

image sequence progressed. The reason for using the iterative Delaunay triangulation

was for this very reason, only it was found to be more difficult than initially expected.

Problems occur with the adaptive mesh when it is modified and no longer obeys the

conditions of a true Delaunay triangulation, i.e. when the structure of the mesh has been

altered and no longer conforms to the Delaunay structure due to the effect of external

forces. This is described in detail in Appendix B.

The solution to this difficulty involved updating the mesh at each frame, rather than up-

dating the mesh at each iteration. The mesh structure is verified and modified to force it

to conform to the structure of a Delaunay mesh, with vertices being swapped to con-

form to the min-max angle criterion and connection references being updated. This

mesh does not however have to conform to the Delaunay triangulation rules while the

iterations are taking place. The referencing structure of the software implementation of

the mesh allowed this to be performed seamlessly, making it easy to remove mesh

nodes from the centre of the Java vector list. The remaining vector list elements are re-

combined into a mesh, still retaining all the mesh node information. This methodology

kept the mesh clean and prevented crossover cases as discussed in Appendix B.

4.7 The Multiple Active Mesh Approach

This active mesh algorithm structure allows for multiple meshes to exist in the same

sequence. The determination of the locations of the individual meshes can be performed

in several ways:

• The primary and most obvious method of determining multiple meshes is by ex-

amining the motion vectors of a large mesh and sub-dividing the mesh into a

smaller mesh that is a subset of the larger mesh. This smaller mesh can then ex-

ist with no ties to the larger parent mesh. In the parent mesh the mesh nodes can

be removed that correspond to the child mesh and both meshes can exist inde-

pendently. The identification of an independent similarly moving cluster of

mesh nodes was implemented.

Chapter 4 – Methodology – The Active Mesh Implementation

 112

• Another method would be to use region information in the scene. A region seg-

mentation technique could divide the image into areas of similar intensity or tex-

ture patterns. From this information and the location of features within this re-

gion, a mesh could be constructed that is a small part of the entire image. Each

mesh node is tagged with the region information and mesh regions that display

similar motion patterns could be combined to form a super region that is the sum

of these smaller regions.

• 3-D information may be available that would also allow the segmentation of sub

meshes, where the depth map could be region segmented as information for the

creation of multiple meshes. The mesh nodes of these small meshes would also

be tagged with the estimation of depth of that node, leading to more informed

segmentation in later stages. This would be a form of the 3-D ACMs discussed

previously, in Section 3.7.1.

• A priori information is always useful and if available for a particular scene could

lead to the creation of sub-meshes. For example, if the algorithm was being ap-

plied to purely corridor scenes and models were available from some other tech-

External Forces

Internal Forces

Allow

Allow

YES

NO

Combine Forces

Obey Terminating
Condition?

Iterate

Thread

Mesh Generation

Energy Initialisation

External Forces

Internal Forces

Vectors Stored

Allow

Allow

YES

NO

Combine Forces

Obey Terminating
Condition?

Iterate

Energy
Iteration
Block Thread

For each Mesh

Thread 1 Thread N

Feature List From
Previous Stage

Out to Next Stage

Array of

Multiple

Figure 4-25. The multiple mesh algorithm segment.

Chapter 4 – Methodology – The Active Mesh Implementation

 113

nique (various authors have developed models of corridor scenes based on the

vanishing point and image edges (see Grosso et al (1992)) then multiple sub-

meshes could be applied to different regions of the model (walls, floor, roof

etc.). These meshes could then be tracked individually.

In the case of multiple sub-meshes image features could be shared between the meshes.

This could have advantages in most cases as the image features could be corners, often

existing on the physical boundaries of objects and should be present in the inner object

mesh and the outer ‘background’ meshes. This phenomenon could also cause the prob-

lem of the sub meshes drifting into each other and getting ‘lost’. This was a characteris-

tic of the initial multiple snake implementation of this research. The addition of con-

straining region spring forces to the mesh might confine the sub-meshes to the correct

regions, but this assumes that the region determination is accurate to a large extent.

The facility to have multiple meshes was added to the algorithm by adding an array of

meshes, individually determined by some process (as outlined above). Once initialisa-

tion has been performed the individual meshes are threads that operate in parallel, with

no transfer of information between individual threads. Currently the initialisation of the

multiple active meshes is based on a region mask.

4.8 The Region Based Initialised Active Mesh

As just discussed the initialisation is the stage at which the multiple meshes are deter-

mined, after that they operate as individual threads. The region-based initialisation is

based on a multi-intensity mask, where some other a priori process determines the mask

or can even be created by the user. There are several uses and reasons for using such a

mask approach for the active mesh.

• In the case of a static camera fixed on a scene, image frame differencing (or in-

deed some form of dynamic updating image frame differencing, to account for

global intensity changes etc.) makes it comparatively straightforward to deter-

mine the background region of the image frame. Intruder objects appear clearly

(with the exception of some background ‘print through’) and can be identified as

the location for an active mesh to be initialised. This ‘small’ mesh can then be

tracked through image sequences. If multiple objects appear they can be tracked

using the multiple mesh framework just outlined.

Chapter 4 – Methodology – The Active Mesh Implementation

 114

• Clustering and segmentation algorithms can determine region information. This

information about the regions can be transferred to the initialisation of multiple

active meshes, with the aim of tracking these regions individually. This is an ap-

plication dependent implementation. This information could also define depth

map information, determined by a 3-D structure from motion algorithm.

The way that the algorithm uses this information is straightforward. Assume that there

is an image I(x,y) and a region map R(x,y), where both images are of the same dimen-

sion. R(x,y) is structured as a 32-bit integer image (allowing 4.3 billion regions), with

each integer level defining a different image region. Sort all the image features that

have the same value of R(xf,yf) into lists of features. For each list of features, create a

new mesh. Figure 4-26 (a) shows the region image (that usually exists in memory only)

that allows the definition of the different regions. Figure 4-26 (b) shows the resultant

multiple meshes that are output from the algorithm. It is important to note that once the

meshes have been created there is no dependence (or need) for the region image.

(a) (b)

Figure 4-26. The hand generated mask region image is shown as in (a) and the resultant multiple mesh output
is shown in (b).

Chapter 4 – Methodology – The Active Mesh Implementation

 115

4.9 Notes on the Active Mesh

4.9.1 The Search Space

In most active contour applications a linear search space is used as in Figure 4-27, with

the region of interest bounded by the dashed lines. Lines drawn normal to the curve rep-

resent the search space where corresponding image features are likely to lie and may be

detected using image filtering. This can be a very efficient way to perform image filter-

ing, as it is only performed on a very small area of the image. Problems may however

result from the way in which these search lines will intersect the pixels of the image,

including sharp changes in intensity over the line. A possible solution to this problem is

to use anti-aliasing sampling, where the intensity at a particular point is a weighted sum

of four neighbouring pixels.

For dealing with this active mesh implementation, corners or feature points are used and

linear search spaces are no longer suitable. First of all, there are no apparent linear paths

to use and it is unlikely that a linear path would be robust in detecting discrete points.

The use of feature points forces an exhaustive search over a region of interest, which is

indeed more computationally intensive. However, it has been found that there is a limit

to the computation involved as a feature detector may be applied to the entire image,

rather than the individual search spaces. For example in an image of 256 x 256 pixels,

and mesh nodes with a search space of 25 pixels in radius – only 34 mesh nodes are al-

lowed before it is more efficient to perform the feature detector on the entire image, re-

cording the x and y locations of each feature extracted. Some approaches and possible

(a)

(b)

Figure 4-27. (a) Shows a common approach of linear search spaces for image edges when dealing with
active contours (b) illustrates the discrete image form of a linear search.

Chapter 4 – Methodology – The Active Mesh Implementation

 116

improvements to the search space, including the use of Kalman filtering are suggested

in Section 6.3.3.

4.9.2 The Terminating Condition

The terminating condition for this implementation can be one of two cases:

• A maximum number of iterations per frame or

• When the mesh nodes move less than a defined minimum distance

The ideal case is the second one where the mesh is allowed to settle to less than a cer-

tain defined threshold distance, thus allowing the mesh to settle quite accurately. For

this implementation the value is set at 0.25 of one pixel. The only problems that can oc-

cur with this condition is that of an unstable settling where a mesh node could dither

between a value of 0.2 to –0.2 and so prevents the mesh from settling. This is unusual,

but can occur when a mesh node is connected to a large number of other mesh nodes. A

maximum number of iterations threshold is also included to prevent this from occurring

and ‘locking-up’ the algorithm. It was also found suitable to define a minimum number

of iterations, to insure that the mesh at least attempts to search for a solution.

(a) (b)

Figure 4-28. The SUSAN algorithm as implemented in Java. In (a) tested on a test template frame and in
(b) tested on the original test frame given by Smith (1992), to test consistency with the original algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 117

4.9.3 The SUSAN Corner Detection

The SUSAN Corner Detector as discussed in Section 2.6.2 was implemented in Java

using the specialised RGBImageFilter class and altered to provide structured informa-

tion about the corners. See Appendix D.

In Figure 4-29, the SUSAN corner detection algorithm is applied to the same image

with differing thresholds to show how this has an effect on the number of corners de-

tected. In (b) a threshold value of 16 is used. In this case 570 corners are detected.

When this value is reduced to 8 the number of corners increases to 930 as in (c) and

when this value is increased to 32 the number of corners reduces down to 305 as in (a).

The quality of the corners at lower thresholds is poorer, in that the intensity difference

that is required to classify a corner is reduced, with a small intensity difference being

more affected by lighting conditions and noise. The corners that are detected with the

highest difference are the strongest, i.e. they have a large image gradient on the corner

and so are possibly the best corners for matching, in that with the exception of occlusion

they are likely to be consistently detected from one frame to the next.

The system should provide a reasonable number of features for feature matching. What

is a reasonable number of features in this case?

• The larger the number of features, the more computationally intensive the matching

becomes, and the weaker the features become, in terms of consistently and reliably

detectable features. Corners detected from texture information, or image quantisa-

tion effects are likely to be unreliable.

• Too few corners will cause regions in the image to contain no features for the fea-

ture-matching algorithm, resulting in sparse motion information. However, having

no features detected in a region of uniform intensity may not be a problem for mo-

tion tracking, as the features surrounding this area will allow an estimation of mo-

tion to propagate towards the centre of the uniform region.

• A specific number of corners could be chosen, however this would not be suitable in

many cases, as the corners could suffer from the same problems. The number of

corners may be forced to be too high, giving poor features, or too low, giving a non-

uniform image description.

A suitable number of corners would be a number of stable corners that are not exces-

sively clustered in a particular region of the image. Choosing the correct number of cor-

Chapter 4 – Methodology – The Active Mesh Implementation

 118

ners was a problem also discussed in Charnley and Blissett (1989). In their application

for surface reconstruction they manually select a corner threshold to give, typically 250

points in semi-structured images (8-bit 256x256) and a maximum of 500 points in im-

ages of natural vegetation. They found that this number of features allows an even dis-

tribution, except for the blander regions of the images.

4.10 SUSAN Pre-filter modifications

The SUSAN corner detector of Smith (1992) was examined in detail and found to be a

very efficient algorithm. Trajković (1998) developed a corner detector based on the

SUSAN principle but involving calculating the CRF in many directions passing through

the centre pixel, for the purpose of developing a faster algorithm.

It was found however, during the course of this research that a pre-filter could be writ-

ten to further enhance the speed of the SUSAN algorithm. In Figure 4-29(b) at a bright-

ness threshold of 16, approximately 570 corners are detected by the SUSAN algorithm,

which is less than 0.5% of the total pixel area of the image. It makes sense therefore that

Figure 4-29. The SUSAN algorithm applied to the same image using different threshold values. In (a)
Threshold = 32, (b) Threshold = 16, and in (c) Threshold = 8.

Chapter 4 – Methodology – The Active Mesh Implementation

 119

the algorithm should be layered so that the more computationally expensive calculations

be carried out only on the most likely set of corner candidates.

The SUSAN algorithm of Smith (1992) agrees with this philosophy and performs the

majority of computation in a multistage form, where the calculation of the USAN

(USAN area) is the first and necessary step of the algorithm. This computation is in it-

self a computationally intensive calculation, involving 37 addition operations for each

image pixel.

The suggestion is to perform a pre-filter that tries to prevent ‘no hope’ candidate corners

from passing on to a further stage for the USAN calculation. The concept is straight-

forward, because, examining points in the mask a and a’, shows that if the intensity dif-

ference between point a and point C is large then it is possible that a corner may exist at

this point. This is performed similarly for the differences in the image intensities be-

tween a’ and C, b and C, and b’ and C. If there is no significant change then it is likely

that the intensities of the mask are uniform – hence no corner. The algorithm takes the

form of Algorithm 4-4, where d is the ‘usual’ user-defined brightness threshold of the

SUSAN algorithm and Ia represents the image intensity at the point a in the mask. The

user-defined constant value αs is usually set at the value 1.0 (the reason for this is ex-

plained in Section 5.6.1)

Ca a'

b

b'

SUSAN Mask

Figure 4-30. The SUSAN mask and mask points of the calculations.

 At each pixel:

 If dIIII sCaCa α<−+− ' Or dIIII sCbCb α<−+− '

Then do not continue

 Else Contine to next SUSAN stage.

Algorithm 4-4. The SUSAN pre-filter algorithm.

Chapter 4 – Methodology – The Active Mesh Implementation

 120

Figure 4-31, shows some example cases for the SUSAN pre-filter. The pre-filter pre-

vents most ‘no hope’ candidate corners from being passed to the next stage of the

SUSAN corner detection algorithm. In Figure 4-31(a) the intensity difference between

the value at mask point a’ and point C is large and so the corner candidate is passed to

the next stage (this would also be the case for b to C). In Figure 4-31(b) the intensity

difference between Ia - IC and Ia’ - IC is very low and so will fail the test – the corner

will be dismissed as a ‘no hope’ match. In Figure 4-31(c) the current pixel location will

a a'Ca a'C C

b

b'

a a'C

b

b'

b

b'

Next Stage Fail (a) Pass (b) Fail (a&b)

(a) (b) (c) (d)

Figure 4-31. Showing some example cases for the pre-filter and whether they pass to the next stage or fail
the test.

(a) (b)

Figure 4-32. The SUSAN test template used by Smith (1992) (a) shows the Test template after the
SUSAN algorithm has been performed [280ms]. (b) Shows the template after the modified SUSAN has
been performed [81ms].

Chapter 4 – Methodology – The Active Mesh Implementation

 121

pass the test as the intensity difference between Ib’ and IC is large and so is passed to the

next stage of the SUSAN algorithm, which will likely reject it. In Figure 4-31(d), the

uniform intensity points that are most likely rejected without any further processing by

the SUSAN algorithm. This type of point is most likely found in regions of uniform in-

tensity, as the USAN area is > 2/5 of the total area. Results from this approach and

comparisons are carried out in detail in Section 5.6. As shown in Figure 4-32, the modi-

fied algorithm identifies the exact same corners as the original algorithm in the test im-

age used by Smith (1992).

4.10.1 Addition of Median Pre-Filtering

The median is a well-recognised filter for the reduction of image noise, especially for

suppressing noise in regions of similar image intensity, especially important in edge de-

tection techniques, since noise can confuse edge detection techniques into the detection

of false edges. There are different definitions of the median filter, with the most com-

mon filter mask types being displayed in Figure 4-33. The median filter has long been

recognised as an edge preserver, but not an edge enhancer, as it does not increase the

contrast of the edge. It does degrade true edges to some extent, but the technique is su-

perior to other linear filtering techniques. The reduction of image noise and thus false

edges is a large benefit for minor edge degradation.

Bovik et al (1987) perform a study on the different types of median filtering techniques

available and on the effectiveness of these techniques. They conclude that the median

filter can improve the performance of edge detectors, with the X and cross-shaped

masks performing more favourably in the presence of a majority of horizontal, vertical

and diagonal edges. The square masks allow the extraction of edge maps that are

smoother but with larger amounts of edge displacement when all the orientations are

considered.

(a) (b) (c)

Figure 4-33. The most common median filter masks (a) square (b) X and (c) cross shapes.

Chapter 4 – Methodology – The Active Mesh Implementation

 122

It was determined during the course of this research that the median filter also played a

role in extracting more stable corners using the SUSAN algorithm (See Section 4.2 on

early techniques). The primary implementation was using a 3x3 square median mask,

performed when each frame of the image sequence is loaded.

In the later implementation of the active mesh using the modified SUSAN corner detec-

tor as the primary feature detector it was discovered that an efficient implementation of

the median filter could be performed, in much the same way as the SUSAN pre-filter

was developed.

As discussed for edges the main use of the median filter is to reduce impulse noise that

causes the detection of false edges. In much the same way this impulse noise causes the

detection of false corners, especially in areas of uniform intensity. This means that most

of the true corners will be a subset of the list of true and false corners. Another version

of the SUSAN corner detector was developed with a median filter (with a choice masks)

being performed after the initial reduction of ‘no-hope’ corners as discussed in Section

0). Other forms of noise reduction were not examined, such as noise modelling.

The overall algorithm is displayed in Figure 4-34, where the computationally intensive

median filter is only performed on possible corners. This step is not as efficient as it

might appear, as the median still must be calculated on the entire area of the mask. Each

pixel is tagged once the median has been performed and so there is no duplication in the

calculation.

Median Filter'no-hope' test

USAN Calc.Threshold

COG Calc. Local Max.

SUSAN

MOD. SUSAN
image in

Corner List

Figure 4-34. The SUSAN corner detector with pre-filters.

Chapter 4 – Methodology – The Active Mesh Implementation

 123

4.11 Discussion

Several different active mesh approaches have been described – active mesh, adaptive

active mesh and multiple active meshes. Each one of these approaches has different ap-

plications. The active mesh and adaptive active mesh approaches are very suitable for

unconstrained motion tracking. The multiple region based approach is very suitable for

fixed camera applications, as well as moving camera applications where multiple ob-

jects are involved. The results outlined in Chapter 5 will illustrate these approaches

working in different situations.

Some of the advantages of the active mesh methods include:

• The initialisation of the mesh(es) is automatic and involves very little parameter

changes, more tuning using the parameters available.

• It is based strongly on 2-D image features, which are shown to be less likely to

suffer from local effects such as the aperture problem. These features have also

been determined to be accurately defined and consistent between image frames.

This algorithm takes the advantages of lower-level feature matching and pro-

vides a higher-level framework.

• The energy-based approaches of active contours has gained acceptance as a suit-

able framework for motion tracking, with this approach allowing a more struc-

tured model for dealing with objects than snakes or balloons.

• There are few assumptions made about the scene and no a priori information re-

quired.

• The system is modular where the features used, the matching algorithm and the

image filters may be replaced with more suitable modules as they become ap-

parent.

• The algorithm can deal with affine transforms of the object as well as deforma-

tions within the tracked object, to be shown in Chapter 5.

• The algorithm currently works very well only on a 2-frame basis. The use of

multiple image frames and the addition of momentum to the mesh and Kalman

filtering would certainly improve the quality of the tracking over multiple

frames.

• The image frame step size can be quite large – typically of the order of 20 pix-

els, which is impressive in comparison to the approaches of optical flow, which

requires very small image steps.

Chapter 4 – Methodology – The Active Mesh Implementation

 124

Primarily the number of mesh nodes and the number of features in the search space of

each mesh node define the complexity of the active-mesh algorithm. The complexity

can be defined as O1(n)xO2(m) where n is the number of mesh nodes and m is the aver-

age number of features in each search space. O1 is the mesh update operation, which

includes the calculation of the internal and external forces. The reason that there is not a

higher level of complexity is due to the fact that the forces to be applied at the con-

nected nodes are only summed once for all nodes due to the node force combination

algorithm. This would involve a level of complexity of O1(n2) if each force was updated

individually. O2 is the feature-matching algorithm that is performed for each of the m

features in each search space. Increasing the search space area will thus affect the com-

plexity, as will increasing the number of features or the number of mesh nodes. In the

multiple mesh approach this complexity will be required for each mesh, however the

meshes will be smaller in size.

4.12 The Java Application Developed

To test the theoretical approach described in this research an application implementa-

tion was developed in Java. Initial implementations during the course of this research

were in Khoros (Cantata), C, C++ for X-windows (using Motif) and then finally Java.

Khoros (version 2.0) was found to be a very suitable environment for the development

of vision based algorithms, however it was found to be a difficult environment for de-

veloping applications that require advanced user interaction, such as dragging mesh

nodes. Because such a specialised application was required involving low-level interac-

tion with the image filters used it was decided to examine the newly emerging language

of Java. The use of Java for vision applications development is discussed in a book to

be released this year21.

Figure 4-35 shows the latest implementation environment that was developed. The lat-

est version uses Microsoft Window Foundation Classes (WFCs) for the creation of

panes to store all the different options. Behind each tab there are options and controls

for:

21 P.F. Whelan, D. Molloy, “Machine Vision Algorithms in Java: Techniques and Implementation” to be
published by Springer-Verlag, September 2000, 298 Pages. ISBN 1-85233-218-2.

Chapter 4 – Methodology – The Active Mesh Implementation

 125

• Main - loading main images,

• Filtering - filtering options as currently displayed,

• Options - general options,

• Mesh - mesh generation and parameters,

• Energies - set energy parameters and iterate,

• Frame - loading of frames options,

• History - to display motion paths etc.,

• Sequence - allows sequences to be loaded and operated on,

• Debug - for programming, dumps information as required,

• Matcher - parameters for the feature-matching algorithm.

This implementation allows sequences of images to be loaded and the algorithm to run

on each frame for a certain number of iterations. The mesh update function is also in-

Image frame and Mesh Viewer

Message Output Window

Main Loading

Some of the filters

Mesh Generation
General Options

Matcher OptionsSequence Loading

Frame Loading Motion
Vector
History

Energy options and Iterate

Figure 4-35. General form of the implementation environment.

Chapter 4 – Methodology – The Active Mesh Implementation

 126

cluded that updates the mesh on a frame-by-frame basis and the motion vectors may be

plotted using the history functions.

An example Java Applet version of this implementation, containing a subset implemen-

tation of the main application developed is available at:

http://www.eeng.dcu.ie/~molloyd/phd/

 Chapter 5 – Implementation, Testing and Results

 127

Chapter 5 – Implementation, Testing and Results

5.1 Introduction

After a formulation was developed for using the active mesh structure, it was necessary

to test its operation on different motion sequences, with varying conditions. Initially a

simple generated scene was used to demonstrate the low-level operation of the mesh

under varying conditions. Subsequently, more detailed simulated image sequences were

used to demonstrate the motion and structural changes of the mesh under different im-

age deformations. Finally, the mesh is tested on real-world image sequences, again un-

der varying conditions.

5.2 Simple Operation of the Mesh

Initial testing of the mesh is concerned primarily with the low-level effects that occur

within the mesh.

5.2.1 Translation Results

This test will show the movement of the mesh purely using external forces. The object

in the scene, a simple rectangular shape is translated left and slightly up after the mesh

has been initialised in the first frame. The mesh internal lengths should be constant;

with almost no internal forces being applied, as the CurLenght and SetLength values or

the mesh lines are close to equal during the iterations. The mesh is generated using the

Delaunay triangulation procedure as discussed previously and the determination of the

mesh node positions is performed using the SUSAN corner detector. In Figure 5-1,

Frame 1

Frame 2
Active Mesh is initialised
on the square correctly

The square moves up

and left

The mesh is left
out of place and
must minimise its
energy values

90(90)

(122(122) 83(83)

90(90)

122(122) 83(83)

Figure 5-1. Showing the first and second frame of the translation. The image object and the mesh
are captured directly from the active-mesh application.

 Chapter 5 – Implementation, Testing and Results

 128

frame 2, the mesh is displaced from its desired position in the image. The distance is

relatively large, but still within the default search space of the mesh nodes (in this case a

circular search space with a 25-pixel radius).

Figure 5-2, shows the position of the mesh after different numbers of iterations. After 5

iterations the mesh is pulled almost half way towards the correct solution and by 15

iterations it has almost settled. After 15 more iterations, the mesh settles to the correct

solution. The mesh is permitted to approach a correct solution slowly, so as to:

• Prevent the mesh from being pulled in the wrong direction by spurious data.

• Prevent the mesh from overshooting the correct solution, as such an overshoot can

have a unstabilising ‘knock-on’ effect on the mesh, pushing correct nodes out of

place and after sufficient iterations completely deforming the mesh.

• This rate of approach to a correct solution may also be varied for a particular

application, such as security or biological cell tracking where the maximum velocity

may be reasonably defined.

0 Iterations

5 Iterations

15 Iterations

30 Iterations

Figure 5-2. The sequence of iterations (at 0, 5, 15 and then 35 iterations) leading to a suitable solution.

 Chapter 5 – Implementation, Testing and Results

 129

Figure 5-3, shows the results of this translation in vector form at each of the mesh

nodes. In this image and in the rest of the results images the 3 x 3 pixel rectangular head

on the vector represents the destination point of the vector hence showing the direction

of the vector.

Figure 5-4, shows the external forces that occur at node 2 and the distance of the node

from the desired solution. The red and green lines represent the x and y forces respec-

tively and the black line represents the distance of the mesh node from the desired solu-

(a) (b)

Figure 5-3. The vector results from Figure 5-2, overlaid on the image in (a) and without the image in (b).

Figure 5-4. The external forces and the distance displaced at node 2.

 Chapter 5 – Implementation, Testing and Results

 130

tion. As can be seen in this case, a large -x and a smaller -y component were required to

move the mesh to a suitable solution, i.e. left, (-x) and up, (-y) slightly. The distance is

given as the black line starting at around 17 pixels from the ideal solution and minimis-

ing close to that solution after approximately 40 iterations. Figure 5-5 below shows the

effect of varying the external energy variable value (αE) from 0.01 to 0.9 and its effect

on the settling time of the mesh on the correct result. Figure 5-5 illustrates that by

choosing a value greater than the value previously chosen of 0.1 would have resulted in

a faster settling time of the mesh on the desired solution, while choosing a smaller value

would have increased the number of iterations required to settle on a suitable solution.

There is a ‘trade-off’ between αE and the value of the internal energy αI in the snake. If

αE is too large then the snake will be pulled in the direction of any external forces with-

out being constrained by the internal forces. This choice of parameter values is very

similar to the choice of λ and (1-λ) in the regularisation stage of active contour imple-

mentation (see Section 3.2.5). In effect these user-defined variables determine how fast

the mesh will settle, traded off against stability and the effect of the internal forces on

the mesh.

Figure 5-5. The distance over 30 iterations for different external energy values, as shown in the key on
the right of the graph. The results were calculated based on node 2 in the previous example, where a
value of 0.1 was used.

 Chapter 5 – Implementation, Testing and Results

 131

5.2.2 Point Displacement Results

This discussion will explain the operation and use of the internal forces in the mesh.

The internal force formulations were developed to preserve the structure of the mesh

and to allow a level of deformity in the mesh. In this test, a substantial impulse force is

applied to a single node of the mesh, and its effects on the mesh are then examined.

This kind of impulse force would be an extreme version of noise in an image sequence,

where an incorrect close match for a mesh node might appear briefly in an image se-

quence. It is desired that the properties of the mesh would cause a force of this nature to

have a very small impact on the structure of the mesh, allowing the mesh to be tolerant

of incorrect node energy minimisations. The main influence of external forces should be

restricted to cases where they are applied over several frames and are not localised to a

single node, rather several similar forces being applied to a number of clustered nodes.

In Figure 5-6, the force is applied at iteration 0. The interface that was developed allows

a node to be dragged by the mouse to a set location. This is performed before iteration 0

causing the CurLength value of the displaced node connected mesh lines to be dramati-

cally extended. The node is pulled a distance of around 40 pixels. As can be seen in

Figure 5-6 (frame 0), the SetLength of the mesh lines is the same length, so this drag-

ging has no effect before the iterations begin. Time is in effect stopped at this point and

no force update iterations are performed until the user allows.

The mesh converges close to its original position after around 10 iterations and after 30

iterations it has almost completely converged to the original position of the mesh. The

force that is applied is not constant over the sequence of frames, only applied before the

Initial Displacement of
the node

0 Iterations 10 Iterations 30 Iterations

CurLength

SetLength

Force Applied
To Node

Figure 5-6. Illustrating the effect over 30 iterations of a force applied before iteration 0. The red lines rep-
resent the mesh lines. The boxes with the numbers give the SetLength and the CurLength as described pre-
viously.

 Chapter 5 – Implementation, Testing and Results

 132

first frame, so it should have no serious structural effect on the mesh. In this particular

case the mesh should act exactly like a snake wrapped around the outside of the square,

converging back to the square over a time period.

Figure 5-7, outlines the operation of the internal and external forces within the mesh. It

shows each mesh lines association with its respective graphs. The graphs are sampled

over 50 iterations. The results to be expected are that lines 2, 3 and 4 reduce in length to

near their original length while lines 1 and 5 should try to conserve their current lengths.

The external forces should also attempt to prevent this applied force from pulling the

mesh away from the rectangle, by pulling the displaced nodes back to their current posi-

tion on the image. The effect of having no external forces is explained later (in Section

5.23). The graphs labelled in Figure 5-7 are shown next and explained in detail.

Figure 5-7. Showing a summary outline of the effects of the internal and external forces on the mesh
lines and at the mesh nodes. The graphs are numbered so that they can be referred to in the following
pages.

 Chapter 5 – Implementation, Testing and Results

 133

Figure 5-8, shows Graph 1 and Graph 2 representing the changes occurring in the inter-

nal forces and lengths of line 1 and line 5 respectively. The CurLength and SetLength

values are exactly equal for both graphs, with the CurLength being overlaid on top of

the SetLength in both graphs. The Internal Force value in both graphs is also constant

and has a value of zero. This is exactly as expected, as the changes in lengths of the

lines (2, 3, 4) should not have an effect on the lengths of line 1 or line 5. Since there is

no difference in length between the CurLength and the SetLength the internal force

value is zero. If this force were applied to node 2 instead of the current node then there

would be a similar change in length of the other lines in the mesh.

Figure 5-9, shows graph 3 and graph 4 as summarised Figure 5-7, showing the internal

forces and lengths and the external forces at the nodes respectively. Figure 5-9(a) shows

the red line representing the CurLength value, reducing from an initial length of 114

down to a length of 84 pixels quite quickly (after 10 iterations). The green line repre-

Figure 5-8. Graph 1 and 2; illustrate the effects of the internal forces at line 1 and at line 5 respectively.

Figure 5-9. The internal forces at line 2 are shown in Graph 3 with the equivalent forces at the nodes
shown in Graph 4.

 Chapter 5 – Implementation, Testing and Results

 134

senting the SetLength is forced to a value of 85 but due to external forces the value re-

duces back to 84.

The difference between the CurLength and the SetLength causes the magnitude to be

initially large, falling off quite quickly after 10 iterations to a zero value. The graph in

Figure 5-9(b) shows the forces that are resulting at the ends of the mesh line due to the

force value from Figure 5-9(a). The large x and -y forces cause the mesh line to shrink

in length. These forces fall off quickly (10 iterations) to a zero value, as no further

change in the length of the mesh line is required when the CurLength and SetLength

values are equal.

Figure 5-10, shows the resulting graphs 5 and 6 showing the internal forces occurring at

line 3. Graph 5, shows the large difference between the SetLength and the CurLength.

This difference causes the resulting force to be also large. Since the mesh line is almost

at a 45-degree angle the resulting x and y forces as shown in graph 6 are almost equal in

magnitude for the iterations. This has the effect of pulling the displaced node up and

right.

Figure 5-10. Graph 5, showing the internal forces at line 3 and Graph 6 showing the forces at both of the
line 3 nodes.

Figure 5-11. Graph 7, showing the internal forces at line 4 and Graph 8, showing the forces at both of the
line 4 nodes.

 Chapter 5 – Implementation, Testing and Results

 135

Figure 5-11 shows the resulting graphs 7 and 8. These graphs are very similar to those

in Figure 5-9, except for the direction of the forces. Figure 5-12, shows Graph 9, an ex-

ample of the external forces occurring at a node in the mesh. The x and y forces are

pulling the mesh node towards the detected corner in the image. These external forces

keep the mesh in place on the image features. Without these external forces, the entire

mesh would be pulled in the direction of the applied force and displaced from the image

features.

Figure 5-13, shows the vectors overlaid on the mesh (outlined). The vectors are an illus-

tration of what occurs in the 40 iterations that took place. The internal forces are calcu-

lated for each mesh line within the mesh. If the mesh line is required to shrink or ex-

pand then the appropriate forces are added to the two nodes at the ends of the mesh line.

The external forces are also calculated for each node and added to the node. When all

the forces have been calculated at each node the forces are summed and the resulting

force is applied. As can be seen in Figure 5-13, this has the form of a force pulling the

displaced node back in towards the mesh, while keeping the remaining nodes located in

the position of the detected best match corners.

Figure 5-12. showing the external forces occurring at node 2 in Figure 5-7.

 Chapter 5 – Implementation, Testing and Results

 136

Line 1

Lin
e

3

Line 4

Li
ne

 2

Li
ne

 5
Node 2

int

int

int

int

int

int

ext
ext

ext
ext

ext ext

extext

int

int

int int

int int
Cancel

C
an

ce
l

Can
ce

l

Resultant
Force

(A) (B) (C)

(D)
(E)

Figure 5-13. Illustrates the various forces occurring on the mesh at a particular time iteration. (A) Shows
the mesh itself, (B) displays the external forces occurring on the mesh, due to the mesh nodes being pulled
towards the detected corners in the image. (C) Shows the internal forces on the individual mesh lines, try-
ing to minimise the difference between the SetLength and the CurLength. (D) Shows the different forces
cancelling each other out and (E) displays the resulting force.

 Chapter 5 – Implementation, Testing and Results

 137

5.2.3 Point Displacement with no External Forces

To show the effects of the internal forces in the absence of external forces, the same

point is displaced using the same forces as the previous case. However, in this case the

second image frame is a blank image, with no corners detectable. The mesh has to

minimise the internal energy within the mesh without any external forces to hold the

mesh in place on the image features.

The mesh frames are shown as Figure 5-14, where the point is initialised on the object

in the first frame. The mesh node is displaced and then the object disappears. Rather

than the mesh shrinking to a point (or a circle) as occurs in many active contour imple-

mentations the mesh retains its overall structure, however as can be seen in Figure 5-15,

the mesh is displaced from its original position due to the forces applied by the dis-

placed node. This is a similar advantage to the properties of the dual active contour ap-

proach, discussed in Section 3.5.

Frame 1 (0 iterations)

Frame 2 (0 iterations)

5 iterations

15 iterations

Object has become
occluded from view

No external
forces occuring at
any of the mesh nodes

The mesh is pulled
out of position but still
has almost the same shape

Figure 5-14. The sequence of iterations when a point is displaced and the object has become occluded.

 Chapter 5 – Implementation, Testing and Results

 138

The mesh almost retains the same shape because the lengths of the mesh lines are still

the same lengths as when previously initialised. However, the mesh is skewed slightly

due to the forces created from the displaced node. If the object in the frame were to

once again appear then the resulting external forces would pull the mesh again back to

the location of the original mesh after only a few iterations.

This property of the active mesh is especially useful in the presence of occlusion or ran-

dom feature noise. The mesh is in equilibrium when the current mesh is similar to the

stored mesh, in which case the energy is minimised. This prevents the mesh from col-

lapsing down to a point or a line allowing a more stable implementation in real-world

scenes.

Figure 5-15. The results from the point displaced sequence when the object becomes occluded and there
are no external forces possible. The vectors display the displacement between frames.

(a) (b)

Figure 5-16. The parameter for setting the internal energy value as applied to the example in Section
5.2.2. with the displacement shown as in Figure 5-6, where (a) shows the SetLength of the mesh line,
whereas (b) shows the CurLength of the mesh line.

 Chapter 5 – Implementation, Testing and Results

 139

Figure 5-16, illustrates the effect of altering the internal line length value (αI) on the

settling length of the SetLength and CurLength values, where the graph of a value in (a)

has a corresponding value in (b) denoted by the same colour. If a large value is chosen

then the SetLength changes quickly to the value of CurLength. If such a value was used

the mesh would be very deformable, changing in shape with every force that is applied.

If on the other hand a small value is chosen, as the threshold value then the mesh will be

very rigid, with external forces having little or no effect on the structure of the mesh.

5.3 Results on Test Templates

The image shown in Figure 5-17 was used as a template to test the general structure of

the snake being examined. The image was drawn with discrete grey level intensities

with the corners perfectly defined (importantly, without any form of image aliasing).

The corners in the initial frame are detected very accurately. Shapes were chosen to test

the mesh with different movements, with the objects having the ability to move as a

cluster or individually. From this image movements can be simulated and the structural

deformations and movements of the mesh can be examined. The shapes were chosen to

test complex and less complex structure sections of the active mesh. The shape on the

top right results in a complex mesh while the shape on the top left allows a less dense

mesh. The unstructured shape in the bottom right exercises the movement of uniform

intensity corners. The shape in the centre is another shape that should have mesh nodes

close together and spaced apart. The shape at the bottom right can be used to test the

movement of independent uniform objects.

Figure 5-17. The example template used.

 Chapter 5 – Implementation, Testing and Results

 140

5.3.1 Test on Scene Translation

The first test involved a basic translation of the entire image from one point in the im-

age to another point by a sizeable amount. All objects in the scene are moving in the

same direction (left and up).

As can be seen from the images in Figure 5-18 the motion is well described. There are

very few incorrect vectors in the calculated vector field, as the mesh is preserving the

match, even thought the frame translation jump is in excess of 10 pixels in length. This

is a straightforward test for the mesh, as the mesh remains rigid, with no internal defor-

mations. The only difficult aspect is with the search space of some nodes, where identi-

cal match corners are available due to the synthetic nature of the image. However, the

overall movement of the mesh in a left/upward direction allows these nodes to locate

the correct match feature.

5.3.2 Sub-Area Translation

The next step was to test a sub object translation of a section of the image frame. This is

important in testing the internal deformity of the mesh. This type of deformation may be

necessary, for instance, in the case where a single mesh is tracking the scene back-

ground as well as some objects moving independent of the background. The mesh in

(a) (b)

Figure 5-18. (a) Displays the vector field overlaid on the image objects and (b) shows the same image with
the addition of the mesh that was generated from the corner points. The numbers in (b) are for display pur-
poses only showing the area of the triangle (in pixels) where that value is situated. The areas are used at a
later stage to determine the scaling of a particular region.

 Chapter 5 – Implementation, Testing and Results

 141

this case should be able to conserve its overall shape while allowing the determined

sub-area to deform within the mesh. The mesh requires a level of deformity if it is to

track independent objects in real-world scenes, where they are moving independent of

the background or at different depths in the scene. This however causes problems in the

trade-off with deformity against maintaining a rigid mesh. Even if the objects are rigid

and the scene undergoes a scaling then the mesh must deform to maintain exact motion

tracking.

Figure 5-19, shows the active mesh Java application in operation, along with the pa-

rameters required. For each of these test examples the settings were set as above with

about 60 iterations for the active mesh to settle to its final value, showing that while

these parameters exist, the default values are good enough for the majority of applica-

tions. They are still available, to allow fine-tuning of the algorithm.

Figure 5-19. Displaying the operation of the mesh-tracking algorithm. Where Int (αI) refers to the value
of the internal regularisation parameter, Ext (αE) refers to the value of the external regularisation parame-
ter, Len (αLine) is the value of the length factor (usually 3.0), Tlen is the value of the length update value,
Search represents the search area radius (r) of the snaxels (in pixels) and the Iter value is the number of
iterations to perform using the Iterate button.

 Chapter 5 – Implementation, Testing and Results

 142

In Figure 5-20(a) the mesh is shown at its initial state, before any iterations have taken

place. The majority of nodes are already settled on their best match points, except for

the centre of the image where the translation has taken place. This translation is quite

large (in the order of 15 to 20 pixels) and should involve substantial deformation of the

mesh. In Figure 5-20(b) we see the mesh after 60 iterations, i.e. after it has settled on

the image. This structural deformation is caused since the large external force is consis-

tent throughout the 60 iterations, expanding the lengths and contracting the lengths of

numerous mesh lines. Again, the same variable values are used as in the previous cases.

The results from the sub-translation are shown as in Figure 5-21, where they are very

exact except for one vector in the bottom left corner of the sub-object. This deformation

might be necessary in the case of small objects within the scene moving in a different

way than the scene itself. The majority of the mesh still settles on the same image loca-

tions, as the new image position of the sub-object is pulling the nodes inwards, but the

non-displaced nodes are maintaining their previous locations.

(a) (b)

Figure 5-20. (a) Shows the mesh overlaying on the new frame before any iterations have taken place. In
(b) the mesh has undergone 60 iterations and has settled on the new image.

 Chapter 5 – Implementation, Testing and Results

 143

5.3.3 Multiple Sub-Region Translations

Another test was the sub-translation of another section of the image. The image in

Figure 5-22(a) displays the mesh after it has finally settled. The squares in the right

hand bottom corner have been displaced relative to each other. The results from this

Figure 5-21. The resulting vectors overlaid on the second frame of the sequence, from Figure 5-20.

(a) (b)

Figure 5-22. Displays the effects of the movement of the objects in the bottom right of the scene. (a)
Shows the mesh after it has settled on the scene and (b) displays the vectors overlaid on the second frame.

 Chapter 5 – Implementation, Testing and Results

 144

displacement are shown in Figure 5-22(b). This shows how the objects can move within

the scene, without the mesh becoming dislocated, even though the corners are of similar

intensity and spatial distance.

5.3.4 Rotation of the Scene

The next step was to test the mesh under a uniform scene rotation. The image was ro-

tated by 2 degrees around the centre pixel of the image to test the meshes ability to re-

main fixed on image features. As can be seen in Figure 5-23 the mesh settled accurately

after 60 iterations.

The images in Figure 5-24 show the rotation vector field with and without the image

present. The results are very accurate except for some noise at the very centre of the im-

age. The structure of the mesh is perfectly preserved through the rotation. The top left

corner has been pulled out of shape slightly but this would settle if more than 60 itera-

tions were allowed.

Figure 5-23. Displays an example rotation of the scene, with the mesh and vectors overlaid on the sec-
ond frame. The rotation was simulated using a standard image editing package.

 Chapter 5 – Implementation, Testing and Results

 145

5.3.5 Distortion

The next test was to use a non-uniform distortion, to test how the mesh would react

when pulled in many different directions at the same time. Figure 5-25(a) shows the dis-

torted image with the single pixels representing the corner points (and thus the position

(a) (b)

Figure 5-24. (a) Shows the vectors overlaid on the image frame and (b) displays the vectors on the image
without the image itself, showing a fairly consistent rotation pattern.

(a) (b)

Figure 5-25. (a) Shows the distortion of the scene where the single pixels represent the position of the cor-
ners in the previous non-distorted image, and (b) displays the mesh after it has settled on the distorted im-
age.

 Chapter 5 – Implementation, Testing and Results

 146

of the mesh nodes) prior to the distortion having taken place. The distortion was again

simulated using an image processing tool22, however a distortion of this form leads to

the detection of new corners and the loss of previously detected corners, complicating

the mesh energy minimisation. The algorithm was capable of dealing with this added

complication, finding the most suitable corners in the search space. Figure 5-25(b)

shows the mesh after it has settled on the image. Figure 5-26(a) and (b) show the final

results overlaid on the image and without the image showing the final vector field.

Note that the noise at the top of the image in (b) was caused by the image distortion,

rather than inaccuracies in the operation of the mesh.

22 Adobe Photoshop 5.0 RGB warp image filters used.

(a) (b)

Figure 5-26. (a) Showing the vectors overlaid on the image and in (b) showing the vectors without the image.

 Chapter 5 – Implementation, Testing and Results

 147

5.3.6 Another Non-Linear Image Distortion

Another substantial distortion was also simulated. The largest distorted area is the top

right hand corner of the image. Again for this test the parameters are left at the same

values. Because of this distortion many new corners appear and some other corners dis-

appear. This adds complexity to the task of finding a suitable solution but the mesh still

minimises to a suitable solution after only 60 iterations. Figure 5-27 shows the mini-

mised mesh super-imposed on the distorted image.

As can be seen in Figure 5-27 the results are promising for this case. The distortion is

substantial throughout the entire image but the only area that is slightly problematic is

the object in the bottom left of the image. The extra corners that are detected in the dis-

torted image, along with the fact that the intensity values at these new corners will be

very similar to the ‘correct’ corner matches at these points causes a little difficulty here.

It is unlikely that such uniform intensity levels (to exact pixel value) will exist in real-

world scenes. The vector field shown in Figure 5-27(b) gives a clear indication of the

real motion of the scene, nearly like a ‘black-hole’ effect in the top right hand corner,

with all objects being ‘sucked in’.

(a) (b)

Figure 5-27. The resulting vector field is super-imposed on the image in (a) and shown without the im-
age in (b).

 Chapter 5 – Implementation, Testing and Results

 148

5.3.7 Results from Scaling

Another effect that had to be examined was that of uniform scaling on the mesh. In this

test the external forces should force the mesh lines to shrink uniformly across the mesh,

decreasing the overall size of the mesh. In Figure 5-28 the mesh is shown after it has

settled on the scaled image, showing that it is quite exact. In Figure 5-29(a) and (b) the

resulting vector field is displayed from this operation.

Figure 5-28. The scaled image and the resulting mesh that has converged to a solution after 60 iterations.

(a) (b)

Figure 5-29. (a) Displays the vector field overlaid on the image after scaling and (b) shows the same field
without the image.

 Chapter 5 – Implementation, Testing and Results

 149

It is necessary that the mesh must have the ability to scale when travelling towards, or

away from the scene, this however causes difficulties in the mesh as it pulls the struc-

ture of the mesh totally out of shape against the internal forces that will be produced in

the mesh.

5.4 Results in Real World Sequences

5.4.1 The Corridor 1 Sequence

After testing the algorithm for simulated distortions and simulated images it was neces-

sary to also test it using real-world images, adding the problems of noise and real-world

distortions.

The images in Figure 5-30 were captured using a Sun Ultra II with a Sun Video camera

and capture card. The camera was mounted on a Glidcam 2000 (a camera stabilising

gyroscope structure) to minimise bounce due to walking, that travelled down a corridor

in DCU. The sequence was captured as an MPEG movie, so some difficult image

compression effects appear in the image frames.

As would be expected the meshes can become quite detailed when dealing with real-

world sequences, and it was important for the algorithm to deal with the resulting

complexity. As can be seen in Figure 5-31 the mesh has ~600 mesh nodes and can still

exist as a Delaunay mesh. The mesh is shown in dark blue and the new features (to be

Figure 5-30. Showing 6 images from an image sequence used for testing. The images are laid out left-to-
right from top-to-bottom. The grid is superimposed over the image to allow a better impression of the
movement between frames.

 Chapter 5 – Implementation, Testing and Results

 150

matched with) are shown as small green squares. The areas of the individual triangles

are shown as small numbers. The area of the triangles can give useful information about

the movement in the mesh. The areas of the triangles will increase or decrease

according to scaling within the image. Similarly the triangle areas will remain constant

under x and y translation.

The algorithm is once again applied using the normal user-defined values. The higher

the concentration of mesh nodes, the more structured that area becomes. In Figure 5-31,

the yellow boxes give the setLength and curLength values of those particular mesh

lines. It was also possible to add/remove features from the mesh while still conserving a

true Delaunay triangulation, showing the Delaunay mesh creation and mesh initialisa-

tion to be stable.

Figure 5-32 shows two frames from the corridor sequence. The vector fields that are

calculated are based on an intensity threshold of 20 with 30 iterations of the algorithm

being performed in each frame. As can be seen the field is quite well defined in both

frames, with a substantial spatial translation and scaling taking place (approx 12 pixels

on average). The effect of the mesh is to globally smooth and correct the matching algo-

rithm. Some of the vectors can be seen to be slightly incorrect, but are caused by mesh

nodes not being able to locate suitable features in the subsequent frames. The active

Figure 5-31. A detailed complex mesh for the corridor sequence. This mesh has 600 mesh nodes.

 Chapter 5 – Implementation, Testing and Results

 151

mesh approach attempts to help solve this problem, in that weakly matched mesh nodes

are in effect ‘carried’ with the mesh to estimated suitable locations. In the next frame

they will likely be in suitable positions for future iterations. It is important to remember

that these images are affected by the ‘blocking’ effect of the MPEG encoder.

5.4.2 The Laboratory Sequence

Another sequence that was used was the Laboratory Sequence, captured using RAW

image captures. The images are cluttered, but do not suffer from any lossy compression

effects. This sequence uses only two frames and the motion in the frames are being es-

timated only using the information from these frames.

Figure 5-33, shows the vectors calculated from two frames of the laboratory sequence,

again captured within DCU. It is important to note that the vector fields shown in all

these comparisons are not filtered in any way to remove erroneous vectors. In Figure

5-33(top) the pure vector fields are displayed, showing a well defined vector field.

Figure 5-33(bottom) shows the same vector field with the previous feature points shown

in green and the new frame feature points shown in dark red.

(a) (b)

Figure 5-32. Two tracked frames from the sequence in Figure 5-30.

 Chapter 5 – Implementation, Testing and Results

 152

Figure 5-33. The vector fields calculated from two frames. The top image shows the pure vector field, while
the bottom image shows the features from the previous frame in green and the current frame feature points in
dark red. Note that several vectors are missing either a previous or current feature point.

 Chapter 5 – Implementation, Testing and Results

 153

If the image is closly examined it can be seen that the majority of vectors have settled

on, or close to a new frame feature point (in most cases, what human obervers would

determine to be suitable matches). In Figure 5-34, the feature detector threshold value is

reduced, causing an increase in the number of mesh node points, also causing an

increase in the density of the vector field. This field is not significantly different from

the field in Figure 5-33, but is more densly filled.

5.4.3 The Corridor 2 Sequence

Figure 5-34. The effect of decreasing the feature detection threshold value, thus increasing the number
of mesh nodes

(a) (b)

Figure 5-35. Two frames from the corridor 2 sequence.

 Chapter 5 – Implementation, Testing and Results

 154

The algorithm is also applied to the corridor 2 sequence (as discussed in Section 4.2) in

the hope of obtaining better results. Figure 5-35, shows two frames from the corridor 2

sequence. In (a) the mesh is overlaid on the frame to show how well the mesh covers

the entire frame, and includes the vectors at the node points. In (b) another frame is

shown, with similar clear results.

Figure 5-36, shows two frames where an object (a person) has entered the frame. The

camera is almost stationary in this case, but no form of image differencing is used

between the frames. The stationary nodes are well defined within the image and so

remain fixed, wheras the mesh nodes defining the person move from one frame to the

next. In (a) the person moves slightly to the right and in (b) the person moves to the left

and forward. In both cases the vector field is more clearly defined about the textured

shirt, whereas the non-textured trousers do not attract the same attention. Indeed this is a

difficulty with this approach, as with most motion tracking algorithms, where low

textured areas are difficult to track.

The areas that are moving with similar velocities as easily grouped using the triangle

structure of the mesh. If each mesh node on a triangle has a similar velocity then that

triangle is tagged with the average velocity. All connected triangles with similar

velocities are grouped together as the same object.

(a) (b)

Figure 5-36. Two frames where a person is moving relative to the scene.

 Chapter 5 – Implementation, Testing and Results

 155

5.4.4 Testing the Adaptive Active Mesh

The adaptive active mesh also needed to be tested on standard image sequences. The

adaptive mesh adds features to the mesh as the sequence progresses as well as removing

mesh nodes that are no longer locating suitable features. The first standard sequence to

be used is from the CMU image on-line database23.

Figure 5-37, shows 12 frames from the castle image sequence. The vector paths show

the castle image being tracked with the ‘dots’ on the paths representing image frames.

23 Obtained from an Internet Computer Vision Image Database – Vision and Autonomous Systems Cen-

tre’s Image Database (http://www.ius.cs.cmu.edu/idb/)

Figure 5-37. 12 frames from the Castle image sequence (SUSAN threshold 35).

 Chapter 5 – Implementation, Testing and Results

 156

The vector paths show the view moving right and down relative to the observer. The

results from this sequence are well defined, with the only problem cases existing around

the outside edges of the image. The results shown are for a threshold value of 35, to

allow an outline view of the vectors.

The same sequence is also used with a threshold of 24 to show the more normal, dense

field that will result. However the paths are more cluttered and less distinguishable to

the human eye. The shorter paths are new paths that are detected during the course of

the image sequence. These paths are then tracked for the remainder of the sequence.

Figure 5-38. 12 frames from the Castle image sequence (SUSAN threshold 24).

 Chapter 5 – Implementation, Testing and Results

 157

5.4.5 The Laboratory 2 Sequence (CMU Database)

Another test sequence that was used for testing was also from the CMU on-line image

database. Figure 5-39 (top) and (bottom) show two frames of the motion sequence.

As can be seen in both cases the vectors suggest that the camera is moving towards the

object in the centre of the image. The largely uniform areas surrounding the object at

the centre have almost no mesh nodes and subsequently no motion vectors. Figure 5-40

shows 5 frames of the laboratory 2 image sequence as the observer aproaches the object

Figure 5-39. Two frames with calculated flow vectors.

 Chapter 5 – Implementation, Testing and Results

 158

in the centre of the image. The vector paths are again well defined, with the shorter

paths representing new features that have been added to the mesh. Vectors that have left

the field of view have been removed from the frame.

Figure 5-40. 5 frames of the laboratory 2 image sequence.

 Chapter 5 – Implementation, Testing and Results

 159

5.5 The Region and Multiple Mesh Approaches

5.5.1 The Test Template Results

As discussed in Section 4.7 the use of multiple meshes for tracking different objects in

image sequences can have several benefits. The multiple meshes are constructed using a

region map as in Figure 5-41 (b) where different intensities define different mesh

regions.

The algorithm creates one mesh for each of the different intensities in the region map. It

is important to note that this region map can be constructed dynamically and so does not

necessarily have to be a stored image. Each one of the meshes is displayed in Figure

5-41(a) and are not connected in any way. These meshes can then track the objects

individually. Figure 5-42(a) shows the region map extracted using the k-means

clustering algorithm, merged with a watershed algorithm. The 3 biggest ‘blobs’ were

chosen as the regions. This clustering technique is not ideal for the task required,

however it is performed as a demonstration of the use of clustering. Figure 5-42(b)

shows the mesh created from using the first region in the region map. The three meshes

are shown in Figure 5-43(a) and the equivalent mesh vectors are shown in different

colours in (b). This approach of using multiple meshes is especially useful in scenes

with multiple objects.

(a) (b)

Figure 5-41. The test template multiple meshes in (a) created using the test region map (created by
hand) in (b).

 Chapter 5 – Implementation, Testing and Results

 160

(a) (b)

Figure 5-42. (a) The region map for the corridor determined using the k-means algorithm and (b) the
mesh created using region 1, the brightest region.

(a) (b)

Figure 5-43. The three meshes are shown in (a) and the vectors calculated for each of the meshes,
shown in different colours in (b).

 Chapter 5 – Implementation, Testing and Results

 161

5.5.2 The Junction Image Sequence (CMU Database)

Figure 5-44, shows a junction image sequence frame with the different objects initial-

ised in the scene. The object areas are determined using straightforward image frame

subtraction (and thresholding) from a reference frame of the scene. Once the multiple

region maps are determined and the meshes are initialized, no more image frame

subtraction is required. The independent meshes, in this case one per vehicle, then

search for image features.

This sequence is more difficult to track than initially expected due to problems with the

speed of the image capture routine. Figure 5-45 (a) shows the main problem associated

with the captured images. The cars to be tracked are distorted along the vertical scan

lines of the image capture, which can badly effect the detection of stable corner feature

points. This difficulty has been reduced, by Gaussian smoothing filtering as in Figure

5-45 (b). This is not an ideal solution as it smooths over image features, a better image

capture routine is required.

Figure 5-44. The junction image sequence with initialised meshes.

 Chapter 5 – Implementation, Testing and Results

 162

The tracking algorithm is also hampered by the vast number of determined features in

the subsequent frame. This is shown in Figure 5-46, where there are a large number of

features in the search space of each mesh node. This clutter is distracting to the mesh

nodes and can cause some of them to go astray. However, the results from the tracking

algorithm is quite successful, and are displayed in Figure 5-47.

(a) (b)

Figure 5-45. The problem with the captured images in the junction sequence in (a) and in (b) a Gaus-
sian smoothed version of the same frame.

Figure 5-46. The clutter in the junction scene, with the new feature points displayed in red.

 Chapter 5 – Implementation, Testing and Results

 163

Each colour represents the vectors on the same object. This sequence will be discussed

later in Section 6.3.4, in further directions for research. As discussed in Section 4.4.2,

the choice of feature matching algorithm was chosen to be based on feature parameters

rather than intensity patches, due to problems with the object boundaries. In this case

the object boundary features are on the convex hull of the mesh. Inside the mesh the

feature points can be based on an intensity patch approach.

Figure 5-47. The junction results (zoomed by 1.5), with the vector heads located on the position of the
objects in the current frame, pointing towards the exact position of that feature in the next frame. Each set
of vectors (clustered to mesh) are represented using different colours.

 Chapter 5 – Implementation, Testing and Results

 164

5.6 Other Standard Test Sequences

This section will discuss more results calculated from standard test sequences that are

available on-line for testing motion based algorithms.

5.6.1 The Cup Sequence

Figure 5-48 displays the mug sequence with (a) showing the initial mesh initialised

from the corner feature points and (b) displays the mesh after the 12 frames had taken

place. The mug rotated clockwise and translated right and down in the image. The re-

sulting vector paths in (c) describe the motion between the intermediate image frames.

Some interesting comments about this sequence include, that the points detected in (a)

at the bottom of the image (on the metal stand) bunch together as that part of the object

leaves the image space. The points detected on the text of the stand are also stable,

‘pulling out’ from the mug in (b). The pattern on the mug greatly aids the determination

of the motion on the mug surface. If the surface was completely free from texture it

would be difficult to track, however, as shown in this sequence the handle and rim of

the cup as well as the stand also provide geometrical features for motion tracking.

5.6.2 The Parking Sequence

The parking sequence was obtained from a vehicle undergoing parallel parking ma-

noeuvres. There are 12 frames in this sequence, which is a standard test for motion

tracking algorithms. The active mesh algorithm required only the first and last frames of

the sequence to estimate the motion occurring in the sequence. The initialised mesh is

shown as in Figure 5-49 (a) where the majority of feature points exist in the area of in-

terest at the lower half of the image. The resulting vectors are shown in (b) displaying

(a) (b) (c)

Figure 5-48. The mug sequence (a) the mesh as initialized on the first frame, (b) the mesh resulting on
the 12th frame of the sequence and (c) the vector paths shown over 12 frames. These images are shown in
detail in Appendix C (Figure C-1, Figure C-2, Figure C-3).

 Chapter 5 – Implementation, Testing and Results

 165

very little motion of the building or the left-most bush. The parking meters, the rest of

the bushes and the other vehicle display motion as the vehicle rotates about its axis.

5.6.3 The Shrubbery Sequence

The shrubbery sequence displays another moving vehicle example. This sequence in

Figure 5-50 consists of 24 frames of a vehicle observer moving right and pivoting down

(reversing up a hill). Image (a) displays the yellow vectors representing the vector paths

tracked over 24 image frames.

The motion is clearly described by the vectors at most of the areas in the image. In (b)

only 3 frames are used, the first, last, and middle frame. This provides an accurate esti-

mation of the motion occurring in the sequence using only 2 frame updates rather than

the 23 frame updates required in (a). The only significant difference is that in (a) new

features have been detected in the intermediate frames (e.g. on the brickwork) and

added to the mesh, whereas these features were not located in (b).

(a) (b)

Figure 5-49. The parking sequence (a) the mesh as initialized on the first frame, (b) the resulting vectors
calculated from the two image frames. These images are shown in detail in Appendix C (Figure C-4,
Figure C-5).

(a) (b)

Figure 5-50. The shrubbery sequence (a) the vector paths calculated using 24 image frames and (b) the
vector paths calculated using only the first, middle and last frames. These images are shown in detail in
Appendix C (Figure C-6, Figure C-7).

 Chapter 5 – Implementation, Testing and Results

 166

5.6.4 The Town Sequence

Figure 5-52, shows two sections of the town sequence. In (a) 6 frames are available but

only the first and last frames are used. The resulting vectors again describe the motion

in the scene skipping 4 updates. In (b) 7 frames are available and again only the first

and last frames are used, again increasing the scene motion step that the algorithm must

describe. The active mesh has little difficulty in calculating the motion vectors for such

a feature rich scene.

5.6.5 The Building Sequence

Figure 5-51 shows 20 frames of the building sequence tracked using the adaptive active

mesh algorithm. The red nodes represent the endpoints in the sequence that was tracked

and the green paths represent the motion that has taken place.

Figure 5-51. The building sequence showing the vector paths calculated over 20 image frames. This
image is shown in detail in Appendix C (Figure C-10).

(a) (b)

Figure 5-52. Two sections of the town sequence (a) the vector paths calculated using only 2 image
frames and (b) the vector paths calculated using only 2 image frames. These images are shown in detail
in Appendix C (Figure C-8, Figure C-9).

 Chapter 5 – Implementation, Testing and Results

 167

5.6.6 The SRI Laboratory Sequence

Figure 5-53, displays the SRI laboratory sequence and resulting vectors. Note that the

vector paths are longer in the foreground than in the background parts of the image. The

back of the room is almost stationary, providing some degree of information about the

depth of the scene (this will be examined in Section 5.9.2). The sequence is very clut-

tered and the active mesh still produces motion information. The green vectors repre-

sent the last vector in the yellow sequence.

5.6.7 The College Sequence

Figure 5-61, displays the college sequence. There are actually 20 frames in this se-

quence but the active mesh algorithm generates the motion vectors using only the first

and last images, ignoring the intermediary frames. The estimation is good in detailed

areas but has trouble with the non-textured geometric featureless image regions.

Figure 5-53. The SRI laboratory sequence resulting vectors. This image is shown in detail in Appendix
C (Figure C-12).

Figure 5-54. The college sequence resulting vectors. This image is shown in detail in Appendix C (Fig-
ure C-13).

 Chapter 5 – Implementation, Testing and Results

 168

5.6.8 The ‘Trouble’ Teddy Bear Sequence.

Figure 5-55 displays the teddy bear sequence last frame and resulting vectors. This se-

quence provided many difficulties for the active-mesh algorithm and indeed provides

difficulty for many other motion tracking algorithms. The camera translates across the

front of the bear causing the bear to ‘move’ in the image at a faster apparent velocity

than the wallpaper.

This sequence provides problems for many reasons:

• The wallpaper has very few corner features and the motion step is larger than the

strip width, causing problems in estimating the motion due to the uniformity of

the pattern. This is a difficult problem for even a human observer giving a dis-

crete sampling rate.

• The uniform texture and geometry of the object makes corner detection within

the object pointless, with the exception of the facial features.

• The intersection of the vertical lines of the wallpaper and the bear provide very

strong ‘unsuitable’ corner points. These points are unsuitable as the wallpaper is

moving independent of the bear.

Figure 5-55. The teddy bear sequence resulting vectors.

 Chapter 5 – Implementation, Testing and Results

 169

It is difficult to determine a suitable motion determination approach for this scene. Op-

tical flow algorithms would also have difficulty with the wallpaper step-size and the

uniform texture of the bear. Edge detection based algorithms would have difficulty with

the wallpaper stripes. The region based active mesh would be a more suitable approach

for tracking the bear object provided that a good depth map could be determined. The

active mesh does provide an accurate estimation of the motion of the facial features of

the bear.

5.7 The Modified SUSAN (DSUSAN) Results

To test the accuracy of this approach and to determine the advantages of this approach,

numerous tests were performed. As shown previously in Section 4.10, Figure 4-35 dis-

plays the SUSAN test template after the normal and modified versions have been ap-

plied. The regular SUSAN algorithm executes in 280ms and detects 83 corners. The

modified version executes in 81ms and detects the same 83 corners. This represents a

factor of improvement of 3.4 in the execution speed of the algorithm. The modified ver-

sion works particularly well in this case as there are plenty of uniform areas that are

immediately rejected by the pre-filter. To this end the pre-filter was also examined on

some real-world images such as the airport and laboratory images.

(a) (b)

Figure 5-56. The airport image test (a) the airport image after the SUSAN corner detector has been per-
formed at a threshold value of 35 taking 310ms and (b) the airport image after the modified SUSAN cor-
ner detector has been performed at a threshold value of 35 taking 120ms.

 Chapter 5 – Implementation, Testing and Results

 170

Figure 5-56 shows an example of the SUSAN corner detector in (a) and the modified

SUSAN corner detector in (b). The threshold value is the same for (a) and (b) but the

modified detector is 2.6 times faster. The pre-filter rejects 5 corners that are detected

using the original detector. The corners that are rejected are very weak corners

Airport Image - Number of Corners Compar

0

100

200

300

400

500

600

SUSAN (no.corners) 532 428 345 268 215 173 165 137 118 102 87 75

DSUSAN (no.corners) 510 407 328 263 207 165 160 132 113 100 85 75

5 10 15 20 25 30 35 40 45 50 55 60

N
u
m
b
e
r

o
f

C
o
r
n
e
r
s

Threshold (grey levels)

Figure 5-57. Showing the number of corners detected by the SUSAN and DSUSAN (SUSAN with
pre-filter) filters (αs=1.0).

Airport Image - Time Comparison

0

100

200

300

400

500

600

Threshold (grey levels)

T
i
m
e

(
m
s
)

SUSAN Time (ms) 551 420 360 351 341 310 310 301 301 290 281 290

DSUSAN Time (ms) 520 340 230 190 161 151 120 110 100 101 100 90

5 10 15 20 25 30 35 40 45 50 55 60

Figure 5-58. The Airport Image, time comparison graph, showing the time in milliseconds24 that the algo-
rithms take to execute (αs=1.0).

 Chapter 5 – Implementation, Testing and Results

 171

Figure 5-58, shows the execution speed of both filters, the SUSAN and DSUSAN

(SUSAN with pre-filter). It can be seen that for low grey-level thresholds the factor of

improvement of execution speed is not substantial, but for higher threshold values the

factor of improvement is substantial. Typically the SUSAN detector will operate in the

20-25 brightness threshold ranges to obtain a generous number of stable features. At

this point the DSUSAN detector operates 2.1 times faster. Figure 5-57, shows the graph

of the number of corners detected with SUSAN and DSUSAN. As the grey-level

threshold increases the number of corners detected by both detectors becomes very

similar (higher threshold implies stronger grey-level corner). This difference is at a

maximum at the lower value of the threshold (5-10), where the features are weakest.

Another image was examined from the Laboratory 2 Sequence and compared with the

SUSAN and the modified DSUSAN corner detectors. Figure 5-59, shows a comparison

in the execution of the SUSAN and DSUSAN corner detectors. The DSUSAN operates

up to 3.6 times faster at the usual brightness threshold range of 20-25. The results are

24 The time in milliseconds was calculated on the Microsoft Java ++ Just In Time (JIT) compiler running

under Windows NT on a portable Pentium II (200 MHz) with 128MB RAM. The execution time in milli-

seconds is dependent on the hardware architecture, but the factor of improvement is unlikely to change.

Lab Sequence - Time Comparison

0

200

400

600

800

1000

1200

1400

1600

Threshold (grey levels)

T
i
m
e

(
m
s
)

SUSAN Time (ms) 1462 1242 1191 1122 1091 1092 1082 1101 1092 1061 1061 1050

DSUSAN Time (ms) 821 471 400 311 300 290 281 300 271 260 250 250

5 10 15 20 25 30 35 40 45 50 55 60

Figure 5-59. Time comparison on the laboratory 2 sequence – the SUSAN (regular) and DSUSAN
(modified SUSAN) are shown. There is a consistent improvement in the execution speed of the
corner detector (αs=1.0).

 Chapter 5 – Implementation, Testing and Results

 172

better than those for the airport image. This is likely due to more non-textured areas in

the image and also due to the fact that the lab image is 512 x 512 pixels in area whereas

the airport image is 256 x 256 pixels in area. This helps the operation improvement, as

the pre-filter will reject uniform intensity areas as ‘no hope’ corner candidates.

Figure 5-60, shows the number of corners detected by the SUSAN and DSUSAN corner

detectors for different brightness threshold values. The difference in the numbers de-

creases, as stronger corners are required at higher threshold levels. In the normal operat-

ing range of the SUSAN corner detector the modified version detects 4 less corners than

the original detector.

Lab Sequence - Number of Corners Detecte

0

200

400

600

800

1000

1200

1400

Threshold (grey levels

T
i
m
e

(
m
s
)

SUSAN(no.corners) 1174 593 320 179 113 52 25 13 6 4 2 2

DSUSAN(no.corners)1141 568 307 168 109 51 25 13 6 4 2 2

5 10 15 20 25 30 35 40 45 50 55 60

Figure 5-60. The comparison between the number of corners detected by the SUSAN and
DSUSAN corner detectors (αs=1.0) in the Laboratory 2 image sequence.

Figure 5-61. Displays a frame from the laboratory 2 image sequence at a threshold of 25. There are 4 more
corners detected by the original SUSAN corner detector and these are shown here.

 Chapter 5 – Implementation, Testing and Results

 173

This is shown as in Figure 5-61, where the arrows point at the corners that are not de-

tected in the equivalent DSUSAN image output. A further examination of these missing

corners was performed to check the importance of their values. Figure 5-62, shows a

500% zoom image of the corners and corner locations that have disappeared from the

pre-filtered versions. Pair 1 and Pair 4 are not immediately recognisable as corners,

whereas Pairs 2 and 3 show possible corner points. These points are rejected by the cor-

ner detector as the gradient level is very uniform along the a to a’ direction of the mask

as described in Section 4.1. These corners are however quite weak and when the bright-

ness threshold is increased to 30 in the original SUSAN algorithm these corners disap-

pear.

5.7.1 The Effect of modifying the user-defined parameter αs.

αs is the user-defined constant that allows the user to choose the effect of the brightness

threshold on the SUSAN pre-filter. An αs=0.0 means that the threshold value of the

Figure 5-62. A zoomed version of the four missing corners.

100

120

140

160

180

200

T
im

e
ta
k
e
n
(m

s
)

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

179 178 176 176 168 161 155 139 119

Time Taken (ms) 1392.00 581.00 471.00 411.00 371.00 350.00 341.00 310.00 300.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

N
u
m
b
e
r
o
f
C
o
rn
e
rs

D
e
te
c
te
d

The Lab Image - Effect on user defined parameter (as)

User defined change (as)

Total Corners

Figure 5-63. The Laboratory 2 Image and the effect of the user defined parameter αs.

 Chapter 5 – Implementation, Testing and Results

 174

SUSAN pre-filter is set to allow all candidate corners to proceed to the next stage of the

algorithm. This is the least efficient point of the detector and takes the longest time.

This is equivalent to having no pre-filter at all.

Figure 5-64 and Figure 5-63 show the effect of modifying the user defined αs parameter

from 0 to 2.0. In both cases it is apparent that the higher the value of αs the faster the

detector operates, but the lower the number of corners detected. It should be clear from

these graphs why a value of αs=1.0 has been chosen as this value provides a good trade-

off between the time taken and the number of corners detected.

The Airport Image - Effect on user defined parameter (as)

150

170

190

210

230

250

270

290

User defined change (as)
150

200

250

300

350

400

450

T
im

e
T
a
k
e
n
(m

s
)

Total Corners 268 268 267 267 263 255 244 225 204

Time (ms) 400 361 310 260 220 200 180 170 160

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

N
u
m
b
e
r
o
f
C
o
rn
e
rs

D
e
te
c
te
d

Figure 5-64. The Airport Image and the effect of the user defined parameter αs.

 Chapter 5 – Implementation, Testing and Results

 175

5.8 Hand Comparison of Results

It is difficult to determine the accuracy of this approach, as it is an active approach,

converging to the correct solution, but providing a reasonable estimate of the motion in

the scene. As with most other active approaches, if the frame changes before the mesh

has fully converged, it should become concerned with the new frame.

Figure 5-65 (a) illustrates the motion in the parking sequence of images (over 12

frames) as discussed in Section 5.6.2 . The first frame has been altered from a grey-

(a)

(b)

Figure 5-65. (a) Illustrates the motion in the scene and (b) shows the vectors calculated in the scene us-
ing the active mesh algorithm.

 Chapter 5 – Implementation, Testing and Results

 176

scale image to becoming the green plane of an RGB colour image, and the last frame

has been altered to becoming the red plane of the same colour image. This causes ghost-

ing that displays the movement between the two frames. A hand drawn comparison was

attempted between these two frames to point out the problems in the active-mesh re-

sults, but was found to be less accurate than the obtained results.

Figure 5-66 (a) illustrates using the same technique, the motion between the two frames

of the laboratory sequence as discussed in Section 5.4.2 Once again the calculated vec-

tor field in (b) represents correctly the vector field which a human would determine

from the difference image, as shown in (a).

(a)

(b)

Figure 5-66. (a) Illustrates the motion in the scene and (b) shows the vectors calculated in the scene
using the active mesh algorithm overlayed on (a).

 Chapter 5 – Implementation, Testing and Results

 177

Figure 5-67 displays a hand-drawn estimate of the motion in the castle sequence (as in

Section 5.4.4) over the 10 frames. A yellow dot was placed on strong features through

the image frames. The features chosen were easy to locate for a human observer (such

as the apex of the roof) and so were not strong image features. The equivalent calcu-

lated paths using the active mesh algorithm are overlaid in red, following very closely

the expected locations (usually within ± 2 pixels, allowing that the human choice is ac-

curate to within ± 1 pixels). The surrounding mesh nodes, weakly pulling away or to-

wards the correct path, usually cause any deviation of a node from the path. This can

cause a slight deviation in the path of the node, but can be traded off against internal

stability for stronger external forces, if desired.

25 A useful ‘animated gif’ is available at http://www.eeng.dcu.ie/~molloyd/phd/ that displays the move-

ment in this sequence with the mesh overlaid, and the vector fields growing to follow the sequence.

Figure 5-67. Hand-drawn estimate of motion in the castle sequence25.

 Chapter 5 – Implementation, Testing and Results

 178

5.9 3-D Re-Construction using Active Meshes

5.9.1 Stereo Imaging

The key problem area in stereo vision is the determination of the correspondences be-

tween features in the two camera views. These features may be image intensity values,

edges, points, and other primitives. The fundamental sections of stereo imaging are (1)

how the geometry and calibration of the stereo system calibrated (2) what primitives are

to be matched between the two images (3) what a priori assumptions are made about

the scene to determine the disparity, and (4) the estimation of depth from the disparity.

Before solving the correspondence problem the multiple cameras must be properly cali-

brated (Geiger et al, 1992).

Calibration is necessary before it is possible to perform any 3-D reconstruction of any

form, as if the camera was not properly calibrated the structure constructed, would have

little real-world correspondence. This is usually performed by the use of a calibration

pattern (Faugeras, 1993). This calibration pattern is one where the calibration points are

extracted at the intersection of the vertical and horizontal lines, usually very easily.

Epipolar lines are calculated that go through the pixels at the two upper corners of the

grids in the left and right image (see Figure 5-68). This may be repeated for many

points in the images and it becomes apparent that all the epipolar lines converge to a

point, the epipole, located outside the image. From this method, and more complicated

mathematical expressions it is possible to use this epipole for the reconstruction of 3-D

points and the calibration of the cameras.

Left camera view Right camera view

points of interest

Epipolar line Epipolar line

Figure 5-68. Calibrating two cameras.

 Chapter 5 – Implementation, Testing and Results

 179

5.9.2 Stereo Correspondence

This is the key problem in the stereo approach; matching features between the two cam-

era views. This correspondence is in general under-determined and heuristics are often

required. These heuristics are generally derived from the properties of the real world,

e.g. the ordering constraint, since most surfaces in the real-world are smooth, points lie

in the same epipolar lines in both views. One famous case where this constraint is vio-

lated is the double nail illusion (Yuille, 1990), as in Figure 5-69.

When Humans look at the nail B, at a close distance with one eye on either side they see

3 nails in total, at points C, B and D. This has important consequences for the ordering

constraint, as the observer moves left to right in the Left image BL then AL will be met.

However going left to right in the Right Image AR then BR will be met, violating the or-

dering constraint. The epipolar constraint is another constraint that is of good use in the

correspondence problem. It states that points on the epipolar line of one camera can be

matched to the points on an epipolar line of another camera directly. This changes the

problem of point matching to the matching of epipolar lines that are in parallel in each

individual view.

As discussed in Section 3.7.1, active contour models can be applied to the problem of

stereo matching where a pair of corresponding contours is available in a pair of stereo

images. Kass et al (1987) uses a constraint added to the model energy formulation to

pass information between the pair of contours while Terzopoulos et al (1987) uses se-

quence of images of the silhouettes of objects for 3-D reconstruction.

A

C
B

D

B

F

L

F

B

A A
L R

R

1 2

Left Image Right Image

real nail

illusion of nail

Figure 5-69. The double nail illusion.

 Chapter 5 – Implementation, Testing and Results

 180

The active mesh formulation that is described in this work may also be modified for use

in 3-D reconstruction. Brady and Wang’s (1992) DROID approach, as discussed in Sec-

tion 2.9, uses feature matching for a structure from motion algorithm based on stereop-

sis (the use of two cameras at different positions to examine the one scene). The corre-

spondence calculation is the most difficult and erroneous part of the algorithm.

The active mesh algorithm has been tested on pairs of epipolar-constrained images for

feature matching for 3-D reconstruction. It has been found that no ordering or unique-

ness constraints are required as the structured feature point format of the mesh auto-

mates this to an extent. Rather, in these epipolar-constrained images, the feature search

space of the mesh nodes can be constrained to be linearly (or almost linearly) aligned

with the principal x-axis of the constrained image. This constraint on the search space

improves the quality of the matching algorithm. The results from the active-mesh ap-

proach to stereo matching are shown in Figure 5-70.

Figure 5-70. The stereo matching results of the active mesh

 Chapter 5 – Implementation, Testing and Results

 181

Figure 5-71(a), shows the stereo correspondence search space that is used. The new

search space is within the regular search space, inside an angle θ, where θ is usually

small (~5 degrees). The reason for the angular search space is to deal with positional

errors in the y direction that occurs with the location of 2-D feature points in calibrated

image pairs. Figure 5-71(b) shows the calculation of distance between the mesh node

point n and the feature point f, using only the x-component of the distance. Only the x-

component of the force is applied to the mesh node, to prevent the mesh node from

‘passing on’ y-forces to connected nodes. This prevents mesh nodes from being pushed

out of their y-located epipolar lines.

It is important to note that depth information calculated using the active mesh imple-

mentation is only an estimate of the depth of the scene. For example, in Figure 5-72 the

object is uniformly textured and there are no feature points detected other than at the

r

regular search spacenew search space

x

y

(a)

x

f(x ,y)n(x ,y)
n n f f

| x - x |n f

(b)

Figure 5-71. Stereo correspondence search space (a) shows the search space and (b) illustrates a close
up of the measurements made.

(10,10,7.5) (90,10,7.6)

(10,90,7.5) (90,90,7.5)

Depth EstimationObject & Mesh

x

y

z
x

y

z
x

y

z

True Object Shape

a b

c d dc

a b

ba

(a) (b) (c)

Figure 5-72. Depth estimation (a) illustrates a straight on view of what appears to be a cube. In (b) the
depth is estimated at the corner points. However in (c) it is apparent from the view from above that the
true shape of the cube curves out towards the observer.

 Chapter 5 – Implementation, Testing and Results

 182

silhouette points of the object. However, the true shape of the object is quite different

from the estimated shape but is not determined by the stereo algorithm. This is true of

many depth stereo algorithms.

5.10 Comparison with the Active Mesh Technique

There are several differences between the active mesh approach and the other ap-

proaches as described. In comparison to the ASSET-2 (Smith, 1995) approach:

• The clustering technique is used to identify regions of similar flow vectors and

the feature matching is not constrained in any way other than feature matching.

• The active mesh approach uses constrained feature matching, with the mesh

structure greatly aiding the matching process.

• Increasing the number of features in the image sequence will result in a greater

number of poor feature matches, which will be determined by the clustering al-

gorithm as separate clusters, or indistinct clusters.

• Increasing the number of features in the active mesh approach increases the den-

sity of points on an object and further constrains the feature matching.

• In the ASSET-2 approach, weak matches will be discarded, whereas in the ac-

tive mesh approach the weak matches will have a weak effect on the mesh.

Figure 5-73. The ASSET-2 problem vectors (in blue), labelled by hand.

 Chapter 5 – Implementation, Testing and Results

 183

• As can be seen in Figure 5-73, the ASSET-2 algorithm has problems with vector

outliers, giving, in this case some very strange vectors (top, left and right of the

road). There is no significant higher-level process that can prevent this.

The active mesh approach provides a higher-level approach to feature matching. The

spatial relationship of features in the primary frame is used to constrain the matching

process in the subsequent frame. The more features that are used, the better described

the motion becomes. It provides a much less computationally expensive approach than

optical flow:

• Feature points are used, involving calculation at only a small proportion of im-

age points.

• Larger motion steps are possible, as shown in the results; the algorithm could

skip 12 frames of available standard optical flow test sequences, and still pro-

vide a reasonable estimate of the motion.

• It integrates local and global information, the local search space information of

the mesh nodes (external forces), with the global mesh structure constraints (in-

ternal forces).

• It is robust to image noise, avoiding the use of second order derivatives and pre-

serving the mesh structure through occlusion.

The active mesh approach provides a relatively computationally inexpensive approach

to robustly determining motion information in image sequences, using no a priori scene

information, initializing and adapting as necessary.

Chapter 6 – Summary and Future Work

.
184

Chapter 6 - Summary and Future Work

This research has demonstrated a method that allows unconstrained motion tracking in

image sequences. It combines a high-level active mesh approach with the lower-level

aspects of feature detection to generate a template for feature matching that is active in

nature. This template can remove the ambiguity in the lower-level feature matching ap-

proach by allowing a more globally constrained solution to a usually local problem.

The active mesh algorithm is a modular approach that allows components of the algo-

rithm, such as the feature detectors, filters and feature matching modules to be replaced

by other techniques.

The active mesh approach provides several advantages for motion tracking, such as:

• Self-Initialisation, based on image features, providing a suitable starting point for

the algorithm.

• Self-adaptive, as features may be added or removed from the mesh as frames pro-

gress, to prevent the mesh from becoming redundant.

• No a priori knowledge required about the scene, but can be added to provide an

even more structured, multiple mesh and region approaches.

• The high-level information is captured in the mesh model that uses lower-level fea-

ture information. The strength of the matches also lends information to the motion

of the mesh.

• The algorithm can determine the quality of match at each node.

• The algorithm is provided with parameters that are optimised for tuning rather than

having to be accurately determined by the user for useful performance.

An application was successfully developed in Java to implement this approach as de-

scribed in Section 4.12, showing different possible implementation scenarios.

Chapter 6 – Summary and Future Work

.
185

6.1 Research Contributions

6.1.1 Major Contributions

The immediate contribution of this work is the overall algorithm that provides an

innovative approach to helping solve the motion-tracking problem. It uses self-

initialising, automatic modelling using unstructured meshes in an active weak model

approach. This faced the difficult challenge of providing an unstructured mesh model

that would function as an active contour model, while still preserving its structure.

Suitable force handling was developed to combine the forces at the mesh nodes and

energy formulations were developed to deal with the determined internal and external

forces that arise. This active mesh approach was studied under numerous test sequences

to refine the approach and to determine suitable feature matching techniques and

parameters for the internal and external energy formulations. The overall algorithm was

applied to numerous real-world image sequences, providing proof of the practical

application of this approach. The active mesh was shown to be a higher-level approach

than feature matching, where the spatial relationship of features in the primary frame is

used to constrain the matching process in the subsequent frames. This algorithm was

shown to perform well on real-world images, at a fraction of the computational cost of

an optical flow algorithm.

The further extension of this technique to multiple meshes, region meshes and depth

estimation was performed and provided new application areas for the algorithm. The

multiple meshes were applied to multiple independent object tracking and the sugges-

tion was made for the combination of an overall global mesh and numerous smaller

meshes, to provide local and global information within the scene. These applications

have been shown worthy of future attention for both applications and further improve-

ments. Indeed the long-range contribution of this work should act as the basis for future

applications in long sequence motion tracking, 3-D reconstruction and other vision ap-

plications.

6.1.2 Minor Contributions

Other contributions of this work include the implemented use of the Java language for

computer vision applications, finding useful aspects of the language structure, ideal for

vision applications. Some of these include the development of Java classes for image

Chapter 6 – Summary and Future Work

.
186

processing, active contours and active meshes that can be used directly by future

researchers. Other useful aspects of this research include:

• The modification of the SUSAN algorithm, by adding ‘no-hope’ candidate pre-

filters for improved computational performance of the algorithm, by taking ad-

vantage of its multistage approach.

• The implementation of the SUSAN algorithm with an active contour approach

was also performed.

6.2 Generality of the Method

The method can be generalised to other machine vision applications, but for optimum

performance a scene with strong feature points is required. The modularity of the ap-

proach can further aid the generality of the method, for example, by replacing the corner

feature detector by a region centre location algorithm.

The choice of parameters for tuning also helps in the generality, allowing the user inter-

action with the low-level algorithm parameters. For example, allowing the adjustment

of the regularisation parameters can define a mesh that is strongly affected by external

forces, or indeed indifferent to them.

As few domain specific assumptions as possible were made, to allow the algorithm to

be as generic as possible. Only a few assumptions were made for the optimum operation

of this method, including:

• The features used are consistent across image frames.

• The spatial difference of the motion between frames is within the mesh node

search space at a number of mesh nodes.

• At least 3 feature points are available for mesh generation.

Generality is determined by the first two conditions, while the last assumption is a cate-

gorical condition. Further testing is required to assess the sensitivity of the assumptions

for other application implementations.

6.3 Future Work

As is true for many works of research there are many opportunities for extensions and

refinements to the methodology presented. The usefulness of the methodology could be

enhanced in the following areas:

Chapter 6 – Summary and Future Work

.
187

o Further image pre-filtering for noise reduction.

o Feature detector improvement by the use of detection methods that become

available.

o Improvement of the feature matching technique to provide a more suitable tech-

nique for the active mesh implementation.

o Search space choice automation, using time filtering.

The extent to which these improvements will be explored is a function of the applica-

tions to be developed that will depend on this method. The general technology trends of

improvement of the image capture quality and microprocessor performance will also

have an effect of the quality and execution speed of the algorithm. Some future im-

provements to the algorithm include: 3-D active meshes, the use of B-Splines, the use of

Kalman filtering, as well as improvements to the region based active mesh algorithm.

6.3.1 3-D Active Meshes

As discussed previously one of the major difficulties in the general approach is the ac-

curate matching of feature points. If a stereo view was used for the implementation

stage then it should be possible to use 3-D depth information to allow the mesh exist in

the 3-D plane, rather that only in the image plane. Most of the structure of the mesh

would be the same, except that node connections would have mesh nodes with (x,y,z)

positions and the forces would also be of that form. The idea would be that as well as

providing the motion estimation in the scene the algorithm would also provide an esti-

mate of the 3-D scene structure. The mesh would also be bound more tightly to the

scene structure and would be less likely to drift in location. For this approach to work

there would be certain constraints:

• The 3-D location information would have to be accurate and consistent on a

frame-by-frame basis.

• A 3-D version of the Delaunay algorithm would have to be used.

Chapter 6 – Summary and Future Work

.
188

6.3.2 Use of B-Splines as the mesh lines

In the current implementation of the active mesh, the mesh lines have no relationship

with the image other than being the direct connection between image features. It should

be possible to relate the mesh to image edges, to allow the integration of edge-based

information into the mesh. The most likely way to link these image edges into the mesh

would be to use B-splines to represent those mesh line connections that can be related to

image edges. This would be especially true in the multiple mesh implementation, where

the meshes might be representing objects, such as vehicles (as in Section 5.5.2) where

the mesh lines on the convex hull of the mesh could certainly be replaced by ‘edge-

loving’ B-splines. Figure 6-1 shows an example of this idea, where in (a) the true edge

of the object is related to the mesh, except to the curved left area of the object. If this

convex hull’s mesh line is replaced in (b) by a B-spline that performs an edge con-

strained expansion, perhaps using the step-by-step initialisation method of Neuen-

schwander et al (1994)(see Section 3.2.2). This edge determination of the object area

would provide further energy forces (edge based) to help in the motion determination

process as well as defining the true object boundary. If the true boundary is known then

the motion information could be propagated along the edge (and indeed estimated along

the edge) to help in motion description.

6.3.3 Use of Kalman Filtering for Active Meshes

As discussed in Section 3.4 on the use of Kalman filtering for active contours, it should

also be possible to apply that technique to the active mesh implementation. This would

(a) (b)

(c) (d)

Figure 6-1. The B-spline active mesh approach.

Chapter 6 – Summary and Future Work

.
189

allow not only prediction of position of subsequent frames, but it should be possible to

apply the Kalman filtering to the determination of the search space around the mesh

nodes. Baumberg (1996) uses a Kalman approach in choosing the search direction for

the Leeds people tracker, using prior knowledge that is available about the location of

the image features, using the spatial covariance of the estimated contour points. The

constrained feature search that is suggested was found to improve the performance of

the tracking algorithm.

Another idea for improving the use of the search space that has been considered is the

use of a general search space that grows, until the match uncertainty is at an acceptable

threshold. For example, if the search space begins at a fixed value radius and only 25%

of the mesh nodes have located suitable match features, the search space could be in-

creased in radius until 50%+ of the mesh nodes have located suitable match features.

This idea could also be coupled with the Kalman filtering approach as a prediction of

the next frame search space.

6.3.4 Improvements to the Region Based Active Mesh

There are many improvements that are possible to the region based active mesh. The

calculation of the region information, with the exception of the image subtraction, is

being performed outside of the algorithm. This should be integrated into the main algo-

rithm and developed to provide a more advanced region segmentation algorithm.

Currently the individual meshes have no relationship to each other. It should be possible

to combine the individual meshes with a general scene active mesh to provide informa-

tion about the relationship of these objects. The use of multiple meshes should also al-

low the determination of scene occlusion information, when the objects have intersect-

ing paths. The object that has the strongest match information after an occlusion is the

forefront object. This method should prove useful in a wide variety of research and edu-

cational endeavours.

Bibliography

.
190

Bibliography

A.A. Amini, T.E. Weymouth, R.C. Jain (1990), "Using Dynamic Programming for

Solving Variational Problems in Vision", IEEE Transactions on Pattern Analysis

and Machine Intelligence, 12, 9, 855-867.

N. Ancona (1992), “A fast Obstacle Detection Method based on Optical Flow”,

ECCV’1992, 267-272.

D.H. Ballard, C.M. Brown (1982), Early Processing. In: Computer Vision, Prentice-

Hall (Englewood Cliffs, New Jersey 07632), 63-118.

J.L. Barron, D.J. Fleet, S.S. Beauchemin, T.A. Burkitt (1992), "Performance of Optical

Flow Techniques", Proceedings of the 1992 Computer Vision and Pattern Recogni-

tion, 236-242

B. Batchelor (1991), Intelligent Image Processing in Prolog, Springer-Verlag, London.

A. Baumberg (1996), "Hierarchical shape fitting using an iterated linear filter", in proc.

British Machine Vision Conference, volume 1, 313--323. (Also: A.Baumberg

(1996), “Hierarchical shape fitting using an iterated linear filter”, Internal Technical

Report, School of Computer Studies, University of Leeds, 19 pages)

B. Bhanu, O.D. Faugeras (1984), "Shape Matching of Two-Dimensional Objects",

IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 137-156.

A. Blake, A. Yuille (1992) Active Vision, The MIT Press, Cambridge, Massachusetts.

A. Blake, M. Isard (1998), Active Contours: The Application of Techniques from

Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Mo-

tion, Springer-Verlag Press.

Bibliography

.
191

P. Bouthemy, E. Francois (1993), "Motion Segmentation and qualitative dynamic scene

analysis from an image sequence", International Journal of Computer Vision, 10,

157-182.

A.C. Bovik, T.S.Huang, D.C. Munson, (1987) “The Effect of Median Filtering on Edge

Estimation and Detections”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 9, 2, 181-193.

R. Bowden, T.A. Mitchell, M. Sahardi (1997), " Real-Time Dynamic Deformable

Meshes for Volumetric Segmentation and Visualisation", BMVC, 1997. 13 pages.

M. Brady, H. Wang, (1992) “Vision for mobile Robots”, Phil. Trans. R. Soc. London B.

337, 341-350.

K. Brisdon, G.D. Sullivan, K.D. Baker (1988), “Feature Aggregation in Iconic Model

Matching”, Proceedings of the Alvey Vision Conference, AVC-88, Manchester, 19-

24.

N. Byrne (1992), Motion Estimation in Computer Vision, Ph.D. Transfer Requirement

Report, School of Electronic Engineering, Dublin City University.

J. Canny (1986), “A computational approach to edge detection”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8, 6, 679-698.

D. Cédras, M. Shah (1995), "Motion-based recognition: a survey", Image and Vision

Computing, 13, 129-155.

F. Chabat, G.Z. Yang, D.M. Hansell (1999), “A corner orientation detector”, Image and

Vision Computing, 17, 761-769.

S. Chandran, A.K. Potty (1998), "Energy Minimisation of Contours Using Boundary

Conditions", IEEE Transactions on Pattern Analysis and Machine Intelligence, 20,

5, 546-549.

Bibliography

.
192

D. Charnley, R. Blissett (1989), “Surface Reconstruction from outdoor image se-

quences”, Image and Vision Computing, 7, 1, 10-16.

L.D. Cohen (1991), "NOTE On Active Contour Models and Balloons", Computer Vi-

sion Graphics Image Processing: Image Understanding, 53, 2, 211-218.

L.D. Cohen, I. Cohen (1993), "Finite-Element Methods for Active Contour Models and

Balloons for 2-D and 3-D Images", IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 15, 11, 1131-1147.

T.F. Cootes, C.J. Taylor (1992), "Active Shape Models - 'Smart Snakes' ", British Ma-

chine Vision Conference 1992, Leeds, 22-24 Sep 1992, 266-276.

I.J. Cox (1993), "A Review of Statistical Data Association Techniques for Motion Cor-

respondence", International Journal of Computer Vision, 10, 53-66.

I.J. Cox, S.L. Hingorani (1996), “An efficient Implementation of Reid’s Multiple Hy-

pothesis Tracking algorithm and its evaluation for the purpose of visual tracking”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 2, 138-150.

R. Curwen, A. Blake (1992), "Dynamic Contours: Real-time Active Splines", Active

Vision, The MIT Press, Cambridge, Massachusetts, 39-57.

L.S. Davis (1979), "Shape Matching Using Relaxation Techniques", IEEE Transactions

on Pattern Analysis and Machine Intelligence, 1, 60-72.

R. Deriche (1987), “Using Canny’s criteria to derive a recursively implemented optimal

edge detector”, International Journal of Computer Vision, 167-187.

E.E. Dickmanns, V. Graefe (1991), “Applications of Dynamic Monocular Machine Vi-

sion”, Computer Vision – Advances and Applications, IEEE Computer Society

Press, 661-681.

Bibliography

.
193

Z. Duric, E. Rivlin, A. Rosenfeld (1998), "Understanding Object Motion", Image and

Vision Computing, 16, 785-797.

M. Etoh, Y. Shirai, M. Asada (1993), "Active Contour Extraction Based on Region De-

scriptions Obtained from Clustering", Systems and Computers in Japan, 24, 11, 55-

65. (Translated from: Denshi Joho Tsushin Gakkai Tonbushi, vol. J75-D-II, 7, 1111-

1119.)

J.Q. Fang, T.S. Huang (1984), "Some Experiments on Estimating the 3-D Motion Pa-

rameters of a Rigid Body from Two Consecutive Image Frames", IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 6, 545-554, 1984.

O.D. Faugeras, S. Maybank (1990), "Motion from Point Matches: Multiplicity of Solu-

tions", International Journal of Computer Vision, 4, 225-246.

O. Faugeras (1993), Projective Geometry. In: Three-Dimensional Computer Vision (A

Geometric Viewpoint), Cambridge, Massachusetts: The MIT Press, 7-33.

Y.S. Fong, D.H. Brown (1985), “A Centroid Tracking Scheme in a Weighted Coordi-

nate System”, ECE Dept. Clarkson University, New York, Report. 219-221.

S. Geman, D. Geman (1984), “Stochastic relaxation, Gibbs distributions and the Bayes-

ian restoration of images”, IEE Transactions or Pattern Analysis and Machine Intel-

ligence, 6, 721-741.

E. Grosso, M. Tistarelli, G. Sandini (1992), "Active/Dynamic Stereo for navigation",

Computer Vison, ECCV, Italy May'92, Lecture notes in Computer Science 588, 516-

525.

W. Guan, M. Songde (1998), "A List-Processing Approach to Compute Voronoi Dia-

grams and the Euclidean Distance Transform", IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20, 7, 757-761.

Bibliography

.
194

S. Gunn, M.S. Nixon (1997), "A Robust Snake Implementation; A Dual Active Con-

tour", IEEE Transactions Pattern Analysis and Machine Intelligence, 19, 1, 63-68.

C.G. Harris (1987), “Determination of Ego-Motion from matched points”, 3rd Alvey Vi-

sion Conference Proceedings, 189-192.

M. Hashimoto, H. Kinoshita, Y. Sakai (1994), "Sampled Active Contour Model, Trans-

actions of the Institute of Electronics, Information and Communication Engineers,

j77D-2, 2172-2178.

T. Heap, D. Hogg (1996), “3D Deformable Hand Models”, Internal Technical Report,

School of Computer Studies, University of Leeds, 10 pages.

D.J. Heeger (1998), “Optical Flow Using Spatio-Temporal Filters”, International Jour-

nal of Computer Vision, 1, 4, 279-302.

E.C. Hildreth (1984), "Computations Underlying the Measurement of Visual Motion",

Artifical Intelligence, 23, 309-354.

B.K.P. Horn and B.G. Schunck (1981), "Determining Optical Flow", Artificial Intelli-

gence, 17, 185-203

H.H.S. Ip, D. Shen (1998), "An affine-invariant active contour model (AI-Snake) for

model-based segmentation", Image and Vision Computing, 16, 135-146.

A.K. Jain (1989), Fundamentals of Digital Image Processing, Englewood Cliffs, NJ,

USA: Prentice-Hall.

M. Kass, A. Witkin, and D. Terzopulos (1987), "Snakes: Active contour models", Pro-

ceedings of the 1st Internal Conference on Computer Vision, 259-268.

Bibliography

.
195

J.K. Kearney, W.B. Thompson, D.L. Boley (1987), "Optical Flow Estimation: An Error

Analysis of Gradient-Based Methods with Local Optimization", IEEE Transactions

on Pattern Analysis and Machine Intelligence, 9, 229-244.

J. Kim, C. Joo, J. Choi (1990), "Improved block matching algorithm considering edge

components", Applications of Digital Image Processing XIII. SPIE Press, 181-191.

I. Kosaka, G. Nakazawa (1995), "Vision-Based Motion Tracking of Rigid Objects Us-

ing Prediction of Uncertainties", Proceedings of the 1995 International Conference

on Robotics and Automation, Nagoya, Japan, 9 pages.

K.F. Lai (1994), Deformable Contours: Modelling, Extraction, Detection and Classifi-

cation, Ph.D. Thesis at the University of Wisconsin-Madison.

K.F. Lai, R.T. Chin (1998), "On modelling, extraction, detection and classification of

deformable contours from noisy images", Image and Vision Computing, 16, 55-62.

F. Leymarie, D. Levine (1993), "Tracking Deformable Objects in the Plane Using an

Active Contour Model", IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 15, 6, 617-633.

K.V. Mardia, W. Qian, D. Shah, K.M.A. deSouza (1997), "Deformable Template Rec-

ognition of Multiple Occluded Objects", IEEE Transactions on Pattern Analysis

and Machine Intelligence, 19, 9, 1035-1042.

D. Marr, H.K. Nishihara (1978), "Visual Information Processing: Artificial Intelligence

and the Sensorium of Sight", Technology Review, Oct, vol. 81, pt.1, 28-49.

J. Matas, J. Kittler (1992), "Contextual Junction Finder", British Machine Vision Con-

ference 1992, Leeds, 22-24 Sep 1992, 119-128.

Bibliography

.
196

I.S. McQuirk, B.K.P. Horn, H.-S. Lee, and J.L. Wyatt (1998), “Estimating the Focus of

Expansion in Analog VLSI”, International Journal of Computer Visions, Vol. 28,

No. 3, 261-277.

G. Medioni, R. Nevatia (1984), "Matching Images Using Linear Features", IEEE

Transactions on Pattern Analysis and Machine Intelligence, 6, 675-685.

F. Meyer, P. Bouthemy (1992), “Region-Based Tracking in an Image Sequence”, Pro-

ceedings of the Second European Conference on Computer Vision, 476-484.

B.R. Mitchell, T.A. Sahardi (1998) "Real-Time Dynamic Deformable Meshes for

Volumetric Segmentation and Visualisation", Machine Vision and VR Group, Dept.

M &ES, Brunel Universtiy. 1-13, On-Line publication:

http://www.brunel.ac.uk/~empgrrb/publications/bmvc97/paper.html

F. Mokhtarian, R. Suomela (1998), "Robust Image Corner Detection Through Curva-

ture Scale Space", IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 20, 12, 1376-1381

D. Molloy, T. McGowan, K. Clarke, C. McCorkell, P.F. Whelan (1994), "Application

of machine vision technology to the development of aids for the visually impaired",

in Machine Vision Applications, Architectures, and Systems Integration III, Proc.

SPIE 2347, 31 Oct-2 Nov, Boston USA, 59-69.

D. Molloy, P.F. Whelan (1996), "Motion Discrimination in Applied Vision Systems",

Dublin City University, School of Electronic Engineering, Internal Technical Re-

port, 26th March 1996.

D. Molloy, P.F. Whelan (1997a), "Robotic navigation using self-initialising active con-

tours", Intelligent Robots and Computer Vision XVI: Algorithms, Techniques, Active

Vision, and Materials Handling, Pittsburgh, Oct. 1997, Proc. SPIE Vol.3208.

Bibliography

.
197

D. Molloy, P.F. Whelan (1997b), "Self-Initialising Active Contours for Motion Dis-

crimination", Proc. IMVIP'97 - Irish Machine Vision and Image Processing Confer-

ence 1997, 10 - 13 September 1997, University of Ulster, Northern Ireland, pp 139 -

146.

D. Molloy, P.F. Whelan (1999a), "Motion Tracking using Self-Initialising Active

Meshes", The I.E.E. Seventh International Conference on Image Processing and its

Applications, University of Manchester, UK: 12-15 July.

D. Molloy, P.F. Whelan (1999b), “Active-Mesh Self-Initialisation”, IMVIP’99 Irish

Machine Vision and Image processing Conference 1999, September 1999, Dublin

City University. pp 116 - 129.

H.P. Movavec (1977), “Towards Automatic Visual Obstacle Avoidance”, Proceedings

of the International Joint Conference on Artificial Intelligence, Cambridge MA,

584.

D.W. Murray, B.F. Buxton (1987), "Scene Segmentation from Visual Motion Using

Global Optimization", IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 9, 220-228.

H.H. Nagel (1987), "On the estimation of Optical Flow: Relations between Different

Approaches and Some New Results", Artificial Intelligence, 33, 299-324.

H.H. Nagel (1990), “Extending the ‘Oriented Smoothness Constraint’ of optical flow

into the temporal domain and the estimation of derivatives”, Proceedings of the 1st

European conference on Computer Vision Proceedings, 139-148.

F. Nashashibi, P.Fillatreau, B.D. Wright, T. Simeon (1994), “3-D Autonomous Naviga-

tion in a Natural Environment”, IEEE International Conference on Robotics and

Automation, California, May’94, 433-439.

Bibliography

.
198

C. Nerriec, A. Diez, I. Alvarez, J.A. Cancelas, R. Gonzalez (1994), "A Syntactic and

Contextual Edge Detector and Application of a Rewriting Rules Set to Improve De-

tection" Proceedings of IECON '94, The 20th international Conference on Indus-

trial Electronics Control and Instrumentation, IEEE Press, 2, 994-997.

W. Neuenschwander, P. Fua, G. Szekely, O. Kubler (1994), "Initialising Snakes", Pro-

ceedings of the 1994 IEEE Computer Society on Computer Vision and Pattern Rec-

ognition, Seattle, 658-663.

J.A. Noble (1989), Descriptions of Image Surfaces, Ph.D. thesis, Department of Engi-

neering Science, Oxford University, 215 pages.

J.S. Park, J.H. Han (1998), "Contour matching: a curvature-based approach", Image

and Vision Computing, 16, 181-189.

N. Peterfreund (1999), “Robust Tracking of Position and Velocity With Kalman

Snakes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 6.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery (1992) Numerical Recipes

in C: The Art of Scientific Computing, 2nd Edition, Cambridge University Press.

J.W. Roach, J.K. Aggarwal (1979), "Computer Tracking of objects moving in space",

IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 127-135.

L. Rosenthaler, F. Heitger, O. Kubler, R. von der Heydt (1992), "Detection of General

Edges and Keypoints", Computer Vision - ECCV '1992 (Second European Confer-

ence on Computer Vision). Springer-Verlag, 78-86.

S. Soatto, P. Perona (1995), “Dynamic Rigid Motion Estimation From Weak Perspec-

tive”, ICV’95, 321-328.

J.A. Schnabel, S.R.Arridge (1999), "Active Shape Focusing", Image and Vision Com-

puting, 17, 419-428.

Bibliography

.
199

S. Sclaroff, J. Isidoro (1998), "Active-Blobs", Internal Technical Report, Computer Sci-

ence Department, Boston University (BU CS TR97-008), 9 pages.

B.G. Schunck (1989), “Image Flow Segmentation and Estimation by Constraint Line

Clustering”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11,

10.

I.K. Sethi and R. Jain (1987), "Finding Trajectories of Feature Points in a Monocular

Image Sequence", IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 9, 56-73.

L.S. Shapiro, H. Wang, J.M. Brady (1992), “A Matching and Tracking Strategy for In-

dependently Moving Objects”, British Machine Vision Conference 1992, Leeds,

306-315.

J.R. Shewchuk (1997), Delaunay Refinement Mesh Generation, Ph.D. Thesis, School of

Computer Science, Carnegie Mellon University, CMU-CS-97-137.

E.P. Simoncelli, E.H. Adelson (1991), “Computing Optical Flow Distributions Using

Spatio-temporal Filters”, MIT Media laboratory Vision and Modeling technical Re-

port #165, 20 pages.

D. Sinclair, A. Blake, S. Smith, C. Rothwell (1992), “Planar Region Detection and Mo-

tion Recovery”, British Machine Vision Conference 1992, Leeds 22-24 Sep., 59-68.

S.M. Smith (1992), "A New Class of Corner Finder", British Machine Vision Confer-

ence 1992, Leeds, 22-24 Sep 1992, 139-148.

S.M. Smith 1992b), "Edge Thinning Used in the SUSAN Edge Detector", Defense Re-

search Agency Technical Report TR95SMS5, 4 pages.

Bibliography

.
200

S.M. Smith (1992c), "Feature Based Image Sequence Understanding", Ph.D. Thesis

Submission, Oxford University, Trinity Term 1992.

S.M. Smith, (1995), “ASSET-2: Real-Time Motion Segmentation and Object Track-

ing”, Internal Technical Report TR95SMS2b, Department of Clinical Neurology,

Oxford University, 28 pages. {Also published as: S.M. Smith (1995), “ASSET-2:

Real-Time Motion Segmentation and Shape Tracking”,ECCV’1995, 237-244.}

S.M. Smith, (1995b), “ALTRUISM: Interpretation of Three-Dimensional Information

for Autonomous Vehicle Control”, Internal Technical Report TR95SMS3, Depart-

ment of Clinical Neurology, Oxford University, 19 pages.

P. Soille, (1999), Morphogical Image Analysis – Principles and Applications, Springer-

Verlag. Berlin Heidelberg, ISBN 3-540-65671-5 , April 1999.

L.H. Staib, J.S. Duncan (1992), "Boundary Finding with Parametrically Deformable

Models", IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 11,

1061-1075.

G.D. Sullivan, K.D. Baker (1992), "Active Contours using Finite Elements to Control

Local Scale", British Machine Vision Conference 1992, Leeds, 22-24 Sep 1992,

481-488.

D. Terzopoulos, A. Witkin, M. Kass (1987), "Symmetry-Seeking Models for 3D Object

Reconstruction", Proceedings of the 1st Internal Conference on Computer Vision,

269-279.

D. Terzopoulus, R. Szeliski (1992), "Tracking with Kalman Snakes", Active Vision, The

MIT Press, Cambridge, Massachusetts, 3-20.

A. Tesei, C.S. Regazzoni (1994), “Local Density Evaluation and Tracking of Multiple

Objects from Complex Image Sequences”, Proceedings of IECON 1994. IEEE

Press, 744-748.

Bibliography

.
201

W.B. Thompson, S.T. Barnard (1981), "Lower Level Estimation and Interpretation of

Visual Motion", COMPUTER, 14, 20-28.

C. Thorpe, M.H. Hebert, T. Kanade, S.A. Shafer, (1988) “Vision and Navigation for the

Carnegie-Mellon Navlab”, IEEE Transactions on Pattern Analysis and Machine In-

telligence, 10, 3, 362-367. {Also published as: C. Thorpe, M.H. Hebert, T. Kanade,

S.A. Shafer, (1991) “Vision and Navigation for the Carnegie-Mellon Navlab”,

Computer Vision – Advances and Applications, IEEE Computer Press, 690-701}

C. Tomasi, T. Kanade (1990), “Shape and Motion without depth”, In Proceedings of

Image Understanding Workshop.

P.H.S. Torr, D.W. Murray (1992), "Statistical Detection of Independent Movement

from a Moving Camera", British Machine Vision Conference 1992, Leeds, 22-24

Sep 1992, 79-88.

M. Trajkovic, M. Hedley (1998), “Fast Corner Detection”, Image and Vision Comput-

ing, 16, 75-87.

R.Y. Tsai, T.S. Huang (1981), "Estimating Three-Dimensional Motion Parameters of a

Rigid Planar Patch", IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, ASSP-29, 1147-1152.

S. Ullman (1979), The interpretation of Visual Motion, MIT Press.

D. Vernon (1999), "Computation of instantaneous optical flow using the phase of Fou-

rier components", Image and Vision Computing, 17, 189-199.

H. Wang, M. Brady (1995), “Real-time corner detection algorithm for motion estima-

tion”, Image and Vision Computing, 13, 9, 695-703.

Bibliography

.
202

H. Wang, Lee (1994), "Active Mesh - A Feature Seeking and Tracking Image Sequence

Representation Scheme", IEEE Transactions on Image Processing, 3, 5, 611-624.

C.S. Wiles, M. Brady (1995), “Closing the Loop on Multiple Motions”, ECCV’95, 308-

313.

A.D. Worrall, R.F. Marslin, G.D. Sullivan, K.D. Baker, “Model-based Tracking”, Intel-

ligent Systems Group, University of Reading, Technical Report, 9 pages.

Y.S. Yao, R. Chellappa (1995), “Tracking a Dynamic Set of Feature Points”, IEEE

Transactions on Image Processing, 4, 10, 1382-1395.

D. Young (1995), "Active Contour Models (Snakes)", Sussex Computer Vision: Teach

Vision 7. On-Line http://www.cogs.susx.ac.uk/, 18 pages.

A.L. Yuille, D.S. Cohen, P.W. Hallinan (1989), "Featue Extraction from Faces using

Deformable Templates", In Proceedings of Computer Vision and Pattern Recogni-

tion, 104-109. {Repeated in: A.Yuille, P.Hallinan (1992), “Deformable Templates”,

Active Vision, The MIT Press, 21-38}

F. Yuille, N. M. Grzywacz (1989), "A Mathematical Analysis of the Motion Coherence

Theory", International Journal of Computer Vision, 3, 155-175.

Q. Zheng, R. Chellappa (1995), “Automatic Feature Point Extraction and Tracking in

Image Sequences for Arbitrary Camera Motion”, International Journal of Computer

Vision, 15, 31-76.

S.C. Zhu, T.S. Lee, A.L. Yuille (1995), "Region Competition: Unifying Snakes, Region

Growing, Energy/Bayes/MDL for Multi-band Image Segmentation", International

Conference on Vision 1995, IEEE press, 416-423.

Appendix A – Vision Techniques

.
203

Appendix A – Vision Techniques

A.1 Estimating the partial derivatives

For practical implementation of the optical flow algorithm it is necessary to be able to

estimate the partial derivatives. Each of the estimates is the average of the four first dif-

ferences taken over adjacent measurements in the image cube.

{ }1,,11,1,11,,1,1,,,1,1,1,,,1,4
1

++++++++++++ −+−+−+−≈ kjikjikjikjikjikjikjikjix EEEEEEEEE

{ }1,1,1,1,11,,1,,1,1,,1,1,,,,14
1

++++++++++++ −+−+−+−≈ kjikjikjikjikjikjikjikjiy EEEEEEEEE

E E E E E E E E Et i j k i j k i j k i j k i j k i j k i j k i j k≈ − + − + − + −+ + + + + + + + + + + +

1
4 1 1 1 1 1 1 1 1 1 1 1 1, , , , , , , , , , , , , , , ,

 A-1

The three partial derivatives of image brightness at the centre of the cube are each esti-

mated from the average of first differences along four parallel edges of the cube. In this

case i corresponds to the y-direction, j to the x-direction and k to the time direction.

Here each unit of x and y is the grid spacing and each interval of t is the frame sampling

period.

Ei,j,k Ei,j+1,k

Ei+1,j,k+1 Ei+1,j+1,k+1

Ei,j,k+1 Ei,j+1,k+1

k

Ei+1,j,k Ei+1,j+1,k

j

i

Figure A-1. Estimating the Laplacian of the Flow Velocities

Appendix A – Vision Techniques

.
204

The most common way of doing this is in the following form

∇ ≈ −2u u ui j k i j kκ , , , , and ∇ ≈ −2v v vi j k i j kκ , , , , A-2

Where the local averages of u and v are defined as

u u u u u u u u ui j k i j k i j k i j k i j k i j k i j k i j k i j k, , , , , , , , , , , , , , , , , ,= + + + + + + +− + + − − − − + + + + −
1
6

1
121 1 1 1 1 1 1 1 1 1 1 1

v v v v v v v v vi j k i j k i j k i j k i j k i j k i j k i j k i j k, , , , , , , , , , , , , , , , , ,= + + + + + + +− + + − − − − + + + + −

1
6

1
121 1 1 1 1 1 1 1 1 1 1 1

 A-3

The proportionality factor κ equals 3 if the average is computed as shown and there is

uniform grid spacing.

The Laplacian is estimated by subtracting the value at a point from a weighted average

of the values at neighbouring points. Shown in Figure A-2 are suitable weights by

which values can be multiplied.

A.2 Minimising Errors

The next step is to minimise the sum of the errors in the equation for the rate of change

of image brightness given by, ξb x y tE u E v E= + + and the departure from smoothness

in the flow by:

 ξ
∂
∂

∂
∂

∂
∂

∂
∂c

u
x

u
y

v
x

v
y

2
2 2 2 2

= 





 +









 + 






 +











A-4

1/12 1/12

1/12 1/12

1/6 -1

1/6

1/6

1/6

Figure A-2. A typical weighting system

Appendix A – Vision Techniques

.
205

Horn & Schunck (1981), let the error to be minimised be:

 ()ξ α ξ ξ2 2 2 2= +∫∫ c b dxdy A-5

Since in practice there will be quantisation error and noise, ξb will not be zero. This will

have an error magnitude that is proportional to the noise in the measurement. From this

fact Horn & Schunck choose a suitable weighting factor α2. This minimisation is to be

performed by finding suitable values for (u,v) the optical flow velocity, obtaining:

 α α2 2 2 2 2+ + = + + − −E E u E u E E v E Ex y y x y x t

 ()α α2 2 2 2 2+ + = − + + −E E v E E u E v E Ex y x y x y t

A-6

where u and v are defined on the previous page, and then rewriting these equations as:

 ()α 2 2 2+ + − = − + +E E u u E E u E v Ex y x x y t

 ()α 2 2 2+ + − = − + +E E v v E E u E v Ex y y x y t

A-7

and for an iterative solution, Horn & Schunck compute a new set of velocity estimates

()u vn n+ +1 1, from the estimated derivatives and the average of the previous velocity esti-

mates ()u vn n, by:

 u u E E u E v E E En n
x x

n
y

n
t x y

+ = − + + + +1 2 2 2α

 v v E E u E v E E En n
y x

n
y

n
t x y

+ = − + + + +1 2 2 2α

A-8

These estimates at a new point do not depend directly on the previous estimates at the

same point.

In the parts of the image where the brightness gradient is zero (e.g. uniform regions),

the velocity estimates are the averages of the neighbouring velocities. Eventually the

values around such a region will propagate inwards. The number of iterations should be

larger than the number of pixels across the region of largest area.

Appendix A – Vision Techniques

.
206

A.3 Centroid Tracking

The centroid of an object in a scene is a very useful measurement. It is defined as: the

point in a set whose coordinates are the mean values of the coordinates of the other

points in the set. On a 2-D object it is invariant through rotation and proportional scal-

ing. One particular implementation of the centroid calculation suggested by Fong et al

(1985) is especially applicable to real-time implementation. It is calculated in a similar

form to Batchelor (1991):

{ }

I
a i j i

N
ij

i j
←

×∑∑ (,)

,
 and

{ }
J

a i j j

N
ij

i j
←

×∑∑ (,)

,

A-9

Where N a i ji j
ij

, (,)← ∑∑ , in general a i j(,) = 1 or 0for a binary image.

This is a rectangular coordinate system weighted with a monotonically increasing func-

tion of distance between the origin and the points in the coordinate system. It is useful

in that it provides a very simple description of the motion that the object is undergoing

between two frames, by the use of a single vector, providing that it has been calculated

correctly. Since the object shape must be rigid, this causes problems in real-life scenes,

as the tracked point may chance on the object, but it will however still be the centroid.

A.4 Region Based Representation

For region based tracking, we generally try to extract a representation of the region to

be tracked. Some of the commonly used representations include:

Run length codes: Any region or a binary image can be viewed as a sequence of alter-

native strings of 0’s and 1’s. Run-length codes can represent these strings, or runs. For

raster scanned images these images are then represented by the (x,y) coordinate of the

first pixel in the run and the length of the run. See Ballard (1982).

Quad-Tree Method: In the quad-tree method, the given region is enclosed in a rectan-

gular region. This area is divided into four quadrants, each of which is marked if it is

totally black or totally white. The quadrant that is both black as well as white is marked

as grey and is further sub-divided into four quadrants. It appears that quad-tree coding

would be more efficient than run-length coding from a data compression viewpoint,

Appendix A – Vision Techniques

.
207

however computation of shape measurement such as perimeter and moments as well as

image segmentation may be more difficult.

Projections: A 2-D shape or region R can be represented by its projections. A projec-

tion g(s,θ) is simply the sum of the run-lengths along a straight line of orientation theta

and placed at a distance s. This is a reasonable method as the centroid and the maximum

and minimum distance from the centroid can be used for calculating the angle θ.

Watersheds: When looking at the problem of multiple overlapping objects in a scene,

morphological watersheds are extremely useful. When for example, two circles become

partially overlapped they seem like one object. Watersheds may be used to break these

circles into individual regions. See Dougherty (1992).

The use of regions as features allows handling of consistent object-level entities. With

the other algorithms of tracking feature points, it is common to group these points to-

gether into a region at a later stage. It seems possible to examine regions as the feature

points, thus removing the need to group feature points. Regions are however difficult to

describe, so that they may be accurately matched. Descriptors such as the centre of

gravity change position within the region as the area varies. Generating an approxima-

tion to the convex hull is common approach, where the positions of the vertices of the

approximation are used. The problem then becomes matching the vertices of the convex

hull so that they can be corresponded in the following frames (Meyer & Bouthemy,

1992).

A.5 Edge Detection

For a continuous edge in an image I(x,y), the derivative of the image will result in a lo-

cal maximum in the direction of the edge. This means that one simple edge detection

technique would be as follows: (see Figure A-3).

Measure the gradient of I along r in a direction θ,

 θθ
∂∂∂

sincos yx II
r
y

y
I

r
x

x
I

r
I +=∂∂+∂

∂
∂=

∂
∂ A-10

The maximum value of
r
I

∂
∂ is when

∂
∂θ

∂
∂
I
r







 = 0

Appendix A – Vision Techniques

.
208

Thus 0cossin =+− gygx II θθ A-11

⇒ =










−θg
x

y

I
I

tan 1 and
∂
∂
I
r

I I
MAX

x y






 = +2 2

A-12

Where θg is the direction of the edge and∂ ∂I r is the directional gradient. Based on

these concepts the following two types of detection operators are introduced, gradient

operators and compass operators.

A.5.1Gradient Operators

For the gradient operators a pair of masks is used, H1 and H2, which measure the gradi-

ent in two orthogonal directions. These bi-directional gradients are defined as

()g m n
m n1 1, ,

,
∆ U H 1 and ()g m n

m n2 2, ,
,

∆ U H thus the gradient vector magnitude and

direction are given by:

() () ()g m n g m n g m n, , ,= +1
2

2
2 or equivalently A-13

() () ()g m n g m n g m n, , ,∆ 1 2+ A-14

1 For an image U the inner product at the location (m,n) is given as the correlation

() () ()U H, , , , (,),m n
ji

h i j u i m j n u m n h m n∆ ∑∑ + + = ∗ − −

where H is a p p× mask

I

I

x

y qg

t
n

r q

Figure A-3. Edge detection.

Appendix A – Vision Techniques

.
209

and () ()
()θg m n

g m n
g m n

, tan
,
,

= −1 2

1

A-15

The table that follows has some of the more commonly used masks:

 H1 H2 H1 H2

Roberts 0 1
1 0−











bolded figure is the

position of the origin

1 0
0 1−










Sobel −
−
−

















1 0 1
2 2
1 0 1

0
− − −















1 2 1
0 0
1 2 1

0

Prewitt −
−
−

















1 0 1
1 1
1 0 1

0

− − −















1 1 1
0 0
1 1 1

0

Isotropic −
−
−

















1 0 1
2 2

1 0 1
0

− − −















1 2 1
0 0
1 2 1

0

Table A-1. Commonly used edge detection masks.

The pixel location is an edge point if g(m,n) exceeds a threshold t. Thus the edge map

ε(m,n) is given by:

() ()
ε m n

m n I g,
, ,
,

=
∈




1
0

 otherwise

 where (){ }I m n g m n tg ∆ , ; (,) >
A-16

The value t is commonly set from the cumulative histogram of g(m,n), so that typically

5-10% of the pixels with the largest gradient are used. Nerriec et al (1994) apply a re-

writing rules based approach at this stage, the idea of which is to reinforce the continu-

ous edges and corners, while removing noisy regions in which there are many changes

in edge direction. They define rule types of the form:

• Type-1 rules: eliminate non-realistic configurations, mainly in the intersection of

two edges.

• Type-2 rules: remove double edges, detected by several directions of analysis.

• Type-3 rules: improve quality of detections, e.g. by closing edges in a 5x5

neighbourhood and removing edges where the length is below a predefined thresh-

old.

Rosenthaler et al (1992) and Bouthemy (1989) use very similar methods.

Appendix A – Vision Techniques

.
210

The Laplacian is an edge detection operator that is an approximation to the mathemati-

cal Laplacian ∇ = +2 2 2 2 2f f x f y∂ ∂ ∂ ∂ , in the same way as the gradient is an ap-

proximation to the first partial derivatives. One simple version for the discrete version

of the Laplacian is given by:

 () ()L(,) , (,) (,) , (,)x y f x y f x y f x y f x y f x y= − + + − + + + −
1
4

1 1 1 1 A-17

The Laplacian has however some disadvantages:

• There is no useful directional information.

• Since it is a second order derivative, it enhances the high frequency noise in the im-

age (even more than the gradient method).

• The thresholded magnitude of the Laplacian also produces double edges.

For these reasons, the Laplacian is not commonly used. Probably the most commonly

used and most documented edge detection algorithm is the Canny edge detector (Canny,

1986). Many Canny implementations convolve the image with a Gaussian filter, to

smooth it and then search for maxima in the first partial derivatives of the resulting sig-

nal. The image is then convolved with 4 masks, each looking for horizontal, vertical and

diagonal edges. Whichever mask provides the largest result at each pixel is marked and

the direction is recorded. Non-maximal suppression is performed and any gradient value

that is not a local peak is set to zero. Connected sets of points are sorted into lists and

then hysteresis thresholding is performed to eliminate weak edges and retain connected

edge points. The Canny detector fails at junctions and sharp corners and the hysteresis

thresholding fails at dense edges or low noise as it is weighted to either the top or bot-

tom of the scale.

A.5.2 Compass Operators

Compass operators measure gradients in a selected number of directions. In the case of

the Kirsch operator,

5 5 5
3 3
3 3 3

− −
− − −

















0

represents the north-going edge. Each of the directions is extracted by rotating the val-

ues in the mask clockwise through 45°. To apply this method, let gk(m,n) denote the

Appendix A – Vision Techniques

.
211

compass gradient in the direction θk. So starting at north and then rotating by k times

45°, where k=0,1,…,7. Thus the gradient at (m,n) may be given by:

 () ()g m n g m n
k k, max ,∆ A-18

and thus the direction is given by θ
π π

k k= +
2 4

, where k is a maximum.

A.6 Sequences of Images

The task of estimating 3-D motion parameters and the structure of a scene from a long

image sequence is divided into three main subtasks (Cédras et al, 1995):

• The first subtask is to establish a feature correspondence between two images at

different time instants.

• The second is to compute the structure of the scene and determine the inter-

frame motion parameters.

• The third subtask is to perform motion and structure estimation from a sequence

of many views taken at many time instants, which allows the repeated observa-

tions of the same part of the scene.

Knowledge about the object dynamics and thus temporal coherence of motion can be

used further constrain the estimation processes.

A.7 Kalman Filtering

Kalman filtering is a method for computing weighted least-squares solution for a dy-

namic system. It is a sequential method in the sense that observed data is sequentially

fed into the algorithm and new estimates are calculated from the previous estimates and

the current observation. A batch method on the other hand is where all observations are

processed together in a batch fashion and estimates are determined directly from all ob-

servations. In the dynamic system that is required for this approach the batch method

cannot be used, as information must be available at each frame. See Saotta et al (1996)

for information on dynamic systems.

The recursive Kalman Filtering approach has some desirable properties over the batch

approach:

• Firstly all old observations are discarded once they have been used for estima-

tion. This is very useful if the number of estimates is ‘infinite’, as the batch

Appendix A – Vision Techniques

.
212

method would have to operate on an ‘infinite’ number of values, being both

slow and requiring ‘infinite’ storage.

• Secondly the Kalman approach is efficient as computation with only a small

number of estimates is required.

• Thirdly, the next estimate may be calculated at the time of observation, instead

of in the batch method of having to wait for all data to be collected before re-

ceiving estimates.

For a more complete description and a derivation of the Kalman filter see Jain (1989)

and Weng et al (1993).

However, sequential methods have relatively poor performance for non-linear prob-

lems. Early observations are especially inaccurate since the estimated system matrices

(Jacobian matrices) are not updated initially, meaning that parameter values close to the

initial guess are used. These inaccurate estimates require several frames before they be-

gin to converge to the actual state trajectory. This accounts for the Kalman approach, in

general requiring 20 to 40 frames before it converges to acceptable solution. This is not

a problem in the linear case as the system Jacobian matrix is constant. In general by

properly defining the states and observations, it is possible to convert the non-linear

Kalman filtering problem into a linear Kalman filtering problem, dramatically improv-

ing the performance of the algorithm. See Tesei & Regazzoni (1994).

Weng et al (1993) developed a recursive-batch approach that achieves good perform-

ance without suffering from excessive computational cost. This is achieved by using

relatively small batch sizes. This approach is recursive since it estimates, based on the

current batch of data and the previous estimate, where the processing algorithm uses a

certain length (batch size) of the sequence. This method has the advantages:

• It can process virtually infinitely long image sequences with a limited physical

memory.

• The algorithm is efficient since only a relatively small amount of computation is

required to update the estimates.

• The algorithm is claimed to out-perform the Kalman approach, as the data is

calculated in a batch fashion in which each overlapping batch sufficiently covers

the interaction among data.

Appendix A – Vision Techniques

.
213

The algorithm of Weng et al is a straight combination of the recursive and batch ap-

proach. If an infinite batch length is used in the recursive-batch approach then it be-

comes the batch approach. On the other hand if a batch size of 1 is used then the recur-

sive-batch approach becomes the recursive approach. The choice of a good batch size is

thus vital to the recursive-batch approach.

A.8 Motion Events and Image Sequences

In general image sequences are captured at a constant frame interval, but not necessarily

so when using motion events. When using motion events it has been found that using

sequences of images between motion events (i.e. with low activity & discontinuities)

are experimentally better for extracting information than standard time sampled image

sequences. (Cédras et al, 1995)

Motion events are defined as: significant changes or discontinuities in motion. It has

been found that the changes in direction and speed of motion of an object can give sig-

nificant information about an object. Events can be extracted by evaluating the scale-

space2 of the x-velocity curves and y-velocity curves at different scales extracted from a

trajectory. The shape of the curves and other features can help distinguish the type of

motion that has been undergone, e.g. translation can be classified as either straight line

or curved. Motion events can also be applied to more complicated sequences, like hu-

man motion. They are widely applicable and can be used in conjunction with other

types of features.

2 Non-regular sampling time means we must transform the data to a scale-space to get meaningful results.

 Appendix B – Implementation Issues of the Self-Adaptive Active Mesh

.
214

Appendix B – Implementation Issues of the Self-
Adaptive Active Mesh

The initial implementation of the active mesh made no provision for allowing mesh

nodes to be added or removed from the mesh, once the mesh had been created. It be-

came clear that this facility would have to be introduced to the mesh so that it could op-

erate over multiple image frames, where feature points may become occluded for a

number of frames, or new strong feature points may become apparent that were not pre-

sent in the initial frame.

So, some of the advantages of a self-adaptive mesh would include:

• Features that became occluded in the mesh could be removed if required.

• New strong features that appeared in the sequence could be added to the mesh as

new mesh nodes

• Other facilities could be implemented to add and remove nodes from the mesh –

a higher-level process.

• The features go out of view of the camera could also be removed from the mesh.

(a) (b)

Figure B-1. The initial frame is loaded in (a) and in (b) the new frame is loaded.

 Appendix B – Implementation Issues of the Self-Adaptive Active Mesh

.
215

It was decided that the mesh be constructed as an iterative Delaunay mesh. The reason-

ing behind this was clear. An iterative Delaunay mesh is always a Delaunay mesh, even

as it is being constructed. As mentioned previously the structure of the mesh must be

conserved to some degree for the combination of mesh forces and the implementation

of the internal energies. Following this idea, nodes could be added or removed from the

mesh as the sequence progressed and the mesh should always conform to the Delaunay

principles.

However the implementation evolved to be much more difficult than was first expected.

The first issue was keeping the mesh up-to-date as the sequence evolved. Figure B-1(a)

shows the initial frame as it is loaded and the mesh is initialised on the image. The

Mesh is shown around the square, the circumcircles is shown circling the object and the

Voronoi regions are shown as a ‘cross’. Figure B-1(b) shows a new frame loaded in the

sequence. The Mesh remains in the same location initially and so do the Voronoi and

circumcircle.

(a) (b)

Figure B-2. The mesh settles on a new location after 10 iterations and in (b) the Circumcircle parameters
must be updated for it to remain associated with the mesh.

 Appendix B – Implementation Issues of the Self-Adaptive Active Mesh

.
216

Figure B-2(a) shows what occurs when the mesh moves from one frame to the next af-

ter the mesh has been initialised in the first frame. The mesh location updates to the new

position of the object, but the Delaunay circumcircles stays stationary in the initial loca-

tion at which it was initialised. It was necessary to update the location of the circumcir-

cles to maintain the Delaunay structure of the mesh for the addition or removal of future

points, as shown in Figure B-2 (b). The addition of code to update the circumcircles in

the algorithm solved many problems with the mesh becoming unstable during the addi-

tion of mesh nodes, but problems still resulted from time to time as described below.

In Figure B-3 a force is applied to the top left node of the mesh. This force pulls the

node from being on the circumcircles of the other three points. The mesh is no longer

correct as discussed previously and the update algorithm is performed giving the image

as in Figure B-3 (b). As can be seen, the Voronoi diagram and the circumcircles have

been corrected to reflect the changes in the mesh. In Figure B-4(a) the problem case is

starting to emerge. When the node is now forced in towards the centre of the mesh, the

Voronoi diagram can be seen to be visibly incorrect. The update algorithm was devel-

oped to solve this problem and the resulting mesh is shown as in Figure B-4(b). Note

Figure B-3. Top left node of the mesh moved in (a) and the new mesh update performed to update the
circumcircles and the Voronoi diagram as in (b).

 Appendix B – Implementation Issues of the Self-Adaptive Active Mesh

.
217

that the mesh diagonal line has been swapped to conform to the min-max angle crite-

rion. The mesh is now in a correct form.

Figure B-5 shows the problem case re-occurring if the top-left mesh node is once again

pulled away from the mesh. The mesh lines must once again be swapped. However in

(b) not the problems that can occur if a mesh node is added to the triangulation inside

the second Voronoi region after the mesh has been pulled, before the update. This mesh

node causes a mesh to be created that is a non-Delaunay mesh, certainly leading to

problems in later stages.

These problems start to emerge in Figure B-6 (a) when the top left node is removed

from the mesh. Once this node is removed the centre node is connected to the top right

corner of the mesh, but once the node is added again to the mesh the connection is es-

tablished again to the that node. The mesh is not performing as a Delaunay mesh and in

Figure B-7 the mesh eventually breaks down and cannot be used in the Active mesh al-

gorithm, as there no longer exists a triangular structure that is required. The centre node

has been removed from the mesh, but does not remove completely, leading to a single

line connection existing without an associated triangle.

Figure B-4. Problem case starting to occur as in (a) and in (b) the update algorithm swaps the vertices to
account for this problem. The mesh is correct again.

 Appendix B – Implementation Issues of the Self-Adaptive Active Mesh

.
218

Problems within the mesh were difficult to determine on the update algorithm and diffi-

cult to fix at this point. The update algorithm was therefore re-written to delete and then

re-construct the part of the mesh that was estimated to be problematic.

Figure B-5. If the node is once again pulled then the problem case re-occurs and the vertices must be
swapped again. In (b) however a node is added to the mesh, the mesh is not conforming to the Delaunay
principles and the mesh is incorrect.

Figure B-6. In (a) if the top left node is deleted and in (b) if it is once again added to the mesh.

 Appendix B – Implementation Issues of the Self-Adaptive Active Mesh

.
219

Figure B-7. In (a) serious problems occurring in the mesh when the centre node is removed from the mesh
and in (b) the same image just displaying the mesh.

Appendix C – Full Image Result Sets

.
220

Appendix C – Full Image Result Sets.

Figure C-1. The mug sequence Frame 1 the initialised mesh.

Figure C-2. The mug sequence Frame 12 the mesh has followed the mug.

Appendix C – Full Image Result Sets

.
221

Figure C-3. The mug sequence vector tracked over 12 frames

Figure C-4. The parking sequence showing the mesh initialised on Frame 1.

Appendix C – Full Image Result Sets

.
222

Figure C-5. The parking sequence has 12 frames. This result was calculated using only the first and last
image frame.

Figure C-6. Shrubbery Sequence using all 24 frames.

Appendix C – Full Image Result Sets

.
223

Figure C-7. Shrubbery Sequence using only first, middle and last Frames.

Figure C-8. Town Sequence (6 frames) using only the first and last frames

Appendix C – Full Image Result Sets

.
224

Figure C-9. Another 6 frames from the town sequence, again skipping 4 frames, using only the first and
last frames.

Figure C-10. A building sequence using 20 frames.

Appendix C – Full Image Result Sets

.
225

Figure C-11. The SRI Laboratory Sequence. In (a) the start frame and the mesh and in (b) the end frame
and mesh

Figure C-12. The SRI Laboratory Sequence resulting vectors. Note that the vector paths are longer in the
foreground than in the background parts of the image.

Appendix C – Full Image Result Sets

.
226

Figure C-13. The College sequence results calculated using only the first and 20th frame.

Appendix D – Algorithm Class Diagrams

.
227

Appendix D - Algorithm Class Diagrams

Figure D-1. The main structure and some of the tools classes.

Appendix D – Algorithm Class Diagrams

.
228

Figure D-2. The main structure and some of the loaders classes.

Appendix D – Algorithm Class Diagrams

.
229

Figure D-3. The main structure and some of the filter classes.

Appendix D – Algorithm Class Diagrams

.
230

Figure D-4. The main structure and some of the filter classes.

Appendix D – Algorithm Class Diagrams

.
231

Figure D-5. The main structure and some of the filter classes.

Appendix D – Algorithm Class Diagrams

.
232

Figure D-6. The main structure and some of the dataType classes.

Appendix D – Algorithm Class Diagrams

.
233

Figure D-7. The main structure and some of the dataType classes.

Appendix D – Algorithm Class Diagrams

.
234

Figure D-8 The main structure and some of the dataType classes.

Appendix D – Algorithm Class Diagrams

.
235

Figure D-9. The main structure and some of the dataType classes.

Author’s Publications

.
236

Author’s publications related to this work.

• D. Molloy, T. McGowan, K. Clarke, C. Mc Corkell, P.F. Whelan (1994), "Application of ma-

chine vision technology to the development of aids for the visually impaired", in Machine Vision

Applications, Architectures, and Systems Integration III, Proc. SPIE 2347, 31 Oct-2 Nov, Boston

USA, 59-69.

• D. Molloy, P.F. Whelan (1996), "Motion Discrimination in Applied Vision Systems", Dublin

City University, School of Electronic Engineering, Internal Technical Report, 26th March 1996.

• D. Molloy, P.F. Whelan (1997a), "Robotic navigation using self-initialising active contours", In-

telligent Robots and Computer Vision XVI: Algorithms, Techniques, Active Vision, and Materi-

als Handling, Pittsburgh, Oct. 1997, Proc. SPIE Vol.3208.

• D. Molloy, P.F. Whelan (1997b), "Self-Initialising Active Contours for Motion Discrimination",

Proc. IMVIP'97 - Irish Machine Vision and Image Processing Conference 1997, 10 - 13 Sep-

tember 1997, University of Ulster, Northern Ireland, pp 139 - 146.

• D. Molloy, P.F. Whelan (1999a), "Motion Tracking using Self-Initialising Active Meshes", The

I.E.E. Seventh International Conference on Image Processing and its Applications, University of

Manchester, UK: 12-15 July.

• D. Molloy, P.F. Whelan (1999b), “Active-Mesh Self-Initialisation”, IMVIP’99 Irish Machine

Vision and Image processing Conference 1999, September 1999, Dublin City University. pp

116 - 129.

Submitted for Pattern Recognition Letters 28th December 1999.

• As: PATREC 1629: Active-meshes (Molloy, D. and P. F. Whelan).

Book in progress:

• P. F. Whelan, D. Molloy, “Machine Vision Algorithms in Java: Techniques and Implementa-

tion”. To be published by Springer-Verlag, September 2000.

