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Abstract

Cardiac morphology is a key indicator of cardiac health. Important metrics that
are currently in clinical use are left-ventricle cardiac ejection fraction, cardiac
muscle (myocardium) mass, myocardium thickness and myocardium thickening
over the cardiac cycle. Advances in imaging technologies have led to an increase
in temporal and spatial resolution. Such an increase in data presents a laborious
task for medical practitioners to analyse.

In this thesis, measurement of the cardiac left-ventricle function is achieved
by developing novel methods for the automatic segmentation of the left-ventricle
blood-pool and the left ventricle myocardium boundaries. A preliminary chal-
lenge faced in this task is the removal of noise from Magnetic Resonance Imaging
(MRI) data, which is addressed by using advanced data filtering procedures. Two
mechanisms for left-ventricle segmentation are employed.

Firstly segmentation of the left ventricle blood-pool for the measurement of
ejection fraction is undertaken in the signal intensity domain. Utilising the high
discrimination between blood and tissue, a novel methodology based on a sta-
tistical partitioning method offers success in localising and segmenting the blood
pool of the left ventricle. From this initialisation, the estimation of the outer wall
(epi-cardium) of the left ventricle can be achieved using gradient information and
prior knowledge.

Secondly, a more involved method for extracting the myocardium of the left-
ventricle is developed, that can better perform segmentation in higher dimen-
sions. Spatial information is incorporated in the segmentation by employing a
gradient-based boundary evolution. A level-set scheme is implemented and a
novel formulation for the extraction of the cardiac muscle is introduced. Two
surfaces, representing the inner and the outer boundaries of the left-ventricle, are
simultaneously evolved using a coupling function and supervised with a proba-
bilistic model of expertly assisted manual segmentations.

Finally, to fully utilise all data presented from a single 4D cardiac (3D + t)
MRI scan a novel level-set segmentation process is developed that delineates and
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tracks the boundaries of left ventricle. By encoding prior knowledge about car-
diac temporal evolution in a parametric framework, an expectation-maximisation
algorithm tracks the myocardium deformation and iteratively updates the level-
set segmentation evolution in a non-rigid sense.

Both methods for the extraction of cardiac functions have been tested on pa-
tient data and provide positive qualitative and quantitative experimental results
when compared against expertly assisted segmentations.



Chapter 1

Introduction

An estimated 17 million people die annually from Cardiovascular Disease (CVD).
In general, CVD claims more lives each year than the next five leading causes of
death combined. The World Health Organisation’s 2002 report [119], states that
29.3% of deaths in its 191 countries were as a result of CVDs. It is these alarming
statistics that has initiated the substantial research into accurate measurements
of the heart for the determination of cardiac health through diagnostic imaging.
The diagnosis and monitoring of cardiovascular disease, and the planning for ap-
propriate treatment relies on accurate imaging, analysis and visualisation of the
heart.

Advances in diagnostic imaging technology, in particular Computer Tomog-
raphy (CT) and Magnetic Resonance (MR), has enabled greater amounts of in-
formation, in both the spatial and temporal dimensions to be generated. This
high-resolution volumetric data, as a function of time, can give important phys-
iological information about the heart. The increase in data available has made
the hand annotation performed by the physician a very time-consuming task.
This has pushed the advancement toward semi-automated and fully-automated
approaches to quantify the results obtained from these high resolution scanners.
A substantial amount of research is focusing on the accurate measurement of
shape, volume and shape dynamics of the heart structure. This thesis develops
the methodology for the automatic, quantitative and clinically relevant cardiac
analysis in multidimensional data.

1
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1.1 Motivation

Quantitative measurement of the left ventricle of the heart is used as a key indi-
cator of cardiac health. The left ventricle is important as it pumps oxygen-rich
blood around the body. The increased volume of data generated by the latest
medical scanners presents a vast amount of high resolution volumetric data to
be interpreted by the specialist. Interpreting and analyzing this large amount of
data represents a tedious and time-consuming task for the cardiologist. Manual
or highly supervised tracing of the cardiac boundaries is a widely used method
to segment the left ventricle myocardium in current clinical studies. In one such
scenario, a skilled operator, using a tracking ball or a mouse, manually traces
the region of interest on each slice of the volume [100, 46, 164]. Manual slice
editing suffers from many drawbacks. These include the difficulty in achieving
reproducible results, operator bias, forcing the operator to view each 2-D slice
separately to deduce and measure the shape and volume of 3-D structures, and
operator fatigue. Since manual segmentation is labour-intensive, time-consuming
and can suffer from inter- and intra-observer variability, the prospect of an au-
tomatic and accurate segmentation is highly desirable. Automatic segmentation
will therefore enhance comparability between and within cardiac studies and
increase accurate evaluation of volumes by allowing acquisition of thinner MRI-
slices.

1.2 Aims

The main objective of this thesis is to outline the work carried out for the extrac-
tion of volumetric data and shape descriptors from MR images of the heart and
to quantify the analysis against a standard of reference. Analysis of the heart
function is achieved through segmentation of the left ventricle (LV). From this
accurate segmentation prognostic measurements used in the diagnosis of CVDs
are obtained, these include the ejection fraction (EF) of the left ventricle cavity,
left ventricle mass (LVM) of the myocardium and wall thickness and thicken-
ing (WT) of the left ventricle myocardium. Therefore the expected outcome of
the work is to assist the cardiologist in the prognosis of CVDs by delineating
the true anatomical features present in the image and avoid making assumptions
over reading what is present. Cardiac Magnetic Resonance (CMR) is the imaging
modality chosen for this study. It is non-invasive, provides high temporal and
spatial resolution and high contrast between blood and the myocardium.
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This thesis describes the methodology that identifies the boundaries of the
left ventricle of the heart with minimum user interaction. The delineation allows
for the calculation of key measurements that may show anomalous heart function
and therefore may indicate CVD.

1.3 Challenges

There are a number of challenges involved in the delineation of the left ventricle
from MR image. Medical images are acquired using the natural and unique re-
sponse of the bodies tissues to metabolic or nuclear changes. These changes are
not ideal and this introduces noise into the image acquisition process in the form
of image distortions.

Image distortions can be attributed to many factors, for example there is
random image noise, blurring effects due to patient movement and coil intensity
fall-off. Added to this, is the heterogeneous properties of the tissues, partial
voluming effects between the endocardium and the left ventricle blood pool, par-
ticularly at the apex and at end-systole due to the presence of trabeculae carneae.
In cine-MRI the variation of intensity within a tissue is increased because it may
take several cycles of inducing a signal followed by measurement to image the
entire sequence. This leads to gray-scale variations between image slices.

In short, there are many challenges that prevent the accurate delineation of
the left ventricle myocardium due to the presence of noise in the image, heart
dynamics and uneven breath-holds. The developed procedure must remove the
ambiguous nature of the images while maintaining the strong anatomical features
before an accurate segmentation is achieved.

As previously mentioned, modern scanners create a large amount of data in
both temporal and spatial domains. Therefore the developed algorithms should
utilise all the information available. Anatomical structures are represented in 3D
and therefore the segmentation process of such structures are most accurately
extracted using 3D algorithms. Temporal coherence can also be introduced to
increase the robustness of the segmentation. Prior knowledge is often used in med-
ical imaging analysis schemes to localise and extract anatomical features. This
thesis incorporates prior knowledge in the temporal domain as a generic measure
of temporal coherence which is iteratively refined, as opposed to prior models
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encoded in the image domain where there may be large variation in anatomical
morphology. Hence, one of the largest challenges undertaken in this thesis is to
incorporate both spatial and temporal information in a meaningful way to im-
prove the accuracy and robustness of the segmentation.

1.4 Contributions

Based on the challenges outlined in the previous section, the major contributions
of this work lie in the segmentation of the left ventricle myocardium in multidi-
mensional MRI data. There are a number of stages that are adopted and these
constitute the major contributions to this work.

Firstly, in order to reduce the inherent noise associated with MRI images,
a performance characterisation of advanced smoothing filters is performed. The
characterisation is performed in both 2D and in 3D.

A novel method for segmentation and localisation of the left ventricle blood
pool using an unsupervised clustering technique is presented in Chapter 4. This
technique is approached in both a slice by slice and volume image context. After
the segmentation of the left ventricle blood pool cavity, an heuristic approach is
developed to extract the outer walls of the myocardium in each image slice. This
technique is based on gradient information in the image and where such infor-
mation is lacking, a prior model of previously segmented myocardium images is
incorporated into the segmentation. While this approach gives favorable results
in good quality data, introduction of temporal information into this framework
is cumbersome. Therefore a more involved approach is proposed that can easily
incorporate extension to 4D data.

Describing a contour as a particular instance of a higher dimensioned func-
tion in the Eulerian space has many advantages. Firstly, errors associated with
sampling of the contour are eliminated as the approach is non-marker based.
The deformation is numerically stable and has the ability to handle topological
changes during the deformation. In Chapter 5 a novel methodology of level-sets
is introduced that evolves a coupled surface, representing the inner and outer wall
of the left ventricle myocardium. The deformation is guided using a probabilistic
model of manual segmentations.
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Finally, the Eulerian formulation of the level-set is exploited in a novel fash-
ion to extend the deformation in a supervised way to 4D. A temporal model is
constructed for each grid point in Eulerian space using prior knowledge about
cardiac motion. This parametric model is then iteratively refined during the seg-
mentation process to capture the myocardium boundaries. This novel approach
has many advantages. Firstly, it performs a temporal smoothing of the segmented
contours through the cardiac cycle that follows the temporal model from the user
defined motion model. Secondly, the model is defined in temporal space and is
therefore free from the highly variable anatomical features of the cardiac muscle
in image space. The human left ventricle has a harmonic pumping motion which
can be modelled for both healthy and unhealthy hearts and is relatively inde-
pendent of the highly variant cardiac anatomy. Thirdly, initial estimates for the
parametric model found through a fast marching algorithm and the parameters
are then iteratively updated using an expectation-maximisation algorithm.

Hence, segmentation of the left ventricle in cardiac MRI data is approached
in a systematic way, at each step increasing the dimensionality of the problem
and incorporating more knowledge and information in more involving method-
ologies. Initial approaches are based on signal intensity values in 2D and 3D
images for the segmentation of the cardiac blood pool followed by a 2D model
assisted segmentation of the outer wall of the left ventricle myocardium. In the
second phase, a coupled deformation of surfaces is introduced for both the inner
and outer boundary which is also guided by models of manually annotated mod-
els. In the final stages, temporal information is introduced in a knowledge based
way to model the left ventricle motion and ensure smooth temporal transition of
segmented surfaces.

1.5 Thesis Overview

This thesis details the progression of ideas for the segmentation of the left ventricle
of the heart from multi-dimensional MRI data. Based on the challenges outlined
in the previous sections, the thesis details each of the steps.

Chapter 2 gives a background to the problem. This chapter deals mainly with
cardiac anatomy, dynamics and clinically relevant measurements associated
with diagnosing CVDs. An introduction to some of the most common med-
ical imaging modalities, an in-depth discussion on MRI and the difference
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acquisition procedures. And finally a brief overview of image processing
and in particular on medical image analysis.

Chapter 3 details the methods employed in image noise suppression. The ad-
vantage of non-linear smoothing over linear smoothing is investigated in 2D
before a performance characterisation of three non-linear filters applied to
MRI data is performed in 3D.

Chapter 4 gives the particulars on how statistical based segmentation algo-
rithms can be used to accurately measure the left ventricle blood pool
volumes and consequently the measurement of ejection fraction. Heuristic
methods for the segmentation of the outer boundary of the cardiac mus-
cle in 2D are detailed and deficiencies associated with this approach are
discussed.

Chapter 5 introduces boundary based methods as an alternative approach in
order to circumvent some of the limitations of the statistical based ap-
proaches. An overview of previous approaches are detailed. Gradient based
level-set segmentation approaches are proposed as an accurate method of
segmentation in higher dimensioned data. A novel method for the segmen-
tation of 3D+t (4D) is introduced. This method employs a parametric prior
model encoded in the temporal domain which is iteratively updated using
a expectation-maximisation algorithm.

Chapter 6 concludes the thesis, outlining the novel methods developed, dis-
cussing the results obtained and recommending how these approaches may
be advanced or can be applied to other temporally variant anatomical struc-
tures.

Appendix 1 describes the application of an expectation-maximisation algorithm
for partitioning data in medical images.

Appendix 2 details the application of the level-set algorithm to perform accu-
rate segmentation of polyps in CT colonography.



Chapter 2

Background

This chapter gives a brief overview of three distinct areas involved in this project.
Firstly, an introduction to the heart, its function, some terminology and the clin-
ical measurements that are to be extracted from cardiac specific images acquired
of the thorax. Next, an overview of the imaging modalities used in cardiac imag-
ing, moving to explain why MRI is the chosen modality for this investigation.
This is followed by a discussion on the basics of MRI also mentioning the main
protocols in common use will ensue. Finally, a background is given on work that
has being investigated in the image processing area and in particular in the field
of medical imaging and cardiac analysis. In this section a review is given of the
most relevant literature published on the subject.

2.1 The Heart

The heart can be thought of as the “pumping station” of the body. Situated
between the third and sixth ribs in the center of the thoracic cavity of the body,
the heart is a hollow conically shaped muscle about the size of a clenched fist,
12-13cm along its major axis and 7-8cm at its widest point [101, 58]. It rests
on the diaphragm between the lower part of the two lungs. Its function is to
pump oxygen and nutrient rich blood around the cardiovascular system, where
it supplies the oxygen to the cells. The de-oxygenated blood then returns to the
heart before being pumped to the lungs to collect more oxygen. The oxygen-rich
blood then proceeds back to the heart before it is sent around the cardiovascular
network again.

7
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2.1.1 Morphology

The heart is a hollow muscle that is divided internally into four separate cham-
bers. The heart muscle itself is divided into three layers, the epi-cardium is the
outer protective layer, the middle muscular layer is referred to as the myocardium
while the inner layer is known as the endo-cardium.

Figure 2.1: Anatomy of the heart. From
Gray’s Anatomy [58].

The heart is divided down the cen-
ter with a strong muscle wall called
the interatrial-interventricular sep-
tum into a cylindrical left side
and a more crescent shaped right
side. The right side of the heart is
again divided in two with the upper
atrium or auricle separated from the
lower ventricle with a one-way valve
called the - Tricuspid valve. Simi-
larly, the left side is divided into the
left-artrium and left-ventricle with
the Bicuspid or mitral valve. In
order of size, the left-atrium is the
smallest chamber, holding approx-
imately 45ml at rest, and having
a wall thickness of approximately
3mm. This is followed by the right-atrium, with a typical capacity of 63ml

and wall thickness of 2mm, the left ventricle with a 100ml capacity and a wall
thickness as high as 12mm and finally the right atrium which can hold up to
130ml with a wall thickness of 4mm. The varying wall thickness is a result of the
normal operating pressure of each of the chambers and is explained in the next
section. Each of the chambers has an associated major vessel either supplying
blood or transporting blood away. The left ventricle has the aorta, joined using a
one-way aortic valve, the left atrium has the pulmonary vein, the right ventricle
has the pulmonary artery which is closed with the pulmonary semi-lunar valve
while the right atrium is supplied from the superior and inferior venae cavae and
the coronary sinus. Disease associated with the valves is mainly caused from con-
genital abnormalities, degeneration or infection and can result in leakage through
the valve. In the most common type of valvular disease the mitral valve or aortic
valves are frequently affected. With mitral dysfunction, the blood is allowed to
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regurgitate back to the left atrium increasing pressure in that atrium.

Also present in both ventricles are thin columns of muscle along its length,
these are referred to as trabeculae carnæ. The papillary muscles are thin muscles
protruding from the walls of both ventricles and are connected to their respec-
tive atrioventricular valves. Both the trabeculae carnæ and papillary muscles are
more pronounced in the left-ventricle.

The heart itself needs to be supplied with oxygen-rich blood and the measure
of blood supplied to the heart is called myocardium viability. Coronary circu-
lation is achieved through two main arteries, the right coronary artery and left
coronary artery. Both of these arteries stem from the ascending aorta. Blood is
returned via the coronary sinus. Over time, the coronary arteries may become
clogged from a build-up with fat, cholesterol, triglycerides and calcium. This
build-up prevents the coronary arteries from functioning properly, and interferes
with the delivery of an adequate supply of blood to the heart muscle. Ninety five
percent of all coronary artery disease is due to this atherosclerosis, the build-up
of fatty substances. The insufficient blood supply to the heart is called ischemia.
Myocarditis is inflammation of the myocardium, the muscular part of the heart.
It is generally due to infection (viral or bacterial). It may present with rapid
signs of heart failure.

For clinical evaluation of cardiac anatomy and motion, a standard left ventri-
cle representation has been developed [24] whereby the cardiac muscle is divided
into 17 segments, Figure 2.2. These 17 segments creates a distribution of 35%,
35% and 30% for the basal, mid cavity and apical thirds of the heart, which is
close to the observed autopsy data.

2.1.2 Dynamics

The heart has two distinct phases, diastole and systole. The diastole, or filling
cycle, occurs when the muscle relaxes and the left and right ventricles fill with
blood from the respective atria, this can take 480 ms of the complete 750 ms

cycle. During this cycle the tricuspid and mitral valves are open while the aor-
tic and semi-lunar pulmonary valves are closed. When the end-diastole volume
(EDV) has being reached the heart sends an electronic pulse for the systole cycle
to start. The systole phase is much shorter where the muscle contracts and closes
the tricuspid and mitral valves while opening the aortic and pulmonary valves.
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Figure 2.2: Diagram of the vertical long-axis, horizontal long-axis and short-axis
planes showing the name, location and anatomical landmarks for the selection of
basal, mid-cavity and apical short axis slices for the 17 segment system.

Approximately half of the ventricles capacity is emptied during the systolic phase,
the remainder is called the cardiac reserve volume. The cardiac cycle is timed
using the hearts own intrinsic nervous system and can survive in-vitro for several
hours. The main switch in the nervous system is called the Sinus Node, this
triggers the AV Node which in turn connects to the Bundle of His to conduct
the triggering pulse through the septum of the heart.

The ventricular working pressures are much higher than atria pressures. The
left and right ventricles have an approximate working pressure of 140 mmHg

and 40 mmHg respectively, this gives rise to the left ventricle muscle being three
times thicker than that of the right ventricle.

2.1.3 Measurements

The volumetric data acquired with time can produce a number of important mea-
surements that can indicate disease of the heart [48]. While these descriptors are
well documented in research literature [43] they are not always clinically assessed
in everyday practice.
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In practice, clinical measurements still rely on global volumetric measure such
as left-ventricle end-diastolic volume (EDV), end-systolic volume (ESV) and mass
(LVM). These are then used in conjunction with other measurements to calculate
the stroke volume (SV), cardiac output (CO) and ejection fraction (EF). The in-
clusion of papillary muscles and trabeculations is still undecided and is usually
dependent on the center performing the scan. Recent research [138] has shown
that the difference between subtracting and not subtracting the papillary muscles
and trabeculations has little clinical relevance when calculating the left ventricu-
lar volumes and ejection fractions. The extraction of the epi-cardium boundary
aids the accurate measurement of wall thickening (WT) over the cardiac cycle,
this can indicate areas with reduced contractibility.

• End-diastolic volume (EDV) and End-systolic volume (ESV) is the
amount of blood contained in the left ventricle at its maximum and mini-
mum respective capacities, measured in ml.

• Left ventricle mass (LVM) is an important indicator for left ventricle
hypertrophy (LVH). LVH is an enlargement of the muscle fibers of the
left ventricle, mainly around the interventricular septum. LVH is a late
complication of congestive heart disease and cardiac arrhythmias. The LVM
is measured to be the volume (cm3) enclosed by the epi-cardium boundary
minus the left ventricle cavity and multiplied by the density of muscle tissue
(1.05g/cm3).

LVM = 1.05× (Vepi − Vendo) (2.1)

• Stroke Volume (SV) is the volume (cm3) of blood ejected from the left
ventricle between the end-diastole and the end-systole. This value can then
be normalised to body surface area and called the stroke-volume index
(SVI).

SV = Vendo(tD)− Vendo(tS) (2.2)
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where Vendo is the volume of the left ventricle cavity, Vendo(tD) = maxt[Vendo(t)]
at end-diastole and Vendo(tS) = mint[Vendo(t)] is the end-systole.

• Ejection Fraction (EF) is the percentage of blood ejected from the left
ventricle with each heart beat, and can be represented by the equation:

EF(%) =
Vendo(tD)− Vendo(tS)

Vendo(tD)
× 100 (2.3)

• Cardiac output (CO) is the amount of oxygenated blood supplied to
the body (ml/min). This can be normalised to the body surface area and
called the cardiac index (CI). The calculation is shown in Eq. 2.4 where HR
is the heart rate.

CO = (Vendo(tD)− Vendo(tS))×HR (2.4)

• Wall thickening (WT) is the measurement of the myocardium thickness
over time (mmt). This can give a direct indication to the myocardial viabil-
ity and therefore can forecast ischemic disease. The wall thickness can be
computed using the centerline method, along lines that are perpendicular to
a curve that is equidistant from both the endo- and epi-cardial boundaries.

2.2 Imaging Modalities

In this section the reader is given a brief introduction into the imaging modalities
that are commonly used for cardiac analysis. A brief description of each method
is given along with their advantages and disadvantages. This is followed by a
brief discussion on the suitability of MRI in cardiac analysis, a more in-depth
background describing some of the physics involved and the different protocols
in clinical use.

2.2.1 X-Ray with Angiocardiology

X-ray angiocardiography (XRA) is a projection image of the left ventricle usually
in the oblique view after a contrast agent has being injected into the ventricle via
a pigtail catheter. In XRA the contrast agent is not uniformly spread throughout
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the left ventricle because of the dilution with blood at the mitral valve. It may
not reach to the apex of the heart and there is also a limitation on the amount of
contrast agent used due to the risk to the patient. Surrounding structures such
as ribs can be removed from the image using Digital Subtraction Angiography
(DSA). DSA involves a temporal subtraction where the image obtained without
a contrast agent is subtracted from the contrast image. Complications associated
with cardiac angiography are cardiac arrhythmias (irregular heartbeat) and em-
bolism (by dislodging plaque from the artery wall while treading the catheter).
XRA can be used for the calculation of the ejection fraction using geometric ap-
proximations [43] but cannot be used for the calculation volumes or delineating
the epi-cardial boundary.

2.2.2 Cardiac Ultrasound

Cardiac ultrasound is a tomographic imaging system, it is relatively cheap, non-
invasive and can image on arbitrary planes [24]. It gives low contrast when
compared to MR and X-ray, cannot image through gaseous mediums and has a
low signal-to-noise ratio due to frequency attenuation in the tissue. The signal-
to-noise ratio is further reduced in cases where the patient presents obesity. 3D
ultrasound [88, 125] has being introduced and can quantify ventricular volumes
and myocardium mass without the need for geometric models. Ultrasonographic
heart images suffer from the need for acoustic windows, operator subjectiveness
and are often characterised by weak echoes, echo dropouts and high levels of
speckle noise causing erroneous detection of the LV boundaries.

2.2.3 SPECT/PET

Single-photon Emission Computed Tomography (SPECT) and Positron Emission
Tomography (PET) scans are part of the non-invasive nuclear imaging techniques.
SPECT was introduced in the 1970’s and is used to detect subtle metabolic
changes in the organ under investigation. PET was introduced shortly after
SPECT because of its increased temporal resolution. Both methods work by the
injection of radionuclides (radioactive isotopes) into the organ under investiga-
tion. These radionuclide tracers are absorbed at different rates by the healthy
and dysfunctional muscle. While these methods are good for the measurement of
metabolic changes, the resolution does not lend to the delineation of anatomical
structures in the image.
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2.2.4 Computer Tomography

A traditional X-Ray Computer Tomography (CT) scan is an X-Ray procedure
which combines many X-Ray images with the aid of a computer to generate
cross-sectional views of the body. CT is increasingly used in cardiac analysis. It
provides increasing resolution in data with the introduction of the 64 slice CT
and is particularly useful for evaluating coronary atherosclerosis. With conven-
tional CT, cardiac motion causes blurring and artifacts in the image but advances
such as Electronic Beam Computer Tomography (EBCT), Ultrafast R© and Dual-
Source CT have increased the acquisition time sufficiently to capture the beating
heart. These approaches can be gated to capture information at a precise phase
in the hearts cycle. However CT suffers from low contrast between soft tissues
like blood and myocardium and the patient is exposed to ionising radiation.

2.2.5 Magnetic Resonance Imaging

Magnetic Resonance Image (MRI) was first introduced in medical imaging in
1971. Since its introduction cardiac magnetic resonance (CMR) has progressively
improved with increased spatial and temporal resolution. CMR is considered by
some authors [43, 128, 130] to be the standard of reference for evaluating the
cardiac function. MR has proved to be more accurate than echo-cardiology and
cardiac angiography in the calculation of the ejection fraction and also has shown
superior results in endo-cardium border segmentation [128]. MRI boasts a wide
topographical field of view and high contrast between soft tissues without the
need for a contrast agent. It is non-invasive with high spatial resolution and
can be gated using an electrocardiogram (ECG) at different phases during the
hearts pulse [158, 102]. However, it can suffer from noise and grey scale variation
between adjacent slices. More details are discussed in the next section.

2.3 MRI for Cardiac Imaging

Cardiac Magnetic Resonance (CMR) has very clear advantages over the other
imaging modalities, discussed in the previous section. It has proved to be more
accurate [43] for the evaluation of cardiac function measurements due mainly to
its independence from any geometric assumptions about the ventricle shape and
can be used without the need for a contrast agent. Cine-MR has being introduced
to capture a collection of images over one or several phases of the cardiac cycle.
MRI tagging has been introduced to obtain heart twist through the cardiac cycle.
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The use of MRI has many benefits over other types of acquisition.

• Images of soft-tissue structures such as the heart and major vessels are
clearer and more detailed when compared to other imaging methods.

• The detail of MRI makes it an invaluable tool in early detection and eval-
uation of coronary disease.

• Even without the use of contrast material, MRI often shows sufficient detail
of the heart to be valuable in diagnosis and treatment planning.

• When it is used, MRI contrast material is less likely to produce an aller-
gic reaction than the iodine-based materials used for conventional X-Rays
and CT scanning and does not contain the radioisotopes used in nuclear
medicine exams.

• MRI enables the detection of abnormalities that might be obscured by bone
tissue with other imaging methods.

• MRI provides a fast, noninvasive and often less expensive alternative to
other techniques of cardiac diagnosis.

• MRI can help physicians evaluate the function, as well as the structure, of
the heart muscles and valves.

• MRI does not require exposure to radiation or the introduction of radioiso-
topes in the body.

• MRI has the advantage that images can be obtained from arbitrary planes.

The use of MRI also has the following associated risks or limitations.

• An undetected metal implant may be affected by the strong magnetic field.

• MRI is generally avoided in the first 12 weeks of pregnancy. Doctors usually
use other methods of imaging such as ultrasound on pregnant women,
unless there is a strong medical reason to conduct an MRI exam.

In this section an overview of the basic physics of MRI is given to the reader,
the imaging planes used in a conventional heart examination are shown and
finally the different protocols that have being introduced with their advantages
and disadvantages.
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2.3.1 MRI Physics

MRI applies a Radio Frequency (RF) excitation pulse to the protons that sit in a
static magnetic field. When the protons return to a state of equilibrium they emit
a quantified energy as an RF signal. This signal is then collected and analysed.
On the scan this corresponds to high intensity meaning high signal collected by
that group of protons.

MR uses the magnetisation effects of hydrogen to create the intensity map,
or image. Hydrogen is an abundant atom in almost all biological systems. As
can be seen in figure 2.3 these atoms do not naturally align in any particular
direction but instead spin around their own axes in arbitrary orientations and
therefore the magnetic effect is negligible. If however, a strong static magnetic
field B0 is applied to these atoms they align themselves either in the parallel
or anti-parallel direction to the direction of the field (in most cases they align
parallel). The atoms do not strictly align parallel to the magnetic field but at a
small angle θ, or flip-angle, and precess around the magnetic field at a frequency
f , or the Larmor frequency. If an external frequency B1 is pulsed at the Larmor
frequency perpendicular to B0 the atoms absorb the energy and tend to precess
away from B0 and toward B1 momentarily. When the pulse has finished the atom
returns to the static magnetic field and releases the energy as a small RF signal.
This signal is collected and used to produce the image. TE is the echo time, the
time at which the signal echoes are obtained after the excitation pulse. TR is the
repetition time, the time in which the excitation pulse is repeated to obtain the
image lines.

In order to locate the position of the signal spatially, a third magnetic field
called a gradient magnetic field that varies the magnetic field strength with re-
spect to its position is applied. The most common type of reconstruction used
to create the image is a two-dimensional Fourier transform. Measurements are
taken at important relaxation times T1 and T2. T1, or spin-lattice relaxation
time, is the settling time for the atoms to return to equilibrium after being dis-
turbed by the RF pulse while T2, also called the spin-spin relaxation time, is
the decay of the RF signal after it has being created, both these measures are
tissue dependent which gives the MRI its ability to distinguish between different
tissues in the body. For example water has a longer T1 time when compared to
fat because it does not give up its energy as quickly as fat, similarly water has a
longer T2 time when compared with fat. Using these and other properties a host
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of different imaging protocols have being devised to optimize image quality.
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   Frequency

(d)

T2

T1

Figure 2.3: The basics of MRI. Figure (a) shows random hydrogen atoms, (b)
shows the aligned atoms after the introduction of a static magnetic field B0,
(c) shows results after applied RF pulse B1 and (d) plots the T1 and T2 decay
graphs.

Image derived from U.S. Department of Health and Human Services, Food and
Drug Administration, Center for Devices and Radiological Health, Magnetic Res-
onance Working Group.

2.3.2 Protocols

Echo planar imaging (EPI) is a fast imaging technique, introduced in the late
1970s that reads multiple lines of the image with just one excitation pulse. This
method greatly increased the speed of MRI meaning images could be acquired in
fractions of a second compared to minutes with early MRI.

Gradient Echo

Gradient Echo images are also called bright-blood images due to the high signal
intensity of the blood. Gradient echo images are acquired using either T1 and T2
weighting or a combination of both. The RF excitation pulse is applied once and
the signal is obtained after a short TE, usually between 1-10 ms. Due to the low
TE time, the blood does not have the opportunity to flow away from the imaging
plane, explaining the high intensity in the blood but this can cause heterogeneity
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within the blood-pool especially pronounced along the endo-cardium and the
mitral valve. TRs are also short, < 50 ms, which allows for rapid acquisition
cine-MR.

Spin Echo

Spin-Echo, or dark-blood sequences, apply two RF pulses, usually at both 90◦ and
180◦. This second pulse, applied at TE/2, reorients the atoms. It is the resulting
echo signal that is used to construct the image. The TR for spin echo sequences
is much higher than that of gradient echo. Spin Echo is therefore not used for
the generation of cine-MR sequences because of this increased acquisition time.
Spin-echo does however provide higher contrast-to-noise ratio (CNR) between the
blood and the myocardium. Fast spin-echo sequences, also called turbo spin-echo,
Rapid Acquisition and Relaxation Enhancement (RARE), increase the temporal
resolution but at the cost of soft tissue contrast. Typical images taken from both
spin-echo and gradient-echo images can be seen in figure 2.4.

Balanced Sequences

Steady-state free precession (SSFP) method has been recently developed where
the contrast of the tissues depends more on the T1 and T2 contrast and less
on the flow dynamics. It involves rapid excitation using the RF pulse, never
allowing the MR signal to completely decay. This means that the images can
have the high tissue contrast of T1 and the high blood tissue contrast of T2-
weighted acquisition. There are a whole family of SSFPs which include Balanced
Fast Field Echo (bFFE), Balanced Turbo Field Echo (bTFE), Fast Imaging with
Steady Precession (TrueFISP), Completely Balanced Steady State (CBASS) and
Balanced SARGE (BASG).

Recently, methods such as Sensitivity Encoding (SENSE) have being intro-
duced to speed up imaging and therefore increase the resolution. This method
is based on the use of multiple RF coils and receivers. Other advances include
Prospective Acquisition and CorrEction (PACE) which allows free breathing dur-
ing the exam by detecting the diaphragm and correcting for its movement. MRI
tagging has been a well documented method of evaluating the twist and torque
of the myocardium during the heart-beat by non-invasively placing a grid, known
as tagging, on an image with changing radio frequencies.
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(a) (b)

Figure 2.4: Shows two short axis images of the heart. (a) gradient-
echo image; TE= 1.6ms, TR= 3.2ms, flip angle = 60◦ and (b) spin-
echo image, T1-weighted approximate times of TE=10-20ms and TR=300-
600ms. Image (b) used courtesy of the Auckland MRI Research Group
(http://www.scmr.org/education/atlas/intro/).

2.3.3 ECG Gating

An electrocardiogram (ECG \ EKG) is a recording of the hearts electrical pulses
as it stimulates the myocardium. In imaging, ECGs are used to establish the
hearts R-wave which is a high peak wave, in a normal patient and depending
on acquisition, coming between the Q and S wave and indicates the start of the
myocardium contraction. This is used to trigger the imaging at the correct time
in the hearts phase. ECG gating suffers in MRI from a phenomenon called the
magnetohydrodynamics effect where the signal gets distorted when the patient
enters the static magnetic field. However, this can be eliminated with Vector-
cardiogram (VCG) which uses multiple ECG-channels to accurately detect the
R-wave.

2.3.4 Imaging Planes

MRI has the advantage that images can be obtained in arbitrary planes. This is
useful to obtain the best orientation for the images to be viewed, as the orien-
tation of the heart changes from patient to patient. Traditional views in cardiac
imaging are saggital, which divides the body into left and right, orthogonal where
the images are taken from the head to feet direction and long axis where the im-
ages are oriented to show the best view of the four chambers of the heart (see
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figure 2.4). In practice the orientation for the evaluation of the left ventricle is the
short-axis view as it gives the best view of the left ventricle chamber for volume
calculations. The short-axis is the plane perpendicular to center line running
from the mitral valve to the apex of the heart.

2.3.5 Image Formats

All images used in this work were encoded in the DICOM (Digital Imaging and
Communications in Medicine) format, taken along the short axis plane traversing
the left ventricle cavity from the base to the apex of the heart as shown in Figure
2.2.

2.4 Overview of related Image Processing and Analysis

Techniques

Image processing first evolved in the late 50s and early 60s where simple al-
gorithms were implemented in hardware. Many of these implementations were
derived from signal processing ideas. It wasn’t until the mid to late 1960’s and
early 1970s that digital image processing became an active area for research. Ap-
plications such as the NASA 1964 project aimed to remove imperfections from
lunar images returned on the Ranger 7 expedition. It was at the early stages of
image processing that ideas into medical image analysis were first investigated
and many of the first projects in image processing were funded by the National
Institute of Health (NIH) as well as the National Science Foundation (NSF) in the
US. One of the earliest publications on medical image analysis by Strauss et al.
[153] where nuclear images of the heart were obtained using a scintiphotographic
method and the computer semi-automatically outlined a region of interest for the
quantitative measurement of the ejection fraction.

Image processing is inextricable tied to the advancement of the computer and
it was in the past and still is the increase in computational power that drives the
level of complexity entailed in image processing techniques. As the discipline of
image processing grew, more sophisticated algorithms were developed to achieve
more complex tasks. Today, the major problems where image processing are in
the areas of:

• Photography
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• Satelite Imaging

• Face Detection

• Medical Imaging

• Natural Scene Analysis

The field of image processing includes acquisition where the main challenges
are the reduction of distortion and develop sensors that aim to improve the signal-
to-noise ratio (SNR). Image storage has always stretched the boundaries of com-
puter memory capacities and therefore image compression in both still and video
data has also attracted researchers. Post processing of images include geometric
transformations of the object or coordinate system, colour corrections for im-
age enhancements, distortion corrections to rectify camera inaccuracies, noise
suppression and filtering to correct sensor inaccuracies, edge detection to define
boundaries between objects in the image, segmentation of an image into distinct
regions and pattern recognition for the localisation and classification of objects
from a scene.

Many of these operations that are common in image processing and image
analysis can also be implemented in medical image analysis, but with subtle dif-
ferences. For instance, problems such as illumination difficulties are replaced by
more acquisition specific limitations such as coil intensity fall off in MRI. Many
image processing and computer vision tasks deal with the extraction of 3D data
from stereo images but in medical image analysis, very often with modern scan-
ners, the data can easily be reconstructed into 3D and therefore accurate shape
recovery and tracking in 3D is the major issue. Pattern recognition is also imple-
mented in medical images using prior knowledge of anatomical shape or structure.

The main issues that drive research in medical image analysis are:

• Image segmentation

• Image matching / registration

• Motion tracking

The in plane resolution of modern scanners are in the domain of 0.5-2.5mm
for CT and MRI scanners, therefore, medical image analysis is performed at
macroscopic or organ level as opposed to microscopic or atomic level.
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Image segmentation deals with the accurate dividing up of an image or a
volume into smaller relevant collection of pixels or voxels. In the case of medical
image analysis these smaller subgroups generally represent anatomical features
such as tissue, blood or bone. It is the methods by which these divisions can be
made that is the subject of segmentation. Segmentation is a deceptively diffi-
cult problem to solve and many approaches require much user intervention such
as live-wire techniques [164, 46]. Image segmentation has received a significant
amount of attention in the past number of decades. With the exponential growth
of computational power and memory, more complex algorithms can be applied
to larger amounts of data. There are a number of proposed techniques which can
be broadly classified in bottom-up approaches and top-down approaches.

2.4.1 Bottom-up Approaches

Bottom-up approaches perform the separation normally based on no prior knowl-
edge and divisions are made based on the intensity or gray level values. The most
basic form of bottom-up or intensity based segmentation is thresholding. Thresh-
olding is a binary classification problem where all elements in an image with gray
level values higher than a user defined number are classified as one object and all
elements with gray level value below are classified as a second object, adaptive
methods to find the threshold values have also been evaluated [175, 57]. Other
methods for selecting thresholds include histogram analysis and global and lo-
cal thresholding. Thresholding methods are susceptible to noise in low contrast
images and are therefore normally combined with some morphological operators
such as opening and closing to remove outliers. Other bottom up approaches
search for divisions of objects within the image called edge detectors. This di-
vision is characterised by a difference in local grayscale values. This differential
operator can give information regarding the strength of the division returned
by the gradient and also the direction returned by the orientation. Common
edge detector operators include Canny and Sobel. Similar to thresholding, these
methods are limited in images with low Signal-to-Noise Ratio (SNR). In these
circumstances, methods such as edge linking [55] and non-maximum suppression
[20] may be employed.

More advanced methods involve partitioning the image into a greater number
of final classes, how best to classify the objects into the appropriate classes and
how to determine the appropriate number of classes in a specific image. Statis-
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tical partitioning of images into higher than two classes is a very active area of
research.

Clustering methods have evolved and try to minimise the variance of pixels
within clusters while maximising the variance between clusters. Inclusion into
a certain cluster may be based on gray level value or a number of other met-
rics. Cluster membership may be a hard classification, as is the case in k-means
clustering, or a soft membership classification, as is the case with fuzzy c-means
clustering or Expectation-Maximisation classification [40, 14]. In the first case,
each element is assigned to a particular class but on the other hand, in a soft
classification, membership to a cluster is given as a probabilistic measurement.
More advanced clustering methods use multiple scales [136] to alleviate over seg-
mentation whereby the object to be extracted is divided into multiple regions.

Delibasis et al. [38] implemented a number of standard bottom-up techniques
for evaluating the segmentation of the left ventricle cavity from cine MR se-
quences in a small number of normal and abnormal patients. These included an
adaptive region growing technique from a seeded position, where the new voxels
are added to the object of interest if its value is close to the mean of all the voxels
contained in the object. A k-means algorithm, which partitions voxels in feature
space into a predefined number of classes [65] using a distance metric of each
voxel feature from the class feature average. A fuzzy C-means algorithm [118],
similar to the k-means with the introduction of a fuzzy function which defines the
probability of membership to each class. A neural network based Self Organizing
Maps (SOMs) based on Kohonens [75] work. Delibasis et al [38] proved that
k-means gave the most robust results on average over the normal and abnormal
data when compared to manual segmentations.

A more in-depth discussion on statistical partitioning of data is continued in
Chapter 3 but these methods may suffer in noisy images where there is a sig-
nificant variation in gray scale values. In medical segmentation, its is often the
task to extract a closed structure, however these partitioning algorithms based
on intensity values do not take spatial relationships into consideration. This is
why many researchers have investigated the value of approaching the problem
from a top-down angle.
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2.4.2 Top-down Approaches

Top-down approaches apply some information about the desired results and then
tries to perform some sort of fitting and deformation to achieve the final seg-
mentation and aims to closer resemble a cognitive approach to segmentation.
Template matching is an example of top-down segmentation in which a prede-
fined shape is fitted to the data by means of scaling, rotating and translating
(see Figure 2.5). This method performs a search of the image using a predefined
template and tries to fit the template to gradients in the image which minimises
the error and maximises the overlay. Of course, in this case, the template is a
rigid structure and can only be used for localisation of the object and only in
cases where there the template does not differ greatly from the final object to be
located.

(a) (b) (c)

Figure 2.5: Top-down approach to image segmentation. (a) Shows the prior
model to be fitted to the data in (b) giving the resulting image shown in (c) [56].

One significant advancement on this idea Active Shape Models (ASMs) was
proposed by Cootes et al. [34], (see also [168, 48]) whereby the template consisted
of numerous shapes which were encoded into a shape model. Also encoded into
this model where the principal modes of variability and this was used in the defor-
mation process to minimise the template to object error. This is a very powerful
idea in medical imaging and the extension of this method to include other param-
eters in the model, such as Active Appearance Models (AAMs) which integrates
texture into the model [151, 150, 152, 78, 77, 17]. All model-based approaches
are limited by the number and variation of the prior templates used in the model
building process.

Active contours or Snakes which were first proposed by Kass et al. [68] are an
extension of this top-down approach where a closed contour or surface is located in
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the image and is then deformed until the final segmentation is achieved. Normally
this deformation is constituted from two separate parts, the first is the intrinsic
properties of the contour in order to maintain its shape through rigidity or elas-
ticity and the second part of the deformation energy. This form of segmentation
has been employed in medical image analysis, where the anatomical feature in
question can be encapsulated within a closed contour [25, 26, 121, 4, 52, 67, 66].
Segmentation is then achieved by evolving this closed contour using intrinsic
properties such as curvature and external properties obtained from the image.
Combinations of snakes and statistical shape models have also being developed
[60] whereby snake evolution is additionally guided using a predefined model of
what the final shape should approximate. Non-parametric snakes were intro-
duced in order to address some of the limitations of traditional snakes and have
proved successful in medical image analysis [86, 110, 6, 2, 163]. These techniques
are discussed in more detail in Chapter 5.

While these approaches have been shown to perform robust segmentation,
even in noisy images, accuracy of the segmentation is bounded by the initial
shape. This is particularly the case in medical imaging, where anatomical fea-
tures present a significant variation between patients none more so than in the
presence of disease.

There are many algorithms which try to employ a combination of bottom-up
and top-down approaches to segmentation to capture the advantages from both
approaches [16]. Prior knowledge about a particular segmentation task can be
incorporated as low level information such as expected intensity values, gradient
strength of orientation or incorporated at a higher level such as texture variation
over an object and object shape.

With the increasing temporal resolution available in modern scanners, the
tracking of clinical structures over time may hold particular clinical significance.
This area has being investigated in the myocardium of the heart more than in
any other biological structure (a excellent reviews of applying image process-
ing techniques to left ventricle segmentation can be found in [156, 49, 44, 167]).
Deformation tracking of the cardiac muscle over the temporal cycle has being
investigated in many studies in order to measure the regional function of the left
ventricle (LV) in an effort to isolate the location, severity and extent of ischemic
myocardium [137]. Myocardium twist and torque can be measured with using
tagged -MRI.
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Single breath hold images means registration of the images is not as signifi-
cant a factor as in multiple breath hold images. Registration methods [84] deal
with the registration of cardiac images from multiple modalities. Registration
techniques were first performed in brain images for the registration of higher res-
olution images acquired using MRI or CT to images of lower resolution such as
Magneto-Encephalo-Graphy (MEG) or Electro-Encephalo-Graphy (EEG). Reg-
istration in cardiac images is more complicated due to the non-rigid and mixed
motions of the cardiac muscle and thorax structures. Much attention is focussed
on registration of the modalities MRI and PET [85, 139], MRI and SPECT [62]
or CT and PET [179, 19].

2.5 Conclusions

This chapter introduces the key areas associated with this thesis. Firstly, an
overview of the heart is given with particular emphasis on anatomical morphol-
ogy and cardiac dynamics. This is followed by some of the most common CVDs
and the clinically acquired measurements used in their diagnosis.

In the second part of this chapter, an overview of image acquisition is pro-
vided. MRI is the chosen modality for this study, based on the outlined advan-
tages over other modalities. This is followed with a fundamental background in
MRI physics and common protocols.

Finally, in order to extract the clinically relevant features from the data pre-
sented from the image acquisition, image processing is proposed and introduced.
The remainder of the chapter is devoted to the exploration of how medical image
analysis has evolved by classifying the approaches into two rudimentary method-
ologies (see review [44]).



Chapter 3

Advanced Data Filtering

Image smoothing is a procedure employed in image processing to reduce or sim-
plify the data present in an image in order to make image understanding more
attainable. In a practical sense, this can be achieved by the removal of noise or
redundant signal intensities from the image in order to obtain a more appropriate
model of the underlying structures within the image.

The motivation behind smoothing images is therefore two-fold, firstly it re-
moves unwanted noise from the image to facilitate further processing and secondly
to eliminate features irrelevant to the given problem to reduce the complexity for
subsequent processing. Specifically in MRI, increased magnet strength may re-
solve somewhat the associated low SNR, but advances to 3T magnets are limited
by the higher RF power disposition in the body [8]. Nayak et al. [105] showed in
2004 how 3T imaging improved SNR and CNR on cine sequences but note signal
fall-off due to decreased RF penetration.

There are two main types of smoothing, linear and non-linear. Both of these
types have been extensively studied in literature [116, 140, 159]. When filtering
images, it is mostly an advantageous property of the smoothing filter to smooth
areas of homogeneity while preserving areas of interest in the image such as
edges. This is typically achieved by means of a convolution of a number of pixels
or voxels with a smoothing kernel, this is also called Finite Impulse Response
(FIR) filtering. Linear filters convolve an image patch with a smoothing kernel
that is independent of the data in the image. Standard linear smoothing tech-
niques based on local averaging or Gaussian weighted spatial operators reduce
the level of noise but this is achieved at the expense of poor feature preservation.

27
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Consequently, the filtered data appears blurry as step intensity discontinuities
such as edges are attenuated. Non-linear filters smooth the image but try to
maintain edges by smoothing less. Among these, the median filter is the sim-
plest non-linear operator to remove impulse-like noise [142, 116]. More complex
non-linear techniques include statistical approaches based on non-parametric es-
timation [140, 160]. However, while these methods do alleviate somewhat the
shortcomings associated with linear techniques, they still perform only modestly
when the data is affected by long tailed noise distributions. To complement
these filtering approaches, a number of adaptive techniques have been proposed
[140, 53, 33, 124, 28]. These methods try to achieve the best trade-offs between
smoothing efficiency, feature preservation and the generation of artefacts. Koen-
derink [73] expressed the blurring operation of smoothing as heat conductance or
diffusion. Diffusion-based filtering was originally developed by Perona and Malik
[115] in order to implement an optimal feature preserving smoothing strategy.
Many implementations follow their original approach where the main aim was to
improve numerical stability [172]. This was advanced by Weikert [171] where he
developed a new smoothing algorithm by permitting diffusion along the direction
of edges. Gerig et al [53] extended this work to 3D and evaluated its usefulness
when applied to medical 2D and 3D datasets.

In this chapter, a performance characterisation is evaluated on some advanced
smoothing filters both in 2D and 3D. The performance of a filter is evaluated as
a means of simplifying the image before segmentation. Therefore, advantageous
characteristics are defined as their ability to flatten the signal intensity values
within a structure while maintaining a strong separation of signal intensity values
between structures. Firstly, five filters are introduced and assessed, two linear fil-
ters (Gaussian and Savitzky-Golay) and three non-linear filters (Diffusion-based,
Adaptive and Anisotropic) are evaluated to detail the advantage of non-linear
filters over linear filters. Finally, a rigorous performance characterisation is per-
formed on the three non-linear filters using homogeneity within regions and edge
strength as the indicators of performance.

3.1 Linear Methods

Traditional linear filters such as mean, average and Gaussian attempt to remove
noise by replacing pixels by an average or weighted average of its spatial neigh-
bours [116]. While this reduces the amount of noise present in the image, it also
has the disadvantage of removing or blurring the edges. The Savitzky-Golay [127]
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linear filter smoothes the image but tries to preserve higher moments, like edges,
in the image. It achieves this by selecting coefficients that are the least squares
approximation of a higher degree polynomial.

Firstly, let us look at the basic linear causal smoothing filter given in equation
3.1. This is the 2D case where each pixel in the smoothed image g at position
(x, y) is calculated to be the average or weighted average of the original image f ’s
spatial neighbours. The convolution matrix C is of size N ×N where N = 2n+1
and the sum of its elements is normalised to unity.

gx,y =
n∑

j=−n

n∑

i=−n

Ci,jfx+i,y+j (3.1)

This type of filtering introduces a blurring effect to the image which is unde-
sirable for most image processing applications. The basic filter illustrated in
Equation 3.1 is linear and is independent of the data being processed. Some
common causal filters are mean, Gaussian and Savitzky-Golay.

3.1.1 Gaussian Filter

The Gaussian smoothing technique is very straightforward and is similar to the
average filter. The Gaussian filter differs from the average filter in that it involves
the convolution of the original image with a Gaussian mask where the standard
deviation and the size of the smoothing kernel selects the scale and size of the
blurring operation. The resulting image Sx,y is defined as,

Sx,y = Ix,y ◦Gauss(x, y, σ) (3.2)

where Ix,y is the original image, Gauss(x, y, σ) represents the Gaussian kernel
with scale parameter σ and ◦ implements the 2D convolution operation.

This form of smoothing has the advantage of giving more influence to the
pixels or in close neighbourhood to the element being replaced, with exponentially
less influence the further away the pixels are from the center of the kernel. In 2D
the Gaussian mask is constructed using the following equation,

Gauss(x, y, σ) =
1√

2πσ2
e−

x2+y2

2σ2 (3.3)
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where (x, y) are the 2D position of the element and σ represents the diffusive
properties of the filter.

The standard blurring operation involving Gaussian filtering attempts to re-
move the noise from the image. From Equation 3.3 it is obvious that the smooth-
ing becomes more pronounced for higher values of the scale parameter but at the
same time we can notice a significant attenuation of the optical signal associated
with image boundaries. This result is highly undesirable for many applications
including image segmentation and edge tracking where a precise identification of
the object boundary is required.

3.1.2 Savitzky-Golay Filter

The Savitzky-Golay [127] smoothing filter was introduced for smoothing one-
dimensional tabulated data and for computing the numerical derivatives. The
smoothed points are found by replacing each data point with the value of its
fitted polynomial. These filters preserve edges far better than a moving average
filter but this is achieved at the expense of not removing as much noise. The
process of the Savitzky-Golay is to find the coefficients of the polynomial which
are linear with respect to the data values. Therefore the problem is reduced to
finding the coefficients for fictitious data and applying this linear filter over the
complete data.

Savitzy-Golay can be used for smoothing image data by extending the filter
to two dimensions with a two dimensional polynomial. The size of the smoothing
window is given as N ×N where N is an odd number, and the order of the poly-
nomial to fit is k, where N > k +1. The general smoothing causal filter equation
is given as:

gx,y =
n∑

j=−n

n∑

i=−n

Ci,jfx+i,y+j (3.4)

n is equal to N−1
2 . gx,y is the resulting smoothed data, C is the convolution

matrix and fxy is the original image data.

f(xi, yi) = a00 + a10xi + a01yi + a20x
2
i + a11xiyi + a02y

2
i + .... + a0ky

k
i (3.5)



3.1. LINEAR METHODS 31

We then want to fit a polynomial of type in equation (3.5) to the data. Solving the
least squares we can find the polynomial coefficients. We start with the general
equation:

A · a = f

where a is the vector of polynomial coefficients

a = (a00 a01 a10 .... a0k)T

We can then compute the coefficient matrix as follows.

(AT ·A) · a = (AT · f)

a = (AT ·A)−1 · (AT · f)

Due to the least-squares fitting being linear to the values of the data, the
coefficients can be computed independent of data. To achieve this we can replace
f with a unit vector thus, the coefficient matrix becomes C = (AT A)−1AT . C

can then be reassembled back into a traditional looking filter of size N ×N .

The resulting coefficient matrix from a polynomial of order 3 and with a
matrix window size of 5 (i.e. nL and nR is 2). In order to smooth the image the
first coefficient is used, higher order coefficients are used to calculate derivatives.
Here are the values for the first coefficients using a 5× 5 windowing and orders
of 3 and 4 respectfully:

Ck=3 =




−0.0742 0.01142 0.04001 0.01142 −0.0742
0.01142 0.09714 0.12571 0.09714 0.01142
0.03999 0.12571 0.15428 0.12571 0.03999
0.01142 0.09714 0.12571 0.09714 0.01142
−0.0742 0.01142 0.04001 0.01142 −0.0742




(3.9)

Ck=5 =




0.04163 −0.0808 0.07836 −0.0808 0.04163
−0.0808 −0.0196 0.20082 −0.0196 −0.0808
0.07836 0.20082 0.44163 0.20082 0.07836
−0.0808 −0.0196 0.20082 −0.0196 −0.0808
0.04163 −0.0808 0.07836 −0.0808 0.04163




(3.10)



32 CHAPTER 3. ADVANCED DATA FILTERING

The advantage Savitzky-Golay filters have over moving average and other
FIR filters is its ability to preserve higher moments in the data and thus reduce
smoothing on peak heights. It can be seen in Equations 3.9 and 3.10 that the
higher the order of the polynomial the higher moments are preserved, this leads
to less smoothing over data peaks and line widths. In more homogeneous areas
the smoothing approaches an average filter over the smoothing kernel.

3.2 Non-Linear Filters

Nonlinear filters, the most common being the median filter, modifies the value of
the pixel by some nonlinear function of the pixel value and its spatial neighbours.
Nonlinear filters aim to maintain the edges but the filtering may result in a loss
of resolution by suppressing fine details. Three non-linear filter are investigated.
Firstly a non-linear diffusion based filter based on gradient information, secondly
an adaptive filter which uses both gradient and variance within a neighbourhood
as a measure of inhomogeneity and finally an anisotropic filter which changes
the shape and strength of the smoothing kernel based on gradient strength and
orientation.

A more useful way to think of smoothing is as a type of diffusion of intensities
within an image, first expressed by Koenderink [73]. Diffusion occurs according
to Fick’s Law, given in equation 3.11[115], where 4I is the Laplacian of the in-
tensity value, c(x, y, t) = constant represents the conductance coefficient and It

is the recovered value at iteration t.

It = c4I (3.11)

When this equation is implemented it acts as a linear filter, similar to a Gaus-
sian, but it becomes more effective when the non-linear terms are introduced into
the diffusion equation. A review of nonlinear diffusion is compiled in [171].

3.2.1 Nonlinear Diffusion Filtering

To alleviate the problems associated with the standard Gaussian smoothing tech-
nique, Perona and Malik [115] proposed an elegant smoothing scheme based on
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non-linear diffusion∗. In their formulation the blurring would be performed within
homogeneous image regions with no interaction between adjacent or neighbour-
ing regions that share a common border. The non-linear diffusion procedure can
be written in terms of the derivative of the flux function:

φ(∇I) = ∇I ·D(‖∇I‖) (3.12)

where φ is the flux function, I is the image and D is the diffusion function. Equa-
tion 3.12 can be implemented in an iterative manner and the expression required
to implement the non-linear diffusion is illustrated in Equation 3.13.

It+1
x,y = It

x,y + λ
4∑

R=1

[D(∇RI)∇RI]t (3.13)

where It represents the image at iteration t, R defines the 4-connected neigh-
bourhood, D is the diffusion function, ∇ is the gradient operator that has been
implemented as the 4 connected nearest-neighbour differences and λ is a param-
eter that takes a values in the range 0 < λ < 0.25 .

∇1Ix,y = Ix−1,y − Ix,y

∇2Ix,y = Ix+1,y − Ix,y

∇3Ix,y = Ix,y−1 − Ix,y

∇4Ix,y = Ix,y+1 − Ix,y

(3.14)

The diffusion function D(x) should be bounded between 0 and 1 and should
have the peak value when the input x is set to zero. This would translate with
no smoothing around the region boundary where the gradient has high values. In
practice, a large number of functions can be implemented to satisfy this require-
ment and in the implementation detailed in this thesis the exponential function
proposed by Perona and Malik [115] is used.

D(‖∇I‖) = e−(
‖∇I‖

k
)2 (3.15)

∗Perona and Malik discuss in their paper the topic of scale-space. This has not been inves-
tigated as it is beyond the scope of this thesis and a single scale space proved to be sufficient
for the applications detailed in this document.
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where k is the diffusion parameter. The parameter k selects the smoothness
level and the smoothing effect is more noticeable for high values of k.

3.2.2 Adaptive Smoothing

The algorithm for adaptive smoothing implemented in this evaluation is adapted
from Chen [28]. The technique measures two types of discontinuities in the image,
local and spatial. Local variable discontinuities can detect local intensity changes
but is susceptible to errors where there is a lot of noise, so in addition to the lo-
cal discontinuities the contextual information is also utilised given the attributes
of neighboring pixels. From both these measures a less ambiguous smoothing
solution is found. In short, the local discontinuities indicate the detailed local
structures while the contextual discontinuities show the important features.

Local Variable Discontinuities

In order to measure the local discontinuities, four detectors are set up as shown:

EHxy = |Ix+1,y − Ix−1,y|, (3.16)

EVxy = |Ix,y+1 − Ix,y−1|, (3.17)

EDxy = |Ix+1,y+1 − Ix−1,y−1|, (3.18)

ECxy = |Ix+1,y−1 − Ix−1,y+1|, (3.19)

Ix,y is the intensity of the pixel at the position (x,y). We can then define a
local discontinuity measure Exy as:

Exy =
EHxy + EVxy + EDxy + ECxy

4
(3.20)

These pixel positions are illustrated below in Figure 3.1.

Contextual Discontinuities

In order to measure the contextual discontinuities, a spatial variance is employed.
Firstly, a square kernel is set up around the pixel of interest, Nxy(R). The mean
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Figure 3.1: The four local discontinuity detectors.

intensity value of all the members of this kernel is calculated for each pixel as
follows:

µxy(R) =

∑
(i,j)∈Nxy(R) Ii,j

|Nxy(R)| (3.21)

From the mean the spatial variance is then calculated to be:

σ2
xy(R) =

∑
(i,j)∈Nxy(R)(Ii,j − µxy(R))2

|Nxy(R)| (3.22)

This value of sigma is then normalised to σ̃2
xy between the minimum and max-

imum variance in the entire image. A transformation is then added into σ̃2
xy to

alleviate the influence of noise and trivial features. It is given a threshold value
of θσ = (0 ≤ θσ ≤ 1) to limit the degree of contextual discontinuities.

Overall Adaptive Algorithm

Finally, the actual smoothing algorithm runs through the entire image updating
each pixels intensity value It

xy, where t is the iteration value.

It+1
xy = It

xy + ηxy

Σ(i,j)∈Nxy(1)/{(x,y)}ηijγ
t
ij(I

t
i,j − It

x,y)
Σ(i,j)∈Nxy(1)/{(x,y)}ηijγt

ij

(3.23)

where,
ηij = exp(−αΦ(σ̃2

xy(R), θσ)), (3.24)

γt
ij = exp(−Et

ij/S) (3.25)

The variables S and α determine to what extent the local and contextual
discontinuities should be preserved during smoothing. If there are many contex-
tual discontinuities in the image then the value of ηij will have a large influence
on the updated intensity value. On the other hand, if there are a lot of local



36 CHAPTER 3. ADVANCED DATA FILTERING

discontinuities then both γij and ηij will have the overriding effect, as ηij is used
for gain control of the adaption.

3.2.3 Anisotropic Gaussian Smoothing

An anisotropic filter based on the familiar Gaussian model is implemented in
order to provide edge enhancing, directional smoothing. The goal is to develop a
versatile smoothing filter based on a straightforward and highly adaptable form.
The approach reduces to a convolution with a scaled and shaped Gaussian mask,
where the determination of the mask weights becomes the key step governing
the performance of the filter. By calculating the local grayscale gradient vector
and favouring smoothing along the edge over smoothing across it can achieve an
effective boundary preserving filtering approach, where regions are homogenised
while edges are retained.

The weight wt( ~pq,∇u) at each location in the mask is a function of the local
gradient vector at the centre of the mask and the distance of the current neighbour
from that centre. There are a large number of possibilities for the formulation
of the mask weight calculation, based on the desired form for the non-linear and
anisotropic components of the filter. The weight for some neighbour q is calcu-
lated as a function of the gradient of point p, at the mask origin, and the distance
from the origin to the neighbour q. The relationship used in our approach is given
in Equation 3.26, where ~pq is the vector from the mask centre point p to some
neighbour q, ∇u is the gradient vector at p, λ is the scale parameter, controlling
smoothing strength, and µ is the shape parameter, controlling anisotropy. When
µ equals zero the anisotropic term ( ~pq·∇u

λ )2(2µ + µ2) has a negligible effect and
the filter reduces to the non-linear, isotropic form, where smoothing decreases
close to strong edges but is applied equally in all directions, at any given location
in the image.

wt( ~pq,∇u) = e−((
‖ ~pq‖‖∇u‖

λ
)2+( ~pq·∇u

λ
)2(2µ+µ2)) (3.26)

The images in Figures 3.2 and 3.3 illustrate the operation of the anisotropic
filter. As the smoothing strength and the number of iterations is increased more
noise and small features are eliminated, but even in extreme cases the most im-
portant edges in the image are well preserved in both location and strength.
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3.3 Experiments and Results

The aim of each filter evaluated in the first study is to measure the linear and
non-linear filters ability to smooth areas of homogeneity while preserving areas
of interest such as edges. Smoothing of homogeneous areas is measured using the
standard deviation while the preservation of edges is measured using the strength
and spread of the edge in the filtered images. To show the advantage of using
non-linear filters, both the linear are tested on two 2D images, see figures 3.2(a)
and 3.3(a). The first image of a laboratory having a high SNR (signal-noise-ratio)
and high CNR (contrast-to-noise-ratio) with a high density of edges. The second
medical image has a much lower SNR and CNR. Parameters were chosen to give
the optimal results on visual inspection. Visual results are presented in Figures
3.2 and 3.3.

To be statistically relevant [42] the standard deviation should be calculated
over a large region but on the other hand the results will be affected by small
non-uniformities such as intensity gradients or structural image variations [53].
This requirement is quite difficult to be accomplished if we want to develop an
automatic performance characterisation scheme where user intervention is not
required. One solution has been advanced by Canny [20] when he decided to
select the threshold parameters for an edge detector based on analysis of the cu-
mulative histogram of the gradients. However due to the nature of MR datasets
this criteria to identify the gradients generated by noise proved to be inefficient.
Thus, in this implementation an alternative strategy based on observation has
been developed. In this sense, we computed the standard deviation for all data
points in the original dataset in a 7×7 neighbourhood. These values were sorted
with respect to their magnitude and from these values the 25% of the highest val-
ues were eliminated, as they are likely to belong to edges and 25% of the lowest
values are also eliminated as they are calculated from areas that have no signifi-
cant texture (such as image regions defined by air). This strategy was applied to
select the seed points that belong to image regions defined by a low SNR. Then,
the standard deviation for each of the filtered datasets is measured at the same
data point locations (also in a 7× 7 neighbourhood).The results are presented in
Table 3.3.

For the laboratory image, Adaptive smoothing gives the best results followed
by the two other non-linear filters. Both linear Savitzky-Golay and Gaussian
filters have the highest deviation after smoothing. In the medical image there
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Smoothing results. Original image (a) is shown after the application of
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Anisotropic
(f) filters.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Smoothing results. Original image (a) is shown after the application of
the Savitzky-Golay (b), Gaussian (c), Diffusion (d), Adaptive (e) and Anisotropic
(f) filters.

are more significant differences with the anisotropic and adaptive giving the best
results while the gaussian suffers in the low SNR image.

The strength, shift and spread of the edge is evaluated on each of the images.
Histogram plots across two edges, see the white lines across edge features in fig-
ures 3.2 and 3.3. In Figure 3.4, the histogram plots show both the image pixels
and the gradient for the lab image and medical image. For the lab image the
results are similar for all filters with more significant differences between filters in
the medical image. Two measurements are taken from these histograms which in-
dicate edge strength and spread where edge spread is taken as the Full Width Half
Maximum (FWHM) of the gradient plot. These results are compiled in Table 3.2.
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Laboratory Image MR Image
Original 57.4 277.65

Savitzky-Golay 40.804 61.232
Gaussian 40.966 102.08
Diffusion 27.658 69.633
Adaptive 24.241 42.99

Anisotropic 31.905 35.05

Table 3.1: The RMS of the standard deviation of the homogeneous areas for the
original and each filtered image

Laboratory Image MR Image

Edge height Edge width Edge height Edge width
Original 31 2.26 219 2.04

Savitzky-Golay 23 2.5 158 2.48
Gaussian 15 4.4 196 2.16
Diffusion 25 2.17 214 2.00
Adaptive 26 2.13 211 2.00

Anisotropic 30 2.17 219 1.99

Table 3.2: Shows the edge strength and edge spread on the gradient image after
each filtering. While Savitzky-Golay and Gaussian filters spread the edge, the
other three maintain and even enhance the edge characteristics.

From all the experiments detailed above, it is clear that the non-linear fil-
ters outperform the linear filters using the criteria specified at the beginning of
the test. The next step is to perform a more rigorous characterisation of the
non-linear filter described above in medical images. The following experiments
have been performed in 3D using the extension of the 2D to 3D of the non-linear
algorithms described previously.

3.3.1 Performance Characterisation of Non-Linear Filters

The first set of experiments is conducted on a synthetic dataset that is defined
by a homogeneous cubic object with a known grayscale value surrounded by
background pixels. To test smoothing algorithms on this artificial dataset is ad-
vantageous as the ground truth data is known and the smoothing results are easy
to evaluate. The efficiency of the algorithms when the artificial dataset was cor-
rupted with various types of 3D image noise is tested, including Gaussian, Poisson
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(e)
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(i) (ii) (iii) (iv)

Figure 3.4: Pixel intensities and gradient intensities along white lines from im-
ages figure 3.2 and figure 3.3. (i) and (iii) show the pixel intensities and (ii) and
(iv) show the gradient values from the lab image and the medical image respec-
tively. (a) is the original image, (b) image after Savitzty-Golay, (c) Gaussian, (d)
Adaptive, (e) Nonlinear Diffusion and (f) Anisotropic and Gaussian.
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Noise S. Dev S. Dev S. Dev S. Dev Graysale Graysale Graysale Graysale
Type noise F1 F2 F3 Expected F1 F2 F3
G-15 13.72 1.91 1.62 2.06 127 127 128 128
G-30 31.93 7.64 3.03 5.57 127 128 129 133
P-15 13.02 1.07 0.76 1.74 127 139 138 138
P-30 26.97 9.6 7.62 3.69 127 141 141 142
W-15 4.63 1.5 0.21 0.69 127 126 127 127
W-30 8.56 1.71 0.6 1.14 127 125 126 127

Table 3.3: Performance characterisation results when the algorithms have been
applied to an artificially created dataset. F1, F2, F3 denote the standard diffu-
sion, adaptive smoothing and anisotropic diffusion respectively.

and additive uniformly distributed white noise [42]. Similar to the previous ex-
periments, as quantitative values the local uniformity sampled by the 7× 7 × 7
standard deviation is evaluated at the location situated at the centre of the cube
and the alteration of the grayscale value at the same position when compared
with the expected known value. Some experimental results are depicted in Table
3.3.

In Table 3.3 the symbols G-15 and G-30 indicate that the synthetic dataset
has been corrupted with Gaussian noise (standard deviation 15 and 30 grayscale
values). Similarly P-15 and P-30 denote the fact that the test dataset has been
corrupted with Poisson noise (distribution 15 and 30 grayscale values) and W-15
and W-30 indicate that the dataset has been corrupted with uniformly distributed
white noise (mean deviation 15 and 30 grayscale values). In order to evaluate
globally the noise removal efficiency on real datasets we need to define quantita-
tive measures that indicate the overall performance of the smoothing algorithms
that are evaluated. In this regard, we propose to evaluate jointly two quantitative
measurements: the smoothness factor that assesses the global uniformity and the
edge preservation factor that indicates to what extent the strong edge features
are retained and enhanced. To this end, the standard deviation as a measure
to evaluate the image local homogeneity was employed. As before, the standard
deviation is measured in a 7×7×7 window over the entire original image. These
values were sorted with respect to their magnitude and 25% of the highest values
were eliminated as belonging to edges in the image and 25% of the lower values
as having no significant texture. The standard deviation for each of the filtered
images is then taken at the same pixel locations. To evaluate a quantitative esti-
mation we calculate the RMS value of the standard deviations from the original
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and smoothed datasets resulting after the application of the smoothing strategies
described in previous sections (for details refer to Table 3.3).

Figure 3.5: (a) Slice of the heart MRI dataset. Pixel (b) and (c) gradient inten-
sities are plotted for the highlighted edge illustrated in image (a).

The edge strength is evaluated by plotting the intensity and gradient data
at selected locations where edges are located, before and after the application
of the smoothing operations. Some graphical results are depicted in Figures 3.5
to 3.8. The experimental data illustrated in Figures 3.5 to 3.8 indicate that the
3D adaptive smoothing and 3D anisotropic smoothing algorithms perform bet-
ter than the standard diffusion. The 3D adaptive smoothing algorithm returned
better results than the 3D anisotropic when applied to heart, brain and whole
body datasets. The 3D anisotropic algorithm performed better when applied to
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Figure 3.6: (a) Slice of the MRCP dataset. Pixel (b) and gradient intensities (c)
are plotted for the highlighted edge illustrated in image (a).

Magnetic Resonance Cholangiopancreatography (MRCP) dataset.

The graphs illustrated in Figures 3.5 and 3.8 demonstrate the edge enhance-
ment around image data defined by step-like edges. It can be noticed that the
edge localisation is significantly improved. The effect of edge strengthening is
even more pronounced for weaker edges in an MRI brain sequence (see Figure
3.7) or in image areas affected by a high level of noise, as is the case of the MRCP
dataset illustrated in Figure 3.6. The performance of the non-linear smoothing
algorithms described in this section is remarkable in discriminating a true edge
from image noise (see Figure 3.6c). Also notice the improved performance of
the adaptive 3D smoothing algorithm as compared with the performance of the
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Figure 3.7: (a) Slice of the brain MRI dataset. Pixel (b) and gradient intensities
(c) are plotted for the highlighted edge in image (a).

standard diffusion and the 3D anisotropic diffusion algorithms. In order to em-
phasise the effectiveness of the smoothing strategies described in this chapter the
segmentation resulting after the application of a 3D clustering algorithm [42] to
the original and smoothed data is presented. Samples of the segmentation results
are depicted in Figures 3.9 to 3.12.

3.4 Conclusions

In this chapter, the performance in smoothing for a number of linear and non-
linear filters was evaluated. In the first part, experiments were performed in
order to show the advantage of non-linear filters over linear filters. In the second
part, three diffusion-based smoothing schemes were implemented and their appli-
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Figure 3.8: (a) Slice of the whole body MRI dataset. Pixel (b) and gradient
intensities (c) are plotted for the highlighted edge illustrated in image (a).

Heart Brain Whole body MRCP
Original data 4.95 9.21 20.46 18.8
3D diffusion 1.88 6.28 14.47 10.96
3D adaptive 1.73 6.16 14.05 10.83
3D Anisotropic 2.08 6.48 16 9.77

Table 3.4: The RMS of the standard deviations of the homogeneous areas for the
original and filtered MRI datasets used in our experiments.
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Figure 3.9: 3D data clustering results - heart dataset. (First row) Original dataset
(slice 9), and corresponding image resulted after clustering. (Second row) 3D dif-
fusion smoothed data (slice 9) and corresponding image resulted after clustering.
(Third row) 3D adaptive smoothed data (slice 9) and corresponding image re-
sulted after clustering. (Forth row) 3D anisotropic smoothed data (slice 9) and
corresponding image resulting after clustering.
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Figure 3.10: 3D data clustering results - brain dataset. (First row) Original
dataset (slice 4), and corresponding image resulted after clustering. (Second
row) 3D diffusion smoothed data (slice 4) and corresponding image resulted after
clustering. (Third row) 3D adaptive smoothed data (slice 4) and corresponding
image resulted after clustering. (Forth row) 3D anisotropic smoothed data (slice
4) and corresponding image resulted after clustering.
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Figure 3.11: 3D data clustering results - MRCP dataset. (First row) Original
dataset (slice 10), and corresponding image resulted after clustering. (Second
row) 3D diffusion smoothed data (slice 10) and corresponding image resulted after
clustering. (Third row) 3D adaptive smoothed data (slice 10) and corresponding
image resulted after clustering. (Forth row) 3D anisotropic smoothed data (slice
10) and corresponding image resulted after clustering.
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Figure 3.12: 3D data clustering results whole body dataset. (First row) Original
dataset (slice 6), and corresponding image resulted after clustering. (Second
row) 3D diffusion smoothed data (slice 6) and corresponding image resulted after
clustering. (Third row) 3D adaptive smoothed data (slice 6) and corresponding
image resulted after clustering. (Forth row) 3D anisotropic smoothed data (slice
6) and corresponding image resulted after clustering.
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cation to medical 3D data was described. The main interest was focused on MRI
acquisition modalities as MRI datasets are characteristically defined by a low
signal to noise ratio (SNR). Hence, the aim was to demonstrate that far superior
results are achieved if the MRI data is initially filtered in order to reduce the
level of image noise and improve the SNR. In this regard, a detailed performance
characterisation was performed for each smoothing operators evaluated on both
synthetic and real data (including heart, brain, whole body and MRCP image
sequences). We conclude that in our experiments the non-linear diffusion-based
smoothing technique provided the most efficient approach to noise reduction, and
more importantly this advantage is not achieved at the expense of feature preser-
vation in our experimentation. Computational time was higher for the non-linear
iterative approaches, but as computational expense is not a limiting factor in
our application this parameter was not included in the characterisation. The
experimental data presented and discussed in this chapter highlights the ability
of the diffusion-based smoothing schemes to distinguish the high gradient image
features from the MRI image acquisition noise.
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Chapter 4

Statistical Partitioning of Data

for LV Localisation and

Extraction

The advanced filtering techniques employed in the last chapter alleviates much
of the work needed in the classification process. Preprocessing the data has re-
moved much of the inherent noise associated with MRI therefore the process of
segmenting the data into the relevant anatomical features can be achieved using
data partitioning technique. To this end, it is the aim of this chapter to use
cluster analysis to successfully segment the left ventricle blood pool. The left
ventricle blood pool can then be automatically located using shape characteris-
tics before a more heuristic method is employed to segment the outer boundary
of the left ventricle muscle.

Data clustering remains a very active topic in image processing. The appli-
cation of robust techniques for object identification in images are extensive, none
more so than in the rapidly advancing field of medical imaging [30, 117]. Region-
based methods [117] are used to segment the image, this is generally achieved
without using a priori information. The most basic form of region-based seg-
mentation is thresholding. Thresholding techniques create a binary image of
pixels above and below a user defined threshold value. Thresholding does not
take into account the structure or connectivity of the points that it segments and
the threshold value is seldom automatically determined. Segmentation results
can sometimes be filled with holes or ragged edges, which in a crude way can be

53
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eliminated with a combination of morphological operators [63, 141]. In medical
imaging, thresholding is not widely used without some advanced preprocessing
steps due to its sensitivity to noise. More complex statistical methods, like clus-
tering, join pixels of similar intensities to create a segmentation of structures in
the image.

All statistical based classification methods [61, 40, 64, 42, 65, 114, 113] aim
to optimise the results based on an initialisation. This initialisation is commonly
chosen randomly, and as a consequence results are not reproducible, do not take
advantage of inherent patterns in the data or may be initialized on outliers.
Methods for automatic initialisation of clusters have been proposed in literature
[3, 97, 71]. Al-Daoud and Roberts [3] proposed two methods, the first picks points
randomly in evenly spaced cells across the entire histogram of the data and re-
duces the number until the required seeds are found. The second method tries to
optimize the sum of squares of the distances from the cluster centers. Mitra et al.
[97] describe a rough-set initialisation provided by graph-search methods. Khan
and Ahmad [71] assume a normal distribution over the data attributes and divide
the normal distribution curve into equal percentile cells. The seeds are chosen as
the midpoints of the interval of each of these partitions. In Appendix A, a novel
method developed by the VSG for the initialisation of cluster centers is given
where the cluster centers are automatically detected using histogram analysis
and applied to medical images.

In order to extract clinical measurements from the smoothed data, a novel
method is proposed whereby data is first clustered in order to segment highly
differentiated features, i.e. the blood and myocardium. A localisation of the left
ventricle is detailed. Using this preliminary step, a new method for the extrac-
tion of the epi-cardium boundary is developed which is based on a knowledge
driven search of gradient information. Where appropriate gradient information
is lacking prior knowledge is used to augment the segmentation solution.

4.1 Data Clustering

Clustering is a well documented image segmentation technique which classifies
pixels into groups or clusters using a distance criteria to join data values to each
cluster. The most basic form of clustering is Hierarchical clustering, off which
there are two types – agglomerative and divisive. Agglomerative clustering in-
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volves creating n clusters from the data Xi = {x1, x2, x3...xn} where n is the
amount of elements and X ∈ <m. The process then iteratively combines this
clusters in a branching formation until there is just one cluster containing all n

elements. The clusters are joined using a distance criteria, which can be measured
in different ways; single-linking, complete linking, unweighted average pair and
weighted average pair. Divisive clustering works in the opposite way by creating
one cluster with n elements and then dividing the clusters until n clusters remain.
Successful analysis of both these joining methods comes from knowing at which
iteration in the process will return the optimal amount of clusters to create a
meaningful segmentation.

The k -means, or c-means, clustering method is a well established as a parti-
tioning method [61, 136]. Delibasis et al. [38] proved how the k-means algorithm
performed more robustly in a comparative study with an adaptive region growing,
fuzzy C-means clustering and Kohonen self-organising maps for the segmentation
of the left ventricle blood pool from cardiac MRI images. This comparison was
performed on both normal and abnormal cases and results were evaluated against
a manual delineation of the left ventricle cavity.

Unlike the Hierarchical methods, the k -means algorithm requires a user de-
fined set of clusters. The process then exchanges the elements between clusters
with two aims; to minimise the variation within each cluster and to maximise
the variation between clusters. The algorithm has four main steps to find the
image clusters, this is also illustrated in figure 4.1. The process terminates when
no more elements are exchanged between clusters and it can be shown that the
method is always convergent. The process is the minimization of the following
equation.

E = min
∑

j

(xj −mc(xj))
2 (4.1)

where j is the number of data points index and mc(xj) is the class centroid
closest to the data point.

In this thesis, the smoothed MRI images are then clustered using an im-
proved version of the k-means algorithm proposed by Duda and Hart [42, 61].
An adaptive form of clustering is developed whereby the initial user defined num-
ber of clusters is iteratively reduced until a more appropriate number of clusters
is achieved. This is based on thresholding the inter and intra cluster variability.
Firstly, the image is clustered using an initial guess of 15-20 independent cluster
centres which is sufficient to capture all the relevant features. The pixels are
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Figure 4.1: Two iterations in the k-means clustering technique on 2D data. The
objects change with each iteration to join the cluster whose centre is closest.

clustered together using the following strategy. This algorithm has four steps to
find the image clusters:

(i) Initialise the position of the means m1 → mk.

(ii) Assign each of the k -items to the cluster whose mean is nearest.

(iii) Recalculate the mean for the cluster gaining the new item and the mean
for the cluster loosing the same item. Recalculation is made using the intra
cluster variance.

(iv) Loop through steps (ii) and (iii) until there are no movements of items.

Initialisation of cluster centres can have a significant effect on the results of
the classifier, therefore random initialisation is avoided. Alternatively, seeds may
be placed at specific regions or equidistantly in the image space or in grayscale
space. A better solution to maximise the use of input data in initialising the
cluster centres is choosing them based on histogram analysis of the data. This
approach is detailed in Appendix A.

In the second phase of the algorithm, each of the k clusters are sorted and
compared. The number of clusters is then optimised by merging clusters with
similar attributes. This is repeated until there are no more clusters to be merged.
The stopping criterion for this joining process is defined using a threshold on the
intra cluster variability and is chosen experimentally. Given the high differentia-
tion in intensity signal between the blood pool and the myocardium, experimental
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results display robust separation of the blood pool from the myocardium. As can
be seen in Figure 4.2 the generality of the method as it is applied to two separate
protocols, spin-echo and gradient echo with satisfactory results.

(a) (b)

(c) (d)

Figure 4.2: Shows four images; a gradient-echo images before (a) and after clus-
tering (b), and a spin-echo image before (c) and after clustering (d).

4.1.1 Automatic Detection of lv cavity

The image has now been segmented into separate clustered regions. The next
step is to automatically detect which of these clusters represents the lv cavity
on the first slice. The lv cavity is located using shape descriptors only and not
using the gray scale values which allows for application of this method in various
MRI imaging protocols. The images are short axis, therefore we assume that
the lv cavity approximates a circular shape and that the lv feature is present
in successive slices. Approximation to a circle is calculated as the error of the
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fitted areas of a least squares approximation to a circle. The approximation is
obtained my minimising the error of the areas of the fitted circle and the areas of
the associated circles at each data point (see mathematical background Appendix
C.1). It is also assumed that the lv is not located on the periphery of the image.

The volume of the left ventricle is then extracted using two criteria:

(i) Overlapping area of the regions contained in successive slices.

(ii) Gray scale value of the regions under investigation.

The regions cannot be connected using just gray scale values alone due to the
variation in the intensity values through the volume caused, to some extent, by
coil intensity falloff. The lv regions are then connected in 3D and the volumes are
then rendered for visualisation purposes (see Figure 4.8). The ejection fraction
is calculated using the systolic and diastolic volumes. The ejection fraction is
defined as “the proportion, or fraction, of blood pumped out of your heart with
each beat” [104] and can be calculated using the equation:

EF =
Vendo(tD)− Vendo(tS)

Vendo(tD)
(4.2)

where Vendo is the volume of the inner walls of the heart, Vendo(tD) = maxt[Vendo(t)]
is the end-diastolic volume and Vendo(tS) = mint[Vendo(t)] is the end-systolic vol-
ume.

The corresponding region is found by maximising the result of a cost func-
tion where the overlapping and the mean gray-scale value of the areas under
investigation are used as parameters.

This works well on basal and mid-cavity slices, the blood pool is large and
relatively homogeneous. The apical region is more challenging due to the increase
in trabeculae carnæ and papillary muscles, the low volumes of blood present,
partial voluming along the z axis and blurring due to movement of the diaphragm.
The extension of this segmentation algorithm to 3D is appropriate as the higher
level of knowledge leads to improved segmentation results plus it eliminates the
need to match relevant clusters through the volume using overlapping criterion.

4.2 Extension to 3D

In order to improve the robustness of the segmentation technique it is favorable
to extend the clustering to the third dimension. The extension means that the
blood pool is clustered as a whole and therefore it is more robust in areas where



4.2. EXTENSION TO 3D 59

0

20

40

60

80

100

120

140

160

Original

Smoothed 

Clustered

Pixel Index

G
ra

ys
ca

le
 v

al
ue

s

Figure 4.3: The top three images from left to right show the original short axis
image, after smoothing and after clustering. The graph plots the intensity values
for the white line running through the original image.

artifacts such as the papillary muscles are present. This is particularly the case
around the apical regions of the left ventricle cavity.

The end-systole and end-diastole volumes are smoothed in 3D, as in the pre-
vious chapter. Once smoothed they are then clustered using the 3D k-means
technique using the volume data. The left-ventricle can be manually picked or
automatically using the volumetric shape properties of the cavity, as developed
in the following section.

4.2.1 Automatic Detection of lv cavity using 3D information

In order to locate the left-ventricle in the image a number of shape descriptors
were used. The images are short axis so therefore we use the anatomical knowl-
edge that the lv cavity approximates a circular shape and that the lv feature is
continuous in successive slices. In the 2D scenario, approximation to a circle is
calculated as the error between the shape and the least squares approximation to
it’s circle. Also, a smooth interpolation of the curves is achieved using a spline
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fitting.

In the 3D case, the left ventricle cavity is located using its shape description.
In this case it is known that on the short axis the left ventricle approximates an
ellipsoid in shape, although it is flat at one end, perpendicular to its major axis.
The approximation to an ellipsoid parameters (radii and centres) is calculated
using the first three principal axes of the PCA of the boundary data points.
The error is then calculated between the shape and the fitted ellipsoid using
the summation of the normalised point deviations with respect to the calculated
ellipsoid radii (see mathematical background in Appendix C.2).

4.3 Segmentation of epi-cardium border

Once the left ventricle blood pool has been successfully segmented, the outside of
the myocardium or epi-cardium boundary presents a more challenging problem.
Parts of the outer wall of the left ventricle displays low gradient information and
low differentiation between neighbouring tissues, as in Figure 4.4.

Figure 4.4: Illustrating the low grayscale differentiation between the outer wall
of the myocardium and other organs in the body, before (top row) and after
(bottom row) data partitioning.

This is especially true in areas close to the lungs and liver. Therefore clus-
tering techniques are not applicable because the differentiation between tissues
is so low and edge detection will only have limited success when used without
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supervision or a more involved approach. Noble et al. [107] attempt to change
the coordinate system to polar coordinates followed by a constrained snake seg-
mentation to capture the epi-cardium boundary. In order to address these issues,
a novel heuristic approach is developed which uses all the available information
in a supervised way and where information does not exist or is not found, the
segmentation is augmented using prior information of the epi-cardium boundary
shape.

Calculation of the wall-thickness and wall-thickening is dependent on the ac-
curate segmentation of the epi-cardium boundary. The main problem associated
with the segmentation is the low contrast-to-signal ratio along the epi-cardial
boundary in particular on the inferior and inferolateral side where the muscle
becomes indistinguishable from the lung. To this end two novel approaches are
explained and have been evaluated, both a robust approximation for the epi-
cardium thickness to determine strong features of the epi-cardium present in the
image. Where strong information is lacking, the algorithms aim to approximate
the epi-cardium boundary using in the first case an arc, centered at the center of
gravity of the blood pool and connecting two known segments of the epi-cardium
boundary. In the second approach, where no information is present, the algorithm
uses information obtained from a probabilistic model consisting of manually seg-
mented images to complete the epi-cardium boundary.

4.3.1 First Approach: Robust-Arc epi-cardium segmentation

The robust arc approximation technique works on the 2D slice taken from the
previously segmented blood pool volume. Firstly the centre of gravity of the left
ventricle blood pool is located. The least squares approximation for the radius
of the endo-cardium border is calculated on each slice. The original image is
re-clustered again around a smaller region of interest with a smaller predefined
number of clusters in order to find the right ventricle blood pool. The right ven-
tricle blood pool is found to be the largest cluster close to the left ventricle cavity
with similar intensity attributes to the left ventricle blood pool. The interven-
tricular septum between the two ventricles is measured and this measurement
gives an approximate thickness for the myocardium around the left ventricle.

A Canny edge-detection [20] is performed on the original image slice. A 1D
radial search is carried out from the centre of gravity on the gradient image and
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Figure 4.5: From left to right: Original unseen image, calculated edges, robust
segments of epi-cardium and the complete segmentation using arcs to complete
the epi-cardial boundary

image edge points are connected together into edge segments using an Euclidean
distance criteria. Spurious segments are eliminated by length, orientation away
from the endo-cardium border and using the approximation for the myocardium
from the septum.

In between these segments are parts of the epi-cardium border that do not
have any gradient. Therefore there is no other information in the image to help
find the correct path between these segments. In this case the end points of the
robust segments are joined with an arc, pivoted around the center of gravity of
the endo-cardium. Results can be seen in figure 4.5.

The procedure for segmenting the epi-cardium can be followed in the diagram
illustrated in Figure 4.6, Stage II. The position of the lv cavity is already known
in each slice as explained in the previous section. In order to determine the epi-
cardium border a region of interest is defined around the lv cavity. Two copies of
this region of interest are taken. The first image Image1 is used to find a value
for the approximate radius of the myocardium and the second image Image2 is
used to find real borders around the myocardium. The two are combined to find
the true value of the epi-cardium around the lv.

Image1 is again clustered using a predefined low number of clusters around
the region of interest. A low number of clusters is chosen because of the scarcity of
important features around the lv cavity. Anatomically, the closest blood pocket
to the lv cavity is the right ventricle cavity, it is also assumed that the thickness
of the myocardium will not change drastically over the entire circumference. The
thickness of the wall, or septum, between the two blood pockets can give a reli-
able estimate for the thickness of the rest of the myocardium.
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Figure 4.6: A schematic representation of the two phases involved in the segmen-
tation of the endo- and epi- cardium border. Stage I shows the preprocessing and
segmentation processes, the automatic detection of the lv cavity and the connec-
tion of the cavity through the volume. Stage II shows the method for segmenting
the epi-cardium border in each image



64 CHAPTER 4. STATISTICAL PARTITIONING OF DATA

Image2 is zoomed using an area averaging technique around the area of inter-
est. The image is then segmented using a thresholded edge-based algorithm [20].
The zooming operation is applied to increase the edge separation. The largest
connected segments within certain bounds of the estimated thickness found from
Image1 are taken as potential border segments. There is an angular restraint
placed on the transition of these segments around the epi-cardium to eliminate
stepping into the endo-cardium border or stepping out to other organs.

A closed natural cubic spline is fitted around the points on the epi-cardium
[144, 12], for the formulation see section C.3. The spline is used to close the
epi-cardium contour by connecting all the points on the curve in a smooth way.
Splines are piece-wise polynomials with the pieces smoothly joined together. The
joining points of the polynomial pieces are called control points which do not have
to be evenly spaced. Each segment of a spline is a polynomial of degree n, for
this implementation n was chosen to be n = 3. More details on the mathematical
formulation of the natural cubic spline can be found in Appendix C.3.

4.3.2 Second Approach: Model assisted Epi-cardium segmentation

In order to incorporate more realistic approximations for missing data, a new
method is developed which uses a probabilistic model of previously segmented
heart images. Once each slice is taken from the volume the centre of gravity
of the left ventricle blood pool is located. The least squares approximation for
the radius of the endo-cardium border is calculated. By re-clustering the orig-
inal image again around a smaller region of interest with a predefined number
of clusters in order to find the right ventricle blood pool. The right ventricle
blood pool is found to be the largest cluster close to the left ventricle cavity with
similar intensity attributes to the left ventricle blood pool. The myocardium wall
(septum) between the two ventricles is measured and this measurement gives an
approximate thickness for the myocardium around the left ventricle.

An edge-detection is performed on the original image slice. A 1D radial search
is carried out from the centre of gravity on the gradient image and image edge
points are connected together into edge segments using a Euclidean distance cri-
terion. Spurious segments are eliminated by length, by orientation away from the
endo-cardium border and using the approximation for the myocardium from the
septum.
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A database of contour points is created based on manual segmentations of the
endo and epi cardium boundaries. This database contained 180 2D contours with
the associated radii calculated using the least squares approximation based on
minimising the error of the areas (detailed in AppendixC.1). Where epi-cardial
boundary is not defined by the edge information, the boundary is then completed
from a generic database of hand-segmented shapes. The database is searched us-
ing the ratio of epi-cardium and endo-cardium radii. The searching uses the two
end-points of the robustly located segment from the gradient image. Prior to
searching, each contour is scaled with respect to radii parameters extracted from
the model. Each scaled contour in the database is searched to minimise the Eu-
clidean distance from these endpoints to their nearest corresponding points on
the contour. The contour that minimises this error is chosen. The appropriate
section is extracted from the contour and joined to the edge defined boundary
using a natural closed spline (see figure 4.7).

Figure 4.7: From left to right: Original unseen image, calculated edges, robust
segments of epi-cardium and the complete segmentation using an a priori knowl-
edge database

In figure 4.7(b) the segment points obtained from gradient image figure 4.7(a)
are illustrated. In between these segments are parts of the epi-cardium border
that do not have any gradient. Therefore there is no other information in the
image to help find the correct path between these segments. In this case a priori
knowledge about the shape of the epi-cardium border, obtained from previously
hand-segmented can be used to join the segments. In this way we introduce a
form of supervision, and by inferring previously drawn contours we hope to main-
tain continuity of the shape. Because the contours contain the original segments
while the manually drawn contours are only inferred where there is no informa-
tion to be rendered from the image, it is believed that this approach generates
more appropriate results than the previous technique, when the model provides a
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good approximation to the object being segmented. When complete models are
inferred onto the image there is a danger that details may be lost.

4.4 Results

In order to assess the performance of the automatic segmentation, results were
compared against those obtained by manually segmenting volume image sequences
for the endo- and epi-cardium borders. The manual segmentation was assisted by
an experienced cardiologist∗. Each volume includes 5-12 images containing the
lv, transversing the lenght of the cavity and includes the papillary muscles. The
automatic segmentation results can be seen in figure 4.12. The method shows
good visual results for bright blood images 4.12(a)-(f) and dark blood images
4.12(g)-(i). The errors are calculated on volumes, endo and epi contours areas,
myocardium thickness and finally point correspondence.

Table 4.1 shows the signed average and root mean square error of the ejec-
tion fraction from eight volumes from the sequence. The ejection fractions were
worked out using pairs of volumes, not necessarily the end-systole and end-
diastole and compared with the ejection fraction calculated from the manually
segmented volumes. We can see in Table 4.1 low errors between the manual and
automatic results.

The errors for the manually segmented endo-cardium area and the automat-
ically traced area are given in Table 4.1. The signed average and root mean
square errors are shown. Errors around the apex have a significant effect because
the errors are described in proportion to the overall area calculated from the
manual segmentation. Linear regression analysis was also performed in Figure
4.9(a) and high correlation value of r = 0.98 is obtained. Reproducibility is as-
sessed using the Bland-Altman plot, Figure 4.9(b) [15]. From the Bland-Altman
plot we can see that there is a tendency to underestimate the areas of the endo-
cardium boundary, this is due to the inclusion of some endo-endocardium fat in
the manual segmentation and perhaps due slightly to partial voluming effects.
Also evident from the graphs is the accurate performance of this procedure in
both systolic and diastolic phases, represented by the lack of skew in the plots
as the areas increase. Note that the graphs are relatively zoomed to show the
detailed distribution and the plots are graphed in units of mm2.

∗The validation was performed by Dr. John Murray, Cardiologist, Mater Misericordiae
Hospital, Dublin, Ireland.
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The epi-cardium area was assessed using the linear regression and Bland-
Altman plots. It shows a slightly lower percentage error for both the average
signed and the rms errors. This can be attributed to the increased overall area
of the manually traced contours. Linear analysis, Figure 4.10(a), gives a value of
r = 0.94 while Figure 4.10(b) gives a similar regression value of r = 0.95 which is
slightly lower than that produced for the endo-cardium. This lower correlation is
a result of low contrast on the lateral side of the heart making the segmentation
of the epi-cardium border difficult. In this case our algorithm connects two end-
points of robust segments, how these segments are connected can incorporate a
priori information [83]. Manual segmentation is also problematic in areas of low
gradient and is dependent on the users own interpretation of ‘what looks appro-
priate’. Reproducibility was again assessed with the Bland-Altman plot, figure
4.10(b). Again, both methods produced similar results, both bands of two times
the standard deviation are similar and not as tight as those achieved in the blood
pool segmentation. There is not a significant difference between both methods as
robust gradient information is used when available and both approaches are only
applied in areas that are lacking gradient information. Both plots show no bias
from the zero error or skew in the data. Although, the second approach which
uses a prior database of contours does produce a larger number of outliers for the
smaller apical regions where the outer wall may be undefined and approximation
is difficult. Using this approach, more appropriate segmentations are achieved
when compared to full manual segmentations. However, these methods still have
the limitation that they are only working on slice data and not incorporating
volume or temporal information.

Table 4.1: Mean Percentage Errors ± 1SD for manual versus automatic

Average Signed Error RMS Error

Ejection Fraction 1.593 ± 0.82 3.176

Endocardium Areas -3.623 ± 5.14 4.765

Epicardium Areas -0.556 ± 4.29 3.75

Table 4.2 gives the Euclidean point to curve error in mm’s for all images
through a heart sequence. It gives the minimum and maximum distance between
the manual and automatic segmentation contours. The average distance, stan-
dard deviation (SD) and root-mean-square (RMS) are also given. The results
for the epi-cardium boundary point to curve errors are shown in Table 4.3 and
illustrated in figure 4.11.
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(a) (b)

(c) (d)

Figure 4.8: The rendered images of (a) the end-diastole lv cavity, (b) the end-
systole lv cavity, (c) and (d) the diastolic myocardium. These volumes are con-
structed from the true segmentation of the images excluding fat and papillary
muscles.
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Figure 4.9: Figures (a)-(b) shows scatterline plot of manual segmentation against
the automatic segmentation and shows Bland-Altman plot for the left ventricle
blood pool areas.
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Figure 4.10: (a) illustrates the results using the Robust arc technique and (b)
shows the results using the Prior model technique.
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Table 4.2: Point to curve Errors between manual and computer segmentation for
clustering technique for the endo-cardium boundary segmentation(mm)

Endo-cardium

M ethod Average (mm) S td. Dev. (mm) RMS (mm)

3D k-means Clustering 0.69 0.88 1.12

Table 4.3: Point to curve Errors between manual and automatic segmentation
for the epi-cardium boundary(mm) segmentation

Epi-cardium

M ethod Average (mm) SD (mm) RMS (mm)

Robust Arc 1.31 1.86 2.14

Prior Model 1.26 1.27 1.94

Point-to-Curve Error (mm)
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Figure 4.11: Plot shows the error frequency using a point to curve error metric.
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4.5 Conclusion

A fully automatic detection and segmentation of the left ventricle myocardium
has been detailed in this chapter. Edge preserving data filtering is performed and
followed by an unsupervised clustering to successfully segment the left ventricle
cavity from short axis MR images of the heart. Once the cavity volume is ex-
tracted the ejection fraction can be calculated.

In the second part of the chapter the epi-cardium border is successfully seg-
mented using an edge-based technique. The thickness of the wall is approximated
by measuring the thickness of the interventricular septum. The interventricular
septum is an anatomically sound feature of the heart and because it is surrounded
by blood on both sides it can be robustly segmented. This measurement is then
used as an initial estimate for the thickness of the complete wall. A gradient
image of the area around the lv is computed and the use of the approximate wall
thickness, gradient points potentially belonging to the epi-cardium border are se-
lected. If there are no viable gradients found on the epi-cardium border then the
outer wall is estimated using the approximation found using the interventricular
septum.

Statistical partitioning of the images allows the extraction of the lv blood
pool without the use of prior constraints on shape. Abnormalities in the image
data can indicate disease. Model based approaches approximate to the closest
plausible instance shape from the training set Point Distribution Model (PDM),
but this may not be sufficiently accurate. Also model based approaches that in-
corporate texture are limited in their use when the texture in the object images
varies significantly from those contained in the model training set. The method
proposed in this chapter presents a robust, fully automated method to identify
the endo-cardium and epi-cardium borders that does not rely on a priori knowl-
edge nor does it use shape constraints to find the left ventricle cavity.

Left ventricle segmentation is primarily motivated by the need to clinically
diagnose a feature of the heart with potential problems. Models that approximate
left ventricular boundaries try to fit variations of boundaries that have already
been segmented. The left ventricle is anatomically variant, the scanners are in-
consistent and the variations of pathologies found in patients is vast. To build a
model to accommodate such diversity would be an immense task. Our algorithm
makes no approximations based on observed data but instead produces a true
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evaluation of the heart structure by segmenting the true borders in the image.
It should be remembered that the aim is not to segment hearts that are part of
a model but to assist the cardiologist in the prognosis by delineating the true
anatomical features present in the image. Therefore, it is the aim of this thesis
to approach the problem from a bottom-up strategy in as far as possible. Image
segmentation can be augmented using prior information in the case where no
image information is present and also to supervise the segmentation from spilling
into other anatomical structures.

Evaluating the endo-cardium and epi-cardium borders using this approach
could provide a more appropriate technique for flagging problems like wall thin-
ning and low ejection fraction.

However, while this method provides good results in well imaged data and has
been successful in segmenting the left ventricle blood pool in 2D and 3D data and,
it is the aim of this thesis to increase the robustness of the segmentation approach
by incorporating the entire data presented from the patient scan and remove the
heuristic approach by creating a well defined mathematical framework. The aim
of this approach is to create a more involved technique which segments both
myocardium boundaries as opposed to two separate steps and also facilitate the
incorporation of temporal information. The investigation of evolving surfaces,
their parameterisation, termination and incorporating advanced information is
performed in the next chapter.
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Figure 4.12: The left ventricle contours obtained using our automatic segmen-
tation method in short axis cardiac MR images. Figures (a)-(f) show images
taken at both the end-diastolic phase and end-systolic phase of a gradient-echo
sequence. Figures (g)-(i) show images from a spin-echo study.
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Chapter 5

Boundary-Based and Model

Driven Segmentation in

Multidimensional Data

In this chapter, a review of current boundary based and model based segmenta-
tion schemes is detailed and their application to medical image analysis. Partic-
ular emphasis is placed on cardiac left ventricle segmentation in MRI [156, 117,
30, 48]. In Section 5.6 the level set framework is described and novel approaches
to segmentation with level sets is introduced, in particular the extension to 4D
data analysis.

Many boundary based segmentation (also called Active Contours) methods
for object segmentation have been developed for use in medical image object
extraction. Generally, the aim of boundary based segmentation methods is to
deform a closed curve using both intrinsic properties of the curve and image
based information to capture the target object [158]. This form of segmentation
has many advantages over statistical intensity based partitioning algorithms as
boundary shape is one of the key factors in the evolution of the contours. One of
the most popular forms of boundary based segmentations are snakes, which were
first introduced by Kass et al. [68]. From their introduction snakes have received
a large amount of interest from the research community and much work has been
done on derivations of the original snake. Further work in controlling the snakes
propagation was achieved using parametrically deformable models and also by the
introduction of a priori model driven segmentation with Active Shape and Active

75
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Appearance Models. A Eulerian formulation of the active contour is introduced
by means of a level set algorithm. The advantages of this formulation include
a more robust mathematical theory, capability to follow topological changes in
shape, and other computational advantages like curvature measurement. Work
on the level set formulation for segmentation will constitute the main part of
this chapter. A number of key issues in the level set are then addressed which
include the choice of stopping term, the introduction of a priori information, the
coupling of two level sets for the extraction of both the epi- and endo-cardium
boundary and finally the introduction of an Expectation-Maximisation extension
of the level-set framework to fully segment data in 4D (3D + t).

5.1 Active-Contours

Firstly, a 2D simple contour can be defined as v(s) = [x(s) y(s)]T for s ∈ [0, 1].
The main idea is to deform this contour smoothly to extract certain features in
an image [92]. In a segmentation scheme this usually applies to extracting an
area of homogeneous signal intensity, this may represent an object in a medical
image such as the liver organ or a pool of blood. Therefore the deformation of
the curve should flow globally outwards or inwards but should be inhibited from
crossing areas of high frequency in the image data.

In this sense, the energy used to deform the boundary is a combination of a
smoothing term, relating to the intrinsic properties of the boundary curve v(s),
and an image dependent term, obtained directly from the underlying image data.

E = Eint + Eext (5.1)

5.1.1 Internal Energy

The internal energy aims to smooth the deforming contour, as in most cases in the
segmentation of natural objects the boundary is defined as relatively smooth. To
this end, the internal energy uses a combination of first derivative to determine
tension or elasticity of the local contour and second order differential in order
to calculate the bending of the local contour. The resulting values present high
energy levels in irregular contours with shape corners and low energy in contours
with a smooth transition between evenly separated points. If the contour was to
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deform with the deformation energy obtained solely from the internal energies,
the contour would achieve a perfect circle.

Eint =
∫ 1

0
(α|∂v

∂s
|2 + β|∂

2v
∂s2

|2)ds (5.2)

In Equation 5.2, α and β are weighting factors. In practice β may be set to
zero, both to reduce the complexity of the derivation of the curve evolution to a
geometric space and also because curve smoothing can be obtained with the first
regularisation term alone [22].

5.1.2 External Energy

The external energy uses the image data to stop the deformation at the desired
position. Stopping criterion may involve image data intensity, free end of bound-
ary termination, corners or in this case high frequency or high gradient data. The
resulting energy should return low values on high gradient points and high values
on low gradient points.

Eext = −λ

∫ 1

0
|∇I(v(s))|ds (5.3)

In Equation 5.3, λ is a user defined weighting function and I(v(s)) is the
image intensity. To suppress the influence of noise on the deformation the data
may be smoothed using a Gaussian filter, thus becoming ∇[Gσ ∗ I(v(s)] where σ

parameter controls the variance of the Gaussian.

Therefore, the active contour can be described as an energy minimisation
problem that seeks to deform a closed contour to rest on high image gradients
while maintaining a smooth transition between points. An inflation term may be
appended to the energy terms, this can take the value of ±1 along the normal
direction to the curve [31]. This inflation term grows or shrinks the contour from
its initial position to aid with the initialisation.

The main advantages of active contours are their extension to 3D, (where
they are referred to as active surfaces), their ability to capture a closed structure
and the users ability to select different features as stopping terms. In medical
imaging, many of the natural anatomical structures are represented by closed
smooth active surfaces. It is for this reason that many researchers have investi-
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Figure 5.1: Curve propagating with a force ’F’, in the normal direction of the
local boundary.

gated methods and extensions to employ active contours for the segmentation of
medical images, and this will be investigated further in the following section.

There are however disadvantages associated with the snake method. One of
the key limitations of the snake algorithm is the problem of initialisation. The
active contours aim to deform until the stopping energy overpowers the influence
of the intrinsic energies and in some cases the inflation term. Also, the selection
of the parameter space and sampling rule also has a large influence on the final
segmentation result.

5.1.3 Application of Active Contours

Active contours have been used extensively for segmentation in the field of medi-
cal imaging, a full review of deformable models in medical imaging can be found
in [92]. McInerney and Terzopoulos [90] apply a 3D dynamic balloon model using
triangle-based finite elements to segment the left ventricle from cardiac CT data.

Much attention has been given to improving the snake computational frame-
work, for instance Amini et al. [4] suggests using dynamic programming in order
to minimise the energy function. This approach is claimed to produce the opti-
mal local contour by searching all the possible solutions. Geiger [52] describes an
non-iterative dynamically programmed method to extract the optimal contour,
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providing the initial contour is a close approximation. To speed up this algorithm
and to improve robustness, multi-scale images are used. Ronfard [121] introduces
region-based energy by building statistically models of the background and ob-
ject data. These model distributions are used in place of edge information to
determine the contour termination.

Chakraborty et al. [25, 26] also introduce region based information into the
evolution of the active contour. Molloy and Whelan [98] introduce active meshes
that initialise a deformable triangular mesh on corner data in the images and used
the forces between nodes to deform the mesh in order to track the data through
an image sequence. Sermesant et al. [131] introduce a novel function which per-
forms an affine transformation of a deformable model in order to optimally fit
to image data. Jolly et al. [67, 66] employ active contours, semi-automatically
initialise on each slice in the short axis view and then propagate through the
cardiac cycle. Santarelli et al. [126] introduce a Gradient-Vector-Flow (GVD)
snake which proceeds a diffusion filter to segment the inner and outer boundaries
of the left ventricle of the heart.

Reuckert et al. [122] applies active contours for localisation of the aorta.
Neubauer[1] presented a myocardium segmentation following a manually placed
’skeleton’ inside the myocardium. The results are then propagated through all
other slices in the volume. Spreeuwers[145] attempts to address the issue of ro-
bustness in the presence of erroneous local minima by applying a coupled active
contour for the extraction of both the epi- and endo-cardium boundaries simul-
taneously. Mikic [93] uses optical flow estimates to guide the evolution of the
active contour in echocardiographic sequences.

5.2 Parametrically Deformable Models

Staib and Duncan [146, 39] introduce a deformable model based on parametric
contours. These models are commonly used when some prior information about
the geometric shape of the final contour can be determined. This geometric shape
can then be encoded using a small number of parameters. The model is then
deformed, maintaining the overall consistency of the global model, by optimising
the parameters on the image data. Most commonly, the global model can be
defined by a set of analytical curves. Staib and Duncan [146] use elliptic Fourier
decomposition for objects with shape irregularities, where a Fourier shape model
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is used that represents a closed boundary as a sum of trigonometric function of
various frequencies. They then perform an iterative energy minimisation to fit
the model to the image data. This method may provide robust localisation of
features, where the feature matches the template, however, this technique does
not provide an appropriate basis for capturing shape variability and the generic
models built using a priori knowledge need to be good approximations of the final
segmentation result.

5.2.1 Application of Parametrically Deformable Models to Medical

Imaging

Parametrically deformable models have been applied in the segmentation of car-
diac MRI images. For instance, Staib and Duncan [147] propose a geometric
surface matching. The model uses a Fourier parameterisation which decomposes
the surface into a weighted sum of sinusoidal basis functions. In [147], four basis
functions are used; tori, open surfaces, closed surfaces and tubes. The surface
finding is formulated as an optimisation problem which attracts the surface to
strong image gradients in the vicinity of the model.

The main disadvantage of parametically deformable models is the effects of
the choice of coefficients as this determines the complexity of the curve. Placing
limits on each coefficient constrains the shape to an extent but not in a systematic
way. While these models work well for localisation of the left ventricle, a derived
model could not completely hold all the variation of the true left ventricle. These
models have problems to define the complex shape of the left ventricle which
varies from patient-to-patient and between healthy and dysfunctional ventricles.

5.3 Active Shape Models

Cootes et al. [36] propose a method to fit a shape model to image data. Recently,
this has been applied to a wide range of image classification and segmentation
problems. This method has had reasonable success in the case where:

• the target object has a well defined shape,

• can be represented with a set of examples and

• can be approximately located within the image.

There are limitations associated with this method where:
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• the objects present a high variation in shape,

• grayscale or when the position/size/orientation of the target are not ap-
proximately known and

• the models themselves can contain human bias in annotation or error in
point correspondence of landmarks.

Firstly, manual delineation of the object in a sample set of images is performed.
From the manually drawn contours, positional landmarks are extracted in the
form x = [x1, x2...xn, y1, y2...yn]T for each of the 2D images in the training set.
The principle behind landmarking may be conceptually simple, but in practice
is a cumbersome and time consuming job. The tracer must manually position,
sometimes hundreds, of markers along the traced contours, with constant refer-
ral to previous annotations to ensure correspondence. This becomes increas-
ingly more difficult as more and more data presents itself from 3D and 4D
medical scans. Some work in automatic landmarking has been researched in
[170, 129, 50, 169, 135]. Once the landmark points have been selected, they are
then aligned commonly with Procrustes shape distance metric with respect to
scale, position and orientation. As stated, point correspondence is one of the
limitations for model based approaches and Hamarneh [60] addresses this prob-
lem by represented in the shapes by descriptors obtained after the application of
Discrete Cosine Transform (DCT).

To model the shape variation, the classical statistical approach of eliminating
redundancy in the database is achieved through Principal Component Analysis
(PCA) or Karhunen-Loeve transform. PCA performs a variance maximising rota-
tion of the original variable space, this is best illustrated graphically in Figure 5.2
where the two principal axes of a two dimensional data set is plotted and scaled
according to the amount of variation that each axis explains [149, 45]. The axes
are also ordered according to their variance, meaning the first axis contains the
highest variation. In practice the PCA is performed as an eigenanalysis of the
covariance matrix of the aligned shapes.

The overall idea behind ASMs is to generate a shape instance using the data
obtained from the training set of shape landmarks. This can be seen in Equa-
tion 5.4 where x is the new shape instance and x̄ is the mean shape (see Equa-
tion 5.5.
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two eigenvectors.

x = x̄ + Φsbs (5.4)

x̄ =
1
N

N∑

i=1

xi (5.5)

The matrix Φs = [Φ1...Φt] is made up of the eigenvectors corresponding to
the t largest eigenvalues λi, where t is the number of modes. b is a vector defining
the set of parameters of the deformable model and is defined in Equation 5.6.

bs = ΦT
s (x− x̄) (5.6)

There are some disadvantages associated with ASMs, mainly their lack of
robustness in the presence of high gradients not associated with the target ob-
ject, their dependence on initialisation close to the target object, time consuming
database construction and the inherent problem of model generality versus accu-
racy.

5.3.1 Application of ASMs to Medical Imaging

In 1994, Cootes [34] published his work on localisation of medical features using
ASMs and used the left ventricle in echocardiographic sequences. Hamarneh and
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Gustavsson [60] also apply the ASM to echocardiographic sequences to locate
the left ventricle and then in a second phase uses the active contours described
in Section 5.1 to accurately determine the true boundaries of the left ventricle.
van Ginneken et al. [168] uses a non-linear kNN-classifier instead of the more
commonly used linear Mahalanobis distance metric to steer the active shape seg-
mentation scheme to optimal local features. Duta and Sonka [45] improve the
ASM by constraining the deformation of the shape model to appropriate shapes
defined by the segmentation task, in their case the segmentation of brain images
in MRI. Rogers and Graham [120] perform a robust parameter estimation to im-
prove tolerance of outliers in the model and improve the ASM search.

5.4 Active Appearance Models

In order to address some of the ASMs lack of tolerance to grayscale variation of
the unseen data, Cootes et al. [35] introduce Active Appearance Models (AAMs).
AAMs build on ASMs by including shape and textural information about the
manually delineated training data. Textural information is defined as the pixel
intensity values across the object and these values are stored in a vector g =
[g1, g2, ...., gm]T where m denotes the number of pixels contained within the object
surface. Alignment of the texture shapes is achieved through image warping, one
such method of image warping is Piece-wise affine using Delaunay triangulation
(refer to [149] for more details). This is followed by normalisation with respect
to illumination of the images before the PCA is constructed as described in
Section 5.3 or in more detail in [149]. A single instance from the texture model
can then be extracted as,

g = ḡ + Φgbg (5.7)

In order to combine the shape and texture models, the shape and model
parameters bs and bg can be combined using a third PCA to make the represen-
tation more compact.

There are many advantages to the method. For instance,

• due to the training phase, the segmentation is very task specific,

• once initialised, convergence is fast,

• AAMs are non-parametric and
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• in certain situations, are robust against noise.

There are also some limitations associated with the AAM

• the model must contain distinct features, unpredictable objects such as
pathologies cannot be handled,

• the annotation of the training set is an arduous task,

• the results are inherently dependent on close initialisation to the target
object

• the size and variation of the training set can restrict the AAM from con-
verging on the correct solution and

• the AAM assumes point correspondence of the training data.

5.4.1 Application of AAMs to Medical Imaging

AAMs have received much attention in medical imaging in recent years. Stegmann
[148, 149] performed a segmentation of the left ventricle of the heart using the
AAM on 2D perfusion images. In [151], Stegmann and Larsson use a cluster-
ing method of the texture variation to create a set of texture subspaces, which
could represent the phases of bolus passage in cardiac perfusion MRI. Mitchell et
al. [96] [94] demonstrate the results when a 3D AAM\ASM combination is per-
formed on the left ventricle of the heart in cardiac data in MRI (see Figure 5.3)
and ultrasound images. The model is created using manually traced contours
on 2D slices and extended in the z direction using linear interpolation between
slices. Van der Geest [165, 166] investigates the semi-manual use of AAMs for
the segmentation of the myocardium in MRI data over the entire cardiac cycle.
Firstly, the contours are initialised on one image and the model iterates over the
entire cardiac cycle until convergence. Finally, manual readjustment of the final
model fittings can then be performed.

Bosch et al. [17] examine the use of Active Appearance Motion Models (AAMMs)
in MRI and echocardiographic. AAMMs introduces a time factor into Active Ap-
pearance Models which aims to minimise the appearance-to-target differences.
Lelieveldt et al. [79] and Sonka et al. [143] also use AAMMs in segmentation
of cardiac 2D+time MRI sequences. The major advantage of this method over
AAMs is the error feedback parameters are calculated for the full image sequence
ensuring a segmentation consistent with cardiac motion.
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Figure 5.3: Original image (left) following segmentation using AAM (middle) and
method described in Mitchell et al. [95] (left).

5.5 Atlas Based Segmentation

Atlas based approaches are parameter free deformations of a priori models to
extract the target object in an unseen image (for a full review of model based
approaches see [48]). In this case, prior knowledge about the shape and intensity
values of the object are incorporated. Unlike parametrically deformable models,
which use geometric shapes to model the desired shape, atlas based approaches
construct the model from manually segmented data.

5.5.1 Application of Atlas Based Methods in Medical Imaging

Kaus et al. [69] use coupled triangular surface meshes to segment the epi- and
endo-cardial contours. Prior knowledge is encapsulated from the manually seg-
mented data using a point distribution model as well as the grey level appearance
within the myocardium. Lorenzo-Valdés et al. [82] construct a probabilistic at-
las of manually segmented temporally aligned data. Automatic segmentation
is achieved by registering the atlas on the data, using the atlas as the initial
values for a Expectation-Maximisation (EM). The EM is then iterated until con-
vergence before a final classification step using Markov Random Fields (MRF)
and Largest Connected Components (LCC). Lelieveldt et al. [80] proposes a
method for thoracic volume segmentation by building a model of the anatomical
structures contained in the thoracic cavity. The method uses blended fuzzy im-
plicit surfaces and a solid modelling technique called constructive solid geometry
(CSG). Initialisation of the model with respect to position, orientation and scal-
ing is one limitation of Lelieveldt’s argument.
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5.6 Level-set Method

Level sets were first introduced by Osher and Sethian [108], following previous
work in Sethian’s Ph.D. thesis [132] on flame propagation. Like snakes, the theory
behind this boundary-based segmentation is largely based on work in partial
differential equations and the propagation of fronts under intrinsic properties
such as curvature [133]. While level-set methods can be applied to a host of
image processing problems, for example image restoration, inpainting, tracking,
shape from shading and 3D reconstruction, segmentation is the main focus of this
work. An extensive review of level-set methods is given by Suri [157] and also by
Angelini et al. [5]. It can also be thought of as transforming the earlier work of
Kass et al. [68] on active contours from a Langrarian to a Eulerian formulation.
Like active contours, the deformation of the level set is seen as a gradient flow
to a state of minimal energy, providing the object to be segmented has clearly
identifiable boundaries [22, 21, 23, 87, 86].

However, by extending the dimensionality of the problem to N + 1, where
N is the initial dimension of the problem, some advantageous properties can be
exploited. The formulation of the problem is conceptually simple. The evolving
curve, or front Γ, evolves as the zero level-set of a higher dimensional continuous
function φ.

∂φ

∂t
+ F |∇φ| = 0

φ(s, t = 0) = given

(5.8)

This function deforms with a force F that is dependent on both curvature of
the front and external forces in the image. The force acts in the direction of the
normal to the front. The initial position for the contour is given, so therefore the
function φ can be constructed.

The use of level-sets for the segmentation of the cardiac muscle in MRI is
appropriate for the following reasons:

• one can perform numerical computations involving curves and surfaces on a
fixed Cartesian grid without having to parametrize these objects (Eularian,
non-marker based solution),

• it becomes easy to implicitly track shapes which change topology, for ex-
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Figure 5.4: Level-set representation of the evolution of a circle.

ample when a shape splits in two, develops holes, or the reverse of these
operations,

• intrinsic geometric properties of the front, such as the curvature and the
normal, can be easily calculated and

• the method may be extended to higher dimensions.

However, there are some issues associated with the basic level set formalisation.
In the latter stages of this chapter, the author attempts to address these issues:

• the algorithm is computationally expensive,

• the front may leak through boundaries of low gradient information,

• the level set function requires initialisation close to the target object and

• the evolution does not use prior shape or texture based information.

Level-set segmentation has also been successfully applied to other medical
imaging modalities as described in Appendix B.

5.6.1 Level Set Formulisation

The fundamental objective behind level-sets is to track a closed interface Γ(t),
for which Γ(t) : [0,∞) → RN , as it evolves in the data space. The interface is
represented by a curve in 2D and a surface in 3D or the set of points that are on
the boundaries of the region of interest Ω. The theory behind level-set segmenta-
tion is largely based on work in partial differential equations and the propagation
of fronts under intrinsic properties such as curvature [108, 133]. Level-set theory
aims to exchange the Lagranian formalisation and replace it with Eulerian, initial
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valued partial differential equation evolution. By extending the dimensionality
of the problem to N+1,where N is the initial dimension of the problem, some
advantageous properties can be exploited. Representing the boundary as the
zero level set instance of a higher dimensional function φ, the effects of curvature
can be easily incorporated. φ is represented by the continuous Lipschitz function
φ(s, t = 0) = ±d, where d is the signed distance from position s to the initial
interface Γ0 (see Equation 5.9). The Lipschitz condition implies that the function
has a bounded first derivative. The distance is given a positive sign outside the
initial boundary ( D Ω ), a negative sign inside the boundary ( Ω\∂Ω ) and zero
on the boundary ( ∂Ω ).

φ(s, t = 0) =





−d ∀s ∈ Ω \ ∂Ω

0 ∀s ∈ ∂Ω

+d ∀s ∈ Rn \ Ω

(5.9)

From this definition of φ, intrinsic properties of the front can be easily deter-
mined, like the normal ~n = ± ∇φ

|∇φ| and the curvature κ = ∇ · ∇φ
|∇φ| .

Also from this definition, φ can be considered as a function in two different
ways. Firstly, φ can be considered as a static function φ(s) that is evaluated
at particular instances or isovalues, this leads to the formulation of the Eikonal
equations and is discussed in more detail in the Fast Marching section (Sec-
tion 5.6.5). Alternatively, φ can be described as a dynamic function φ(s, t) that
evolves through time, and the closed contour or front is the special case where the
value of φ(s, t) equals zero. Using this definition, it can also be said that at any
time t0 the set of points that define a curve can be represented as the function
φ(s, t0) = 0. It is also clear that as the curve evolves through time, the function φ

also evolves. Consider a point s(t) on the contour that is evolving through time,
we constrain the value of that point in the level-set function to be φ(s(t), t) = 0.
By chain rule,

∂φ

∂t
+∇φ · s′(t) = 0 (5.10)

Define the force, F = s(t) · ~n to be the force moving the point s(t) in the
normal direction ~n. If ~n is replaced with ~n = ± ∇φ

|∇φ| , the equation takes the form
of a Hamilton-Jacobii as expressed in Equation 5.8. If the force term is rewritten
as F = F0+εκ to include an advection force F0 to move the curve and a curvature
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based term εκ to regulate the evolution, the evolution of φ now becomes,

φt = −F0|∇φ|+ εκ|∇φ| (5.11)

Classic finite difference schemes for the evolution of this equation tend to
overshoot and are unstable. Sethian [134] has proposed a method which relies
on a one-sided derivative that looks in the up-wind direction of the moving front
to control the outward expansion, and thereby avoids the over-shooting associ-
ated with finite differences (see Equation 5.12) while the second derivative can
be approximated using central differences. Level-set theory uses a combination
of derivative approximations to enable smooth curvature evolution.

|∇φ| =
√

max(D−x
i,j , 0)2 + min(D+x

i,j , 0)2 + max(D−y
i,j , 0)2 + min(D+y

i,j , 0)2,
(5.12)

where, for example D+x
ij = φ(i+1,j)−φ(i,j)

4x and D−x
ij = φ(i,j)−φ(i−1,j)

4x .

Caselles et al. [22] and Malladi et al. [87] used the above theory to indepen-
dently formalise the implicit minimisation of the classic energy function used in
snake evolution, seen in Equation 5.1, for the extension to level set theory.

min
∫

g(|∇I|, Iσ)|Γ′(s)|ds (5.13)

This minimisation includes a stopping term g(|∇I(Γ(s))|) where g is a stop-
ping function (reciprocal or exponential) based on gradient of pixel intensities and
curvature term Γ(s) based on the intrinsic properties of the curve and calculated
by ∫

S
|Γ′(s)|2ds =

∫

S
g(|∇IΓ(s)|)ds (5.14)

From [22] it can be shown that the Euler-Lagrange gives a minimising curve
that is of the form.

d

dt
Γ(s) = g(|∇I|)κ~n− (∇g · ~n)~n (5.15)

The term ∇g · ~n adds a naturally occurring attraction force vector normal
to the surface introduced by Yezzi et al. [177] and κ is the curvature term. By
representing the boundary as the zero level set instance of a higher dimensional
function φ as described in Equation 5.9, the effects of curvature can be easily
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incorporated [86, 21].

∂φ

∂t
= g(|∇I|)(c + εκ)|∇φ|+ β(∇g · ∇φ) (5.16)

In this segmentation scheme, a non-zero internal advection or ballooning force, c,
is added to the evolution to evolve the either outward (c = 1) or inward (c = −1)
depending on whether the initialisation curve is enclosing or enclosed by the
target object for segmentation. β and ε are user defined parameters that control
the effects of attraction to gradients and curvature respectively and are chosen
experimentally. Reducing the β parameter slows down the convergence time as
the front is not attracted to edges, however increasing the parameter may have
the effect of causing the evolution to jump past appropriate gradients leading to
spilling of the curve into other areas. The parameter ε controls the smoothness of
the contour or surface. Reducing the value of this parameter allows the algorithm
to converge on less smooth object boundaries.

Curvature Term

From differential geometry any shape (no matter how complex) collapsing as a
function of its curvature κ will evolve to a circle before disappearing [59]. Using
this relationship, a force F = −κ is defined to always shrink a contour to a
point. This is a favourable quality for advancing fronts for segmentation, as it
can be shown that this minimises the contour length. As discussed earlier, using
the partial differential equations perspective, intrinsic geometric properties such
as the curvature and normal can be easily calculated. For example, for a 2D
propagating front, the curvature κ can be found using partial differentials of the
function φ,

κ = ∇ · ∇φ

|∇φ| =
φxxφ2

y − 2φyφxφxy + φyyφ
2
x

(φ2
x + φ2

y)3/2
(5.17)

The normal can undergo a jump at corners, and this issue is addressed in the
work of Sethian and Stain [134] where the normal is normalised.

However, in 3D there are two measures of curvature, the mean and Gaussian
curvature. The mean curvature (κH), is connected to the physical evolution of
soap bubbles and the heat equation.
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κH = ∇ · ∇φ

|∇φ| (5.18)

Gaussian curvature (κG), has also being used to model physical problems such
as flame propagation. It has been shown that a convex curve evolves to a point
under curvature evolution, but it can also be shown that evolution of non-convex
surfaces can be unstable.

κG =
∇φT Adj (H(φ))∇φ

|∇φ|2 (5.19)

where H(φ) is the Hessian matrix of φ, and Adj(H) is the adjoint of the matrix
H [173].

Neskovic and Kimia’s [106] propose a measure of curvature which involves
both mean and Gaussian. In this approach, the direction of flow is obtained from
the Mean curvature while the magnitude of the flow is dictated by the Gaussian
curvature. This is appropriate as the Mean curvature alone can cause singularities
when evolving.

κnes = sign(κH)
√

κG + |κG| (5.20)

Stopping Criterion

The evolution force F is an energy minimisation problem where the speed ap-
proaches zero at positions of high gradients to exert a halting to the front prop-
agation. To this end, two diffusive stopping criteria have been proposed. The
first and most common stopping term is a reciprocal of the gradient of the image
intensity signal convolved with a Gaussian smoothing mask Gσ, where σ is the
variance of the Gaussian mask.

g(|∇I|) =
1

1 + |∇Gσ · I(s)|p , p ≥ 1 (5.21)

The convolution with a Gaussian eliminates the effects of noise on the image.
Other methods of noise removal, such as non-linear or anisotropic which were
discussed in Chapter 3 can be used in place of the Gaussian to improve the re-
sults.
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Alternatively, if the circumstances require the stopping term to fall to zero
faster than the reciprocal function, the following definition can be applied. This
may allow the front to overshoot the object boundary in the presence of weak
gradients or can cause errors in the presence of noise. Therefore a new stop-
ping term is devised that incorporates texture. This is performed by means of
a Gaussian membership function used to determine whether the voxel is inside
or outside the target object. This membership function is constructed using the
texture analysis of the object region after initialisation. A Gaussian member-
ship function is chosen as MRI response in tissue can be modeled as a Gaussian
distribution [76, 70].

g(|∇I|) = exp−|∇Gσ·I(s)| (5.22)

where exp is the exponential function.

5.6.2 Non-gradient based curve propagation

Image segmentation and classification has also been approached by incorporating
level sets into the partitioning of images based on intensity values. These methods
have also been called Region-competition snakes and are deformable models that
are governed by local probabilities that determine if the snake is inside or outside
the structure to be segmented. Chan and Vese [27] show how the Mumford-Shah
functional can be used in a level set framework. The Mumford-Shah functional
aims to partition the image I into a smooth approximation f set of regions
separated using contours, S.

E(S, f) = ν(S) + α

∫

Ω
(f − I)2dx + β

∫

ΩS
|∇f |dx (5.23)

The problem is approached as a energy function which tries to minimise its vari-
ables (a) the length of the set of contours ν(S), (b) the deviation from the original
image α

∫
Ω(f − I)2dx and (c) the smoothness within each region β

∫
ΩS |∇f |dx.

Another approach is developed in a level set framework by assuming a two
class problem of an image I defined on Ω. The problem is then posed as follows:

E(C) =
∫

insideC
|I − C0|2dΩ +

∫

outsideC
|I − C1|2dΩ (5.24)

where C is the front, and (C0, C1) are the average intensity values for inside and
outside the curve C. While this methods addresses boundary leakage and ini-
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tialisation problems it assumes a low class of intensity features and grey scale
homogeneity across the object. Yezzi et al. [177], Tsai et al. [163], Cohen and
Kimmel [32], Deschamps et al. [41] and Angelini et al. [6] adopt variations on
this approach to segmentation in medical images.

In [111], Paragios and Deriche unifies both region and boundary information
in a level set framework. Following on from [109], Paragios incorporates an
intensity based component taken from the grey scale distributions of cardiac
features and a prior shape model to deform a coupled level set over the endo
and epi-cardium of the heart. Taron et al. [161] perform a variational technique
for the segmentation of the Corpus Callosum of the brain. They use estimated
uncertainties of the registration when applying model priors to the segmentation
process.

5.6.3 Introduction of A-Priori Knowledge

Leventon [81] introduced a priori knowledge by building a prior model that was
embedded in a level set formalisation and evaluating its modes of variation using
PCA analysis. This has been the basis for much work in level set formulation in-
corporating shape priors into the propagation. Due to the model being defined in
Eulerian space, it circumvents the problem of point correspondence encountered
in the previous sections.

Tsai et al. [163] provide some work, leading from the initial work performed
by Leventon and perform segmentation on cardiac images in 3D. In [162], Tsai
et al. construct a model of a priori shapes as the zero level set of a number of
separate segmented images. The database of level sets are then classified into
a user defined number of statistical shape classifications using an Expectation
Maximisation algorithm. This method was applied to medical images where con-
genital brain malformation of the cerebellums was used to create a two class
(healthy/diseased) classification scheme. As mentioned, Paragios et al. [110, 112]
use a shape model built from previously segmented data to guide the segmenta-
tion of his level set.

5.6.4 Coupling of Level Sets

Zeng et al. [181] first introduced the idea of coupled level sets for segmentation
of the cortex of the brain. The coupled level set can use the constant thickness or
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distance between the level-sets as a constraint to avoid spilling or over segmenta-
tion. The ideas introduced by Zeng were extended by Paragios [109] who applied
a similar coupling constraint for the segmentation of the myocardium of the heart.

5.6.5 Initialisation using Fast Marching

In order to overcome the ’myopic’ characteristics of level set propagation, Sethain
[133] introduced a Fast Marching methods. This is the unique case of the level
set theory where the force F is always greater than zero, and this propagates
a monotonically advancing front. The formula takes the form of the Eikonal
Equation 5.25, a nonlinear, static Hamilton-Jacobi equation. If the 2D case is
considered again, a set is created T (x, y) that defines the time at which the front
Γ crosses the position (x, y). T satisfies the equation,

|∇T |F = 0 (5.25)
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Figure 5.5: Front propagation using Fast Marching. Adapted from Sethian [134].

The evolution is iteratively assessed by solving the roots of the quadratic
equation of the Eikonal equation and sorting the values of T with respect to size.



5.7. INITIALISATION 95

This can be shown graphically in Figure 5.5. The value of the force at each point
can be calculated using the upwind scheme approximations to derivatives of the
function φ.

The stopping term is based on the diffusion of the gradient and can be calcu-
lated as

Fij = e−α∇Iij (5.26)

The fast-marching approach gives an approximate segmentation and is used for
the evaluation of the initial contour for the dynamic level-set method.

5.6.6 Narrow-band Methods

In order to increase the computational efficency of the algorithm, Adalsteinsson
and Sethian [2] extensively review narrow-band methods. The main disadvan-
tage of formulating the problem in Eulerian space as opposed to the Langrarian
space is the increase memory and computational expense of propagating the front
across the full matrix of the image. To eliminate this issue, a narrow band (2D),
or narrow tube (3D), around the front is defined and it is in this narrow band that
the φ values are updated at each iteration. The narrow-band is first initialised
by including all data points within a certain bandwidth of the front, this can be
achieved by using the values of the φ. As explained, at each iteration, only the
values of φ within the narrow band are updated. With each iteration the front
points are evaluated to see if they are close to the edge of the narrow band. If
yes, the narrow band is re-initialised otherwise the algorithm iterates as normal.
It has been shown in [2] that these boundary conditions do not adversely affect
the motion of the level-set. Implementation of this narrow band method can
greatly improve speed of execution and some level set approaches prove real-time
execution [37].

5.7 Initialisation

To counteract the ’myopic’ characteristics of these deformable models, the ini-
tialisation process is very influential and is performed in MRI data as follows.
Firstly, it is known that the endocardium boundary can be characterised by the
high contrast between the blood and the heart muscle in standard (TruFISP)
cine imaging of the heart. This characteristic is used when a fast marching algo-
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rithm is applied to find a fast efficient initialisation for the blood following the
manual insertion of a seed point. The fast marching approach is driven by a force
Fs = e−α∇Is , which has a diffusive effect aimed at halting the fronts progress at
regions of high gradient. This fast-marching approach falls short of the gradient
defining the transition from blood to muscle. Therefore the contour found by the
fast marching algorithm is used as the initial curve of the level-set algorithm to
find the endocardium boundary. The results from the Fast Marching initialisa-
tion are illustrated in Figure 5.6.

Figure 5.6: Results show the initialisation (marked in white) from a seeded Fast
Marching algorithm. The method was applied to perform a robust initial estimate
of left ventricle cavity of the heart on four separate datasets displaying a high
variability of left ventricle shape.

To find the epi-cardial boundary the endocardium initialisation is dilated
slightly and the inner gradients are masked. Both curves are given a positive
advection force to propagate outwards. It is known that both the endo- and
epi-cardium boundaries of the left ventricle are approximately circular, therefore
the ε is given a high significance in the evolution, the evolution is illustrated in
Figure 5.7. High curvature constraints, the distance inhibitor and the a priori
constraints all act to limit the epi-cardium front from joining the inner front or
spilling in areas of low gradient, like the liver or the lungs.

5.8 Coupling Force between Fronts

To further control the level-set evolution we employ a coupling function between
two level-sets. The coupling adds an extra constraint by introducing a second
level-set that is dependent on the first and coupling the level-sets with an in-
hibitor function, which allows the curve to change direction of growth. This is
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(a) (b) (c) (d)

Figure 5.7: The images above show evolution of the front at four different it-
erations (a) iteration = 0, (b) iteration = 5, (c) iteration = 10 and (d)
iteration = 15.

(a) (b) (c)

Figure 5.8: Segmentation results of the same slice at three separate phases
through the hearts cycle, (a) end-diastolic, (b) mid-diastolic and (c) end-systolic.

achieved without any extra computational expense as the distance between any
point to the level-set boundary is the value of φ at that point, see Equation 5.9.
The piecewise inhibitor function, which is used as the interaction between the
two level-sets, is defined below, where d is the preferred distance between the
curves and w controls the slope between inward and outward growth. The result
η2(φ1) changes value from +1 to -1, which changes the direction of the evolution
for φ2 between inwards and outwards. In practice the values of d and w are taken
from the scaled a priori model.

η2(φ1) =





−1 for φ1(s) < −d− w

3

√
|φ1(s)−d

w | for − d− w < φ1(s) < d + w

1 for φ1(s) > d + w

(5.27)

For this segmentation scheme, it is assumed that the gradient between the
blood pool and the endo-cardium boundary is significantly high to halt the evo-
lution of the level-set. Also it is known that in some cases there is little or no
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Figure 5.9: Graph of the inhibitor function where the values of d = 6 and w = 4.

gradient information between the epi-cardium boundary and the lungs or liver.
Therefore, the level-set segmenting the epi-cardium boundary is controlled by the
endo-cardium level-set using the inhibitor function described.

5.9 Improved Stopping term

To illustrate the improved performance of the advanced stopping term, the fol-
lowing phantom images were created and tested. Two situations are described
as illustrated in Figures 5.10 and 5.11, the first where low gradient information
is present between two regions and the second where the grayscale difference
between two regions is low. The stopping term, is defined as:

g =
1

1 + ∇I
Iσ

(5.28)

uses a combination of the gradient and change in texture. The change in tex-
ture (Iσ) is calculated after the initialisation with the fast marching algorithm
described in Section 5.7. Within the initialised region the mean µ and variance
σ of the voxels are calculated. From these values, a Gaussian is constructed and
the Iσ(s) is calculated as,

Iσ(s) =
1√

2πσ2
e
−(x−µ)2

2σ2 (5.29)

where x is the value of the voxel at each position s in the image. The value of Iσ

is normalised between 0-1.
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The user defined parameters ε and β represent the influence of the curvature
and attraction to gradient on the evolving boundary. In the following tests, we
want to evaluate the influence of the improved stopping term, so the value of ε

is given less significance to reduce the influence of curvature on the evolution.
In the segmentation of the left-ventricle boundaries, the value of ε is given a
higher significance as we know the boundaries approximate circles. Similarly, β

controls the attraction of the level-set boundary to gradients that are normal to
the curve. Again, this value is given a reduced weighting in the proceeding tests.
The results shown in Figures 5.10 and 5.11 demonstrate the improved robustness
against boundary leaking between regions.

(a) (b)

Figure 5.10: The original phantom image with a diffused segment (a) and the
Sobel edge image to illustrate the gradient information (b). The second row
shows the evolution with the existing g = 1

1+∇I at iteration 0, 25 and 50 while
the third row shows the evolution with our proposed approach where g = 1

1+∇I
Iσ

at iteration 0, 25 and 50.

5.10 Introduction of Priors Models

A priori information is incorporated with a probability density function (PDF),
which is defined as

P (s) =
∑

S

∑N
i=1 fi(s)
N

(5.30)
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(a) (b)

Figure 5.11: The original phantom image with a close region (a) and Sobel edge
image to illustrate the gradient information (b). The second row shows the
evolution with the existing g = 1

1+∇I at iteration 0, 25 and 50 while the third
row shows the evolution with our proposed approach where g = 1

1+∇I
Iσ

at iteration

0, 25 and 50.

where fi is the outline of the epi and endo cardium boundaries used for training,
N is the number of training examples and s defines the image coordinates. The
model is built from a set of hand segmented boundaries, a probability density
function is created of both the endo-cardium and epi-cardium boundaries that
are then interpolated in the z direction, scaled and aligned in the xy direction.

The PDF is constructed by aligning the binary manually segmented boundary
images and summing the boundary elements. This is done for both the endo-
cardium boundary and the epi-cardium boundary. It is incorporated into the
evolution in a global context, after each iteration the value ρt is evaluated as,

ρt =
∑

C∈S

φ(t)s ∗ Ps (5.31)

where φ(t)s is the value of φ at time t at the position s and Ps is the probability
density at position s and this value is summed over the narrow band C which is
a subset of the image space. The parameter ρt is calculated at each iteration is
then normalised between the bounds -1 and 1 as it can have negative and positive
values. This is as a result of φ also having positive values outside the contour
and negative values inside the contour. This means ρt will have a more positive
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value if the current contour is inside the prior model and more negative if the
contour is outside the prior model.

In order to obtain the full evolution equation for the level-set we have to incor-
porate both the coupling function and the a priori knowledge into Equation 5.32.

∂φ

∂t
= g(∇I)(c + εκ)|∇φ|+ β(∇g · ∇φ) (5.32)

Firstly, the output from the coupling function is either 1 or -1 and we want
it to change the direction of the curve evolution. From Equation 5.32 we can
see that the advection force defines the direction of the evolution, therefore we
incorporate the coupling function by multiplying it with the advection force c.
This has the result of changing the direction of the contour, depending on the
results from the coupling function. In this sense, both the epi and endo cardium
boundaries are tied together. We also assume that the boundary between the
left ventricle blood pool and the myocardium has a stronger gradient term than
that of the epi-cardium boundary and the liver or lungs. Therefore, this term
is applied to the evolution of the level-set surface designed to extract the epi-
cardium. Hence, based on the parameters of the coupling function which can
be automatically obtained using the distance between the blood pools the outer
surface is prohibited from spilling into other organs beyond a certain distance
from the endo-cardium boundary.

The a priori model is designed to disregard inappropriate gradients and to
give significance only to gradients that are situated close to previously manually
segmented boundaries. For this reason, we incorporate the a priori information
in the attraction term from Equation 5.32. As explained, this is taken on a global
sense whereby we define for both the inner surface and the outer surface whether
or not they are inside or outside the PDF of previously segmented images. Thus,
the complete evolution for the coupled level-set is defined as,

φt+1 = φt + g(∇I)(cη + εκ)|∇φ|+ β

1 + ρt
(∇g · ∇φ) (5.33)

where η is the result of the coupling function between the level-sets and is defined
in Equation 5.27 and ρt is the a priori knowledge and is defined in Equation 5.31.
The results in Figure 5.13 illustrate the performance using four unseen datasets
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(a) (b) (c)

Figure 5.12: Images show the probability density functions from a priori hand
segmented images. Figure (a) shows the combined contours while (b) and (c)
show the endo- and epi-cardium boundaries respectively. Darker gray tone defines
a higher probability of the boundaries.

(a) (b) (c) (d)

Figure 5.13: The images above show the segmentation using our method on the
four previously unseen datasets.

5.11 Extension to 4D

Cardiac data is increasingly available in 3D + time, therefore it is believed that
the best approach for a complete data driven segmentation is to apply an ap-
propriate technique to the complete data presented from a patient scan. Due
to the increasing amount of data that is available in 4D and growing resolution,
some researchers have attempted to address the segmentation problem. Many
have evaluated the result of sequential approaches, where from a robust initial
segmentation (maybe manually assisted) forms the initialisation for subsequent
volumes throughout the cardiac cycle.

While the level set formulation lends itself easily to extension in multidi-
mensional data analysis, the author found few researchers have investigated the
application of level set to analysis of 4D data. Fritscher et al. [51] aim to apply
full 4D information into boundary driven and region-competition geodesic con-
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tours. In initial work, PCA analysis is performed on signed distance maps to
create models, the mean of these models serve as the initialisation step in a level
set segmentation. More generally, in the earlier 4D segmentation work [9, 91], the
temporal dimension was considered in a sequential approach where the segmen-
tation from the previous time frame served as the initialisation for the current
time frame. Rueckert and Burger [123] also used this sequential approach where
the shape of (t + 1) was a deformation of the shape in time frame (t). The de-
formation is achieved using energy minimisation of the deformable template in a
Bayesian formulation. Sun et al. [155] create a non-linear dynamic model learned
from training data. A manual tracing of the first image in the sequence is used to
create a posterior density estimate of the lv at each time frame. A curve evolution
is then performed with the maximum posterior estimate. McEachen and Dun-
can [89] perform tracking of the left ventricle by performing point correspondence
of points from time t to time t + 1 and assume a small degree of motion between
time frames. Based on these assumptions, smooth transition of the parametric
contours is achieved using an optimisation algorithm. Paragios [109] introduced
an energy into his variational level set approach that enforced a consistency of in-
tensity through the temporal cycle. A transformation is calculated between time
It and It+1 based on a bounded error function, where It represents the intensity
value at time t. In Montagnat and Delinette [99] in 2005, the deformable model
is influenced by introducing time-dependent constraints. These consist of prior
temporal knowledge through either temporal smoothing or trajectory constraints.

Segmentation in 4D should perform a segmentation of the 3D volumes and
use information in the time domain. To this end, a number of approaches are
proposed with the advantages and disadvantages of each discussed.

• Sequential Approach, consists of naively using the results from time
sequence t as the initialisation for time sequence t + 1. This approach
assumes no prior knowledge about the temporal dynamics of heart. The
only assumption is that the cardiac muscle boundaries do not exhibit large
movements between time sequences.

• Temporal subtraction, can give some indication as to the direction of
movement of the cardiac boundaries. Again, this does not utilise prior
knowledge about the global dynamics of the heart and may be overly sen-
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sitive to noise and artifacts. Some optical flow approaches may eliminate
these limitations and are being investigated in [10].

• Temporal Smoothing, basically constitutes performing the segmenta-
tion of the 3D volumes in parallel while forcing the boundaries to move
in a physically consistent way using temporal smoothing. In its simplest
form, temporal smoothing could be achieved using an averaging function,
Γt = Γ(t−1) − Γ(t+1)

4t , where Γt represents the boundary curve at time t.

• Temporal consistency of intensity values across the left ventricle cavity
and the left ventricle myocardium and was employed by Paragios and De-
riche [111]. Again, artifacts in the left ventricle cavity due to the dynamics
of the blood through the cardiac cycle may restrict the application of this
method.

• Database of Prior Image Models, built from a selection of images at
particular temporal instances, may be registered to the unseen image. Like
many database models, this approach relies on building generic models that
are applicable to a wide range of heart morphology. Variations in cardiac
morphology caused by individual anatomical features or disease may not
be accounted of in such models.

• Prior Temporal Parameterised Model proposes to model the dynamics
of the cardiac cycle and further refine this model as the parallel segmenta-
tion is performed on the 3D volumes. Unlike database models constructed
in image space, broader classification of the cardiac boundaries movement
through the entire cycle can be applied to all variations of heart morphol-
ogy. Exploiting the construct of the φ function in level set segmentation
(see Equation 5.9) enables fast function fitting that may be incorporated
into the update of φ.

5.12 Applying level set on 3D+t data

From the options above, segmentation of the 4D data should be approached in a
parallel sense using temporal constraints to infer prior knowledge in an effort to
control the boundary deformation away from erroneous spilling or over segmenta-
tion. To this end, a novel approach to control a level set deformation is proposed.
The control is achieved by means of prior knowledge about the deformation of
the cardiac muscle through a complete cardiac cycle. In the majority of cases,
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Figure 5.14: Volume, in pixels, of left-ventricle cavity over the cardiac cycle.

the temporal volume change of the cardiac cavity over the complete cardiac cycle
can be illustrated as show in Figure 5.14 where the phase starts at end-diastolic,
decreases in volume during the systolic phase until it reaches end-systole before
returning to end-diastole during its diastolic phase.

The next question to pose is how this information about the overall shape of
the cardiac phase can be implemented in a loosely fitting way to the deformation
of the level set.

5.12.1 Modelling the temporal movement

From Figure 5.14, the cardiac cycle can be approximated using an inverted Gaus-
sian curve. Values for the general Gaussian defined in Equation 5.34,A, B, µ and
σ are found by fitting a Gaussian curve to the volume data extracted using the
Fast Marching algorithm from each time frame. Gaussian fitting is achieved using
least squares approximation. Non-linear fitting is unstable due to the low number
of volumes in the temporal resolution (∼ 25). For nonlinear least squares fitting
to a number of unknown parameters, linear least squares fitting may be applied
iteratively to a linearized form of the function until convergence is achieved. How-
ever, it is often also possible to linearize a nonlinear function at the outset and
still use linear methods for determining fit parameters without resorting to iter-
ative procedures.

y(x) = A + Be
−(x−µ)2

2σ2 (5.34)
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This fitted Gaussian represents the model for the dynamics of the cardiac cy-
cle over a single heartbeat. It follows that the displacement of the endo-cardium
boundary can also be modelled using this fit. In this regard, the deformation of
the boundary surface of the level-set is constrained by this Gaussian model. Ex-
ploiting the inherent definition of the level-set function φ as the distance function
of a single position from the evolving surface, the incorporation of the Gaussian
model is straightforward and can be applied in a non-rigid sense to every point
within the narrow-band.

This is further illustrated in Figure 5.15, where a 2D image is taken and a
single point is selected within the narrow-band. From the definition of φ, the
value at this point is the distance from that point to its closest point on the zero
level-set boundary. In the illustration, the boundary contracts and then expands
again in much the same way as the left ventricle boundary evolves from end-
diastole to end-systole and back again to end-diastole. As this evolution takes
place the value at the position grows and shrinks as the distance to the boundary
increases and decreases, this evolution can be modelled using the Equation 5.34
and the parameters B, µ and σ determined from the fast marching initialisation.
The value of A represents the offset of the Gaussian model. Figure 5.16 illustrates
the model applied to the long axis view.

Figure 5.15: Change of a single point on φ as the boundary evolves over the
cardiac cycle in the short axis view.

Figure 5.16: Change of a single point on φ as the boundary evolves over the
cardiac cycle in the long axis view.

In this way, the evolution of the zero level-set boundary can be constrained
to contract and expand under Gaussian motion, where the saddle point is the
temporal position given by µ and deformation occurs at a rate σ. Initialisation
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Figure 5.17: Volume, in pixels, of left-ventricle cavity over the cardiac cycle with
fitted model using an Adaptive Gaussian Model.

of the Gaussian model parameters are determined after a primary segmentation
of the left ventricle cavity using a Fast Marching method.

Level Set influenced by an Adaptive variance Gaussian

In order to model the dynamics estimated using the Fast Marching algorithm,
an adaptive Gaussian model is developed. Similar to the general Gaussian model
given in Equation 5.34, the aim is to improve the models fit on the initialised
data. This results in the deformation of the boundary that maintains closely the
temporal dynamics of the initial segmentation using the Fast Marching algorithm
and therefore the model resembles the shape of the raw data and does not re-
semble the Gaussian curve. In practice, this model is created by a least squares
fitting of a Gaussian model where the variance, σ is calculated separately at each
temporal position, in essence this means that the least squares error is close to
zero at each temporal position. This is illustrated in Figure 5.17 where the model
curve mirrors the real data.

Models created from initialisation may not represent the final segmentation
of the target object. It places too much confidence in the initial model created
using the fast marching approach. For an example using the worst case scenario,
if the fast marching algorithm falls into a local minima inside the left ventricle
blood pool at one particular time sequence then the temporal model incorporates
this. Using the curvature constraint, the level-set algorithm can overcome this
error, however, the temporal model that is created may not allow the level-set to
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deform greatly from the model created from the initialisation. Therefore, a new
approach is proposed, which uses the information obtained from the initialisation
step but iteratively updates this model based on the evolving level-set. This cre-
ates a smoothing effect on the level-set surfaces over the cardiac cycle but also
redresses poor initialisation.

Level Set influenced using Expectation-Maximisation

In order to address the limitations associated with the Adaptive variance model
described in the previous section, a novel approach is introduced which iteratively
updates the initial parameters of the model. This acts as a form of Expectation-
Maximisation (EM) algorithm. The EM algorithm is a two step approach which
aims to fit some model to data, and is particularly useful where there is unknown
or incomplete data. In the case of cardiac boundary segmentation, the observed
data is defined as the value of the level-set function φ at a particular position over
the entire cardiac cycle. The unknown or missing data is a final Gaussian model
which is inferred on a single point in the grid over the complete cardiac cycle.
This application to each point on the grid has the advantage that the model is
fitted non-rigidly and can allow for less or no deformation, which is the case in
diseased hearts.

The EM algorithm takes initial parameters for the model, in this case the
information obtained from the Fast Marching segmentation of the left ventricle
cavity, and performs an expectation or fit of the data at a particular spatial po-
sition over the entire temporal data. These model parameters are stored in an
array for each grid point. Then during the maximisation step when the level-set
is updated, the information about point position with respect to its expected val-
ues are calculated. The results from this expectation stage is the difference or in
EM terms, the likelihood, between the model and the observed data. From this
expectation calculation, a maximisation is performed to correct for the differences
found. This maximisation step is the level-set deformation of the boundary sur-
face. The process is iterative and the parameters for the model are re-evaluated
at each iteration.

This addresses many issues associated with the previous method. Firstly, be-
cause the parameters for the model using the Fast Marching approach are just
used as the initial parameters for the EM algorithm, there is less dependence
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Figure 5.18: Volume, in pixels, of left-ventricle cavity over the cardiac cycle with
fitted Gaussian model.

placed on these initial parameters as they are re-evaluated at each iteration. Sec-
ondly, the iteratively fitting a Gaussian to the data results in giving a Gaussian
smoothing of the zero level-set boundary over the temporal cycle.

5.13 Results

In order to assess the validity of this approach, the results of the segmentation
using the iteratively optimised algorithm are compared against those obtained
from expertly validated∗ segmentations of the left ventricle. Figures 5.19 display
a linear plot and Bland-Altman plot for the areas in 2D of the manually traced
boundaries.

Comparative results between the adaptive variance approach and those ob-
tained from the iteratively optimised algorithm can be seen on a point-to-curve
error calculation in Table 5.1, showing less error using the optimisation algorithm.
This is also confirmed in a linear plot of the blood pool areas when compared
against manual segmentation where the Gaussian curve with adaptive variance
produced a regression value of 0.71 while the optimised approach yields a regres-
sion of 0.77.

The iteratively optimised algorithm also is guaranteed convergent [174, 40, 13]
and also reduces the error between the observed data and the model at each

∗The validation was performed by Dr. John Murray, Cardiologist, Mater Misericordiae
Hospital, Dublin, Ireland.
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Figure 5.19: Results of the 4D segmentation of the left ventricle cavity boundary
compared against those obtained from manual segmentation.

Table 5.1: Table representing the point to curve error for Method 1 using the
Gaussian curve with adaptive variance and Method 2 using the Expectation-
Maximisation of the Gaussian parameters.

Endo-cardium
Average Std. Dev. RMS

Method 1 1.649013 1.584626 2.309887
Method 2 0.844075 0.914422 1.268981

iteration. This means that convergence is faster than using the static model.
This is characterised in Figure 5.20 by measuring the error decay between the
two methods based on known phantom data.
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Figure 5.20: Results of the 4D segmentation of the left ventricle cavity boundary
compared against those obtained from manual segmentation.

5.13.1 Testing under different motion approximation

In order to show the generality of the method, an implementation of the 4D
segmentation was performed using a different prior temporal model. In this ex-
periment, the temporal function is given a linear function. In Figure 5.21 a cube
is expanded using a linear function. This is illustrated better in Figure 5.22 which
graphs the volume acquired using the Fast Marching algorithm over time. In this
graph, the fitting of a linear function to the data is also given.

Figure 5.21: Selected images from a 4D sequence demonstrating a linear volume
expansion.

5.13.2 Coupled Approach

Coupling of two level-sets can also be achieved in a coherent and thorough way by
employing two Gaussian models, as illustrated in Figure 5.23. Again, in a non-
rigid sense each point on the grid has associated with it the parameters for two
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Figure 5.22: The volume data from the sequence shown in Figure 5.21 with linear
function fitted.
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Figure 5.23: Estimation using prior knowledge of the Epi-cardium and Endo-
cardium deformation through the cardiac cycle using inverse Gaussian curves.

Gaussian models representing the evolution of the epi-cardium and endo-cardium
boundary. The evolution of the epi-cardium boundary is less pronounced and
therefore the Gaussian model is shallower. Results from a coupled segmentation
are illustrated in Figure 5.24 for different phases and slices.

5.14 Conclusions

In this chapter, deformable contours for feature extraction in medical imaging
were introduced and discussed. An overview of current methods employed in the
segmentation of the left ventricle of the heart was performed.



5.14. CONCLUSIONS 113

Figure 5.24: Results from a coupled 4D segmentation of a cardiac sequence for
diastolic, systolic and mid-phase for a basal (top row), mid-slice (middle row),
and apical slice (bottom row).

A novel formulation for the segmentation of the left ventricle is developed
using a coupling of two level-set surfaces representing the endo- and epi-cardium
boundaries. This was then extended to incorporate prior knowledge about left
ventricle anatomy from manually segmented images encoded in a probabilistic
model. This method provides adequate results in mid and basal slices where
spilling is avoided by adding the additional constraints imposed by the prior
knowledge. However, this method encountered difficulty in data representing
high variation and in particular in the irregular shapes present near the apical re-
gions. In these approaches, strengthening the a priori’s influence on the evolution
may result in loss of segmentation detail, patient abnormalities, muscle dysfunc-
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tion etc. Investigating ways of improving accuracy without removing generality
are addressed in the following methodology. A new supervision is proposed that
does not encodes the prior knowledge based on information from the image space.

A new general solution to left ventricle segmentation from 4D MRI data is
presented. Temporal information obtained from the initialisation based on a fast-
marching segmentation is encoded in a parametric model. The model is based
on non-rigid deformation of the left ventricle boundaries over time using prior
knowledge about cardiac dynamics. After each evolution of the level-set algo-
rithm, the model is optimised to the data using an expectation-maximisation to
reduce to target to object error. This approach has the following advantages;
firstly, it provides a temporal smoothing over the cardiac cycle that is consistent
with the motion of the cardiac muscle, secondly it constrains the boundaries from
spilling in the event that a particular time instance lacks appropriate gradient
information and finally, the temporal model is defined on each grid voxel within
the narrow-band, this has the advantage that it can incorporate longitudinal con-
traction and expansion along the short axis into the model. This unique property
of the temporal model can be realised due to the formulation of the level-set.

Excellent results are obtained when compared to expertly assisted segmenta-
tions of the boundaries. This method also gives comparable performance against
other methods described in literature, for example Kaus et al. [69] report a
mean error of 2.45±0.75mm for the end-diastolic phase and 2.84±1.05mm for
end-systolic phase using a deformable model technique.

This method did not perform as accurately against the manual segmentation
when comparing results to those illustrated in Chapter 4. In this application,
supervision was achieved in the evolution of the boundaries by incorporating
knowledge both in the temporal and space domain. Manual segmentation or the
statistical partitioning techniques described in earlier chapters do use temporal
information when segmenting the left ventricle. In this way, we believe that the
3D+t approach provides more accurate results, ensuring the cardiac boundaries
evolve in a smooth fashion more consistent to the physical motion of the muscle.
By incorporating the 4D data, we can remove inconsistencies in signal intensity
values by smoothing the values over the high resolution temporal and spatial data.

The results are illustrated for a coupled surface segmentation where the left
ventricle inner and outer boundaries are tracked in a computationally efficient
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way using two separate models of temporal motion.

Finally, this technique represents a framework for incorporating temporal in-
formation into the evolution of an evolving surface. Also, demonstrated is a
variation of this approach where temporal information is applied using a linear
temporal model as the prior information. This may be associated with tracking
the movement of passing objects. The complexity of the temporal model is not
a limiting factor in this methodology and further applications of this technique
are discussed in the following chapter.
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Chapter 6

Conclusions and Further

Developments

In this concluding chapter of the thesis, an overview of methods developed for the
segmentation and tracking of the left ventricle myocardium is discussed. With
particular emphasis on the aims and challenges outlined in Chapter 1, the mo-
tives for choosing particular paths in research are examined. The relevant results
from each of the processes are also discussed in relation to the objectives. In the
final part of the chapter, the prospect of further work is investigated in relation
to the application of the proposed methods in different scenarios and also the
advancement of the developed methodologies.

6.1 Summary

Diagnosis of cardiac disease can be achieved through the accurate measurement
of cardiac function [103, 128]. In order to extract the most relevant clinical mea-
surements from the heart, the thoracic cavity must be imaged and the cardiac
muscle of the left ventricle needs to be segmented. MR imaging gives relatively
high spatial and temporal resolution of the beating heart without the need for
ionising radiation. The imaging of the heart is fast, non-invasive, painless and
entails minimum discomfort to the patient.

In order to increase the accuracy, speed and repeatability of the functional
measurements of the cardiac data, much research has focussed on the image anal-
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ysis tasks involved in the segmentation of the cardiac muscle of the left ventricle.
In this thesis, novel methods are employed in the segmentation of the left ventri-
cle myocardium. By increasing the dimensionality of the solution thus expanding
the amount of data being processed a more involved technique is developed that
incorporates the three dimensional image data plus the temporal data obtained
from the MRI scanner.

The problem is addressed in a systematic approach, first dealing with the
inherent noise associated with the medical imaging procedures. A performance
characterisation of the main diffusive based non-linear filters is provided both in
2D and 3D. The performance is evaluated using two measures, firstly the filters
ability to smooth the noise in homogeneous areas and secondly the filters facility
to preserve strong edges in the image using edge strength and edge spread as the
criteria. The evaluation was performed in MRI data of varying protocols. From
these measurements an appropriate filter is chosen as a tool to accurately remove
unwanted noise from the images.

When the unwanted artifacts have been removed from the input data, sta-
tistical partitioning is successfully employed to automatically segment the image
into appropriate anatomical structures based on signal intensity in both 2D and
3D data. A novel localisation of the left ventricle blood pool is achieved using
shape descriptors before segmentation of the outer wall of the left ventricle my-
ocardium is accomplished using gradient information and prior knowledge.

To fully utilise all the data presented from a single patient scan, methods were
investigated for the introduction of temporal information into the segmentation
process. Temporal information is useful, as predictions of spacial deformation
can be used to increase robustness segmentation. Level-set theory is introduced
as a numerically stable method of evolving a surface in 3D based on intrinsic
properties of the surface and external forces obtained from the image. In this
thesis, a successful extension of Malladi and Sethians [86] formalisation for shape
recovery is employed which incorporates a texture component and a probabilistic
model of previously segmented cardiac boundaries to avoid the surface spilling
into other anatomical structures in the presence of low gradient. Employing the
idea of a coupled level-set introduced by Zeng et al. [181], the inner and outer
wall of the left ventricle are segmented simultaneously using coupled surfaces that
interacts using a coupling function.
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Exploiting the Eulerian formalisation of the level set, the extension to com-
plete 4D segmentation introduces a parametric model of left ventricle deformation
over a cardiac cycle to aid the segmentation. This model is then iteratively refined
using a optimisation algorithm. The model is re-parameterised for each position
on the grid within a narrow-band of the evolving surface or surfaces, giving it a
non-rigid deformation to take account of areas of the cardiac muscle that do not
demonstrate significant spatial deformation, for example in the case of diseased
tissue.

Each of the methods introduced have been tested on synthetic images and
real patient scans. Performance is evaluated by comparing results against ex-
pertly∗ assisted manual delineation of the cardiac contours. In the next section,
the strategies employed and advantages of this methods over existing methods
commonly used in the cardiac segmentation will be discussed.

6.2 Contributions

In assessing the research conducted in this project toward the goal of cardiac
image analysis, it is clear that a number of significant contributions have been
made as well as other minor contributions. One of the objectives of the project
is to integrate all the data available from a single patient scan into the segmen-
tation process in an appropriate and functional manner. A full characterisation
is attained at each stage in the development of the hypothesis. The major con-
tributions of this thesis are as follows:

• A novel method for the segmentation of 4D information using prior knowl-
edge about temporal deformation is introduced in a level-set framework.
This prior knowledge is then iteratively optimised through the segmenta-
tion process.

• Produced a novel formulation for a coupled segmentation scheme, in a level-
set framework, using a probabilistic model which segments the myocardium
of the left ventricle.

• Developed an improved methodology for cardiac image analysis using sta-
tistical data partitioning.

∗The validation was performed by Dr. John Murray, Cardiologist, Mater Misericordiae
Hospital, Dublin, Ireland.
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• Formed a gradient based segmentation of the left ventricle muscle outer
wall using prior knowledge.

• Performed a full characterisation of advanced data filtering algorithms in
medical images.

There were also some minor contributions resulting from this research:

• Developed a novel seed generator for initialising seed positions for automatic
data partitioning algorithms based on histogram analysis.

• Applied the level-set segmentation technique in CT data for the extraction
of polyp morphology for colon cancer detection.

• Designed a basic graphical user interface, see Figure 6.1, for visualising data
and patient information and a separate back-end repository of algorithms
for medical data processing and analysis.

6.3 Discussion

At the start of this thesis, a brief overview of two opposite approaches to seg-
mentation were outlined, bottom-up and top-down approaches. Some examples
of how both methodologies have been applied in the field of medical imaging were
also given. From this initial discussion, a number of advantages and disadvan-
tages for both were provided.

Firstly, bottom-up approaches offer a general solution without making any
assumptions about the data being processed or about the final solution to the
problem. Spatial information may be used locally about a small neighbourhood
(edge-detectors, region-growing) or may not be used at all (thresholding, signal
intensity clustering). These methods perform effectively in well defined data such
as in CT data or in data after performing advanced filtering but in the case of
poor or noisey data, bottom-up techniques can produce unpredictable and un-
controllable results.

On the other hand, top-down approaches such as template matching, ASMs
and AAMs perform the segmentation using purely information that has been
used in a training process. For example, template matching uses information in
a global sense to minimise the error in order to find the most appropriate fit
between the image data and the template. Such methods have demonstrated
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robust localisation in the presence of low SNR [150]. Incorporating other metrics
into the model such as texture has been shown to minimise the model to tar-
get differences. Other methods have been developed for minimising the model
to target differences involving alternative approaches to model construction such
as PCA, where the principal components of the models variation are utilised in
the deformation process. Top-down approaches are limited in their use where
the structure of the target object varies significantly from those contained in the
training data. For example in cardiac imaging, the general models employed by
ASMs\AAMs that are obtained from training sets are limited in their application
for accurate segmentation to the variety of heart shapes. Abnormalities in the
image data can indicate disease. Model based approaches approximate to the
closest plausible instance shape from the training set Point Distribution Model
(PDM), but this may not be sufficiently accurate. Also, AAMs cannot deal well
with the changes in texture.

Also included in Chapter 2 was a note on how to combine both top-down and
bottom-up approaches in order to obtain a more appropriate solution. In this
thesis, methods of effectively combining prior information and local image prop-
erties are investigated. Following the removal of unwanted noise from the image,
the process of partitioning the structural features within the image is achieved
using a statistical based clustering algorithm. Localisation of the left ventricle
cavity is achieved using prior knowledge about the shape of the structure based
on prior knowledge. Once the left ventricle cavity has being successfully localised
and extracted, a novel method for the outer wall of the left ventricle cavity is
pursued. Approximate knowledge about the myocardium thickness is obtained
from the distance between the left and right blood pools, assuming that the right
ventricle blood pool is close to the left ventricle blood pool and the separating
muscle (interventricular septum) approximates the thickness of the myocardium
around the left ventricle. This knowledge is used when extracting local gradient
information that may form part of the epi-cardium boundary. By linking ap-
propriate edges together, segments are produced. These segments can then be
eliminated with respect to orientation. Where gradient information is lacking, a
top-down approach is adopted whereby missing segments are inserted by means
of a probabilistic model of previously segmented images.

To further advance the concept of using the top-down approaches to guide
bottom-up approaches, the idea of an evolving surface is introduced in Chap-
ter 5. In a level-set framework, prior knowledge about the distance between
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the epi- and endo-cardium boundaries as well as a probabilistic model of previ-
ously segmented images were used to influence a coupled level set deformation.
The probabilistic model is introduced as a cost function, penalising growth away
from model instances. Unlike the variational framework proposed by Paragios
[110, 111] that uses both probabilistic measures for signal intensity obtained from
an expectation-maximisation algorithm and prior shape information encoded in
a level-set framework, our method uses high gradient information as the predomi-
nant stopping term and can therefore be applicable in situations where variations
in grayscale are encountered.

Extending this methodology to 3D + t space, the aim was to remove the
confidence attributed to the prior knowledge of the anatomical shape of the left
ventricle, as it is known to contain a high degree of variation especially in abnor-
mal or unhealthy specimens. It is proposed to model the temporal motion of the
heart, as temporal motion in healthy and unhealthy hearts maintain the systole
and diastole phases. Using this characteristic, a temporal model is constructed
and iteratively updated to guide the local deformation of the level-set algorithm.
This method of top-down knowledge about temporal deformation, optimised in
order to influence the bottom-up approach gives a significant step towards a ro-
bust, elegant and complete solution to the 3D + t segmentation problem. The
idea of encoding the temporal motion in a parametric model can be applied in
different scenarios. In the next section, some possible situations are discussed.

6.4 Further Work

While this work addresses a specific research question, there is further work which
can be undertaken in a broader sense as a result of the ideas put forward. In this
section a number of areas are proposed which warrant further investigation.

Initialisation of the level-set algorithm could be improved. Fast-marching al-
gorithm does not take curvature terms into its evolution. Further advancement
of the fast marching method can improve the initialisation of the temporal model
parameters used in the 4D case described in this thesis.

From a theoretical aspect, the level-set formulation is robust and numerically
stable. Further work may involve a more involved formalisation of the level-set
evolution in order to incorporate the 4D information. Further advances may in-
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clude the extension of the temporal model using non-linear approximations with
more advanced functions. The temporal motion model may also be encoded in
PCA or other method to reduce the dimensionality of the model. These models
may be derived using data from prior information based on expertly segmented
cardiac images.

In this thesis, a novel method for applying top-down information in a bottom-
up approach to segmentation is achieved. The application chosen to demonstrate
the ideas proposed in this thesis are in multi-dimensional cardiac data. Appli-
cation of these ideas in different areas would warrant further investigation. The
work may be transfered to perform segmentation in the right ventricle or the
measurement of valve regurgitation may also be achieved. Modelling temporal
characteristics using more advanced functions can be utilised outside of the medi-
cal domain. Measuring growth in plants may be one application of this technique
[11].

6.5 Concluding Remarks

In this work, a thorough investigation into multidimensional image analysis of
cardiac data in MRI has been performed which was the main contribution of this
research. The primary steps involved advancing the framework from a purely
bottom-up approach based on statistical analysis to a more involved approach
based on surface propagation using increasing dimensional data and incorporat-
ing top-down information to aid the segmentation. This is achieved in a novel
and intuitive fashion. Optimisation of the algorithms performance from a com-
putational expense point of view was performed but advanced developments in
this area was not one of the main goals for this project. Additional research has
been investigated outside the topic and contribute to minor advances in research.
These are explained in detail in Appendix A and B.
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Appendix A

Application of the

Expectation-Maximisation

Algorithm to Medical Images

This appendix details the Expectation-Maximisation (EM) for partitioning image
using pixel intensity values. A novel approach for the initialisation of parameters
is detailed using analysis of the intensity histogram of the image.

The application of the EM algorithm for the partitioning of medical images
into anatomical structures has being documented, particularly in brain segmen-
tation in MRI [47]. The EM algorithm shows robust and repeatable performance
in the segmentations of heart, brain and abdominal images. The EM algorithm
is locally convergent [174, 40, 13] so we have introduced an automatic seeding
method that uses local maxima in the intensity histogram. In this appendix the
novel initialisation of the EM algorithm is investigated and analysis is presented.
Also results against manual initialisation and apply the algorithm to some com-
mon medical image processing tasks are demonstrated.

A.1 EM Algorithm

The EM algorithm [40, 14] attempts to classify data using a soft membership func-
tion as a weighted sum of a number of Gaussian distributions called a Gaussian
Mixture Model (GMM). The generation of this GMM is achieved through an EM
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Figure A.1: Image intensity histogram overlayed with an illustration of the asso-
ciated Gaussian Mixture model.

technique, which aims to find the maximum likelihood estimate for an underlying
distribution from a given data set when the data is incomplete. Its advantage over
the k -means clustering technique [42] is its ability to provide a statistical model of
the data and its capability of handling the associated uncertainties. Consider the
general case of a d -dimensional random variable X = [x1, x2, x3, ..., xd]T and sup-
pose it follows a k -component finite mixture distribution. Its probability density
function (pdf) could be written as,

p(x|θ) =
k∑

m=1

αmp(x|θm) (A.1)

where k is the number of mixtures, αm is the mixing parameter for each of the
Gaussian’s in the GMM and and p(x|θm) is the probability that variable x belongs
to class θm and is defined in Equation A.2.

p(x|θm(µm, σm)) =
1

σ
√

2π
e
−(x−µ)2

2σ2 (A.2)

where θm = {µm, σm} are the Gaussian’s parameters. This can be displayed
graphically in Figure A.1. The value of αm is defined as,
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αm ≥ 0, and
k∑

m=1

α = 1 (A.3)

The algorithm is built on an iterative scheme and consists of two steps. The first,
the E-step, calculates the expected log-likelihood function for the complete data,
defined by Q using the estimates for the parameters θ̂(t). X defines the input
data and Y defines the output classified data.

Q(θ, θ̂(t)) ≡ E[log p(X,Y |θ)|X, θ̂(t)] (A.4)

The second, M-step, uses the maximized values of this result to generate the next
set of parameters.

θ̂(t + 1) = arg max
θ

Q(θ, θ̂(t)) (A.5)

The algorithm iterates between (A.4) and (A.5) until convergence is reached. It
is important to note that local convergence of the EM algorithm is assured since
θ̂ is smaller at each iteration [174, 40, 13].

The updates for the parameters for the GMM are the mixture values αm

and the Gaussian’s parameters θm = {µm, σm}. These can be calculated from
Equations A.6, A.7 and A.8.

αnew
m =

1
N

k∑

m=1

p(m|xi, θ̂(t)) (A.6)

µnew
m =

∑k
m=1 xip(m|xi, θ̂)∑k
m=1 p(m|xi, θ̂)

(A.7)

σnew
m =

∑k
m=1 p(m|xi, θ̂)(xi − µnew

m )(xi − µnew
m )T

∑k
m=1 p(m|xi, θ̂)

(A.8)

A.1.1 Seed Generation

To address the initialisation step a novel approach to collect relevant seed points
for cluster centers based on histogram analysis is developed. A histogram of the
image data is constructed, nj , where n is the number of pixels contained in the
bin with value j. This histogram is then divided into M evenly distributed bins.
This value M is manually set, typically to a higher number than the number of
perceived relevant regions in the image. For the images shown in this appendix,
the value of M was set experimentally to 25. From each bin, the highest peak in
the histogram is assigned to a seed center, Cm.
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Cm = arg max
j

(nj) (A.9)

These M seed centers are then clustered together using their closeness in the
grayscale space until the desired number of seeds, k, is reached. The clustering
is an iterative process where clusters are joined together by evaluating the Eu-
clidean distance between the cluster centers.

A.2 Results

The described scheme was applied to gated MRI short-axis images of the heart,
MRI coronal brain slices and a section from a whole body MRI showing the lower
abdomen. The results are compared against those obtained when the cluster
means and variances are manually extracted from the image. From Figure A.2
and Table A.1, it is clear that using the automatic seed initialisation gives a
better distribution of initial seeds across the data. Table A.1 presents the manu-
ally selected means of the Gaussians and automatically selected means using the
method described above. Also, the Gaussian means following the EM algorithm
has been applied are presented.

To evaluate the performance of the described algorithm, the EM segmenta-
tion algorithm is applied to each of the MRI datasets. As mentioned previously,
the algorithm is locally convergent and therefore initialisation of the algorithm is
crucial to the final solution. A comparison is made between the results obtained
using the automatically seeding process and the results obtained when the ini-
tial seeds for the EM segmentation are chosen manually. To achieve this, areas
are selected in each of the images that attempt to represent the most significant
regions. This is objective and related to the purpose of the segmentation but
the overriding motivation is to pick regions that are clinically significant and also
have a high degree of variation between regions. In each of the images given, 6
regions were manually selected. In these selected regions the mean pixel inten-
sity values and the variance of the pixel intensity values are calculated. These
manually selected values are used as the initial θm’s, where 1 ≤ m ≤ 6 in the EM
algorithm, the mixing parameters αm were each set to 1

m .

Figure A.2 illustrates the strategy applied to short axis images from a cardiac
MRI study. The areas manually selected are shown in Figure A.2 (b) and the



A.2. RESULTS 131

(a)

4

3

2

0

1 5

(b)

(c) (d)

Figure A.2: Figures show the short axis view of cardiac MRI (a) shows the
original image (b) indicates the manually selected areas (c) represents the results
after applying the EM using the manually picked initialisation and (d) is the
result after applying the automatic seed picking.

resultant segmentation after applying the EM segmentation using these initial
parameters is shown in Figure A.2 (c). The final Figure A.2 (d) shows appropri-
ate results after the automatic parameter selection, in particular the results show
a better distribution within the grayscale distribution of the analysed image. Fig-
ure A.3 shows a coronal slice from a T1-weighted head MRI. Again the automatic
segmentation method performs well in differentiating the white matter from the
gray matter. Figure A.4 shows a coronal slice from an abdominal section of a full
body MRI.
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Table A.1: Changes in cluster means in the Cardiac data

Manual µ’s Manual µ’s after EM Automatic µ’s Automatic µ’s after EM

µ(0) 57.31914 55.2806 57 31.33457

µ(1) 125.366 112.0961 137 125.284

µ(2) 194.0437 151.1044 167 171.6872

µ(3) 19.84193 16.74244 12 17.75531

µ(4) 225.1899 112.8278 255 254.2933

µ(5) 28.87568 28.43651 92 79.93145

It is clear from Tables A.1, A.2 and A.3 that the described automatic seed
picking algorithm demonstrates better performance when compared to the man-
ual selection technique. This is evident from the lower differences between ini-
tialised seeds and the final values after optimisation through the EM algorithm.

Most medical images obtained from MRI are 3D and in some cases 4D, but
because the described algorithm works on the data histogram (hence, intensity
values) and is not dependent on spatial position, therefore as a result the al-
gorithm can be applied equally successfully to any dimensioned data. This is
illustrated in Figure A.5 where the algorithm is successfully applied in 3D MRI
images. This aspect is examined further in Section A.3 where the results are used
in conjunction with a diffusion based filtering [54, 115] to extract some clinically
relevant regions from the images.

It is worth noting that statistical classification of pixels is a more appropriate
way to segment medical images as the standard region growing technique will fail
to produce appropriate results in images that exhibit a low signal to noise ratio
(SNR). Also, medical images generally show good separation between significant
regions as this is one of the aims in the acquisition. This is application dependent
some common medical applications are investigated in the following section.

A.3 Applications in Medical Imaging

One of the key indicators of cardiac health is left ventricle ejection fraction, a
measure of the volume of blood pumped from the left ventricle with each heart-
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Figure A.3: Figures show an coronal slice from a brain MRI (a) shows the original
image (b) indicates the manually selected areas (c) represents the results after
applying the EM using the manually picked initialisation and (d) is the result
after applying the automatic seed picking.

beat[48]. Cardiac cine MRI is a standard procedure where 3D volume images are
acquired at gated temporal positions through the cardiac pumping cycle. Such
images are frequently taken using gradient echo imaging, which exhibits a rela-
tively high differentiation between the blood and the myocardium. Figure A.6
shows the end-diastole segmented left ventricle blood-pool after the application of
the EM algorithm to identify the left ventricle cavity. Figure A.6(e) is a rendered
volume of the blood pool inside the cavity of the left ventricle when the muscle
is at its end-diastole phase.
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Table A.2: Changes in cluster means in the brain data

Manual µ’s Manual µ’s after EM Automatic µ’s Automatic µ’s after EM

µ(0) 164.6 123.922 116 117.66

µ(1) 131.18 120.03 96 97.8356

µ(2) 2.3 2.03 13 2.07

µ(3) 66.59 33.01 44 27.48

µ(4) 90.1 94.49 73 70.836

µ(5) 164.21 194.81 153 140.6223

(a)

4

32
0

1

5

(b)

(c) (d)

Figure A.4: Figures show a coronal slice from a section of a full body MRI (a)
shows the original image (b) indicates the manually selected areas (c) represents
the results after applying the EM using the manually picked initialisation and
(d) is the result after applying the automatic seed picking.

The classification of brain MRI’s white matter, gray matter, cerebrospinal
fluid and in some cases lesions, is a fundamental first step for surgical planning,
radiotherapy planning and the identification of brain disease [180]. Illustrated in
Figure A.7 is a segmentation of white matter of the brain.
The accurate measurement of body fat from whole-body MRI images is becoming

an increasingly important metric as high body fat level is recognised to play a
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Table A.3: Changes in cluster means in the whole body data

Manual µ’s Manual µ’s after EM Automatic µ’s Automatic µ’s after EM

µ(0) 170.92 169.4365 183 178.41

µ(1) 42.29 44.45 52 50.484

µ(2) 3.84 4.177 5 4.27

µ(3) 123.61 118.868 151 153.720

µ(4) 95.35 82.99 124 121.496

µ(5) 57.2 55.897 92 85.687

significant role in a variety of serious health problems [18]. MRI is the modality of
choice due to its repeatability and high spatial resolution. Figure A.8 illustrates
the results from one section of a whole-body MRI dataset where the fat tissue
has being segmented out of the volume.

The developed method shows appropriate results with respect to the gray scale
values for all datasets. From these results we can conclude that this approach
offers robust, reproducible and accurate estimation of the initial parameters for
the EM algorithm and the segmentation scheme described is capable of providing
useful clinical measurements when applied to a large range of medical datasets.
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and its application in 3D medical imaging. Journal of Medical Engineering
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Conference Publication

Michael Lynch, Ovidiu Ghita and Paul F. Whelan (2005), Automatic Seed

Picking Algorithm for Region-Based Segmentation of Cardiac MRI Im-

ages, European Society of Cardiac Imaging, ESCR 2005, October 2005, Zürich,
Switzerland.
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(a) (b)

Figure A.5: 3D space partitioning using EM: Images show a single slice of a
3D dataset from (a) the original volume, (b) after segmentation with the EM
algorithm.
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(a) (b)

(c) (d)

(e)

Figure A.6: Images show slices 1 ((a) and (b)) and 4 ((c) and (d)) from the
original volume (left) and with left ventricle blood cavity segmented (right) and
(e) shows the rendered volume of the segmentation.
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(a) (b)

(c) (d)

(e)

Figure A.7: Images show slices 1 ((a) and (b)) and 14 ((c) and (d)) from the
original volume (left) and with segmented white matter (right) and (e) shows the
rendered volume of the segmentation.
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(a) (b)

(c) (d)

(e)

Figure A.8: Images show slices 2 ( (a) and (b)) and 6 ((c) and (d)) from the
original volume (left) and with body fat segmented (right) and (e) shows the
rendered volume of the segmentation.





Appendix B

Level-set Segmentation for

Candidate Polyp extraction in

CTC

The extraction of candidate polyps from Computer Tomography Colonography
(CTC ) is a primary and important step in candidate polyp classification, where
polyps are a precursor to colon cancer. Such a classification step is necessary
due to the high frequency of false positive polyp detections which are apparent in
previous computer aided diagnostic techniques. Previous work in this area uses
curvature constraints on candidate polyps to establish morphology [176]. This
type of classification encounters difficulty when determining folds, a naturally
occurring instance in the colonography exam. In this work, we have used surface
normal intersection to determine possible polyp candidates, we then proceed to
segment the polyp using a level set curve evolution algorithm to extract an ac-
curate segmentation of the polyp features. Results are presented using point to
surface error and the reduction in false positives after the extracted surfaces were
classified using a statistical classifier.

Much of the previous work in polyp extraction uses local curvature and shape
constraints to determine polyp candidates and to establish morphology [154, 178,
72]. This type of classification encounters difficulty when determining folds, a
naturally occurring instance in the colonography exam. Yao et al. [176] proposed
a segmentation of method which used a knowledge guided deformable model to
extract the surface of the polyp and compared it to manual segmentation of
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experts. The knowledge was provided by the curvature of the deformable model
and the signal intensities of the pixels surrounding the polyp. The segmentation
was performed in 2D and the 2D images were combined together to create the
local 3D volume.

B.1 Convex Surface Extraction

Initially, the colon is segmented using a seeded 3D region growing algorithm that
was applied to segment the air voxels, which assures the robust identification of
the colon wall. In some situations the colon is collapsed due to either insufficient
insuflation or residual water. In order to address this issue we have developed
a novel colon segmentation algorithm that is able to correctly identify the colon
segments using knowledge about their sizes and location within the body in all
imaging conditions. After the identification of the colon wall, for each colon wall
voxel the surface normal vector is calculated using the Hummel-Zucker operator
[182]. The normal vectors sample the local orientation of the colonic surface
and the suspicious candidate structures that may resemble polyps are extracted
using a simple convexity analysis. In this regard, the colonic suspicious surfaces
have convex properties and are determined using the 3D histogram and Gaussian
distribution of the Hough points (full details about this developed algorithm can
be found in [29]). This method is able to correctly identify all polyps above 3mm
but it is worth nothing that this is achieved at a cost of high level of false positives.
In order to reduce the level of false positives, the surface is extracted using a
level-set method and the results are classified using a statistical morphological
features.

B.2 Level-Set Initialisation. Fast-Marching Algorithm

As previously outlined in Chapter 5 formulation of the problem is conceptually
simple. The evolving curve or front Γ, evolves as the zero level-set of a higher
dimensional function φ. This function deforms with a force F that is dependent
on both curvature of the front and external forces in the image. The force acts
in the direction of the normal to the front.

φt + F |∇φ| = 0

φ(x, y, t = 0) = given
(B.1)

The implementation employed is a standard two step approach which includes
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Figure B.1: Flow-chart of proposed algorithm

a fast-marching initial step to speed up the segmentation. Fast marching is a
special case of the above equation where F (x, y) > 0. Let T (x, y) be the time
that the front Γ crosses the point (x, y). The function T (x, y) then satisfies the
equation;

|∇T |F = 1 (B.2)

which simply says that the gradient of the arrival time is inversely proportional
to the speed of the surface. The T function is evaluated using the diffusion and
attraction to pixels within the front. The front grows out from its initial position
to points with the smallest value of T (x, y). The T (x, y) function is then updated
and continued until the front does not grow.

B.3 Level-Set Analysis

The theory behind level-set segmentation is largely based on work in partial dif-
ferential equations and the propagation of fronts under intrinsic properties such
as curvature [108, 133, 41, 74]. By extending the dimensionality of the problem
to N+1,where N is the initial dimension of the problem, some advantageous prop-
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erties can be exploited. Representing the boundary as the zero level set instance
of a higher dimensional function φ, the effects of curvature can be easily incor-
porated. φ is represented by the continuous Lipschitz function φ(s, t = 0) = ±d,
where d is the signed distance from position s to the initial interface Γ0 (see Equa-
tion B.3). The distance is given a positive sign outside the initial boundary ( D Ω
), a negative sign inside the boundary ( Ω\∂Ω ) and zero on the boundary ( ∂Ω ).

φ(s) =





−d ∀s ∈ Ω \ ∂Ω

0 ∀s ∈ ∂Ω

+d ∀s ∈ Rn \ Ω

(B.3)

From this definition of φ, intrinsic properties of the front can be easily deter-
mined, like the normal ~n = ± ∇φ

|∇φ| .

Since curvature of the polyp should be a pertinent factor in the segmentation
evolution, particular emphasis is given to this measure. The mean curvature (H),
is connected to the physical evolution of soap bubbles and the heat equation.
While smooth, it may not necessarily be convex and can lead to singularities.

H = ∇ · ∇φ

|∇φ| (B.4)

Gaussian curvature (K), has also being used to model physical problems such
as flame propagation. It has being shown that a convex curve evolves to a point
under curvature evolution, but it can also be shown that evolution of non-convex
surfaces can be unstable [7].

K =
∇φT Adj (H(φ))∇φ

|∇φ|2 (B.5)

where H(φ) is the Hessian matrix of φ, and Adj(H) is the adjoint of the matrix H.

Due to the characteristic curvature features of polyps it is proposed to use
Neskovic and Kimia’s [106] measure of curvature, which involves both mean and
Gaussian. In this approach, the direction of flow is obtained from the Mean
curvature while the magnitude of the flow is dictated by the Gaussian curva-
ture. This is appropriate as the Mean curvature alone can cause singularities and
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extracts the strictly convex surface of the polyp candidate.

κ = sign(H)
√

K + |K| (B.6)

Using this value for κ, the level set is iteratively updated within a defined
narrow band around the segmented boundary to increase efficiency. The following
equation details the update parameters

φt+1 = φt + kI(1− εκ)|∇φ|+ β∇I · ∇φ (B.7)

where ε and beta are user defined parameters (see Table B.1), κ is the curvature
term defined in Equation B.6 and kI is the gradient dependent speed term and
is given by 1

1+∇I . The third term, ∇I · ∇φ represents the attractive force vector
normal to the front. The level-set segmentation is performed in 3D.

Possible polyp candidate centres are calculated over the entire data set by
calculating the normal vectors at each voxel on the lumen wall. Polyp candidates
are defined as regions of high convexity, therefore the centres for possible polyp
candidates are located at points that contain high concentration of normal inter-
sections [29].

The level set is initialised at the polyp candidate centres and grows outwards
until a boundary is encountered. The convex surface is maintained by placing a
high influence on the curvature parameter (see Figure B.2). Once the level-set
has converged or completed its iterations, the surface of the polyp candidate is
taken as all boundary points that have an associated gradient. This ensures that
just the lumen surface is extracted.

Figure B.2: Extracted polyp surface (dotted) using the levelset approach based
on curvature.



146
APPENDIX B. LEVEL-SET SEGMENTATION FOR CANDIDATE POLYP

EXTRACTION IN CTC

B.4 Classifier

Once the true surface of the polyp candidates has being extracted, they are passed
to a classifier to determine whether they are polyps or folds. The classifier is a
statistical model of known polyps and folds and uses statistical features of the
candidates morphology such as least squares ellipsoid fitting error, normalised
distribution of the surface curvature and the Gaussian sphere radius [29]. These
features are used to classify the candidate polyp surfaces into polyps or folds using
a feature normalised nearest neighbour classification scheme [55]. The classifier
was trained with 64 polyps and 354 folds that were selected as true positives by
a radiologist.

B.5 Results

The segmentation algorithm described above was performed on 10 full CTC data
set, converted to isotropic dimensions using cubic interpolation. Visual represen-
tations of the segmentation are shown in Figure B.3 and the extracted surface
renderings are shown in Figure B.5. Table B.1 lists the user defined parameters
used in the level-set algorithm. From this table it can be seen that curvature is
given a large influence to maintain the convexity of the polyp candidate surface.
The narrow bandwidth is given a small value of 10 to increase the efficiency of
the update.

A classifier, trained on expertly categorised unseen data, is then used to
determine whether the extracted surface is classified as polyp or non-polyp. Small
folds in the colon lumen are the main cause of detecting a false positive. It can
be clearly seen in Figure B.5 that fold surface is extracted is saddle shaped and
thus can be easily classified using its shape characteristics.

Table B.2 shows the measured point-to-curve error between the automatic
segmentation results against those found from a manual segmentation of the
small number of polyp candidates. Indicated on the table are the average error,
standard deviation of the error and the root-mean-square of the error. This error
is measured in pixels where each pixel has sub-millimeter dimensions.

Table B.3 gives the results from 10 datasets (9 patients) containing 31 polyps.
From the high number of polyp surface candidates, a relatively low number are
detected. The results show a sensitivity of 100% for all polyps >10mm. Normally,
in a clinical situation, polyps below 5mm have less clinical significance. One
cause for our method missing smaller polyps, are their low curvature difference
between the polyp and the colon wall, therefore some colon wall is taken into
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(a) (b)

(c) (d)

Figure B.3: Images above show the segmentation of the convex polyp candidate.
The bottom left image shows the segmentation of a fold.

Table B.1: Control parameters used in the level-set segmentation.

Control Parameters Values
Fast-Marching Iterations 3
Level-set Iterations 10
Level-set ε 0.5
Level-set β 0.08
Level-set Narrow bandwidth 10

Table B.2: Point-to-curve errors between manually segmented data and our
method.

Error Average Std. Dev. RMS
0.298 0.587 0.661
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Table B.3: Performance Analysis for Polyp Classification. True positive (TP)
and False Positive (FP).

Size Detected Missed
≥10mm 10 0
5–10mm 9 1
≤ 5mm 2 20

the candidate surface (see Figure B.6 and Figure B.4). The false positives per
dataset was calculated to be 1.3, which compares favorably with figures reported
to literature.

Figure B.4: Extracted polyp surface (dotted) for a small polyp, note the inclusion
of healthy colon lumen.

(a) (b) (c)

(d) (e) (f)

Figure B.5: Images above show the polyp candidate renderings of the extracted
surface. Figures (a)-(c) show correctly classified polyps, where Figures (d)-(f)
show correctly classified folds.
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Figure B.6: One of the ≤5mm polyps misclassified due to the inclusion of colon
wall in the surface extraction.

Publications associated with this chapter

Conference Publication

Michael Lynch, Tarik Chowdhury, Ovidiu Ghita and Paul F. Whelan (2005), De-

termining Candidate Polyp Morphology from CT Colonography using

a Level-Set Method, European Medical and Biological Engineering Conference
EMBEC 2005, November 2005, Prague, Czech Republic.





Appendix C

Mathematical Background

C.1 LMS Circle

Using the Least Squares solution a circle is fitted around a collection of points,
Pi, with images coordinates, (xi, yi) for i = 1, 2...N .

A circle is defined by three parameters. These parameters are the coordinates
of its centre (x0, y0) and its radius r. The equation of a circle can be written iso-
lating these three parameters as follows:

(
2xi 2yi 1

)



x0

y0

r2 − x2
0 − y2

0




=

(
x2

i + y2
i

)

In order to find these three unknowns a linear least squares solution is obtained
where:

A =




2x1 2y1 1

2x2 2y2 1

2x3 2y3 1

...

2xN 2yN 1




, b =




x2
1 + y2

1

x2
2 + y2

2

x2
3 + y2

3

...

x2
N + y2

N




The best fitting circle for the points Pi is the least squares solution to [x0 y0 r2−
x2

0 − y2
0 ]T = (AT A)−1AT b where (AT A)−1AT b can be written as:
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The error of this least squares solution can be calculated as the difference between
the area of the fitted circle and the area of concentric circles passing through the
data points with the equation ecircle =‖ A[x0 y0 r2 − x2

0 − y2
0 ]− b ‖

C.2 LMS Ellipsoid

To determine the left ventricle cavity after the application of 3D clustering, the
error between each segmented shape and a fitted ellipsoid is found. The radii of
the ellipsoid are calculated using the eigenvalues of the covariance matrix from
the lists of points that define the surface of the shape.

C =




σx σxy σxz

σxy σy σyz

σxz σyz σz


 =




∑N−1
n=0

(x−x̄)2

N
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(C.1)

Based on work by Pearson, principle component analysis (PCA) chooses the
first ellipsoid axis as the line that goes through the centroid, but also minimizes
the square of the distance of each point to that line, see figure C.1. The line is
a correlation of the points along the data’s principle axis. Equivalently, the line
goes through the maximum variation in the data.

The second PCA axis also must go through the centroid, and also goes through
the maximum variation in the data, but with a certain constraint: It must be
completely uncorrelated (i.e. at right angles, or ‘orthogonal’) to PCA axis 1. The
ellipsoid is an extension of this PCA to 3D finding the three principal axes.

C.3 Splines

A closed natural cubic spline is fitted around the points on the epi-cardium [144].
The spline is used to close the epi-cardium contour by connecting all the points
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Figure C.1: The two principle axes of a two dimensional data set are plotted and
scaled according to the amount of variation that each axis explains.

on the curve in a smooth way.

Splines are piece-wise polynomials of degree n (n = 3 in the case of cubic
splines) with the pieces smoothly joined together. The joining points of the
polynomial pieces are called control points which need not be evenly spaced.
These control points are defined as a collection of points Pi where i = 1, 2, 3...N

and N is the number of points. It works by fitting a cubic curve between each
pair of points in the collection. Smoothness of the curve is maintained by forcing
the first and second derivative of the end point of one curve to equal the start of
the next curve. This is achieved by solving a system of simultaneous equations.
The equation is illustrated below:

fi(x) = ai + biu + ciu
2 + diu

3

0 ≤ u ≤ 1

1 ≤ i ≤ n

Where i is the amount of points on the curve and u is the number of steps in
between each point. The coefficients of the cubic equation are,

ai = xn

bi =
dxn

dP

ci = 3(xn+1 − xn)− 2
dxn

dP
− dxn+1

dP

di = 2(xn − xn+1) +
dxn

dP
+

dxn+1

dP
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The derivatives used in to smooth the curve are computed as follows:




D[0]

D[1]

.

.

.

D[n]




=




4 1 1

1 4 1

1 4 1

...

1 4 1

1 1 4




−1 


3(x1 − xn)

3(x2 − x0

.

.

3(xn − xn−2

3(x0 − xn−1)






Bibliography

[1] R. Wegenkittl A. Neubauer. A Skeleton-Based Inflation Model for My-
ocardium Segmentation. In Proceedings of the 16th International Confer-
ence on Vision Interface, Halifax, Canada, June 2003. [cited at p. 79]

[2] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating
interfaces. Journal of computational Physics, 118(2):269–277, May 1995.
[cited at p. 25, 95]

[3] M. B. Al-Daoud and S. A. Roberts. New methods for the initialisation of
clusters. Pattern Recognition Letters, 17(5):451–455, 1996. [cited at p. 54]

[4] A. Amini, T. Weymonth, and R. Jain. Using dynamic programming for
solving variational problems in vision. IEEE Transactions in Pattern Anal-
ysis and Machine Intelligence, 12(9):8555–8567, 1990. [cited at p. 25, 78]

[5] E. D. Angelini, Y. Jin, and A. F. Laine. Handbook of Medical Image Anal-
ysis: Advanced Segmenation and Registration Models, chapter State-of-the-
Art of Levelset Methods in Segmentation and Registration of Medical Imag-
ing Modalities. Kluwer Academic Publishers, 2004. [cited at p. 86]

[6] E. D. Angelini, R. Otsuka, S. Homma, and A. F. Laine. Comparison of
ventricular geometry for two real time 3d ultrasound machines with three
dimensional level set. In Proceedings of the IEEE International Symposium
on Biomedical Imaging, pages 1323–1326, Arlington, VA, USA, 2004. ISBI.
[cited at p. 25, 93]

[7] E. Angelopoulou and L. B. Wolff. Sign of gaussian curvature from curve
orientation in photometric space. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(10):1056–1066, October 1998. [cited at p. 144]

[8] L. Axel. Cardiac MRI. In Biomedical Imaging: Macro to Nano, 2004.
IEEE International Symposium on, pages 1212–1214, 2004. [cited at p. 27]

[9] E. Bardinet, L. Cohen, and N. Ayache. Tracking and motion analysis of
the left ventricle with deformable superquadrics. Medical Image Analysis,
1(2):129–149, 1996. [cited at p. 103]

155



156 BIBLIOGRAPHY

[10] J. L. Barron. Experience with 3d optical flow on gated mri cardiac datasets.
In Proceedings in 1st Canadian Conference on Computer and Robot Vision,
pages 370–377, May 2004. [cited at p. 104]

[11] J. L. Barron and L. Liptay. Measuring 3d plant growth using optical flow.
BioImaging, 5:82–86, 1997. [cited at p. 123]

[12] R. H. Bartels, J. C. Beatty, , and B. A Barsky. An Introduction to Splines
for Use in Computer Graphics and Geometric Modelling. Morgan Kauf-
mann, San Francisco, CA, 1998. Splines in chapter ’Hermite and Cubic
Spline Interpolation’, pages 12-13. [cited at p. 64]

[13] J.A. Bilmes. A gentle tutorial of the EM algorithm and its application
to parameter estimation for gaussian mixture and hidden markov models.
Technical Report TR-97-021, Berkeley, CA, 1998. [cited at p. 109, 127, 129]

[14] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995. [cited at p. 23, 127]

[15] J.M Bland and D.G Altman. Statiscal methods for assessing agreement
between two methods of clinical measurements. Lancet, 1(8476):307–310,
1986. [cited at p. 66]

[16] E. Borenstein, E. Sharon, and S. Ullman. Combining top-down and bottom-
up segmentation. In Proceedings IEEE workshop on Perceptual Organiza-
tion in Computer Vision, IEEE Conference on Computer Vision and Pat-
tern Recognition, Washington, DC, June 2004. CVPR. [cited at p. 25]

[17] J.G. Bosch, S.C. Mitchell, B.P.F. Lelieveldt, F. Nijland, O. Kamp,
M. Sonka, and J.H.C. Reiber. Automatic segmentation of echocardio-
graphic sequences by active appearance motion models. IEEE Transactions
on Medical Imaging, 21(11), 2002. [cited at p. 24, 84]

[18] D. Brennan, P.F. Whelan, K. Robinson, O. Ghita, R. Sadleir, J.O’ Brien,
and S. Eustace. Rapid automated measurement of body fat tissue distri-
bution from whole body mri. American Journal of Roentgenology, 185(1),
2005. [cited at p. 135]

[19] J. Cai, J. C. Chu, D. Recine, M. Sharma, C. Nguyen, R. Rodebaugh, Sax-
ena A., and A. Ali. Ct and pet lung image registration and fusion in
radiotherapy treatment planning using the chamfer-matching method. In-
ternational Journal of Radiation Oncology Biology Physics, 43(4):883–891,
1999. [cited at p. 26]

[20] J. Canny. A Computational Approach to Edge Detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6):679–698, Novem-
ber 1986. [cited at p. 22, 37, 61, 64]
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[84] T. Mäkelä, P. Clarysse, O. Sipilä, N. Pauna, Q. C. Pham, T. Katila, and
I. E. Magnin. A review of cardiac image registration methods. IEEE Trans-
actions on Medical Imaging, 21(9):1011–1021, September 2002. [cited at p. 26]
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