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Efficient Pre-segmentation Filtering in MRCP

Kevin Robinson

Abstract

Magnetic Resonance Cholangiopancreatography (MRCP) is an evolving
MRI technique designed for the imaging of the biliary tree, a system
of narrow ducts that collect bile, produced within the liver, store it
in the gall bladder, and deliver it into the small intestine as needed.
Current MRCP protocols, used to diagnose problems in this ductal
system, generate cluttered and noisy, low resolution, non-isometric
volume data, often with significant intensity non-uniformities. This
combination of undesirable characteristics presents particular challenges
for the application of automated image analysis techniques.

This thesis examines the development, characterisation, and testing of
novel and efficient pre-segmentation filtering procedures designed to
achieve increased robustness and precision in the subsequent segmen-
tation and analysis of the biliary tree from MRCP data. A focused set
of image preprocessing algorithms has been developed so as to facili-
tate the operation of non-complex segmentation and computer assisted
diagnosis (CAD) procedures. Most notable in this regard are a num-
ber of novel techniques designed to address the key areas of this image
processing task. These techniques consist of:

• a new histogram preserving approach to inter-image and inter-
volume intensity non-uniformity correction,

• a highly versatile adaptive smoothing filter, implemented as an
oriented, scaled and shaped ellipsoid filter mask,

• the downhill filter, an efficient new algorithm for morphological
reconstruction by dilation, and

• a novel approach to the reconstruction of fine branching structures
in noisy volume data.

Through this combination of flexible and efficient preprocessing algo-
rithms, an effective route towards robust MRCP segmentation and anal-
ysis, and routine CAD in the assessment of the biliary tree from MRCP
is presented.
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Chapter 1

Introduction

The pancreato-biliary system (consisting of the pancreatic duct and biliary

tree, see Fig. 1.1) is routinely examined by radiologists using a set of MRI

acquisition protocols collectively referred to as Magnetic Resonance Cholan-

giopancreatography or MRCP. The data generated by this class of MR imaging

protocol typically exhibits a number of undesirable qualities (poor signal to

noise ratio, low spatial resolution, non-isometric voxels, greylevel inhomogene-

ity, limited coverage, and variable visualisation of the ductal system) all of

which mean that MRCP data is poorly suited to the direct application of

standard computer assisted diagnosis (CAD) procedures.

The aim of this work is to facil-

Liver

Stomach

Pancreas

Duodenum

Left Hepatic Duct
Hilum

Right Hepatic Duct

Common
Hepatic Duct

Gallbladder

Cystic Duct

Common Bile Duct

Ampulla of Vater

Pancteatic Duct

Fig. 1.1: The pancreato-biliary system

itate the effective utilisation of

MRCP for the automated and

semiautomated screening and as-

sessment of the pancreato-biliary

system, through the application

of novel and well-focused image

preprocessing techniques. The

primary goal is to present a uni-

fied pre-segmentation data filter-

ing pipeline designed to allow the subsequent robust operation of segmenta-

tion and CAD techniques to the analysis of MRCP data in the visualisation,

identification, and flagging of features of potential interest to the examining

radiologist. The most immediate and important aspect of that task in the
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Chapter 1 – Introduction

context of this thesis lies in the rapid and consistent assessment of the gall

bladder and common bile duct, and in the reliable recognition and localisation

of stones located at these two sites. Also of interest is the identification of

stenoses or narrowing of the ducts within the tree, which can be indicative

of other pathologies1. Bringing to the attention of the examining radiologist

potential locations of such features through data flagging and flexible, high

quality visualisations is the ultimate goal of CAD in MRCP.

Fig. 1.2 shows slices from two coronally acquired, volumetric MRCP exami-

nations. In Fig. 1.2a a number of stones are visible within the enlarged gall

bladder while in Fig. 1.2b a common bile duct stone can be seen. In both cases

the information that can be built up from the preceding and succeeding slices

clarifies the situation further, enabling the radiologist to form a detailed view.

The optimal utilisation of this information through a full 3-D reconstruction

of the tree is a key goal of this work.

Liver

HD

GB

CBD

Stones

PD

GI Fluid

(a) Gall stones (b) Common bile duct stones

Fig. 1.2: Depiction of stones in the gall bladder and common bile duct

As the volume of data generated by MRCP and related imaging procedures

continues to grow, it is essential that reliable automated screening techniques

be developed in order to assist the radiologist in the thorough and timely as-

sessment of these image series. In consort with the effect of advancing scanner

technology, evolving protocol enhancements such as SMASH (Griswold et al.,

1999) and SENSE (Pruessmann et al., 1999) make possible ever more detailed

imaging of this anatomical region, but in so doing also generate greater vol-

1Pathology — A departure or deviation from a normal condition.
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Chapter 1 – Introduction

umes of data to be reviewed and assessed by the radiologist. As this trend

continues, CAD becomes ever more important in this area of medical imaging,

as it has already become in such areas as CT Colonography (CTC) (Johnson

and Dachman, 2000) and Whole Body MRI (WB-MRI) (Barkhausen et al.,

2001), where the number and size of images in a typical examination tends to

be exceptionally large. While these advances in MRCP acquisition inevitable

improve the levels of detail resolvable, image noise remains an issue and the

clarity achieved in MRCP is set to remain significantly below that observed

in other areas of MRI usage due to the underlying processes involved and

the inherent nonrigid motions ever present in this region of the body, which

together limit useful scanning times and introduce image noise and motion

artifacts. Much emphasis has thus been placed on addressing the issues men-

tioned above, in order to develop a viable set of image processing techniques

towards the goal of reliable automated CAD in MRCP.

1.1 Background and Motivation

In order to provide a context for the material that follows, a short introduction

is presented to the basics of MRCP and the factors and considerations that led

to the initiation of this research project. The following discussion represents

a brief outline of the three main classes of MRCP protocol addressed and

utilised in this work. The flexibility provided and the restrictions imposed by

the MRI scanner (Webb, 1988), and the specifics of MRCP acquisition protocol

design and utilisation (Sai and Ariyama, 2000) are beyond the scope of this

investigation.

There can be many variations within each of the classes of protocol described,

and new acquisition protocols for MRCP examinations continue to be investi-

gated and tested. The development of new MRI protocols is a large and active

field, which also falls outside the scope of this work. There is much published

literature in this area, see for example Boraschi et al. (1999a), Hundt et al.

(2002). Most MRCP protocols, however, continue to utilise the same basic

approach, designed to highlight stationary fluids in the scanned volume.

The above topics represent major areas of ongoing research in their own rights.

The focus of this thesis, however, is with the most effective usage of the scanned

3



Chapter 1 – Introduction

data once it has been generated. From this initial data the task is to apply

image processing techniques in order to assist the radiologist in extracting the

maximum amount of useful information from the acquired studies.

1.1.1 MRCP Protocols

Magnetic Resonance Cholangiopancreatography (MRCP) refers to the use of

MR imaging techniques in order to image the biliary tree and the pancreatic

duct in the area in and around the liver and pancreas. Quite a number of

different protocols have been utilised in this regard, each with its own par-

ticular characteristics, merits and drawbacks, (Boraschi et al., 1999a, Sai and

Ariyama, 2000, Tang et al., 2001, Hundt et al., 2002). Most existing techniques

are based on acquisition protocols that operate by highlighting stationary fluid

in the scanned volume. The data that has been considered in this project has

been acquired utilising three classes of protocol, referred to as RARE, HASTE,

and TRUFI. Of these three, HASTE has been primarily used in the work that

has been conducted to date, as it provides the most direct route to a 3-D re-

construction of the pancreato-biliary system. Brief descriptions of the kinds

of data yielded by each of these three types of acquisition protocol follow.

RARE

Rapid Acquisition by Relaxation En-

Fig. 1.3: A typical RARE image

hancement. This technique is used

to acquire single slice, thick slab im-

ages of the biliary tree, as illustrated

in Fig. 1.3. The biliary tree is clearly

visible in the upper left quadrant of

this image. The common bile duct

is easily identified descending from

the tree towards the centre of the im-

age. The gall bladder can be seen

as a large high intensity region lo-

cated underneath the tree, extending

to the left of the common bile duct.

The pancreatic duct is not clearly visualised in this case. The bright signal

4



Chapter 1 – Introduction

regions to the right of the image are due mainly to gastrointestinal fluids. Un-

wanted signals of this type can often overlap and interfere with the signals of

interest coming from the pancreato-biliary system.

Typically an area of the anatomy surrounding the liver, with a volume in the

region of 400mm × 400mm × 80mm is acquired as a single image, effectively

yielding a raysum2 projectional type view of an 80mm thick slab around the

subject’s liver. This type of acquisition tends to give a good overall view of the

region of interest and is often used as a guide for more detailed examination

of subsequent HASTE and TRUFI datasets.

RARE images provide a similar type of view of the subject area to that

achieved through the use the ERCP technique, which will be described later.

The quality of the results achieved can, however, vary greatly from one study

to the next (see Fig. 1.4) and depends strongly on there being significant

amounts of bile and pancreatic juices present in the system at the time of the

examination. This is a requirement for good results with all types of MRCP

acquisition as it is the stationary fluid in the system that generates the signal.

Subjects are usually asked to fast for several hours prior to examination in

order to allow bile and pancreatic juice to collect.

CBD

(a)

RHD LHD

(b)

GB PD

(c)

Fig. 1.4: The degree of visualisation can vary considerably from one RARE

examination to another. In (a) a faint common bile duct (CBD) is all but
lost in high intensity gastrointestinal (GI) signal, and the rest of the tree is
absent. In (b) the tree is visible to the first level of the hepatic duct (HD),
while in (c) the gall bladder (GB) and pancreatic duct (PD) are also present
in the image, but again little else of the tree can be seen.

2A raysum projection is formed as a set of parallel line integrals through the 3-D region
of interest, each line (or ray) corresponding to a point in the final image. This amounts to
a parallel projection of the 3-D region onto a 2-D plane.
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These RARE images are not utilised directly in the work described in this the-

sis, as it is the 3-D reconstruction of the biliary tree which is being addressed,

and RARE images are single slice projections of the volume of interest onto

a plane. Some 3-D reconstruction can be performed from this type of data

if a number of views are acquired, each taken from a different direction. In

this case the 3-D layout of the biliary tree can be interpolated using a back

projection type of approach (Ko et al., 1995, Lin et al., 1995). The shape of

the ducts is then estimated using an elliptical cross-section model for the duct

geometry, and from this a 3-D reconstruction of the biliary tree is achieved.

Views of the tree structure, both external and virtual endoscopic can then be

generated and from these views some assessment of the tree can be made. This

technique is inherently of limited utility due to the nature of the estimations

which have to be made in the reconstruction process, and the uncertainties

which these estimations introduce.

HASTE

Half-Fourier Acquisition Single-Shot Turbo Spin-Echo. Fig. 1.5 shows two

consecutive slices from midway through an axial HASTE dataset. The liver

boundary is clearly visible in the left half of these images, with the numerous

small high intensity regions inside representing the multitude of branches of

the biliary tree spreading throughout the body of the liver. The larger high

intensity regions in this area represent the common bile duct as it exits the

liver. The cortico-spinal fluid surrounding the spinal cord is also clearly visible

at the bottom centre of the images, and the intestines and spleen can be seen

to the right.

This type of acquisition represents the main source of data in the current work.

It yields a stack of slices acquired contiguously giving a volumetric dataset

ideally suited to the task of 3-D reconstruction, which is the primary goal of

this work. The images are usually acquired in an approximately axial (Fig. 1.5)

or coronal (Fig. 1.6) orientation. That is to say slices may be acquired through

the body with successive slices going from the feet towards the head (axial),

or with successive slices running from the chest towards the back (coronal).

Sagittal acquisitions (with slices being acquired running from the right side of

the body to the left) are also possible but are rarely used.

6



Chapter 1 – Introduction

Fig. 1.5: Two consecutive images from an axial HASTE sequence

In fact most acquisitions are made slightly off one of these orthogonal planes,

oriented so as to achieve the best possible coverage of the region of interest,

ensuring that all of the major elements of the pancreato-biliary system are

captured. This is a particular issue due to the constraints that exist as to

the amount of data that can be acquired in a single series. Tradeoffs with

resolution and signal to noise ratio (SNR) are required, so it is important to

maximise the amount of useful data acquired.

Fig. 1.6: Three consecutive images from a coronal HASTE sequence

HASTE datasets typically comprise thirteen to fifteen slices. Pixels are square

in-slice and can typically range from about 1.2 to 1.6 millimetres in each di-

rection. Slice thickness is usually around three to four millimetres. Due to the

limitations on the coverage achievable in one acquisition, multiple volumes are

often acquired in order to cover the totality of the region of interest. Volume

merging is, however, difficult due to nonrigid organ motions in this region.

7
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TRUFI (TrueFISP)

True Fast Imaging with Steady-State Precession. This protocol is not used as

routinely as the previous two. It does provide excellent delineation of many

boundaries of interest. However, it has one major drawback compared with the

previous methods when addressing the task of automated or semiautomated

analysis of the biliary tree using MRCP. This protocol highlights the flowing

blood in equal measure with the stationary bile and pancreatic juices, and as

such it is often difficult to reliably identify the path and condition of the ducts

in the biliary tree because they run very close to the blood vessels, especially

where they enter the liver.

Fig. 1.7: Two images from a TRUFI sequence

An example of TRUFI data can be seen in Fig. 1.7. As can be observed when

compared to the axial HASTE images of Fig. 1.5, soft tissue boundaries in

particular are far better delineated than in HASTE data. However, the high

intensity signal within the liver is not now due solely to the bile present, but

also to the substantial blood supply that the liver receives. This makes the

reconstruction and analysis tasks far more difficult in this class of data, and

for this reason the main focus in this work has been on HASTE MRCP series.

1.1.2 What MRCP is Used For

MRCP was primarily developed as a replacement for the far more invasive

examination technique called ERCP or Endoscopic Retrograde Cholangiopan-

creatography. In ERCP an endoscope is passed down the oesophagus, through
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the stomach, and into the small intestine. The endoscope is directed to the

ampulla of Vater (see Fig. 1.1) where the pancreato-biliary system feeds into

the intestine. A contrast agent is then injected into the tree and the subject

undergoes an x-ray examination, which highlights the contrast agent now dis-

persed throughout the biliary system. In this way the biliary tree is imaged,

but only to the extent to which it was successfully penetrated by the con-

trast agent. Therefore if the common bile duct is obstructed, for instance by

stones that have migrated out of the gall bladder, then the tree may not be

visualised above these obstructions. ERCP has a number of other undesirable

features associated with it. These include the invasive nature of the procedure

and the need for the use of ionising radiation. Insertion of the endoscope is

uncomfortable for the subject and can result in tearing or perforation of the

regions through which the endoscope must pass. This can be a very serious

complication, which can in extreme cases result in patient mortality. The use

of an x-ray examination and the associated exposure to ionising radiation is

an additional undesirable necessity of this type of procedure and as such also

counts against its use.

A typical ERCP examination is shown

Fig. 1.8: An ERCP examination

in Fig. 1.8. The main sections of the

biliary tree are well delineated. The

clear visibility of the vertebra of the

spinal column and of the ribs is indica-

tive of the nature of this type of exam-

ination, which utilises x-rays. By com-

parison, the RARE image in Fig. 1.3,

which visualises a similar region shows

no trace of the bones present in the

field of view (although the cortico-spinal

fluid is faintly visible descending in the lower middle section of the image). This

characteristic along with the superior sharpness and SNR achieved in ERCP

examinations easily differentiates between the two types of image. ERCP does

have the advantage that once the endoscope is in place it can sometimes be

used to remove stones that have been identified in the examination. It is some-

times the case that an MRCP exam will be followed by the conduction of an

ERCP procedure to this end. Thus it is within this context that the ongo-

ing developments in the quality and reliability of MRCP for the diagnosis of

9
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problems in the pancreato-biliary system proceed. These advances mean that

MRCP continues to increase its challenge to ERCP as the examination of first

resort where such conditions are indicated.

1.1.3 How MRCP is Currently Utilised

MRCP is being increasingly used in examinations of the biliary tree and pan-

creatic duct. The protocols described in Section 1.1.1, along with others,

are used to acquire a set of image series, which collectively form a study.

Single slice, thick slab RARE images give a good overview of the tree while

HASTE and TRUFI examinations provide a more detailed 3-D view. In current

practice, little or no preprocessing of the data is performed. The radiologist,

working at a review station, examines the collected series, browsing through

the slices in order to come to an overall picture of the state of the subject’s

pancreato-biliary system.

Typically, regions and features of interest are identified in one series and the

corresponding locations are pinpointed and examined in other series covering

the same area in order to build up a more comprehensive picture of what is

demonstrated in the scans, with a greater level of confidence in the conclusions

drawn. In this way an assessment is made as to the state of the subject’s

pancreato-biliary system, and a diagnosis and course of action determined.

1.1.4 MRCP with CAD

The underlying goals of the research presented in this thesis involve the appli-

cation of adaptive image processing techniques to the task of image enhance-

ment and noise reduction. This aims to facilitate robust segmentation and to

provide improved visualisation tools and visual cues in the review and assess-

ment of MRCP data, and to render the data more suitable for the subsequent

application of automated computer assisted diagnosis (CAD) techniques. The

use of MRCP as a diagnostic tool is growing rapidly and interest in the area

is expanding. However, while the technique has demonstrated the potential

to provide a viable alternative to the more invasive diagnostic procedures of

ERCP, its utility will ultimately be governed by the resolving power it can be

shown to exhibit.

10
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The data obtained in MRCP is generally noisy and of a relatively low res-

olution, especially when considering the relatively large inter-slice distance

achieved for multi-slice datasets. Angio-style vessel tracking approaches quickly

fail when the duct diameters approach the limits of the image resolution

achieved, as is the case in the smaller ducts visualised in the majority of

MRCP series. These properties render the reliable evaluation and interpreta-

tion of MRCP data a difficult task.

By suppressing extraneous signal from gastrointestinal and other stationary

fluids in the scanning region, and by enhancing and highlighting signal due to

the bile and pancreatic juices, the aim is to present the radiologist with images

that are more easily, accurately, and consistently interpreted and assessed. In

addition, by facilitating simple segmentation of the biliary tree and pancreatic

duct in the 3-D data, more informative and more intuitively interpreted 3-D

rendered views of the available data can be achieved. This will allow the

radiologist to build up a more accurate and detailed picture of the condition of

the pancreato-biliary system under examination. These improvements in the

presented data will also facilitate the application of CAD based procedures,

further assisting the radiologist by flagging regions and features of potential

interest in the large volumes of data acquired across multiple series, which are

typically generated in an MRCP study.

1.1.5 Literature Review

Much published literature exists addressing topics in MRCP and related areas,

providing a large body of background reference and research material cover-

ing both the medical and image processing aspects of this work. The current

section highlights some of the main publications relevant to the subject area

addressed in this project. These publications are listed under four subheadings

covering respectively, the clinical, and image processing aspects of MRCP, gen-

eral medical imaging, and a broader collection of significant image processing

material. The main contributions of these publications, and their primary sig-

nificance within the field, are highlighted, providing a broader context within

which the work presented in this thesis can be viewed.
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Clinical MRCP literature

The various aspects of MRCP from the radiologist’s perspective are covered

by the material presented in a number of reference volumes that have been

published on the subject (Pavone and Passariello, 1997, Hoe et al., 1998, Sai

and Ariyama, 2000). These reference books provide an excellent overview of

how MRCP examinations are utilised, and what kind and degree of clinical

information they can yield. Review of the material provided in these texts

also highlights in particular the levels of skill and training required by the

examining radiologist in order to accurately interpret MRCP images, and as

such illustrates the high degree of difficulty involved in attempting to automate

the analysis of such data.

In addition to the above reference texts, more focused examinations of the

evolving role of MRCP appear in numerous published research papers such as

Guibaud et al. (1995), Reinhold and Bret (1996), Larena et al. (1998), Take-

hara (1999). These papers provide a detailed review and assessment of the

performance of MRCP in the accurate and consistent visualisation and differ-

entiation of various structures and pathologies of interest within the pancreato-

biliary system. They provide critical comparisons between MRCP and other

competing types of examination such as ERCP, highlighting the strengths and

weaknesses of existing MRCP protocols. They assess the suitability of MRCP

to various diagnostic tasks, and the potential roles which these evolving imag-

ing techniques might play within a broader clinical context.

There has also been a great deal of published work addressing the development

and assessment of new MRCP protocols (Boraschi et al., 1999a, Papanikolaou

et al., 1999, Tang et al., 2001, Hundt et al., 2002). More efficient data acqui-

sition techniques for MR imaging have been proposed (Griswold et al., 1999,

Pruessmann et al., 1999), along with examinations of the effectiveness and

utility of various MRCP contrast agents (Mariani, 2001, Dalal et al., 2004),

and reports on the conduct of clinical trials into the utility and performance

of MRCP (Boraschi et al., 1999b, Williams et al., 2001, Kondo et al., 2005).

Taken together these publications provide the clinical context within which the

current work has been conducted, and as such have assisted in identifying the

potential for the application of automated image analysis and CAD techniques

in the assessment of MRCP data.
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Image processing in MRCP

Less has been published on the application of image processing and analysis

techniques to the presentation and assessment of MRCP. Some attention has

been focused on the tasks of biliary tree reconstruction and visualisation. In Ko

et al. (1995) and Lin et al. (1995), the authors propose a 3-D reconstruction

technique for the biliary tree based on point correspondences and a branch

skeletonisation procedure in two mutually orthogonal views, and they present

useful 3-D renderings of the reconstructed trees. The views lack structural

detail due to the estimations of the reconstruction process but provide a good

3-D overview of the biliary tree.

Chen and Wang (2004) illustrate a technique for segmenting the biliary tree

from volumetric MRCP data based on a region growing and centreline tracking

approach. The low resolution of the data results in a poor representation of

the tree, especially in the inter-slice direction, and the approach fails to retain

finer, less distinct portions of the tree, which are obscured due to noise and a

lack of resolution in the data. The results do, however, provide an informative

3-D overview of the layout and general condition of that portion of the tree

which is segmented.

A number of studies have reported on the utility of volume rendered review of

MRCP data as an adjunct to planar review. Cesari et al. (2000) suggest a ray-

sum reconstruction algorithm as being superior to the more familiar maximum

intensity projection (MIP) rendering approach. The raysum algorithm better

represents the presence of stones within a duct, which standard MIP renderings

tend to obscure. In Neri et al. (2000), a study using shaded surface display

(SSD) volume rendered MRCP is presented, concluding that the technique,

while cumbersome to use, offers the potential for informative visualisations to

be achieved.

Kondo et al. (2001) present a study comparing the results achieved for di-

agnoses performed on images generated from SSD and MIP renderings, and

planar review data. The authors highlight the limitations of the widely used

MIP rendering technique in adequately visualising the biliary tree and conclude

that superior results can be achieved using more advanced volume rendering

approaches such as SSD.
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The use of virtual endoscopic renderings in MRCP has been investigated by

a number of authors. In Dubno et al. (1998) the authors provide a brief

review of the technique, and an assessment of the potential for virtual MR

cholangiography, illustrating the intraluminal depiction of the common bile

duct, demonstrating the ability to visualise stones and cavities in the duct.

In Neri et al. (1999a) and Neri et al. (1999b) the authors use a surface rendered

approach to the task of generating virtual endoscopic views of the pancreato-

biliary tract. They assessed the performance of the technique on data from 120

subjects and found it useful in depicting the internal anatomy of the biliary

tract and in identifying changes due to pathological conditions. Prassopoulos

et al. (2002) further demonstrate the application of virtual endoscopic assess-

ment of the common bile duct, based on alternative MRCP protocols, and

again conclude that the technique has significant potential.

Related studies examining the use of virtual endoscopic techniques for the as-

sessment of CT cholangiography data (Prassopoulos et al., 1998, Koito et al.,

2001) show similar levels of visualisation of the anatomy and pathologies of

the pancreato-biliary tract present in that data. Virtual endoscopy in a more

general context is a widely examined subject (Summers, 2000, Deschamps and

Cohen, 2001, Oto, 2002, Fetita et al., 2004, Haigron et al., 2004). However,

these studies in general address the application of virtual endoscopic tech-

niques to data with significantly higher resolution in the spaces and cavities

under examination than that which is achieved within the ducts of the biliary

tree in MRCP studies. As such virtual endoscopic in MRCP presents partic-

ular challenges and requires the best possible quality and the highest possible

resolution of input data in order to achieve useful results.

Medical image processing

Medical image analysis as a whole is a vast research area covering the entire

spectrum of acquisition modalities and anatomical regions, and as such it is to

be expected that much work which can be usefully applied to the processing of

MRCP data is to be found within this wider area of investigation. The present

work draws on a broad body of published material, addressing in particular a

number of topics relevant to the specific problems encountered in the processing

and analysis of MRCP data.
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Greyscale correction approaches for MRI data, such as those techniques re-

ferred to as bias field correction and coil correction address many of the issues

relating to image intensity non-uniformities frequently observed in MRI data

in general. These techniques most often focus on intra-image non-uniformities

and are not on the whole directly applicable to the kind of inter -image non-

uniformities typically observed in the MRCP data that is addressed in this

work. They do, however, provide a useful starting point in working towards

an approach to address these issues.

Vokurka et al. (1999) provide a comprehensive treatment of the topic of ad-

dressing both intra-image and inter-image intensity non-uniformity correction.

A versatile data model is developed to describe the non-uniformity effects ob-

served in MRI data and a pair of iterative correction schemes is proposed. The

main focus is on the intra-slice case and there is no examination of the effect

the proposed inter-slice correction procedure (which applies a set of slice-wise

correction factors at each iteration) has on the individual image histograms.

This consideration is an important element of the correction scheme presented

in Chapter 2, where considerable emphasis is placed on preservation of the

image histograms, so as to facilitate later histogram-based processing. The

application and effectiveness of the intra-slice correction procedure of Vokurka

et al. (1999) is further examined in Vokurka et al. (2001), with a case study

that looks at the correction of non-uniformities in MRI examinations of the

eye.

Alternative approaches to address the problems surrounding non-uniformity

correction can be found in papers such as Newman et al. (2002), where an

adaptive histogramming technique is used to address slice-to-slice intensity

variations, and Lai and Fang (2003), in which an acquisition-time solution is

proposed, where a second lower resolution image, simultaneously acquired us-

ing an additional body coil, is utilised in order to guide the correction process.

Approaches to vessel tracking and segmentation are of particular interest in

informing the direction of our work, and although most existing techniques

address higher resolution data where the modelling of the vessels can be ap-

proached more straightforwardly, the general techniques described have helped

to illuminate some of the problems that must be considered. These consid-

erations in particular helped in formulating the development of the hybrid

reconstruction procedure described in Chapter 4.
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Various model-based vessel tracking strategies are presented by numerous au-

thors (see Frangi et al., 1999, Wang and Bhalerao, 2002, for instance), which

use information regarding expected vessel shape, layout and connectedness in

order to segment the vasculature3 in various parts of the anatomy including

the head and the heart (Flasque et al., 2001, Lorigo et al., 2001), the retina

(Farid and Murtagh, 2001, Mohamed and Auda, 2002), the liver (Selle et al.,

2002), and the limbs (Kanitsar et al., 2001). Chen and Molloi (2002) present

a general purpose 2-D method for segmenting treelike structures by tracking

valley courses in the image, and Canero and Radeva (2003) illustrate a vessel

enhancement technique for 2-D images designed to preserve tubular structures

in the data.

In addition to the topics covered in the paragraphs above, a number of sub-

jects of more general interest should be mentioned as they have influenced the

formulation of the overall approach developed, highlighting various other con-

siderations that must be borne in mind in the processing and analysis tasks

that are to be addressed.

Various anatomical segmentation techniques, and classification (Ashburner

and Friston, 2000) and visualisation (Parker et al., 2000, Preim et al., 2000)

procedures in medical imaging impinge on the processing tasks that are to

be addressed. They are relevant either directly in terms of the image process-

ing approaches that must be developed, or indirectly as elements of subsequent

computer assisted diagnosis (CAD) procedures, consideration of which informs

the more immediate goals of the preprocessing approaches that are developed

and presented in this work. In addition to the various vessel tracking methods

mentioned above, which are specific to branching tubular structures, many

more general approaches are encountered, which address the segmentation of

more compact structures such as the brain (Sijbers et al., 1997, Thacker and

Jackson, 2001), heart (Frangi et al., 2001), or liver (Agrafiotis et al., 2001).

Data interpolation is of particular importance when working with volumes that

are both of low resolution and non-isometric in their voxel dimensions, as is

the case with the MRCP data considered here. Various approaches specific

to the interpolation (Grevera and Udupa, 1998, Thacker et al., 1999) and

registration (Hajnal et al., 1995) of MRI data are investigated and assessed

3Vasculature — Arrangement of blood vessels in the body or in an organ or a body part.
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in the literature, including a zero-filled k-space4 interpolation approach by

Du et al. (1994) that specifically addresses the enhancement of contrast and

continuity in vessels after interpolation, and an iterative approach to k-space

resampling (Pirsiavash et al., 2005) based on an alternating series of data

refinement steps performed in k-space and image space.

Non-medical image processing

In addition to the medically-oriented material addressed above, a whole range

of literature in the general field of image and signal processing provides the

necessary foundations for much of the pre-segmentation filtering work which is

addressed in the body of this thesis. These more general topics include various

familiar techniques for gradient calculation and edge detection such as those

presented in Frei and Chen (1977), Canny (1986), Sobel (1990). The robust

identification of weak boundaries in noisy data is a key concern when consid-

ering potential approaches to the segmentation of the biliary tree in MRCP.

Methods for edge enhancement (Greenspan et al., 2000) and line extraction

(van der Heijden, 1995, Bigand et al., 2001) in image data can provide a use-

ful starting point for the development of effective 3-D surface or boundary

detection procedures.

Another image processing task that is of particular importance in this work

is that of data smoothing and noise reduction. Many approaches to this topic

appear in the literature, ranging from the simplest averaging and median filters

(Gonzalez and Woods, 1992) through mathematical morphology (Serra, 1982,

Soille, 1999), mean shift (Dominguez et al., 2003), and more involved spatial

and frequency domain filtering schemes (Greenspan et al., 2000, Whelan and

Molloy, 2000). Numerous adaptive approaches based on wavelets (Jung and

Scharcanski, 2004), tangential smoothing (Bromiley et al., 2002), and varia-

tional methods (Schnorr, 1999) have all received attention.

One approach dominant in recent literature is that of diffusion filtering. Based

on the mathematics of diffusion (Crank, 1975), it seeks to reduce noise within

regions while preserving semantically important features such as regional bound-

aries by modelling the smoothing applied as a nonlinear diffusion process, with

4MR images are acquired as data in k-space, which is a frequency domain related to
normal image space through the familiar Fourier transform pair.
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the diffusivity being a function of local structure observed in the image data.

Starting with Perona and Malik (1990) who described the original nonlinear

diffusion filter for data smoothing, the technique has evolved with notable con-

tributions to be found particularly in ter Haar Romeny (1994), Weickert et al.

(1998), and Weickert (1999). The paper by Gerig et al. (1992) is notable in

that it examines the use of diffusion filtering in the smoothing of MRI data

in particular. Many other applications and variations have also been reported

(Acton, 1998, Black et al., 1998, Sijbers et al., 1999, Krissian, 2002, Suri et al.,

2002) addressing a variety of approaches and data smoothing tasks. All of

this work forms an important backdrop for the adaptive filtering techniques

described in Chapter 3.

Mathematical morphology in particular provides a number of useful tools for

the purposes of this work. The theory and application of its techniques are

widely examined, starting with the original work of Serra (1982) and including

many important contributions from other authors addressing numerous topics.

These include everything from the fundamental erosion and dilation operations

(van Vliet and Verwer, 1988, Ji et al., 1989, Sivakumar et al., 2000), and the

manipulation and decomposition of structuring elements (van Droogenbroeck

and Talbot, 1996, Park and Yoo, 2001), to the implementation and application

of much higher level morphological techniques.

Two methods in particular should be mentioned. Reconstruction by dilation

(Vincent, 1993, Salembier and Serra, 1995, Soille, 2004), which is useful in

the suppression of non-relevant structures in the data, and the widely inves-

tigated watershed segmentation procedure (Vincent and Soille, 1991, Beucher

and Meyer, 1993, de Smet and de Vleeschauwer, 1997, Felkel et al., 2001,

Lapeer et al., 2002, Nguyen et al., 2003). This latter technique offers an effec-

tive and robust approach to segmentation of the biliary tree once the issues of

image noise and regional homogeneity have been successfully addressed.

An excellent introduction to the whole area of mathematical morphology is

provided by Soille (1999), and the numerous investigated areas of application

(Salembier et al., 1996, Araujo et al., 2001, Bueno et al., 2001, Angulo and

Serra, 2003) provide further examples of the usefulness and versatility of the

tools provided in the field.
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Once a region of interest has been successfully defined, there are two basic

routes to the 3-D visualisation of the structures in question. Either direct

volume rendering techniques can be applied (Lacroute and Levoy, 1994, Gobbi

and Peters, 2003), or a surface extraction procedure can be performed followed

by the application of a surface rendering approach (Foley et al., 1993). Volume

rendering techniques utilise all the information present in the original data but

tend to be computationally expensive and thus can be slow and cumbersome

to use. Surface renderings are generally fast, but discard much of the original

data and can thus lack the detail of volume rendered views. In either case

parallel or perspective projections can be applied in order to generate external

or virtual endoscopic views respectively.

In the case of surface rendering approaches, surface extraction procedures en-

able a concise representation of the structures of interest to be constructed.

Techniques have been proposed for the generation of a polyhedral mesh repre-

sentation of the surface of an object from various input data including arbitrary

point clouds (Boissonnat, 1984, Faugeras et al., 1984), stacked cross sectional

contours (Boissonnat, 1988), and segmented voxel data. Approaches to this

last case include the spider-web algorithm (Karron, 1992), the now ubiquitous

marching cubes algorithm, proposed by Lorensen and Cline (1987) and since

modified and enhanced by various authors (Delibasis et al., 2001, Rajon and

Bolch, 2003), and the more recent growing cube algorithm of Lee and Lin

(2001).

All of these topics were considered to a greater or lesser extent during the

course of this research, and have influenced the form of the solutions that have

been developed to address the particular problems encountered in the pre-

segmentation processing of MRCP data towards effective computer assisted

diagnosis (CAD) in the pancreato-biliary system.

1.2 Contributions

In assessing the research conducted over the course of this project, the most

important aspects of this work have been identified, in the context of MRCP

image processing for biliary tree pre-segmentation filtering. The body of work

highlighted below in Section 1.2.1 represents the core of the research effort
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presented in this thesis. Related work that was undertaken during the period,

but that has a less direct bearing on the primary focus of this report is pre-

sented as subsidiary contributions in Section 1.2.2 and is expanded upon as

appropriate in the appendices to this thesis.

The full scope of the work outlined in both of these sections can also be ob-

served in the collection of publications that have stemmed from this project.

Full references for these publications are given in Chapter 6, and all are avail-

able as pdf documents, along with presentations, posters, and other supporting

materials, on the publications pages accessible at www.eeng.dcu.ie/˜ robinsok.

All publications cited in Sections 1.2.1 and 1.2.2 below are taken from this list

and represent the substantive contributions stemming from these aspects of

the presented work.

1.2.1 Primary Contributions

In focusing on achieving an effective and consistent route to segmentation

of the biliary tree from MRCP, the main aim has been to arrive at a data

preprocessing scheme designed to address the particular problems relating to

noise, resolution, and consistency as observed in MRCP data, so as to facilitate

more robust and representative volumetric segmentation and computer assisted

diagnosis (CAD) results in subsequent analysis of the data. In this context

the major contributions documented in this thesis form the various steps in a

multi-phase image preprocessing strategy for narrow, branching structures in

noisy, low resolution volume data. Each of the topics below is addressed in the

following chapters, forming the main body of this thesis.

1. Due to the characteristics of the MRI acquisition protocols utilised in

the collection of the MRCP data, intensity non-uniformities often ap-

pear, resulting in the first several coronal slices in the data volume being

significantly brighter than subsequent slices. Thus a data preparation

procedure was developed in the form of a histogram-based inter-image

intensity non-uniformity correction scheme (Robinson et al., 2004, 2005a)

in order to minimise the effect of these greyscale inhomogeneities through

a nonlinear histogram matching process that operates by aligning key

features across the sequence of histograms corresponding to each slice in

the dataset.
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2. In the next phase attention was focused on the goal of achieving a sig-

nificant reduction in the considerable noise present in the data, and to

this end an investigation and comparison of many adaptive smoothing

approaches was conducted (Robinson et al., 2002a, Lynch et al., 2004,

Ghita et al., 2005a), and a novel 3-D adaptive filtering scheme was devel-

oped, based on the Gaussian smoothing model (Robinson, 2004). This

approach has proven effective in attenuating signal noise while at the

same time preserving well the semantically important discontinuities that

are present in the volume data.

3. Following this a morphological reconstruction procedure was developed

in order to suppress the signal originating from neighbouring structures

in the scanned volume, while preserving the signal due to the tree struc-

ture that is to be segmented. This goal of retaining the narrow branch

features during the morphological processing is addressed by the hybrid

reconstruction approach detailed in Robinson and Whelan (2004b) where

a generalisation of the traditional reconstruction by dilation procedure

familiar from the greyscale mathematical morphology is described. This

hybrid reconstruction approach allows the degree of greylevel connectiv-

ity required to be specified during the reconstruction process.

4. Through this work on morphological approaches to reconstruction, an

optimal algorithm for reconstruction by dilation was developed. The gen-

eralisation of this directed filtering algorithmic pattern can be applied to

a class of related image processing procedures including the grassfire dis-

tance transform and the watershed segmentation algorithm. The specific

application of this new and efficient algorithm to morphological recon-

struction by dilation, called the downhill filter, has been published in

Robinson and Whelan (2004a).

1.2.2 Subsidiary Contributions

During the course of the research programme outlined above, a number of

important topics had to be addressed, subsidiary to the main thrust of this

effort, but nonetheless important in themselves and in the broader framework

of the programme of research undertaken. Two of these subsidiary topics merit

particular mention in this thesis despite not fitting well within the main body
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of work being presented. Appendices addressing these two topics, as described

below, appear at the end of this report.

1. A prospective study was conducted into the use of whole body MRI

in the assessment of body fat level and distribution (Brennan et al.,

2005). These investigations used many of the same techniques described

in this thesis, achieving superior segmentations as a result, and thus

demonstrating the wider applicability of the pre-segmentation approach

described here. This work also led to some useful results in volumet-

ric reconstruction (Robinson et al., 2004), and produced a number of

more focused results and findings in its own right (Whelan et al., 2004,

Robinson et al., 2005b, Ilea et al., 2005).

2. In order to encapsulate the tools and algorithms developed, the NeatMRI

environment was constructed, a software library and a set of tools pro-

viding easy access to all the techniques and procedures investigated and

implemented during this work. This software framework, as outlined

in Appendix B, is fully documented in its own ‘Programmers Reference

Manual’, which accompanies the toolkit. The NeatMRI environment

represents a substantial and evolving image processing library for fast

prototyping and robust development of powerful image analysis and vi-

sualisation systems.

1.3 Thesis Outline

The chapters that follow this introduction present the design, development,

characterisation and testing of a series of data preprocessing steps that together

represent an effective means for the preparation of MRCP data for subsequent

segmentation, visualisation, and analysis of the biliary tree from an MRCP

volume. Each chapter examines an important topic representing a step in

the overall data preprocessing pipeline. Together they present an effective

route towards the robust application of standard automated CAD procedures

in MRCP.

Chapter 2 addresses a histogram-matching procedure developed to overcome

intensity non-uniformities observed in the coronal HASTE data that is being
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used. The greylevel distributions within a series of slices are matched to com-

pensate for inter-slice greylevel shift. A novel technique that preserves the

integrity of the data histogram is described, ensuring that spikes and voids are

not introduced into the histogram during the scaling and matching process.

This is important so that subsequent data processing and analysis steps can

utilise the resulting volume histogram robustly.

Chapter 3 concentrates on noise reduction through the application of a flex-

ible new gradient-weighted adaptive Gaussian smoothing technique. Noise is

suppressed while semantically important boundaries are preserved through a

process of directed filtering, where stronger gradients result in more highly di-

rectional smoothing, while weaker gradients allow more isotropic smoothing to

occur. This leads to a nonlinear anisotropic form of data filtering where edges

do not get blurred while noise in the body of regions is effectively eliminated.

Next the hybrid reconstruction procedure of Chapter 4 operates so as to iso-

late the biliary tree by attenuating the signal from neighbouring high intensity

regions, while maintaining the signal level throughout the fine branching struc-

ture of interest. This is achieved using a morphological approach based on con-

ditional and geodesic dilations. This step helps to better differentiate between

signal from relevant and non-relevant structures in the volume. Through this

work on morphological approaches to reconstruction, an optimal algorithm for

a class of directed filtering problems was also developed. The specific appli-

cation of this to morphological reconstruction by dilation, called the downhill

filter, has been documented in Robinson and Whelan (2004a). The general-

isation of this algorithmic pattern, which was called directed filtering, is also

presented in this chapter.

In Chapter 5 an implementation overview is presented illustrating the appli-

cation of the techniques described in the previous three chapters. Examples

from both MRCP and more general MR imaging sources are given, demon-

strating the wider utility of the techniques. Versatile, high resolution reslicing

and rendering procedures are applied to the processed volumes, demonstrating

the application of advanced visualisation techniques in the computer-assisted

assessment and diagnosis of the processed data.

The main body of the thesis is closed in Chapter 6, where a summary of the

research work conducted and a review of the results achieved is presented, and
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what further work remains to be done in order to carry forward the goals of

the project is discussed. An assessment of the results achieved through the

application of these procedures is presented and progress towards the goal of

robust and consistent isolation of the biliary tree using non-complex segmen-

tation procedures is examined. A full list of the publications stemming from

this work is also provided at this point.

Finally, a number of appendices covering subsidiary topics appear at the end

of the thesis. During the course of the work, a prospective study was con-

ducted into the use of whole body MRI in the assessment of body fat level

and distribution (Brennan et al., 2005). These investigations used many of

the same techniques described in this thesis, they led to some useful results

in volumetric reconstruction (Robinson et al., 2004), and they also produced

a number of more focused results and findings in their own right (Robinson

et al., 2005b, Ilea et al., 2005, Whelan et al., 2004). The major aspects of this

study are outlined in Appendix A.

An introduction to the programming library and environment NeatMRI is

given in Appendix B, where the full functionality of the library is outlined,

and its usage and dual interfaces through C and Java are illustrated. In or-

der to encapsulate the tools and algorithms that have been developed, the

NeatMRI environment was constructed. This is a software library and a set of

tools providing easy access to all the techniques and procedures investigated

and implemented during this work. This software framework is outlined in Ap-

pendix B and fully documented in its own ‘Programmers Reference Manual’,

which accompanies the toolkit.
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Chapter 2

Intensity Non-uniformity

Correction

Histogram-based techniques are widely used in two distinct contexts. Firstly,

the data histogram can be altered, globally or locally, in order to change the

data’s greylevel distribution in some way. This is often done so as to improve

the visual appearance of a displayed image by increasing its contrast or focusing

in on a particular grey range in the data. These tasks are typically performed

using such techniques as histogram stretching, windowing, and global and local

area equalisation (Gonzalez and Woods, 1992, Whelan and Molloy, 2000), and

generally result in the introduction of spurious new extrema into the histogram

through the merging or separation of histogram bins. Similar histogram-based

greyscale homogenisation techniques have also been applied to the correction

of intensity non-uniformities in the processing of MR images (Vokurka et al.,

1999, Dauguet et al., 2004), and these procedures exhibit the same tendency

to corrupt the resultant data histogram with spurious spikes and voids.

The second area of application of histogram-based techniques is in the context

of data segmentation and classification tasks, where they are useful for such

operations as threshold selection (Otsu, 1979, Dulyakarn et al., 1999, Robinson

et al., 2005b) and automated segmentation procedures (Mangin et al., 1998,

Newman et al., 2002). In this second class of applications, the shape of the

histogram is examined in order to guide the processing being applied. If tech-

niques of the first type have been used, that have altered the characteristics

of the histogram, introducing new minima and maxima, prior to the appli-
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cation of techniques from this second class, then these subsequent histogram

analysis based procedures are likely to encounter difficulties. In this chapter

we describe a method of the first type designed to accommodate the later ap-

plication of this second type of procedure, by preserving the overall shape of

the data histogram during the remapping process, avoiding the introduction

of spurious new minima and maxima into the histogram.

We present a novel histogram-matching procedure that was specifically devel-

oped to correct for the inter-slice intensity non-uniformities typically observed

in the coronal HASTE data with which we are working. In order to achieve this

intensity non-uniformity correction effect, the greylevel distributions within the

individual slices in a HASTE volume must be modified so as to compensate

for inter-slice greylevel shift. To this end a histogram matching approach was

developed that aligns corresponding grey ranges across the individual slices,

while at the same time preserving the integrity of the overall volume histogram,

ensuring that spurious features are not introduced during the matching pro-

cedure. This property of preserving the integrity of the data histogram is

particularly important in order to ensure that subsequent processing steps can

utilise the histogram from the resulting data volume in order to perform robust

automated histogram-based analysis and threshold level selection operations.

Histogram corruption by spurious extrema

The aforementioned unwanted new extrema are commonly observed with the

more traditional histogram scaling schemes typically employed in applications

such as greyscale windowing for visualisation purposes as mentioned above.

Such spike and void features do not adversely affect the visual characteristics of

the data as they merely cause certain sets of pixels to change their greyvalues by

a single greylevel relative to their intensity neighbours (i.e. those pixels close to

them in intensity rather than space). As such, the visual consequences of such

histogram spikes and voids are minimal. However, in our work their presence

would constitute a significant difficulty, as the data histogram is used in later

processing steps. By addressing this issue here we ensure that subsequent

histogram-based calculations, especially in the automatic selection of threshold

bands through histogram analysis, can be performed simply and robustly in

the succeeding phases of the processing pipeline.
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In Fig. 2.1 the first histogram is that of an unaltered image taken from one of

our coronal HASTE datasets. The second is from the same slice after all its

voxels have been multiplied by a value of 0.96, while in the third the voxels

were multiplied by a value of 1.04. Since the voxel values are stored as integers,

rounding occurs and as a result spikes and voids are created in the histogram,

where two adjacent values in the original data are either both mapped to the

same value in the result, or are mapped to two more widely separated values.

Where this issue is encountered within an image processing environment, it

is most commonly addressed by smoothing the compromised data histogram

through a process of bin averaging, before any histogram based calculations

such as peak detection are performed.

(a) Unaltered (b) Compressed (c) Expanded

Fig. 2.1: A histogram compromised with spurious spikes and voids caused
by remapping of the data into a new grey range. The original histogram is
shown in (a), while (b) illustrates the effect of compressing the gray range
thus introducing spikes, and (c) shows the effect of expanding the grey
range, introducing voids.

While such histogram smoothing approaches seek to overcome the problem as

best they can, it is difficult to completely eliminate the spurious features that

have been introduced into the histograms in the scaling process. They can

thus result in the misinterpretation of such spurious local minima or maxima

found in the compromised data histogram. Our aim is to avoid these difficulties

arising in the first place by performing a more elaborate redistribution of the

voxels into the available bins in the rescaled histogram, thus preventing the

introduction of artificial spikes and voids.

In the specific case of the coronal HASTE data that we address here, the his-

togram matching procedure that we have developed, operates in the following

fashion. Firstly a separate intensity histogram is constructed for each slice in

the volume. The characteristic peaks representing air and soft tissue are algo-
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rithmically identified in each case, along with the position of the intervening

trough or local minimum. Thus fixed points on the individual histograms are

first located and then aligned across the complete set of histograms, so as to

achieve a matched greyscale distribution across all slices.

The question of identifying the appropriate histogram peaks, troughs, and

characteristic fixed points in a robust and consistent fashion is addressed in

the analysis that follows. This is in turn followed by an examination of how

we scale the individual grey maps so as to preserve the integrity of the rescaled

slice histograms, and thus that of the overall volume histogram after matching.

This procedure avoids the introduction of artificial spikes and voids, which can

be caused by histogram bins merging and separating respectively as illustrated

in Fig. 2.1.

2.1 Types of Intensity Non-uniformity

Intensity non-uniformities in MRI data can be classified under three headings:

intra-image, inter-image, and inter-volume. Inter-volume non-uniformities may

be further subdivided into those that appear between adjacent sections in

multi-section acquisitions, and those observed between the individual volumes

forming a time series. All of the above kinds of non-uniformities occur due

to the variability observed in the characteristics of the detected MR signal at

the receiver coils in the MRI scanner, coming from different regions within the

field of view, or originating from the same location at different times.

Although in this chapter we concentrate primarily on the inter-slice non-

uniformities observed in coronal HASTE data, the approach that we present

can easily be adapted to operate on other inter-slice and inter-volume non-

uniformities. It has also been successfully applied to data in the multi-section

inter-volume category mentioned above. This application is demonstrated in

the whole body MRI study outlined in Appendix A, where non-uniformities

observed between the individual sections of the scan must be corrected for. An

equivalent treatment could also be applied to multi-image or multi-volume time

series non-uniformities. Of the three types, only intra-image non-uniformities

are not suited to correction by this technique. Here regional inhomogeneities

exist within a single slice and are hence encoded within a single image his-
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togram, requiring a different approach to their correction. The three categories

of intensity non-uniformities are further outlined in the sections that follow.

Intra-Image Non-Uniformities

Intra-image intensity non-uniformities typically manifest as an intensity drop

off observed as one moves away from the area close to where the receiver coils

have been placed during acquisition. In Fig. 2.2, which depicts two views of

the same slice taken from a volumetric shoulder scan, we can see how the

intra-image non-uniformities make it difficult to clearly visualise all regions of

the imaged field simultaneously.

(a) High intensity windowing (b) Low intensity windowing

Fig. 2.2: Two views of the same image from an MRI scan of a shoulder,
demonstrating intra-image intensity non-uniformity. Intensities fall off from
top left to bottom right. In (a) intensity windowing focuses on the top
left portion of the image leaving the bottom right obscured. In (b) the
windowing focuses on the lower intensities in the bottom right, washing out
the detail in the top left.5

The two different windowing levels that have been applied in (a) and (b)

demonstrate how some regions are obscured (either excessively darkened or

washed out) so that others can be brought into a better degree of visualisation

by expanding their displayed grey range. In this case the acquired data has

5The MRI images shown here and in the rest of this thesis have had their

greylevels inverted to improve their printed clarity, such that darker regions in the repro-
duced images correspond to higher voxel values in the original data, and vice versa.
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intensities that lie in the range 1–3185, while typically a maximum of only

256 different greys can be displayed simultaneously, and indeed the human

visual system can only differentiate between far fewer again (only about 30-50

greylevels at once). The large intensity range observed in the image in Fig. 2.2

corresponds as much to a global intensity gradient across the image as it does

to a finer degree of local intensity resolution.

Axial HASTE MRCP series manifest the effect of these nonlinear receiver coil

characteristics in a similar fashion. The hyper-intense signal regions visible in

the upper left and right hand portions of the abdominal wall in the three axial

images in Fig. 2.3 exemplify this. As already mentioned, the correction of this

type of intensity non-uniformity requires a different approach to that presented

here, in order to address the issue of continuous greyscale offset compensation

within a single image. Procedures most commonly referred to as bias field

correction or coil correction (Vokurka et al., 1999, Lai and Fang, 2003) have

been developed in order to address this kind of in-slice intensity non-uniformity.

Fig. 2.3: Three consecutive slices from an axially acquired HASTE dataset
demonstrating intra-image non-uniformities, most prominently visible in the
region of the anterior6abdominal wall (arrow) as compared to the posterior
abdominal wall (arrowhead).

Inter-image Non-uniformities

The coronal HASTE series that we are working with are far less dramatically

affected by this phenomenon. Coronal acquisitions are better suited to our

purposes because they provide a more complete and more fully connected rep-

resentation of the pancreato-biliary system than do their axial counterparts.

This is due to the differing ranges of spacial coverage achievable by the re-

spective orientations of these two types of acquisition. This same difference in

spacial coverage is also the major reason why the greyscale non-uniformity ef-

6Anterior — Located on or towards the front of the body.
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fect is far less pronounced and less troublesome in coronal examinations, which

do not generally sample in such close proximity to the receiver coils.

The series that we utilise in this work do, however, often exhibit a marked

greylevel shift when moving from one slice to the next within the data volume

(Fig. 2.4). The effect, where present, is particularly pronounced in the first

several slices of these coronal volumes, closest to the abdominal wall, and is due

to the nonlinear characteristics of the detected MR signal originating from re-

gions proximal to the scanner’s receiver coils. We wish to compensate for this

intensity non-uniformity in order to maximise greyscale homogeneity across

the entire volume for each distinct anatomical region imaged, such that the

same tissue appears at the same grey intensity range throughout the volume.

This is to provide the most consistent data possible to the subsequent filter-

ing and classification procedures. We achieve this greyscale correction effect

using a piecewise linear histogram scaling technique based on the alignment of

robustly located fixed points across the histogram set (Robinson et al., 2005a).

Fig. 2.4: The first four slices in a fifteen slice MRCP dataset demonstrating
inter-image intensity non-uniformity. Intensities in slices one and two in
particular are significantly higher than in subsequent slices in the volume.

Inter-volume Non-uniformities

Inter-volume intensity non-uniformities may be observed in any situation where

an MRI examination consists of multiple data volumes, either of the same re-

gion acquired at different times, or of sequentially acquired, spatially contigu-

ous regions. The time gap between acquisitions may be brief, as is the case

with multi-section whole body MRI and cardiac motion imaging, or it may

be far more extended, as in the case of disease progression tracking in brain

MRI examinations for instance. Regardless of the delay between acquisitions,

the phenomenon of intensity non-uniformities may manifest itself, and where
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it does, it is necessary to compensate for its effect if automated image analysis

procedures are to be successfully applied to the data.

In Fig. 2.5 we can see five slices taken from various positions through a 32 slice

coronally acquired multi-section whole body MRI examination, which has been

reconstructed from seven individually acquired coronal sections. Greylevel

discontinuities can be observed at the interfaces between the individual sec-

tions, resulting in the appearance of artificial regional boundaries that would

present a significant difficulty to automated segmentation procedures if left

unaddressed. In this whole body data, intra-slice and inter-slice correction

proved unnecessary, however, the need for multiple types of correction within

a single dataset can arise. In such a case, corrections would be applied, as

necessary, in the following order: intra-slice, inter-slice, inter-volume. As pre-

viously mentioned, the particular application of these techniques, to whole

body MRI data is further explored in Appendix A.

Fig. 2.5: Inter-volume intensity non-uniformity. The seven sections in this
WB-MRI dataset were acquired sequentially. Five of the thirty two slices
acquired in each section are shown. Intensity steps are clearly visible at the
sectional interfaces, most notable between the neck and shoulders, and hips
and thighs.
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2.2 Data Characterisation

Initially we examined a large number of coronal HASTE datasets in order to

characterise the nature of the greylevel intensity distributions typically found

in this class of MRCP data. We observed two characteristic peaks, as illus-

trated in Fig. 2.6, representing signal from airspaces (originating both inside

and outside the body), and soft tissues respectively. The first peak is usu-

ally the larger of the two. Its size is governed by how much airspace was

encompassed in the acquired volume, which can vary significantly. The high

intensity signal in which we are most interested, due to the stationary fluids in

the scanned volume, lies mostly in the long falling tail of the data histogram.

The underlying technique which is described in this chapter can be applied to

many types of data. However, a specific application will always start with a

re-examination of the histogram characteristics, so as to fine tune the proce-

dure to the data being processed. MRCP and WB-MRI data, for instance,

demonstrate slightly different characteristics, and as a result, WB-MRI data

requires a slightly modified correction scheme.

Lungs & Background

Soft Tissues

Stationary Fluids

Fig. 2.6: Typical data histogram for a single slice taken from a fifteen slice,
coronally acquired HASTE dataset, illustrating the characteristic features
found in the greylevel distributions observed in such data.

Occasionally the signal due to stationary fluids also demonstrates a small third

peak rising up at the start of the tail region (Fig. 2.7). However, this feature is

small enough and infrequent enough to be ignored in any formalised modelling

or characterisation of the data. From our observations, it is also clear that

there exists significant overlap between these three signal regions representing

air, tissue, and stationary fluid. As such, no simple level-based data partition-
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ing will prove accurate or robust in delineating the true extents of the various

regions imaged within the data, when it comes to the task of segmenting the

structures of interest within the MRCP volume.

Three histogram peaks

Fig. 2.7: In this histogram we see a small third peak at the start of the
high intensity tail, primarily due to a massively distended gall bladder in-
troducing an unusually high number of bright voxels into the dataset.

The precise greyscale intensity level at which each of the peaks appears in the

series of data histograms corresponding to the individual slices in any given

volumetric dataset can vary considerable from slice to slice within the dataset,

as illustrated in Fig. 2.8. It also becomes clear upon examination of these slice-

wise histograms that while the general pattern of two peaks and a long tail

holds well, the trough separating the two characteristic peaks can become less

distinct, such that the trough and second peak appear more as a simple plateau

on the way down from the first peak. This is most clearly demonstrated in the

third slice shown in Fig. 2.8.

We note also that the shift observed in the locations of the two maxima from

one histogram to another does not necessarily affect the two peaks uniformly.

In general the low intensity peak representing the air signal remains very stable

in its location and spread while the soft tissue peak changes significantly in

both these respects. For the first image shown in Fig. 2.8 the soft tissue peak

is broad and shifted to the right as compared to that of the second and third

images.

These observations are clearly reflected in the visual appearance of the three

slices in Fig. 2.8. The air space in the lungs at the top of each image looks

much the same in each case, but the first image looks considerably darker (in

its inverted form) in the region of the liver and other organs. In the case of

the third image, the soft tissue peak is similarly placed to that of the second

image, but is broader, causing the inter-peak trough to be virtually obscured as
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Fig. 2.8: Three slices and their corresponding histograms (unsmoothed and smoothed), from a fifteen slice coronal HASTE dataset. All
histogram plots have been truncated at 500 bins, the highest greylevel intensities present in the images in fact reach slightly over 1,000.
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mentioned previously. This is because of the presence of an increasing number

of lower intensity voxels appearing at the periphery of the soft tissue areas,

caused by partial volume effects due to the encroaching background signal as

the scan nears the subjects back.

The histogram tail becomes increasingly sparse as it extends farther into the

higher intensity range. The histograms illustrated in this chapter have all had

their tails uniformly truncated for easier review and comparison. In fact, most

span more than twice the depicted range and include many empty bins in

this upper region. Before processing commences we compress the histograms,

squeezing out all the empty bins. This does not adversely affect the data’s

characteristics and makes the histogram processing easier to manage.

Finally, we note also the level of noise present in the histograms, which repre-

sents an additional obscuring factor when it comes to the question of reliably

identifying the characteristic points in these data histograms. This noise ren-

ders the trough in the histogram corresponding to the third image of Fig. 2.8

particularly indistinct and difficult to localise with any degree of precision. It

also introduces a greater level of uncertainty when specifying the location of

the characteristic fixed points that we wish to use in matching between the

histograms.

As explained in the procedure that is described in the next section, the fixed

points just referred to are placed at locations where the histogram slope is large,

so as to minimise the effect of the noise, and thus achieve stable positioning

and reliable and consistent matching between slices. However, even at these

locations the noise present can introduce a destabilising influence, adversely

affecting the matching results. Thus in our calculations we use smoothed

versions of the histograms, as illustrated on the right in Fig. 2.8 so as to

achieve the most robust and stable localisation possible for use in our histogram

matching. Smoothing is achieved by averaging over a number of neighbouring

bins. We have used a three bin neighbourhood in this process.

2.3 Histogram Matching

The histogram matching procedure commences with the locating of the his-

togram’s global maximum. This will be positioned in either the air peak or
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the soft tissue peak. Next the intervening trough and second peak are found

in tandem using a robust maximum differential test, searching out from the

global maximum in both directions. Once the characteristic peaks representing

air and soft tissue have been identified, two fixed points on the outer slopes of

the two peaks are recorded. These are the fixed points used in the matching

process that follows. The fixed point location procedure is repeated for each

slice in the dataset. The histogram scaling necessary in each case is then deter-

mined based on the relative locations of these fixed points, and thus each slice

has its intensities remapped in order to bring the fixed points into alignment

across all the slices, in such a fashion as to preserve the original histogram

shape, avoiding the introduction of spurious spikes and voids.

2.3.1 Fixed Point Detection

AOnce the data histogram has been constructed for a

slice the largest bin is found and its location in the

histogram is recorded (A). This maximum is usually

located in the air peak (as illustrated here) but occasionally, when there is

very little airspace in the scanned region, it will lie within the soft tissue peak.

Because the intensity distribution in air voxels tends to be much tighter than it

is in soft tissue voxels, the air peak is generally tall and narrow as compared to

that of the soft tissue signal. As a result, a relatively small region of airspace

in the image can result in a peak that is taller than the soft tissue peak, even

though the area under the peak (i.e the number of voxels in that intensity

range) may be significantly less than the corresponding area under the soft

tissue peak.

A

B

CNext we need to identify locations for the trough (B)

and second peak (C). Since we are operating in the

presence of noise we must be careful that we are lo-

cating the correct features in the histogram. A secondary noise maximum in

the first peak might for instance be mistakenly identified. After examining

the potential difficulties and testing the performance of a number of detection

strategies we arrived at a scheme that performs in a robust fashion even when

presented with a weakly defined trough and second peak in the presence of

significant noise, as is the case with the third image in Fig. 2.8.

37



Chapter 2 – Intensity Non-uniformity Correction

Most approaches to histogram mode detection use arbitrarily chosen threshold

levels or tuning parameters to overcome the problems that the presence of noise

introduces. It may be decided that, on moving away from the global maximum,

the level must drop to 50% of the maximum value before the next peak is

sought, or that any peak must be wider than 100 bins, to some definition

of width, or must demonstrate a consistent slope direction when averaging

over a predetermined number of bins for a given distance, or some other such

arbitrarily or experimentally determined mode detection scheme.

Our method utilises a robust and meaningfully defined metric that does not

require any tuning, initialisation, or parameterisation. By performing the di-

rected search described below we identify the pair of bins that demonstrate the

largest trough to peak range in the data, in which the identified local minimum

position lies between the histogram’s global maximum and the identified local

maximum. This represents the most reliable and also the most predictable

method of identifying the two most significant modes in a multi-modal his-

togram in the presence of noise.

A

B

Cδ
Our scheme searches for the maximum differentiating

measure in the histogram data. Using the fact that we

are looking for two peaks separated by an intervening

trough, we move out from the global maximum A, (which we assert must lie

within one of the two histogram modes that we seek to identify), and we test

each pair of candidate positions for the trough and second peak, so as to

maximise the vertical distance (δ) from trough to second peak.

The pair of histogram positions that yield the largest value for δ gives us the

pair of bins we seek. We note that while the three identified points can reliably

be taken each to lie within its corresponding histogram feature, it is only the

levels, and not the precise locations of A, B, and C that can be assumed to be

stable and meaningful.

In the case illustrated, C in particular could very easily jump to any one of a

number of different local maxima located along the top of the broad, flat soft

tissue peak with just the smallest change in the underlying histogram. Thus C

reliably identified the feature of interest, but should not be taken to represent

some special location within this feature (the location of the ‘top’ of the peak

in this case). We must proceed with a further step in order to ensure the sta-

bility of our final set of fixed points with such noisy histogram characteristics.
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Algorithm 2.17: min/max pair finding

1. Size is the size of the histogram

2. Hn is the nth bin of the histogram (from 1 to Size)

3. A is the position of the global max

4. B = C = 1

5. ∀b ∈ A + 1 . . . Size− 1

6. ∀c ∈ b + 1 . . . Size

7. If (Hc −Hb > HC −HB)

8. B = b

9. C = c

Algorithm 2.1 above illustrates the process for identifying B and C in the

forward direction. The same procedure is applied looking backwards from the

global maximum towards the histogram origin. The pair of positions yielding

the overall largest value for δ represent the minimum/maximum set to be used

in the subsequent calculations performed to locate the fixed points needed by

the histogram rescaling step that follows.

Line five iterates through every bin from the global maximum up to the end of

the histogram. Then in line six we search out from each of these bins looking

for the largest δ we can find. An explicit check is not required to test that b is

a minimum and c is a maximum as the test in line seven naturally identifies

the minimum and maximum that we intend for the algorithm to find. It will

of course locate many non-minima non-maxima pairs along the way but they

will always be superseded by a pair consisting of a local minimum at b and a

local maximum at c before the search terminates. And so, by the end of this

process we have identified integer positions for A, B, and C in the histogram.

7The notation used in these algorithms is based on set theory and the predicate calculus,
and follows the formal specification style described in Woodcock and Loomes (1988).
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P1

P2

However, as already mentioned, with the histogram

characteristics that we have observed, while the levels

of A, B, and C represent robust metrics for a given

histogram under perturbation, their positions are not necessarily so stable,

due to the significant noise found in the histograms, especially in the presence

of broad flat topped peaks and broad flat bottomed troughs. Greater stability

can be seen in the regions of the histogram where the values are changing

more rapidly, and as such we can provide a more stable and consistent set of

alignment points by selecting positions on the outer slopes of the two peaks

(P1 and P2), which we place at a level one third of the way down from A and C,

moving to the left and right respectively, rather than using the more unstable

positions of the peaks themselves. In other words we seek to align the bodies of

the histogram modes, not simply their local maxima positions. The choice of

fixed point location, one third of the way down, is a trade-off between getting

off a potentially broad, noisy peak, and not encroaching on the long, falling

tail of the histogram. Locating the fixed points in either of these two regions

would result in increased instability and uncertainty in their placement.

P2

C1 C2 C3
It can for instance be seen that P2 would be placed

almost identically regardless of which of the three

widely separated potential highest peaks C1, C2, and

C3 was selected. In this case there is only a difference of a single voxel between

the lowest and highest of these three local maxima, C1 corresponds to a value

of 410 voxels at intensity level 82, while C2 at intensity 98, and C3 at intensity

106 both take a value of 409 voxels. Thus an extremely small change in the

voxel intensity distribution in the data could easily result in the highest of

these maxima being overtaken by one of its close rivals, still identifying the

correct feature in the histogram but at a significantly different position. This

leads us to define the fixed points P1 and P2 in the manner described, ensuring

that such instabilities do not adversely affect the matching process.

P1

P2

We can see how, particularly at the location of P2

above, noise can still introduce some jitter where the

slope is more gentle, and so we smooth the histogram

data by averaging over a neighbourhood of three bins, before performing the

peak and fixed point location procedure, so as to further improve the stability

of the results achieved.
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P0 P1 P2 P3

The points P1 and P2 subdivide the histogram into

three regions, each of which is scaled independently,

leading to the piecewise linear scaling mentioned at

the outset. In addition to these two fixed points, we use the origin (P0) and

the maximum intensity value (P3) in each histogram in order to complete the

set of fixed points used in the matching process. In fact the tail in the displayed

histogram is severely truncated such that P3 actually lies much further to the

right than is shown here. We use these two additional constraints of the

histogram’s origin and size in the matching process, as voxel intensities should

not be allowed to stray into the negative range, nor should they be allowed to

take on arbitrarily high intensity levels.

2.3.2 Modelling Histograms as Continuous Functions

In order to perform the desired rescaling, we model each histogram as a con-

tinuous function so that we can resample that function at a new set of intervals

in order to arrive at the required relative levels for the new set of histogram

bins. So as to present a consistent treatment throughout and so as to maintain

the maximum levels of precision in the process, we perform all calculations in

continuous space, treating the histogram bin values as a series of sampled data

points along this notional continuous function. Thus in the final implemen-

tation we use a quadratic model to locate the sub-integer coordinates of the

two maxima A and C in each case. See the text box ‘Locating Local Maxima

to Sub-integer Precision’ for the mathematical details.

We then use linear interpolation (see the text box ‘Linear Interpolation’ ) in

order to calculate the exact locations of the fixed points P1 and P2, followed

by a combination of linear and cubic interpolation (see the text box ‘Cubic

Interpolation’ ) for the calculation of the entire new set of histogram bin levels,

which are positioned at locations intermediate to the existing bins.

In order to formalise our presentation we declare a set of useful functions that

are needed to perform the calculations necessary to implement the procedure

outlined above. The underlying mathematics required in order to implement

all of these functions is provided in the three previously mentioned highlighted

text boxes that appear on the following three pages.
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Linear Interpolation

Linear interpolation provides a quick and easy method to calculate

intermediate values between pairs of sample points in a data series.

Given two non-coincident points (x1, y1) and (x2, y2) we can fit a

line y = mx + c, and so define m and c:

m =
y1 − y2

x1 − x2

c =
x1y2 − x2y1

x1 − x2

Thus for any given x we can calculate a value for y:

y = mx + c

=
y1 − y2

x1 − x2

x +
x1y2 − x2y1

x1 − x2

And for any given y we can calculate a value for x:

x =
y − c

m

=
y − x1y2−x2y1

x1−x2

y1−y2

x1−x2

=
y(x1 − x2)− (x1y2 − x2y1)

y1 − y2

Y

X

x1,y1

x,y

x2,y2
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Cubic Interpolation

Cubic interpolation, which is particularly widely used for interpo-

lation tasks in medical imaging applications, is used in a number

of places throughout this work in order to resample data at inter-

mediate locations between existing sample points. In general it

provides superior performance to linear interpolation, but requires

four sample points, in comparison to the linear scheme’s two. The

following treatment shows how to estimate y for any given x on the

basis of four uniformly spaced samples, typically two either side of

the desired location, based on a cubic model, y = ax3+bx2+cx+d.

Consider four sample points (−1, y1), (0, y2), (1, y3), and (2, y4).

Inserting these into the cubic leads to four simultaneous equations

in the four unknowns a, b, c, and d:

y1 = −a + b− c + d (2.1)

y2 = d (2.2)

y3 = a + b + c + d (2.3)

y4 = 8a + 4b + 2c + d (2.4)

We can combine and rearrange these equations in order to solve for

the four unknowns in the standard fashion:

d = y2

b =
y1 − 2y2 + y3

2

a =
−y1 + 3y2 − 3y3 + y4

6

c =
−2y1 − 3y2 + 6y3 − y4

6

We substitute these values into the cubic to calculate a value for y

at any given intermediate position of x. Typically x will be in the

range zero to one, spanning the gap between the inner two samples.

Moving away from the sampled points reduces the likelihood of a

close fit to the real data, although boundary cases can be covered

by allowing x to range from minus one to two in order to facilitate

interpolation right up to the edges of the sampled dataspace. We

perform interpolation in two or more dimensions by composing a

series of 1-D interpolations in orthogonal directions.

-1 0 1 2

y1

y2

y3

y4

y

x
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Locating Local Maxima to Sub-integer Precision

Consider the three successive sample values v1, v2, and v3, where

v2 represents a local signal maximum (v1 < v2 > v3). If we fit a

quadratic (y = ax2 + bx + c) through these three points then the

location of the quadratic’s maximum (dy

dx
= 0) represents the best

estimate of the true local maximum’s location.

In order to calculate the position as an offset from v2 we consider

the three points as having coordinates (−1, v1), (0, v2), and (1, v3).

This yields the following three simultaneous equations:

v1 = a− b + c (2.5)

v2 = c (2.6)

v3 = a + b + c (2.7)

We can thus solve for a, b, and c in the sought quadratic:

c = v2

b =
v3 − v1

2

a =
v3 + v1 − 2v2

2

Now differentiating and setting equal to zero we get:

d

dx
ax2 + bx + c = 2ax + b = 0

⇒ x = − b

2a
=

v3 − v1

4v2 − 2(v3 + v1)

y = − b2

4a
+ c =

(v3 − v1)
2

16v2 − 8(v3 + v1)
+ v2

Hence we know x, the offset, and y, the level. Note that

if v1 equals v3 then the offset is zero, the symmetrical case.

Further, since v1 and v3 are always smaller than v2 we can

see that the denominator must be positive and hence the offset

is negative if v1 is larger than v3 and positive if v1 is smaller than v3.

If v1 = v2 then x = −1
2

and if v2 = v3 then x = 1
2
. The situation

where v1 = v2 = v3 is a degenerate case (the quadratic becomes a

straight line). These observations conform to the expected range

and motion of the calculated maximum.

-1 0 1

v1

v2

v3

(x,y)
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The first pair of functions use linear interpolation to calculate either the x

or y coordinate of a point on a straight line (y = mx + c), given the other

coordinate plus two additional points on the line. Linear interpolation is used

in two places, first to calculate the x positions of P1 and P2, and second in

the piecewise linear mapping of each bin in the rescaled histogram back to a

corresponding position in the original as illustrated in Fig. 2.9.

x = LinearX(y, x1, y1, x2, y2)

y = LinearY (x, x1, y1, x2, y2)

The next pair of functions is used to calculate the x and y coordinates respec-

tively of the maximum/minimum point on the quadratic (y = ax2 + bx + c)

that passes through the three points (−1, y1), (0, y2), and (1, y3). We use these

functions to calculate the best estimate for the true location and height of

the maxima corresponding to the positions A and C identified previously. As

discussed, we only actually need the height, which is used in the definition of

points P1 and P2, but derivations for both are provided in the text box.

x = QuadraticMaxMinX(y1, y2, y3)

y = QuadraticMaxMinY (y1, y2, y3)

The final function uses a cubic model (y = ax3+bx2+cx+d) to calculate the y

value at any given x, for a point that lies on a cubic curve passing through the

four points (−1, y1), (0, y2), (1, y3), and (2, y4). This is used in interpolating

the inter-bin levels from the original histogram for the construction of the final

rescaled version.

y = CubicY (x, y1, y2, y3, y4)

By the end of the min/max pair finding algorithm fragment presented above

we had arrived at values for A, B, and C, the locations of the discrete global

and local maxima pair, and the intervening local minimum. We can now for-

mulate the necessary algorithm to calculate the x positions of the four fixed

points P0, P1, P2, and P3. This in turn allows us to define the piecewise linear

mapping function illustrated in Fig. 2.9 and so to proceed with the histogram

re-binning phase of the procedure.
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Algorithm 2.2: calculating fixed points

1. Size is the size of the histogram

2. Hn is the nth bin of the histogram

3. A and C are the histogram maxima previously found

4. P0 = 1

5. val = 2
3
QuadraticMaxMinY (HA−1, HA, HA+1)

6. p = A− 1

7. while(Hp > val)

8. dec(p)

9. P1 = LinearX(val, p,Hp, p + 1, Hp+1)

10. val = 2
3
QuadraticMaxMinY (HC−1, HC, HC+1)

11. p = C + 1

12. while(Hp > val)

13. inc(p)

14. P2 = LinearX(val, p− 1, Hp−1, p,Hp)

15. P3 = Size

In lines five and ten we work out the height of the modelled maxima in our

notional continuous function at locations close to the discrete histogram max-

ima previously identified at points A and C, using the quadratic calculation

introduced earlier. The while loops starting at lines seven and twelve then find

the histogram bins flanking points P1 and P2 respectively, and then linear in-

terpolation is used in lines nine and fourteen to calculate the precise locations

of these two fixed points. Along with the trivial assignment for P0 in line four

and P3 in line fifteen, this gives us values for the locations of the four fixed

points required for the resampling process.

46



Chapter 2 – Intensity Non-uniformity Correction

2.3.3 Histogram Resampling

Once these four ‘P’ values have been

P0

P1

P2

P3

P0 P1Max P2Max P3

After Scaling
B

ef
or

e 
S
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lin

g

Fig. 2.9: Piecewise linear scaling

determined for each slice in the vol-

ume, the set of values with the largest

P2 is selected and used to define the

target histogram configuration for all

the slices. The rescaled histograms

can now be calculated using the iden-

tified P1Max
, P2Max

pair, along with

each image histogram’s own set of

calculated fixed points (P0 to P3), in

order to define the required histogram

scaling function, mapping the origi-

nal histograms into their final rescaled versions (Fig. 2.9). Since initially the

number of bins in the histogram is to be held constant (P3 maps to P3) the

next task is to determine how many voxels should be allocated to each bin in

the rescaled version.

Having first calculated values for P1

P1 P2

P1Max P2Max

Fig. 2.10: Before and after scaling

and P2, and applying the two ad-

ditional constraints, that the origin

stays fixed (P0 maps to P0) and the

number of bins in the histogram also

initially remains fixed (P3 maps to

P3), we can now use the piecewise lin-

ear model described in order to map

each bin in the new histogram back

to a real valued position in the orig-

inal and then, using cubic interpolation, we can calculate the size of each new

bin in the final histogram (Fig. 2.10). These relative sizes must next be scaled

uniformly so that the sum of all the histogram bins equals the number of voxels

in the slice. Some additional manipulation is then required in order to arrive

at integer values for the size of each bin, (since only a whole number of voxels

can be assigned to a bin). Step one in this process is to perform the piece-

wise linear histogram re-binning procedure in order to arrive at the real-valued

resampling of the notional continuous function as illustrated in Fig. 2.10.
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Algorithm 2.3: histogram re-binning

1. Hn is the nth bin of the histogram

2. P0, P1, P2, and P3 are the fixed points previously found

3. P2Max
, P1Max

are the largest P2 and corresponding P1

4. ∀i : N ∈ P0 . . . P1Max

5. val = LinearY (i, P0, P0, P1Max
, P1)

6. ip = floor(val)

7. H
′

i = CubicY (val − ip,Hip−1, Hip, Hip+1, Hip+2)

8. ∀i : N ∈ P1Max
. . . P2Max

9. val = LinearY (i, P1Max
, P1, P2Max

, P2)

10. ip = floor(val)

11. H
′

i = CubicY (val − ip,Hip−1, Hip, Hip+1, Hip+2)

12. ∀i : N ∈ P2Max
. . . P3

13. val = LinearY (i, P2Max
, P2, P3, P3)

14. ip = floor(val)

15. H
′

i = CubicY (val − ip,Hip−1, Hip, Hip+1, Hip+2)

The three for loops starting at lines four, eight, and twelve correspond to the

three sections in the piecewise linear mapping function illustrated in Fig. 2.9.

Each loop iterates through all the integers in the given range, and consists

of three steps. First we use linear interpolation to determine the real valued

position along our notional function modelling the original histogram that

corresponds to the current discrete bin location in the new histogram. We

round this number down in order to identify the nearest actual histogram bin

below it in the original histogram.

Then using cubic interpolation and the two discrete histogram bins either side

of the real valued location in the original histogram we model the expected

histogram level at the intermediate position. This becomes the level at the

current discrete bin location in the new rescaled histogram. By the end of

this process we have a series of Size real-valued numbers corresponding to

the required relative levels of the final histogram bins. That is to say, these

numbers are directly proportional to the number of voxels that should finally

be assigned to each bin or intensity level.
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However, we can only assign an integer number of voxels to each bin, and the

total number of voxels assigned must also be equal to the number of voxels in

the slice (this is similar to the bit assignment problem found in compression

algorithms (Jayant and Noll, 1984)). Consider an image with N voxels, and a

series of real valued histogram bin levels stemming from the above process, H1

to HSize, which sum to the real value R. In order to determine the number of

voxels that we must assign to each intensity level we proceed as in Algorithm

2.4 below.

Algorithm 2.4: bin size recalculation

1. Sum = 0

2. ∀i ∈ 1 . . . Size

3. Hi = round(Hi×N

R
)

4. Sum = Sum + Hi

5. Remainder = N− Sum

6. If Remainder < 0

7. Remainder = −Remainder

8. i = Size

9. While Remainder > Hi

10. Remainder = Remainder −Hi

11. Hi = 0

12. dec(i)

13. Hi = Hi −Remainder

14. Size = i

15. Elseif Remainder > 0

16. i = Size + 1

17. While Remainder > HSize

18. Remainder = Remainder −HSize

19. Hi = HSize

20. inc(i)

21. Hi = Remainder

22. Size = i
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The for loop starting at line two first normalises the bin values so that they

sum to the required total, and then rounds the values to the nearest integer

and accumulates the actual sum achieved. Due to this rounding the actual

number of binned voxels will not immediately achieve the required value. The

maximum discrepancy possible is equal to Size
2

voxels but generally the mis-

match is much smaller than this. The actual remainder is calculated in line

five, and depending on whether it is positive or negative one of the two if

clauses starting at lines six and fifteen are executed in order to arrive at the

correct number of voxels in the final histogram.

This final correction phase of the algorithm is a natural consequence of the

necessary shift from a continuous to a discrete mode in the analysis. Due

to the relatively small number of voxels involved and the natural variability

of the tail length in the original data, this procedure does not compromise

the underlying greyscale characteristics of the data after matching, and thus

allows the histogram preserving non-uniformity correction algorithm to operate

effectively.

2.3.4 Sample Value Reassignment

The final step involves assigning each voxel to its new bin, and therefore by

definition assigning it its new intensity value. In order to achieve this we need

to define a strict ordering on all the voxels in the slice. We already have a

partial ordering given by their initial intensities, so that what we now need is

to be able to define an ordering within each bin of the original histogram, thus

providing a total ordering for all the voxels, allowing us to assign the required

number of voxels to each bin in the new histogram.

We use an ordering function based on the offset-weighted intensity mean mea-

sured in a local neighbourhood around each voxel in order to specify the strict

ordering required:

µwt =
Σ(val/d)

Σ(1/d)
(2.8)

where val is the neighbour’s value and d is the offset from the current voxel

to the neighbour. This scheme preserves the underlying greylevel distribution
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and the relative intensities for individual voxels within each slice. No voxel’s

intensity will leapfrog any other’s. We are only providing a means of split-

ting the voxels in a given bin so that we can distribute them in any required

proportion between two or more neighbouring bins. Alternatively, an error dif-

fusion (Ulichney, 1987) based reassignment of the voxels, similar to the process

employed in dithering, would be a valid approach to this reassignment phase.

The underlying goal is to avoid the introduction of stripe artifacts. Either of

these two approaches will achieve this goal, while a simple scan-order based

reassignment typically will not.

The ordering function works on the principle that the brighter a voxel’s neigh-

bours are, the more likely it is that that voxel should take on a brighter value

itself. Thus the intra-bin ordering is performed such that voxels within each

bin are given a weighting that specifies a relative tendency towards brighter or

darker, based on the local neighbourhood. Essentially each voxel is assigned a

fractional part to their intensity values, allowing for the required strict ordering

to be specified.

2.4 Non-uniformity Correction Results

Once the intensity non-uniformity correction procedure has been applied and

the set of volume slices have been homogenised such that the characteristic

points on their histograms are matched and their greylevel distributions have

been brought into alignment, corresponding tissue regions in each slice are up-

dated to occupy the same grey range from slice to slice. Fig. 2.11 shows the

same three slices as were first shown in Fig. 2.8. Regional intensity variations

previously visible from slice to slice have been greatly reduced, resulting in a

far more homogenous set of data regions within the volume as a whole. The

two sets of histograms shown, illustrate the slice-wise greyscale distributions

before and after intensity non-uniformity correction, and demonstrate the im-

proved levels of histogram feature alignment achieved after the homogenisation

procedure has been applied. We can see that the soft tissue peaks in the second

and third images in Fig. 2.11 have been broadened into the higher intensity

region, so as to more closely match that of the first image (which yielded the

largest P2 in this case).
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Fig. 2.11: Three slices before and after the histogram matching procedure has been applied to the data. Also shown are their corresponding
histograms before and after matching, demonstrating the improved alignment of features achieved in the matching process.
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The correction effect achieved is even more strikingly obvious in Fig. 2.12,

which shows the result of applying the same intensity non-uniformity correction

scheme to a whole body MRI dataset, where significant greyscale mismatch is

visible at the interfaces of the individual coronal sections that are combined

to arrive at the final reconstructed dataset. Again the histograms from before

and after matching clearly illustrate how the soft tissue peaks, which start

out at varying intensity positions, are brought into good alignment after the

application of this technique. Even the extremely low soft tissue peak in the

lowermost of the seven coronal sections has been successfully identified and

aligned. This last peak is as relatively small as it is because the only non-air

voxels in this section are in the feet and ankles, which occupy only a small

proportion of the total volume covered by the section. Even with such a large

mismatch between the first and second histogram modes, our histogram mode

detection scheme has successfully identified the correct features and thus our

intensity non-uniformity correction algorithm arrived at an appropriate set of

greylevel intensity correction mappings across all sections.

In a similar fashion to the characteristic MRCP histograms, a number of the

WB-MRI histograms in Fig. 2.12 also demonstrate a third peak, in this case

due to high intensity signal from fat tissue rather than the high intensity

stationary fluid signal typical of the MRCP class of MRI protocols. Again this

peak is not always present and where it is, it is consistently the smallest of

the three and as such does not present any difficulty for the operation of the

correction procedure.

Implementations for key sections, corresponding to the individual steps de-

tailed in this chapter, are presented in Appendix B where we describe the

software environment that was developed in the course of this project. Typ-

ical time to process one MRCP volume (255 × 255 × 15 voxels) using this

implementation is approximately three to four seconds.

The voxel ordering function used in this code examines a five by five neigh-

bourhood so as to determine a voxel’s weighting, and does not guarantee an

absolute ordering as it is possible for two voxels of the same base intensity

to also manifest the same weighting value. We applied the intensity non-

uniformity correction procedure to a database of 24 MRCP volumes in order

to assess its performance. As illustrated in Table 2.1 the situation where an

absolute ordering of the voxels is not achieved arises most infrequently in the

53



C
h
a
p
te

r
2

–
In

te
n
sity

N
o
n
-u

n
ifo

rm
ity

C
o
rre

ctio
n

Fig. 2.12: Slices from the seven sections of a whole body MRI study along with histograms for each section, before and after matching.
After matching the seven lean tissue peaks are well aligned and discontinuities at the sectional boundaries are minimised.
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real world MRCP data examined (on average about once in sixty five thousand

voxels), and as such it does not present any difficulty in this context. In all but

seriously pathological cases (e.g. a completely uniform image where no discrim-

ination is possible) this consideration does not compromise the effectiveness of

the approach discussed in this section. The very few indistinguishable voxels

are ordered by their scan line positions within the slice and allocated to the

new histogram bins as such.

Volumes in database 24

Total slices 360

Voxels per slice 65025

Indistinguishable voxel pairs per slice

Minimum 0

Maximum 7

Mean 1.094444

Variance 1.818857

Table 2.1: Voxel ordering discriminant function effectiveness

In developing this greyscale non-uniformity compensation procedure we have

provided a method of correcting for potentially troublesome inter-slice and

inter-volume intensity inhomogeneities, enabling a more robust and more con-

sistent analysis of the processed data to be carried out by maximising regional

homogeneity in the data, while avoiding the introduction of additional diffi-

culties at later stages due to the creation of compromised data histograms.

In so doing we maximise the levels of confidence with which we can extract

information from the data, and provide the best possible starting point for the

processing to follow.

55



Chapter 3

Adaptive Gaussian Smoothing

In this chapter we describe a novel and highly versatile boundary preserv-

ing approach to data smoothing and noise suppression that operates on non-

isometric volume data (Robinson, 2004). The method evolves naturally from

the familiar Gaussian smoothing model and utilises a dynamically modified

Gaussian mask, scaled and shaped by the magnitude and direction of the local

gradient vector. The filter is parameterised for strength and anisotropy, and

operates on 3-D data with non-cubic voxels to selectively smooth in a manner

that retains prominent boundary features while attenuating signal noise.

Many approaches to data smoothing and noise reduction appear in the liter-

ature ranging from the simplest averaging and median filters (Gonzalez and

Woods, 1992) through mathematical morphology (Serra, 1982, Soille, 1999)

and more involved spatial and frequency domain filtering schemes (Greenspan

et al., 2000, Whelan and Molloy, 2000). Among these one of the simplest

and most widely used techniques has long been that of Gaussian smoothing

(Davies, 1990, Haralick and Shapiro, 1992).

In recent years, however, such approaches have been to a large extent super-

seded by more advanced locally adaptive data smoothing methods that aim

to preserve semantically important details while at the same time attenuat-

ing noise in the data. Approaches based on wavelets (Jung and Scharcan-

ski, 2004), tangential smoothing (Bromiley et al., 2002), variational methods

(Schnorr, 1999) and nonlinear and anisotropic diffusion models (Perona and

Malik, 1990, Gerig et al., 1992, Weickert et al., 1998) have all received consid-

erable attention.
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Notwithstanding the fact of more advanced methods, the underlying principles

of Gaussian smoothing remain useful and much used, due in no small part to

its simplicity and elegance (Smith, 1999). Indeed some of the more advanced

techniques mentioned evolved directly from this same root, usually adding

significant complexity on their way to arrive at more effective approaches to

smoothing the data.

In our approach, we attempt to retain the fundamental simplicity of the orig-

inal Gaussian smoothing methodology while at the same time offering levels

of performance and adaptability on a par with those achieved by the more

complex and unwieldy alternatives (Lynch et al., 2004, Ghita et al., 2005a).

This leads to a family of filters that are simple and intuitive to use and to tune

to the specific characteristics of the data being processed.

3.1 Gradient-Weighted Gaussian Filter

At the root of the basic Gaussian smoothing approach is the idea of convolu-

tion with a Gaussian mask, replacing each data sample by the weighted mean

of samples within a given neighbourhood. The weights in the weighted mean

are calculated so as to fall off with distance from the centre point, based on

a simple exponential form, y = e−x2

, which reaches a maximum of one at x

equal to zero and approaches zero as x tends to ±∞ (Fig. 3.1).

Fig. 3.1: Graph of the function: y = e−x2

A parameter modelling the standard deviation of the exponential function

allows for control over the degree of smoothing achieved, by varying the width

of the central peak in the convolution kernel used, as illustrated in Fig. 3.2.

Thus in its simplest form the mask weights used to arrive at the weighted

mean can be calculated as shown in Eq. 3.1 (the final values are divided by
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the sum of these weights in order to normalise the filter and maintain the data

within its original grey range). In this equation, d is the distance from the

filter mask’s origin to each neighbour in the convolution kernel, and σ is the

chosen standard deviation or smoothing strength parameter.

f(d) = e−( d
σ

)2 (3.1)

A larger value for σ results in a wider

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 2.0

Fig. 3.2: Gaussian masks of
varying widths, shown in one,
two, and three dimensions.

distribution, larger contributions from

neighbouring sample points, and thus

more aggressive smoothing. The de-

gree of smoothing is, however, con-

stant across the filtered space for any

given value of the parameter σ. No

account is taken of the local struc-

ture of the data being smoothed. To

improve on this scheme the next step

is to allow the smoothing applied to

be modified locally, based on a neigh-

bourhood of samples, an adaptive fil-

tering approach.

3.1.1 Adaptive Filtering

In order to extend the familiar Gaussian approach we wish to modify the mask

weights locally, based on the magnitude and direction of the gradient vector

calculated at the current point. In general, a strong local gradient vector

suggests the presence of a significant boundary in the locality, which we would

not wish to blur or dislocate. In order to achieve this edge preserving effect,

the gradient vector’s magnitude can be used to govern the strength of the

applied smoothing by modifying the width of the Gaussian kernel used in the

smoothing mask at that location.

Similarly, the direction of the gradient vector can be used to enable the mod-

elling of an isosurface through the current point as the plane perpendicular
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to the gradient. Thus using this model we can reduce the effective contribu-

tion to the weighted mean of those sample points that fall farther from the

isosurface, while allowing those neighbours close to the isosurface to have a

significant effect on the final result. In this way we restrict the smoothing to

occur primarily along the isosurface rather than across it thus avoiding the

blurring or dislocation of boundaries whilst still allowing noise in the vicinity

of strong edges to be efficiently smoothed.

For completeness sake we also mention the less useful (in the context of our

work) third alternative, that of giving favour to smoothing across the isosur-

face, along the direction of the local gradient vector, thus actively encouraging

the suppression of strong boundaries. This can be seen as the effective dual

of the approach we take. Such a technique might be found useful in a feature

suppression application, perhaps in the removal of power lines or other strong

edge features in photographic images for instance. It does not, however, lend

itself to any useful application in our work and is not investigated further here.

The nature of the 3-D Gaussian masks required in order to implement each of

these three nonlinear filter types, isotropic, boundary suppressing, and bound-

ary preserving, are shown in Fig. 3.3, where 3.3a illustrates the isotropic case,

simple drop-off with increasing distance from the current point uniform in all

directions, 3.3b encourages smoothing across boundaries (the cylinder axis be-

ing oriented parallel to the local gradient vector), and 3.3c shows the boundary

preserving case, with the uniform intensity plane direction being perpendicular

to the gradient, to model the inferred isosurface.

(a) Sphere (b) Cylinder (c) Slab

Fig. 3.3: 3-D distance maps demonstrating Gaussian drop-off with distance
from a point, a line, and a plane respectively. Intensities in these figures are
directly proportional to the actual weight values in the corresponding filter
masks.
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This last case is the one in which we are most interested here. Furthermore,

in all three cases the gradient magnitude can be used to modify the “size” of

the mask and thus the degree of smoothing applied at each point.

The form of the resulting algorithm used to apply the desired filtering is shown

below as Algorithm 3.1. The neighbourhood is taken to include the centre point

p itself. The precise nature and characteristics of the filtering achieved are con-

trolled by the shape of the weighting function f( ~pq,∇u). Manipulation of this

function is the key to our approach’s performance, and allows for exceptional

flexibility within the simple framework outlined here. Also of importance, and

addressed in the next section of this chapter, is the consistent calculation of the

local greyscale gradient vector ∇u, in volumetric data with non-cubic voxels.

Algorithm 3.1: gradient-weighted adaptive Gaussian filter

For each sample point p

∇u = local gradient vector at p

wtsum = 0

val = 0

For each neighbour q

~pq = vector from p to q

wtq = f( ~pq,∇u)

wtsum += wtq

val += wtq q

p = val
wtsum

60



Chapter 3 – Adaptive Gaussian Smoothing

3.1.2 Gradient Vector Calculation

Consider the case of a 3-D non-isometric

dx

dy

dz

Fig. 3.4: Non-isometric data grid
with unequal orthogonal grid spacing.

data array with voxel dimensions dx,

dy, and dz as illustrated to the right

in Fig. 3.4. In order to perform the

calculations for anisotropic filtering, a

gradient vector ∇u = [∇ux,∇uy,∇uz]
T

must be calculated at each location in

the data, to be used in governing the

strength and directionality of the filter-

ing.

Familiar gradient calculation methods such as the Sobel operator (Sobel, 1990,

Duda and Hart, 1973) make an assumption of isometric data, so that a simple

extension of any such operator into three dimensions is not suitable for use

in the case of volumetric data with non-cubic voxels. In place of the familiar

pair of static 3 × 3 filter masks used in most traditional gradient operators,

three dataset specific 3×3×3 masks are required, covering the current voxel’s

26-neighbourhood.

Unlike the masks of the Sobel and other standard operators, in the case of non-

isometric data, the mask weights differ between the different mask orientations.

This is due to the fact that the same intensity difference corresponds to a

different intensity gradient if the distance over which it occurs changes, as it

does along the different axes in a non-isometric data grid. As such, unique

weights are required for the masks in each of the three orthogonal orientations

in order to arrive at consistent gradient vector components in each direction.

The eight 26-connected neighbours (see Fig. 3.5) are all equidistant from the

centre voxel (
√

dx2 + dy2 + dz2), but the true distance to each of the individual

6 and 18-connected neighbours varies, depending on the direction of travel.

A 6-connected neighbour can be offset from the centre voxel by any one of dx,

dy, or dz, while the offset to an 18-connected neighbour is one of
√

dx2 + dy2,√
dx2 + dz2, or

√
dy2 + dz2, depending on position.

In order to simplify the presentation, in developing the gradient operator for

non-isometric data, we initially consider the 2-D case, and extend our treat-
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(a) 6-neighbourhood (b) 18-neighbourhood (c) 26-neighbourhood

Fig. 3.5: A voxel’s 26-neighbourhood in a rectilinear data grid: 6-connected

neighbours share a face (a), 18-connected neighbours share an edge (b),
and 26-connected neighbours share a corner (c). Thus a voxel has six 6-
connected, twelve 18-connected, and eight 26-connected neighbours.

ment to three dimensions subsequently. Thus we first consider a 2-D data

array with pixel spacing dx and dy. With this pixel size the three pixel config-

urations illustrated in Fig. 3.6 all demonstrate a uniform gradient field. The

gradient magnitude is the same across all three regions but the direction differs

in each case. Taking into account the pixel dimensions, we can see that all

demonstrate a unit length gradient magnitude in terms of greylevels per unit

distance in the direction of maximum gradient.

−dx 0 dx

−dx 0 dx

−dx 0 dx

0
dxdy√
dx2+dy2

2dxdy√
dx2+dy2

− dxdy√
dx2+dy2

0
dxdy√
dx2+dy2

− 2dxdy√
dx2+dy2

− dxdy√
dx2+dy2

0

dy dy dy

0 0 0

−dy −dy −dy

Fig. 3.6: Three pixel configurations demonstrating local greyscale gradi-
ents of equal magnitude but differing orientations. The pixel intensities are
given as functions of the pixel dimensions dx and dy such that the intensi-
ties equal the perpendicular distance of each pixel from the zero line. Note
that what is being depicted here is actual image sections, not filter masks.

If we let dx = dy = 1 and apply the straightforward Sobel operator for exam-

ple, we get a gradient vector of magnitude eight in all cases, the three vectors

being [8, 0]T , [4
√

2, 4
√

2]T , and [0, 8]T respectively. As stated in Sobel (1990),

that operator yields an estimate that is 8 times as large as the average gradi-

ent. In general, the standard gradient operators do not normalise their results

as it is usually the case that only the relative rather than the absolute gradient

magnitudes are of significance. Thus it makes sense to use the simplest mask

configurations possible, ignoring any normalisation factors in favour of concise

filter masks.
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− dx
3dx2+dy2 0 dx

3dx2+dy2

− dx2+dy2

3dx3+dxdy2 0 dx2+dy2

3dx3+dxdy2

− dx
3dx2+dy2 0 dx

3dx2+dy2

dy

3dy2+dx2

dy2+dx2

3dy3+dydx2

dy

3dy2+dx2

0 0 0

− dy

3dy2+dx2 − dy2+dx2

3dy3+dydx2 − dy

3dy2+dx2

Fig. 3.7: Gradient filter masks for use in non-isometric 2-D data with pixel
dimensions dx and dy.

With arbitrary values for dx and dy a more general formulation is needed. The

usual pair of static filter masks is replaced by dataset-specific masks where the

weights are a function of dx and dy, as shown in Fig. 3.7. To illustrate the con-

sistent operation of these masks in non-isometric data consider applying these

gradient masks to each of the pixel configurations in Fig. 3.6. This yields the

three gradient vectors [2, 0]T , [ 2dy√
dx2+dy2

, 2dx√
dx2+dy2

]T , and [0, 2]T , which all have

a magnitude of two, and are each oriented correctly for the pixel configura-

tions given. The expressions for the individual weights in Fig. 3.7 are derived

as follows.

Consider a pixel and its 8-neighbourhood. An estimate of the greyscale gra-

dient vector at that pixel’s location can be calculated in terms of the eight

sub-gradients8 observed between the pixel and its eight nearest neighbours.

These sub-gradients are each of fixed orientation, along the line connecting

each neighbour to the centre pixel, and have magnitudes equal to the inten-

sity difference between the two pixels divided by the distance between these

pixels. In order to form the local gradient estimate, ∇u = [∇ux,∇uy]
T , each

such sub-gradient is decomposed into x and y components, and the resultant

components normalised to account for the non-isometry of the data grid. The

normalisation is necessary in order to compensate for the fact that the relative

distribution of the 8-connected sub-gradients is not uniform, since they tend

to point more in the direction of the larger of the pixel dimensions, resulting

in an unequal level of decomposition between the orthogonal directions. Thus

the expressions at each position in the x and y masks are constructed as

wtx = (
1

||δ||)(
δx

||δ||)(Cx)

wty = (
1

||δ||)(
δy

||δ||)(Cy)

(3.2)

8Calculated as Intensity difference
Euclidean distance

, between the centre voxel and each of its 8-neighbours.
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where δ is the offset vector to each neighbour, and Cx and Cy are the normali-

sation constants. Thus in each of the two lines in Eq. 3.2 the first term derives

the sub-gradient magnitude, the second term decomposes it into its x and y

components, and the third term corrects for the non-isometry in the data grid,

yielding the following masks,

− dxCx

dx2+dy2 0 dxCx

dx2+dy2

−Cx

dx
0 Cx

dx

− dxCx

dx2+dy2 0 dxCx

dx2+dy2

dyCy

dx2+dy2

Cy

dy

dyCy

dx2+dy2

0 0 0

− dyCy

dx2+dy2 −Cy

dy
− dyCy

dx2+dy2

such that each sub-gradient is normalised based on its distance from the centre,

and then decomposed into its x and y components. In order to arrive at

mutually consistent masks, appropriate values for Cx and Cy are calculated,

such that the two sets of mask weights exhibit a ratio equal to dy

dx
to compensate

for the non-isometric distribution of the samples used in the calculations. This

can be achieved by setting the sums of the positive weights in the two masks

to 1
dx

and 1
dy

respectively, which leads to the expressions in Eq. 3.3.

Cx(
2dx

dx2 + dy2
+

1

dx
) =

1

dx

Cy(
2dy

dx2 + dy2
+

1

dy
) =

1

dy

(3.3)

These in turn can be rearranged to give values for the constants Cx and Cy.

Cx =
dx2 + dy2

3dx2 + dy2

Cy =
dy2 + dx2

3dy2 + dx2

(3.4)

By multiplying these normalisation constants into the two masks shown above

we arrive at the final mask weights as given at the outset in Fig. 3.7.

This treatment extends naturally into three dimensions where three masks,

each of size 3 × 3 × 3, are required. The mask for use in calculating the x
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component of the 3-D gradient vector in non-isometric volume data is shown

below in Fig. 3.8, where the value for Cx is given in Eq. 3.5. The masks for y

and z are formulated similarly.

−dxCx

dx2+dy2+dz2 0 dxCx

dx2+dy2+dz2

−dxCx

dx2+dz2 0 dxCx

dx2+dz2

−dxCx

dx2+dy2+dz2 0 dxCx

dx2+dy2+dz2

−dxCx

dx2+dy2 0 dxCx

dx2+dy2

−Cx

dx
0 Cx

dx

−dxCx

dx2+dy2 0 dxCx

dx2+dy2

−dxCx

dx2+dy2+dz2 0 dxCx

dx2+dy2+dz2

−dxCx

dx2+dz2 0 dxCx

dx2+dz2

−dxCx

dx2+dy2+dz2 0 dxCx

dx2+dy2+dz2

Fig. 3.8: Filter mask to calculate the x component of the local greyscale
gradient vector in non-isometric volume data.

Cx =
1

4dx2

dx2+dy2+dz2 + 2dx2

dx2+dy2 + 2dx2

dx2+dz2 + 1
(3.5)

Thus the three orthogonal components of the local greyscale gradient vector,

∇ux, ∇uy, and ∇uz can be calculated by employing the masks obtained in

this fashion. We can then proceed to calculate ‖∇u‖, the magnitude of the

gradient vector as:

‖∇u‖ =
√

(∇ux)2 + (∇uy)2 + (∇uz)2 (3.6)

We are now in a position to proceed with the development of the crucial weight-

ing function f( ~pq,∇u) from Algorithm 3.1, which is the final step necessary to

complete the implementation of the algorithm. A number of filter formulations

are possible using the magnitude and direction of the gradient vector. If only

the magnitude is used, a nonlinear but isotropic filtering is achieved, so that

the amount of smoothing applied can be limited in the vicinity of strong edges

(mask a from Fig. 3.3). By introducing directional information from the gradi-

ent vector, we can arrive at the anisotropic solution we seek, where smoothing

is applied along but not across the isosurface modelled at the current point

(mask c from Fig. 3.3).
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3.1.3 Distance Metrics

In order to implement these masks we need to be able to calculate a num-

ber of distance metrics as illustrated in Fig. 3.9. Consider the data point

p = (px, py, pz) with associated gradient vector ∇u. Coordinates are taken to

have been appropriately scaled by the voxel dimensions dx, dy, dz. We model

an isosurface at p as being that plane perpendicular to ∇u and containing the

point p. Take q = (qx, qy, qz) to be another data point in the neighbourhood

of p, and ~pq = [qx−px, qy−py, qz−pz]
T to be the vector from p to q.

∆

u

p
da

do

pq

q

Fig. 3.9: Distance from a point to a plane

Three related distance measures emerge, each associated with one of the three

mask shapes illustrated in Fig. 3.3. They form the sides of the right angled

triangle in Fig. 3.9. We call them dh, da, and do respectively (after the sides

of the triangle: hypotenuse, adjacent, and opposite). The first, dh, is simply

the magnitude of the vector ~pq.

dh = ‖ ~pq‖ =
√

(qx−px)2 + (qy−py)2 + (qz−pz)2 (3.7)

Using dh, in conjunction with ‖∇u‖ leads to the nonlinear, isotropic filter, were

smoothing is simply reduced in high gradient regions (dh on its own leads to

the linear case — standard Gaussian smoothing). Note that the directionality

of the vectors does not come into the calculation, only their magnitudes.
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For the anisotropic filter that we seek to implement, we need do, the perpendic-

ular distance from q to the plane modelling the isosurface through the current

point p. This distance, the shortest distance from the point to the plane, can

be calculated as the projection of ~pq onto ∇u, (that is to say the component

of ~pq in the direction of ∇u). This is calculated as the dot product of ~pq and

∇u divided by the magnitude of ∇u:

do =
~pq · ∇u

‖∇u‖ (3.8)

Recall that the dot product of two 3-D vectors a and b is a scalar quantity

defined as: a · b = axbx + ayby + azbz. It thus also follows that the boundary

suppressing form corresponding to the cylindrical mask of Fig. 3.3b can be

arrived at similarly, using the distance metric da =
√

d2
h − d2

o. We do not

utilise this form in the current work.

3.1.4 Calculation of Mask Weights

We are now in a position to construct filter masks appropriate to any of the

various forms that we have described so far. Weights for the simple linear form

are calculated as shown in the first line of Eq. 3.9. The nonlinear isotropic filter

derives its weights using the formula in line two, while a boundary preserving

filter mask can be formed using either of the two expressions shown on line

three. The first uses only the directionality while the second also incorporates

the gradient magnitude into the calculation.

f( ~pq) = e−(
dh
λ

)2 − linear

f( ~pq,∇u) = e−(
dh‖∇u‖

λ
)2 − nonlinear

f( ~pq,∇u) = e−( do
λ

)2 or = e−(
do‖∇u‖

λ
)2 − anisotropic

(3.9)

We use this second form, which in addition to applying the desired direc-

tionality also allows the mask (Fig. 3.3c) to vary its rate of falloff with dis-

tance from the modelled isosurface, so that weak gradients result in a less

pronounced directionality in the mask over the neighbourhood covered by the

filter, thus increasing the overall level of smoothing applied in low gradient

67



Chapter 3 – Adaptive Gaussian Smoothing

regions. In the limit, as the gradient strength tends to zero, this amounts to

a simple unweighted mean filter, where the entire neighbourhood is covered

by the broadening Gaussian peak. At the other extreme, when the gradient

magnitude increases and the peak becomes sufficiently narrow, only neighbour

points falling directly on the modelled isosurface make any contribution at all,

thus enforcing the maximum directionality possible on the filtering results. In

discretely sampled data it is of course very likely that none of the neighbour-

ing voxels falls exactly on an arbitrarily oriented plane and so no smoothing

happens at all.

The parameter λ controls the overall strength of the smoothing in each case.

Large values broaden the Gaussians and result in greater contributions from

neighbouring sample points. Small values contract the Gaussians and restrict

the effect that neighbours have on the final value at each point. Substituting

for do in the last expression and simplifying we get the form for the weighting

function used in our initial experiments:

f( ~pq,∇u) = e−( ~pq·∇u
λ

)2 (3.10)

3.2 Elliptic Filter Model

We next examine how the three filter families so far described, the cylinder,

sphere and slab merely represent three special cases in a single larger family of

anisotropic filters, modelled as Gaussian ellipsoids. Consider taking the spher-

ical mask that corresponds to isotropic filtering (Fig. 3.10c), and stretching it

along one of its axes so as to form an egg shaped mask, Fig. 3.10b. Continue

stretching this long axis and in the extreme you arrive at a cylinder, Fig. 3.10a.

Alternatively if you again take the sphere and instead compress it along this

same axis (or equivalently stretch it uniformly along the other two orthogonal

axes) you arrive at a saucer shaped mask (Fig. 3.10d), which in the extreme

tends to the planer shape of Fig. 3.10e. This whole family of filter mask shapes

can be described in terms of ellipsoids, with the three axes of the ellipsoid

parameterising the system. In fact we need only analyse the 2-D equivalent,

the ellipse, as we choose to keep two of the axes equal throughout.
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(a) (b) (c) (d) (e)

Fig. 3.10: Five points along the ellipsoid based mask shape continuum.
In all cases, in order to perform the smoothing, the ellipsoid’s vertical axis
is aligned to the local gradient vector, and the matched pair of horizontal
axes will thus lie in the plane of the modelled isosurface.

Allowing three independent axes would require the definition of a secondary

orthogonal gradient metric such that you would effectively have a direction of

highest gradient and an orthogonal direction of lowest gradient, with the third

orthogonal axis being intermediate between these two, all in terms of the local

greyscale gradient in each direction. This further generalisation, correspond-

ing to a secondary gradient metric being defined in the plane of the modelled

isosurface, would introduce additional complexity into the calculations for lit-

tle gain, and would render the resulting filters more complex and difficult to

control, so in this work we enforce the constraint that two of the ellipsoid axes

remain equal in length at all times, and thus allow the development to proceed

in two dimensions.

Consider the equation of an ellipse,

-a a

-b

b

X

Y
(x,y)

Fig. 3.11: The form of an ellipse

1 = x2

a2 + y2

b2
, where a and b are the two

half-axes as indicated in Fig. 3.11.

The parameters a and b control the

ellipse’s size and shape, which equates

to the strength and directionality of

the smoothing to be achieved by the

corresponding anisotropic filter pro-

posed by this model.

Now if instead of a single ellipse we next specify a whole family of ellipses,

with the same centre, and the same shape (the ratio of a to b remains con-

stant), but of varying sizes, we then arrive at the set of ellipses illustrated in

Fig. 3.12, where each ellipse is represented by an iso-intensity contour, with

the intensities falling off with distance from the centre. The rate of falloff is
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again controlled by the familiar exponential model.

This family of ellipses can be repre-

Fig. 3.12: A family of ellipses

sented as C2 = x2

α2 + y2

β2 , where each

individual ellipse’s characteristic pa-

rameters a and b are given by a = αC

and b = βC. Thus we can specify

that α and β are constants defining

the family in question, and C selects

the individual members within that

family. As such C becomes the new (anisotropic) distance metric, used to

define the weighting factors as before:

wt = e−C2

(3.11)

Effectively what we are saying is that all the voxels that fall on the surface of a

given ellipsoid within the family take the same weighting factor, based on the

intensity we have assigned to that particular member of the ellipsoid family.

Thus in general more distant voxels receive a lower weighting, but the falloff

is anisotropic, achieving the desired directional smoothing effect.

Fig. 3.13 thus characterises the parameter space in α and β, indicating the

manner in which the filter size and shape changes with the changing input

parameter values, as α and β range over [0,∞]. We can therefore identify

the general filter shape that will be achieved for any given (α, β) pair. This

parameter space, illustrated in Fig. 3.13, shows the general positions within

the space of all the various filter mask shapes previously described.

Next we need to specify the form of C2 in Eq. 3.11 above. Extending the

model already presented in Section 3.1, we wish to define the function in

terms of λ, controlling the size, or smoothing strength, and an additional

parameter µ, which is used to control the shape of the mask, or degree of

directionality of the smoothing. These two parameters are functions of α and

β. In choosing a form for λ and µ so as to achieve the desired relationships,

we consider two characteristics of the ellipse, its area A, and its perimeter

P. As indicated in Eq. 3.12, while the area is easily calculated, no simple

method for determining the perimeter of an ellipse exists, one must resort to
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β
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unpaired axis

Fig. 3.13: 2-D parameter space for the family of anisotropic filters de-
scribed. This represents the plane from the full 3-D parameter space where
two of the ellipsoid axes (the α’s here) are held equal.

elliptic integrals. Commonly used lower and upper bounds for the perimeter

are, however, given. Notice that if a = b then, as expected, both reduce to

2πr, the circumference of a circle.

A = πab

2π
√

ab < P < π
√

2(a2 + b2)
(3.12)

These considerations allow us to design a number of possible formulations for

λ and µ that lead to simple and intuitive parameter selection in the final filter,

in terms of the familiar size and shape parameters. We examined two of these

possible formulations in particular, as shown, along with their corresponding

equations for α and β, in Eqs. 3.13 and 3.14.

The size parameter, λ, should relate to some magnitude metric in the under-

lying ellipse model, and should involve positive contributions from both α and

β. Thus formulations based on either the area or perimeter of the ellipse would

be plausible. The λ in Eq. 3.13 derives from the perimeter upper bound, while

that in Eq. 3.14 can be seen as being related to both the perimeter lower bound

and the area.

The shape parameter, µ, will clearly involve the ratio of α to β, as this ratio

71



Chapter 3 – Adaptive Gaussian Smoothing

defines the ellipticity9 of the ellipse. By introducing the logarithmic function

we achieve symmetrical behaviour in µ. When the ratio of α to β equals one,

the ellipse is a circle, the isotropic case. The edge suppressing case corresponds

to a range in the ratio of zero to one, while in the edge preserving case, the

ratio ranges over one to infinity. By employing the logarithmic function we

relocate the isotropic case to the origin, and achieve symmetry in the edge

suppressing and edge preserving cases, as illustrated in Fig. 3.14. This insures

that the process of choosing and modifying values for the parameter µ remains

a straightforward task.

We selected the set given in Eq. 3.14 as providing both the cleanest implemen-

tation and the best characteristics in the resulting filter model. This second

form for λ in particular is preferable to the alternatives, with the product of

α and β resulting in our size parameter λ being a function of the area of the

corresponding ellipse in each case. The first form for λ, which is closely re-

lated to the upper bound for the ellipse perimeter, results in a less satisfactory

relationship between α and β, especially in the case where one becomes much

smaller than the other, and thus looses all influence over the final filtering

result. The precise forms chosen for λ and µ, involving as they do, square

roots, were in fact formulated so as to give the cleanest possible results when

substituted into the equation for our final filter model, as shown in Eq. 3.16.

λ =
√

α2 + β2 α =
λ√

1 + (eµ)−2

µ = ln
α

β
β =

λ√
1 + (eµ)2

(3.13)

λ =
√

αβ α = λeµ

µ = ln

√
α

β
β =

λ

eµ

(3.14)

The forms for λ and µ given in Eq. 3.14 results in the parameter space illus-

trated in Fig. 3.14, which again shows the positions of the various filter mask

shapes discussed, now within this alternate space. This parameter space can

be seen as a transformation of that given in Fig. 3.13, by which the α axis

9Ellipticity — The degree of deviation from a circle or sphere of an ellipsoidal shape or
path, measured as the ratio of the major to minor axes.
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becomes the positive µ axis, the β axis becomes the negative µ axis, and the

line α = β (isotropic, spherical masks of varying size) becomes the λ axis.

∼

∼

∼

∼

∼

∼

∼

λ

µ−µ− 0
0 88

8

Null Filter

Mean Filter

cylinder sphere slab

egg saucer

line plane

(edge suppressing) (edge preserving)

(isotropic)

Fig. 3.14: The 2-D lambda-mu parameter space corresponding to the pa-
rameter forms given in Eq. 3.14, yielding a pair of filter parameters cleanly
controlling smoothing strength and directionality respectively.

From this we can develop the final form of our weighting function f( ~pq,∇u)

first introduced in Section 3.1.1. First, in Eq. 3.15 we define the expansion of

C2, and then we substitute this back into the formula from Eq. 3.11, in order

to give the final form of the anisotropic ellipsoid filter weighting function in

Eq. 3.16. The optional ‖∇u‖ term is included, as discussed in Section 3.1.4,

adding an additional degree of gradient strength dependence to the operation

of the filter. We can see that when µ = 0 the anisotropic term disappears

and we are left with an equation identical to the nonlinear, isotropic form first

given in line two of Eq. 3.9, in Section 3.1.4.

C2 = (
x‖∇u‖

α
)2 + (

y‖∇u‖
β

)2

= (
da‖∇u‖

λeµ
)2 + (

do‖∇u‖eµ

λ
)2

= (
‖ ~pq‖‖∇u‖

λeµ
)2 + (

~pq · ∇u

λ
)2(e2µ − e−2µ)

(3.15)

f( ~pq,∇u) = e−((
‖ ~pq‖‖∇u‖

λeµ )2+( ~pq·∇u
λ

)2(e2µ
−e−2µ)) (3.16)
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We now know how to calculate all the terms in Eq. 3.16 and we are thus in a

position to calculate the new grey values. The updated value for the current

sample point is the normalised mean of the weighted samples as in Eq. 3.17,

where i indexes each neighbour (including the current point) from 1 to n,

and vi and wti are the sample value and weight respectively at each location.

This corresponds to the calculation shown in the last line of Algorithm 3.1,

presented in Section 3.1.1.

v =

∑n

i=1(viwti)∑n

i=1 wti
(3.17)

3.3 Filter Characterisation and Performance

The filtering scheme described above has been utilised in the processing of a

large database of test images and volumes. Our particular focus has been on

the enhancement of fine branching structures in the data, where the narrow-

est branches are often significantly degraded by the high noise levels present.

Fig. 3.15 illustrates the de-noising of homogeneous regions combined with the

preservation of important boundaries.

Fig. 3.15: The unfiltered image and result after 10, 20, and 200 iterations
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The image shown is an off axial body cross section demonstrating the upper

portion of the liver to the left and the base of the subject’s left lung to the

right. The high intensity regions within the liver represent a section through

the 3-D branching structure that we wish to enhance. Note in particular the

small isolated bright (dark in these inverted images) regions that have been well

preserved in the filtered images against the otherwise smoothed background

of liver tissue. These are cross sections through thin branches in a 3-D tree

structure. As the number of iterations applied is increased, the homogeneity

within the regions continually improves but the identified boundaries remain

strongly defined.

The edge strength level at which boundary preservation gives way to regional

smoothing is governed by the value chosen for the scaling parameter λ. This

value is selected interactively by the user, based on the particular characteris-

tics of the dataset being processed. The application of a less vigorous smooth-

ing would better preserve the less distinct outer boundaries, at the expense

of a higher level of interior noise, requiring a greater number of iterations in

order to lead to a comparable level of regional homogeneity.

In Fig. 3.16 we can see a closeup of two fine branches in the data demon-

strating varying contrast, and in places being no more than two pixels across.

Again the adaptive Gaussian filter has homogenised the background without

destroying the integrity of the important boundaries with the neighbouring

branch structures. The images in 3.16b show the data under median filter-

ing and help to illustrate the superior edge retention and noise suppression

characteristics of the adaptive filtering scheme.

The filter aims to achieve the best possible balance between two competing

considerations: greylevel homogenisation within regions and gradient preser-

vation at boundaries. Choice of the parameter λ is governed by the relative

importance attributed to each of these two competing factors. The best filter

in a particular situation can thus be seen as the one that achieves the highest

degree of intra region homogenisation while maintaining a required level of

greyscale gradient at the regional boundaries.

In order to characterise the performance of the filter we have graphed boundary

preservation against the level of intra regional noise suppression achieved for a

number of different filter types (Fig. 3.17). To calculate these metrics we first
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(a) Original (b) 3× 3 Median (c) Adaptive

Fig. 3.16: Closeup of two ducts under filtering. The adaptive filter has
been applied for 20 iterations in this case.

partition the test data into three categories, based on local gradient strengths

in the original data, assigning each data point as either strong, intermediate,

or weak. This yields a set of typical boundary points in the strong category,

and another set of points from regional interiors in the weak category. The

intermediate class consists of sample points that are neither strongly boundary

nor strongly body points.

The partitioning levels are selected on the basis of the level of edge strengths

that we wish preserve in the test data. Typically the strong category consists

of the top five percent of gradients present, with the weak category being

set to the lowest fifty percent. This reflects the typical composition of a test

dataset, with boundary points representing a relatively small fraction of the

area covered, and regional interiors accounting for much more of the data.

The average percentage change in the local gradients within each category

after filtering, is recorded in order to quantify the noise suppression and edge

retention achieved in each case.

Each filter is applied for between zero and twenty iterations, leading to twenty

one data points on each line plotted. In all cases it can be seen that the

early iterations have the most substantial effect, while later iterations produce
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Fig. 3.17: Region smoothing versus edge retention for the four filter types,
demonstrating the clear difference between adaptive and nonadaptive tech-
niques. Gradient-weighted adaptive approaches are specifically designed
to preserve strong boundaries and as such we would expect to see a large
separation between the two pairs of approaches, as is shown in this plot.

increasingly little change to the results. Each of the lines originates at the

graph origin indicating the unfiltered data with zero percent suppression on

both axes. The point at (100, 100) corresponds to a completely featureless

image where all gradient information has been suppressed. The ideal filter

stays as close to the x axis as possible, indicating that edge strengths at the

important boundaries have not been degraded, while increasing amounts of

unwanted variation within the regions have been eliminated.

In the mean filter we simply replace each greyvalue with the average value

within a given neighbourhood. The performance of this technique is pre-

dictably poor. Measuring the filtering effect in terms of percentage suppression

of the local gradients, as we do in Fig. 3.17, makes particularly clear the indis-

criminate nature of this approach. High gradient regions, which thus have a

lot to lose, demonstrate very rapid decay in their gradient magnitudes in this

case. The linear filter characterised on the first line of Eq. 3.9 (of which the

mean filter is just a special case, with λ = ∞) performs similarly. Reducing

the value of λ mainly just slows the rate of decay, but ultimately edges are

preserved no better than in the case of the mean filter.
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The nonlinear form (the second line in Eq. 3.9) takes account of the gradients

and as such produces far superior results. However, examination of the out-

put images in Fig. 3.18 demonstrates the failing of this method. The regional

boundaries, while well preserved remain very noisy. The anisotropic form

(Eq. 3.9, line three) by contrast achieves similar levels of edge preservation and

noise suppression but additionally manages to produce greatly smoothed re-

gional boundaries, ideal for subsequent identification in a segmentation phase.

Again the level at which preservation gives way to smoothing is controlled by

the input parameter λ. In the case shown in Fig. 3.18 the aim was to preserve

as much as possible of the visible ductal elements within the liver, representing

branches of the pancreato-biliary system.

Fig. 3.18: Results after 20 iterations of the four filter types examined:
mean, linear, nonlinear, and anisotropic filters

Further testing, alongside more advanced smoothing techniques, has also been

performed, and is fully documented in two papers (Lynch et al., 2004, Ghita

et al., 2005a). The results shown in Table 3.1 are taken from Lynch et al.

(2004), and illustrate the excellent performance of our technique when com-

pared with that of a number of the most widely used existing adaptive ap-

proaches.

The filtering scheme presented represents an effective and versatile approach

to adaptive noise suppression where the preservation of weak region bound-
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aries is required. By building on the framework of Gaussian filtering we have

retained a simplicity and elegance that allows the filters described to be visu-

alised and tuned simply and systematically and as such the adaptive Gaussian

filter represents a particularly attractive option for application in large scale

studies where automation and simple adjustment are crucial.

Photographic Image MRCP Image

SD Edge Height Edge Width SD Edge Height Edge Width

Unfiltered 57.4 31 2.26 277.7 219 2.04

Gaussian 41.0 15 4.40 102.8 196 2.16

Savitzky-Golay 40.8 23 2.50 61.23 158 2.48

Chen 24.2 26 2.13 42.99 211 2.00

Perona & Malik 27.7 25 2.17 69.63 214 2.00

Robinson 31.9 30 2.17 35.05 219 1.99

Table 3.1: Results achieved applying five smoothing techniques to two test
images. Lower standard deviations are better, indicating more smoothing
within homogeneous regions of the images. Larger edge heights are better,
indicating better preservation of edge strength at semantically important
edges. Smaller edge widthes are better, indicating less blurring or spread
at semantically important edges.10

The algorithms offer good performance, coupling excellent filtered results with

fast execution, especially when utilising lookup tables for the expensive math-

ematical operations required. They typically need only a very few iterations in

order to achieve the desired levels of filtering. The general form is also open to

significant further enhancement without an increase in algorithmic complexity,

by extending the current treatment to include further scaling and shaping of

the contributing masks. The results achieved demonstrate the approach to

be robust in the presence of noise and to be capable of retaining small but

semantically important features in the data. This thus represents an excellent

preprocessing filter for the preparation of noisy data for further analysis.

10This table of results is taken from Lynch et al. (2004). Full details of this series of
comparative tests can be found in that paper.
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Greyscale Reconstruction

This chapter describes a morphological approach to the reconstruction of fine

branching structures in 3-D data (Robinson and Whelan, 2004b), developed

from the basic procedures of reconstruction by dilation. We address a num-

ber of closely related questions arising from this reconstruction goal, including

issues of structuring element size and shape, noise propagation, iterated ap-

proaches, and the relationship between geodesic and conditional dilation. We

investigate and assess the effect and importance of these considerations in the

context of the overall reconstruction process, and examine the effectiveness of

the approach in addressing the task of reconstructing narrow branch features in

noisy, non-isometric volume data. We also describe the downhill filter, a novel,

optimal algorithm for the implementation of reconstruction by dilation first

presented in Robinson and Whelan (2004a), and we examine the generalisation

of this algorithmic pattern to the implementation of a class of related image

processing procedures, which we call directed filtering. This work contributes

to the development of a computationally efficient processing framework within

which to construct an interactive and user friendly computer assisted diagno-

sis (CAD) environment suitable for the routine, realtime screening of MRCP

data.

4.1 Reconstruction by Dilation

The classical reconstruction by dilation procedure (Vincent, 1993, Soille, 1999)

is an effective and much-utilised image processing tool applied extensively in
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the segmentation and classification of complex scenes (Salembier et al., 1996,

Araujo et al., 2001, Metzler et al., 2001, Angulo and Serra, 2003). Seeded

regions are retained while neighbouring unseeded regions are attenuated to

the intensity level of the surrounding background data. The approach yields

excellent results in isolating compact structures in noisy data. However, when

the regions of interest are less compact, including fine branching elements, the

approach performs less well, especially in the presence of noise. This behaviour

is due to the geodesic growth properties at the heart of the definition of recon-

struction by dilation. The geodesic dilations that constitute a reconstruction

by dilation guarantee that there exists a connected, strictly downhill (in terms

of pixel intensity) path to each sample point from one of the original set of

seed points that were used to initialise the procedure. This property is what

achieves the suppression of non-seeded high intensity regions.

(a) Original (b) Geodesic (c) Hybrid

Fig. 4.1: Narrow branch preservation in hybrid reconstruction. The detail

in the original branch (a), is severely compromised by the standard geodesic
reconstruction by dilation (b), while our hybrid reconstruction approach (c),
preserves the detail more faithfully.

The difficulty arises when a narrow element is encountered in a seeded region.

Any signal drop-off along the narrow branch, due to noise or to transitory

signal reduction, can result in an undesirable attenuation of the intensity level

along the entire remainder of the branch length, as illustrated in Fig. 4.1. This

is not an issue in the reconstruction of more compact regions as there will exist

some convoluted high intensity path to carry the signal past any blockage. As

the features in the region to be reconstructed become more and more narrow,

the chances of encountering signal drop-offs that can not be negotiated at the

higher signal intensity level, increase. In the case of fine branches, where the

high intensity path is only one or two pixels wide, the likelihood of undesirable
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signal suppression becomes extreme, leading to incomplete reconstruction of

the desired objects.

In order to counter this difficulty we have developed a non-geodesic extension

to the reconstruction by dilation procedure aimed at bridging small gaps in

the high intensity path, while still effectively suppressing the signal intensity

in neighbouring non-seeded regions. The approach has the additional desirable

property of preserving more fully the texture information in the reconstructed

regions and suppressing the stepped contour effects and intervening flat zones

that often otherwise manifest. These properties can be particularly beneficial

in terms of both the analysis and the visualisation of the processed data.

Fig. 4.2: Illustration of the ductal tree whose isolation and analysis is the
ultimate goal. Neighbouring high intensity regions, primarily gastrointesti-
nal fluids, complicate the task.

The particular motivation for this investigation stems from the nature of the

visualised biliary tree signal, as observed in the studies contained within our

MRCP database. Our aim is the isolation of the ductal system from within this

data and as such we wish to suppress the signal from neighbouring structures

while at the same time faithfully preserving the signal in the tree itself. Fig. 4.2

shows an MRCP dataset in maximum intensity projection (MIP) rendering,
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where the ductal tree is clearly visible along with a number of occluding high

intensity structures that we wish to suppress. Successful isolation of the finer

branches towards the periphery of the tree in particular can be dependant on

the effective suppression of high intensity proximal structures in the scene.

4.1.1 Morphological Dilation Operators

First we briefly review the definition of reconstruction by dilation, and the

differences between dilation, conditional dilation, and geodesic dilation (Serra,

1982, Soille, 1999). Reconstruction by dilation is a morphological procedure

that can be defined similarly in the binary and greyscale cases in terms of their

respective geodesic dilation operators. In the binary case, reconstruction by

dilation can be seen as the application until stability of the geodesic dilation

operation, (δ(1)I) ∩ C, where δ(1) is the fundamental dilation, I is the marker

and C the mask image, and ∩ is the boolean intersection operator. In terms

of the greyscale morphology this becomes (δ(1)I)∧C, where ∧, the point-wise

minimum operator replaces ∩, the boolean intersection operator.

The definitions presented in Table 4.1 explain symbols used in the treatment

to follow. Provided definitions are for the explicit variables used through-

out and for operators whose meaning may not be immediately obvious. The

mathematical notation used throughout this section is based on set theory and

the predicate calculus, and follows the formal specification style described in

Woodcock and Loomes (1988).

The size N dilation δ(N) of an image I by a given structuring element defining

a neighbourhood NG, can be represented as in Eq. 4.1, where p and q are pixels

and D represents the image domain under consideration.

δ(N)I =̂ ∀p : D • ∀q : NG(p) • (q ← max(p, q)) (4.1)

Conditional and geodesic dilations are developments of the basic dilation prin-

ciple that stem from the idea of using an additional image as a conditioning

mask that selectively limits the dilation process (see Fig. 4.3). This is achieved

by defining the final image as the point-wise minimum of the basic dilation with

this conditioning mask, such that the conditional operator may only change a
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Symbol Definition

I – The mask image

J – The marker image

D – The domains of I and J (which must be equal)

I[p] – The pth pixel in image I

NG(p) – The neighbours of pixel p on the grid G

δ(N)I – Dilation of size N , applied to I

δ
⋆(N)
C I – Conditional dilation of size N , applied to I, conditioned on C

δ
(N)
C I – Geodesic dilation of size N , applied to I, conditioned on C

RCI – Reconstruction by dilation of I, conditioned on C

R
h(N)
C I – Hybrid reconstruction of strength N , of I, conditioned on C

∀a : B • P (a) – Universal quantification: for all a in B predicate P (a) is true

{a : B | P (a)} – Set Comprehension: the set of all a in B that satisfy predicate P (a)

≡ – Is equivalent to

=̂ – Is equal to by definition

← – Assignment

= – Equality

⇒ – Implication
⌢ – List catenation

head – Returns the first element in a list

tail – Returns a list minus its head

−⊲ – Range subtraction: removes a specified element from a list

squash – Closes up holes in a list (e.g. left by range subtraction)

Table 4.1: Symbol definitions.

pixel in the final image to an intensity level less than or equal to that in the

conditioning image.

(a) (b) (c) (d) (e)

Fig. 4.3: Using binary geodesic dilations to segment a brain image; (a)

the original binary data, (which is also used as the conditioning mask), (b)
after an erosion of size three, (c) the components of interest are selected
by labelling of the largest regions, (d) a geodesic dilation of size four re-
constructs the brain surface, (e) after 50 geodesic dilations much unwanted
material is being brought back into the segmentation.
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In Eq. 4.2 we give a definition for the process of conditional dilation δ
⋆(N)
C in

terms of the standard dilation δ(N), and in Eq. 4.3 we formalise the definition

already given in the text for geodesic dilation δ
(N)
C . In both cases, I is the

input image and C is the conditioning image.

δ
⋆(N)
C I =̂ δ(N)I ∧ C (4.2)

δ
(N)
C I =̂ δ(1)I ∧ C . . . N times (4.3)

Figs. 4.4 and 4.5 provide an illustration of the three kinds of dilation. Standard

dilation as in Fig. 4.4c simply grows regions by the specified amount. We use

the symbol δ(N) to specify a standard dilation of size N . This is equivalent to

N applications of the fundamental dilation operator, δ(1).

(a) Mask (b) Marker (c) Unconditional (d) Conditional (e) Geodesic

Fig. 4.4: A comparison of standard, conditional, and geodesic dilation
using an elementary 1-D, 2-connected structuring element, after five iter-
ations (top row), and iterated until stability (bottom row), as applied to
a 1-D greyscale signal; (a) the conditioning mask, (b) the starting signal,
(c) standard dilation, (d) conditional dilation, (e) geodesic dilation. The
conditioning mask is overlayed in grey onto all plots to clarify the results.

Conditional dilation, Fig. 4.4d, grows regions by the specified amount and then

removes any growth that is not sanctioned by the conditioning mask. What

differentiates geodesic dilation, Fig. 4.4e from conditional dilation is that in

the geodesic case the intersection with the conditioning mask must be ap-

plied after each fundamental dilation whereas in the conditional case dilation

is performed to the desired final level before the intersection with the mask is

calculated. In other words, for a geodesic dilation of size N , the compound

operation (δ(1)I)∧C must be applied N times. This illustrates why it requires
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multiple iterations in order to achieve a geodesic dilation of any given size,

while a conditional dilation of the same size can be achieved in a single itera-

tion by dilating once with the appropriate size of structuring element prior to

calculating the intersection with the conditioning mask.

(a) Mask (b) Marker (c) Unconditional (d) Conditional (e) Geodesic

Fig. 4.5: A comparison of standard, conditional, and geodesic dilation
using an elementary 2-D, 8-connected structuring element, iterated until
stability, as applied to a greyscale image. Pixel intensities are inverted for
clarity.

The image in Fig. 4.5e shows the geodesic dilation iterated until stability and

as such is by definition the reconstruction by dilation of the image in 4.5b

conditioned on the image in 4.5a. Likewise, the plot in Fig. 4.4e on the second

row shows the reconstruction by dilation of the signal in 4.4b conditioned on

the signal in 4.4a. Study of the plot reveals the ‘downhill’ nature of the process,

which informed the approach taken in developing our optimal reconstruction by

dilation algorithm and gave it its name of downhill filtering. Moving away from

the maxima in the starting signal, the filtered signal falls with the conditioning

signal, but once it has fallen it does not rise up again as the conditioning signal

rises. This behaviour means that high intensity regions that are marked will

be retained while those that are not marked will be attenuated to the level

of the highest valley separating them from any marked regions. This is the

characteristic behaviour that defines geodesic dilation.

4.2 Hybrid Reconstruction

As the caption in Fig. 4.5 states, the structuring element used in that example

is an elementary 2-D, 8-connected structuring element. If the extents of the

structuring element used in the dilation process reach beyond the innermost

shell of sample points surrounding the origin, the filter is no longer geodesic
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and cannot be used to perform reconstruction by dilation in the traditional

sense of its definition. Dilation with a non-elementary structuring element is

effectively equivalent to the application of more than one elementary dilation

between each application of the minimum operator as in Eq. 4.4. The design

and manipulation of structuring elements is an important topic in this field (Ji

et al., 1989, van Droogenbroeck and Talbot, 1996, Park and Yoo, 2001), and

proves valuable in the development of our procedure here.

δ
h(N,M)
C I =̂ δ(N)I ∧ C . . . M times (4.4)

The hybrid dilation of Eq. 4.4 has the potential to achieve the behaviour that

we wish to utilise in our reconstruction approach, as it will allow the dilation to

extend beyond small regions of intensity dropout, without breaching the more

extensive low intensity valleys between disconnected neighbouring regions. The

more dilations applied per application of the point-wise minimum operator, the

wider the gaps that the reconstruction can cross.

Thus we can see that there exists a family of reconstructions for any given

starting data, where the optimal solution can be chosen in terms of how much

physical separation exists at the point of closest proximity between seeded and

unseeded regions in the data. So long as this measure allows sufficient scope

to bridge the gaps in the fine branch components of the seeded regions, the

reconstruction gaol can be successfully achieved. We can thus define a new

hybrid reconstruction by dilation procedure as in Eq. 4.5, where the parameter

N governs the size of the neighbourhood to use. This specifies which particular

member of the family of reconstructions mentioned above is achieved, and thus

how wide are the gaps across which the reconstruction will move in isolating

the fine branch features within the seeded regions.

R
h(N)
C I =̂ δ(N)I ∧ C . . . to completion (4.5)

This hybrid reconstruction allows us to preserve the finer ducts visible in the

biliary trees of the coronal HASTE datasets that we are examining. As such,

it provides an efficient approach to the selective suppression of non-relevant

high intensity features in the processed data volumes, thus allowing us to focus

more effectively on the true regions of interest within each scan.
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In our experiments we applied both standard reconstruction by dilation us-

ing 6, 18, and 26-connected structuring elements (the three fundamental 3-D

structuring elements leading to geodesic reconstructions), and we also applied

a series of reconstructions utilising larger structuring elements. These larger

elements were constructed so as to achieve approximately isometric recon-

structions in the non-isometric volume data that we were analysing. The

data is isometric in the x and y directions, with voxel dimensions of approxi-

mately 1.3mm each way, but in the z direction the voxel dimensions increase

to 4.0mm. Thus in order to achieve dilation more consistently in all directions,

an anisotropic (in voxel terms) approach was preferred, so as to compensate

for the non-cubic nature of the data. We found this to be the most effective

approach, maximising the amount of unconstrained dilation we could use be-

tween applications of the minimum operator before the procedure starts to

include unwanted structures in the reconstruction.

4.2.1 Reconstruction Results

We processed our database of volumes using both traditional geodesic recon-

struction by dilation and our hybrid reconstruction approach applied at vary-

ing strengths, and assessed the reconstruction results achieved in each case.

Fig. 4.6 illustrates the superior intensity preservation characteristics of the

hybrid reconstruction approach in the processing of objects of interest that

include fine branching features. The level of retention achieved increases with

the strength of the hybrid reconstruction applied.

We performed the series of reconstructions and then measured the degree

of intensity suppression in the neighbouring unseeded regions and in target

branches of varying widths within the seeded regions. Fig. 4.6 shows the

variations in signal drop-off observed at two different levels of our hybrid re-

construction, along with standard reconstruction by dilation. In this way we

were able to demonstrate the enhanced level of reconstruction achieved using

large anisotropic structuring elements. Eventually, as the size is increased be-

yond the optimal, the signal intensity in neighbouring regions begins to pick up

until, in the extreme, the reconstruction approximates the original unfiltered

data, with only the highest intensity peaks in the data being reduced to the

level of the highest intensity sample points present in the original seed data.
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(a) Original (b) Geodesic (c) 38 Anisotropic (d) 54 Anisotropic

Fig. 4.6: Closeups from a volume dataset showing branch tips at various

levels of reconstruction demonstrating both fine and course branches: (a)
original unfiltered data, (b) 6-connected geodesic reconstruction by dilation,
(c) reconstruction using an anisotropic 38-neighbour structuring element,
(d) reconstruction using an anisotropic 54-neighbour structuring element.

On the top row in Fig. 4.6 a single branch of the biliary tree is visible, originat-

ing at the top of the image section, along with signal from the subject’s right

kidney in the lower right quadrant of the image section. All three reconstruc-

tions have successfully suppressed the signal from the kidney, but the degree

of preservation of the branch varies considerably, improving successively from

left to right in the three reconstructions shown. In the case of the 54-element

hybrid reconstruction, the duct is virtually unaltered from its unfiltered ver-

sion. On the bottom row we see a number of ducts intersecting the plane of

the image at various angles. Once again the degree of preservation improves

successively from left to right across the three reconstructions, illustrating the

expected operation of the hybrid reconstruction procedure.

In Fig. 4.7 we illustrate the relative suppression of unseeded and narrow branch

seeded features by examining the greylevel change at each pixel before and af-

ter filtering. We wish features other than the biliary tree to show up strongly

in the difference maps, indicating the greatest levels of suppression, while the

branches of the tree, we wish to be absent, indicating no change from the orig-

inal data. While unseeded regions are strongly suppressed in both cases, we

can see that the hybrid approach has caused almost no deterioration in the
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branches of the biliary tree, while in the case of the geodesic reconstructions

significant suppression is evident.

(a) (b) (c)

Fig. 4.7: Reconstruction difference images after geodesic and hybrid re-

construction respectively: (a) the original data, (b) original minus geodesic
reconstruction, (c) original minus hybrid reconstruction. Circles in (b) indi-
cate unwanted suppression of biliary tree ducts in the geodesic case, which
is not observed in the equivalent hybrid reconstruction difference images
(c), to the right.

In Fig. 4.8 we can, in addition, observe the enhanced texture retention prop-

erties of our hybrid reconstruction approach, where the second row of images

achieved using traditional reconstruction by dilation demonstrate excessive

smoothing and the introduction of sharp graduations within the reconstructed

tree, while the images on row three show superior preservation of the fine de-

tail from the original data (shown on the top row). This can be of particular

importance for the accurate interpretation of the final data by the radiologist.

We also observe the role that noise in the data plays in propagating the high

intensity signal across background valleys. Once the approach departs from

the geodesic scheme where a strict uphill intensity path is always retained

between any point and an original seed region, isolated high intensity noise

peaks in the background regions have the potential to piggyback the signal
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(a) Volume Study 1 (b) Volume Study 2

Fig. 4.8: Maximum intensity projections of two of the datasets from our

study, preformed on the original (top row), geodesic reconstructed (middle
row), and hybrid reconstructed (bottom row) data volumes.
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across the valleys like a series of stepping stones. This effect makes strong salt

and pepper noise particularly unfavourable in the application of our technique.

The nature of the noise distribution typical to our data makes the approach

more applicable in this data, as even with very strong dilations, the degree

of the unwanted propagation is kept to a manageable level. This is due to

the intensity and spatial spread present in the signal noise, which means that

the maintenance of a high intensity steppingstone path across valleys of any

significant width becomes extremely unlikely.

By extending the basic principles of reconstruction by dilation beyond the

geodesic case, we have presented a hybrid reconstruction technique specifically

designed to optimally reconstruct objects containing fine branching structures

in the source data, while still effectively attenuating the signal from neigh-

bouring unwanted high intensity structures. Through the application of these

techniques we have developed an effective and efficient image processing proce-

dure that yields superior reconstruction results as a precursor to both further

automated segmentation, classification, and analysis, and enhanced and sim-

plified manual review of the data by the radiologist.

4.3 Downhill Filter

A number of optimisations and algorithmic efficiencies have been detailed in

the literature for reconstruction by dilation and similar procedures in both

binary and greyscale morphology, including structuring element decomposi-

tion (Park and Yoo, 2001) and manipulation (Sivakumar et al., 2000, van

Droogenbroeck and Talbot, 1996), flat zones (Salembier and Serra, 1995), in-

terval coding (Ji et al., 1989), and the use of ordered pixel queues (Vincent and

Soille, 1991, van Vliet and Verwer, 1988, Vincent, 1993). These enhancements

notwithstanding, the procedure remains computationally expensive and highly

data dependant. We have developed an alternative approach to the problem

that achieves the same filtering effect in a single pass through the data and is

as such both fast and linear time in its execution.

Our novel and efficient downhill filter algorithm is an optimal implementa-

tion of the reconstruction by dilation procedure. Its development grew out of

our investigation into the topic, during which we assessed existing implemen-
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tations and enhancements presented in the literature. As such, the downhill

filter represents an elegant and efficient single pass equivalent to the more com-

putationally expensive algorithms for morphological greyscale reconstruction

by dilation that have been previously reported. In principle reconstruction

by dilation consists of the iterative application of the geodesic dilation opera-

tor, applied until stability. Our algorithm achieves this filtering effect through

a process of region growth by ordered aggregation of surface pixels onto an

expanding shell. In this section we present the new algorithm, along with a

review of the traditional reconstruction by dilation approaches, and assess the

relative computational performance of the different methodologies. Results are

presented on 2-D and 3-D, synthetic and real world data. We conclude this

section with a brief discussion of the extension of this computationally optimal

algorithmic pattern to a family of related image processing procedures. We

call this algorithmic pattern directed filtering.

4.3.1 Existing Algorithms

In order to both confirm the operation and gauge the performance of our

approach, we implemented the four algorithms described in Vincent (1993) for

the 2-D 8-connected and 3-D 6-connected cases of greyscale reconstruction by

dilation. The details of these four approaches can be found in that paper.

Brief outlines are given here for reference:

A Standard Technique: This algorithm follows the “iterate to comple-

tion” scheme outlined earlier in this chapter while describing the basic

procedure for reconstruction by dilation. Combined elementary dilation

and point-wise minimum operations are iterated until stability.

B Sequential Reconstruction Algorithm: Here again we iterate until

completion, but the number of iterations required is reduced significantly

by alternating raster order and anti-raster11 order scannings of the data,

and by allowing changes so far in the current iteration to be included in

the calculations as they are performed.

C Reconstruction Using a Queue of Pixels: In this case, a FIFO queue

is initialised with all the boundary pixels from the regional maxima in

11Starting from the end of the image data array, and working back to the beginning.
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the marker image. Then, pixels are removed, their neighbours examined,

changed, and added to the queue as required. Processing continues in

this fashion until the queue is empty.

D Fast Reconstruction Algorithm: This algorithm combines features

of the previous two. Its main core proceeds in the same fashion as al-

gorithm C, but it avoids the costly initialisation step of calculating re-

gional maxima. Instead it initialises the queue during a single pass of the

raster/anti-raster scheme of algorithm B, where the anti-raster phase is

modified to identify and record the necessary pixels in order to initialise

the FIFO queue.

As with the third and fourth algorithms above, the downhill filter operates on

a pixel queue. However, instead of a FIFO queue, a random access queue is

implemented in order to allow the processing of pixels in an optimal order,

thus guaranteeing that every pixel is addressed only once in the course of the

algorithm’s execution. This approach yields a filter that is extremely efficient,

and perhaps more importantly, is data insensitive in its execution time, de-

pending only on the size of the dataset being processed. This is in contrast to

the above four algorithms all of which are highly data dependant. Folded or

rolled up structures in the input image, for instance, seriously compromise the

execution speeds achieved by all four approaches so that no guarantees can be

given as to the processing time required in the general case. Our algorithm

exhibits no such level of variability in its execution speed.

The underlying principle behind the algorithm can be stated in the following

terms. Given that it is known which pixels have so far been finalised, it is

possible to finalise the next pixels thus. Find the highest valued finalised pixel

that has one or more non-finalised neighbours. Each neighbour may now be fi-

nalised to be the lesser of: its mask value and the value of the aforementioned

finalised pixel. This process is iterated until no non-finalised pixels remain.

Effectively this can be thought of as having a shell of pixels around the fi-

nalised regions that expands in a controlled fashion, resulting in the desired

reconstruction.

We present the development of the algorithm in two stages. In the first case

we restrict the nature of the marker image provided as input to the filter.

This simplifies the formulation of the algorithm and represents the form in
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which we originally developed it, reflecting the particular requirements of our

application in the reconstruction of the biliary tree in MRCP data. Our initial

approach is to strengthen the usual precondition by stating that each pixel in

the marker is either equal to the corresponding pixel in the mask or it is equal

to zero: Eq. 4.6.

∀p : D • ((J [p] = I[p]) ∨ (J [p] = 0)) (4.6)

In the general formulation of reconstruction by dilation the precondition is

presented in a weaker form (Eq. 4.7) so as to only insist that the marker image

is pixel-wise less than or equal to the mask image.

∀p : D • (J [p] 6 I[p]) (4.7)

Our strengthened form covers a very useful subset of the general reconstruction

problem where some seed regions are extracted directly from the mask image

in order to initialise the reconstruction, and everything else in the marker is

initialised to zero. Later we relax this precondition to its more general form

and extend our algorithm correspondingly, allowing the marker image pixels to

take intensity values less than or equal to the corresponding pixels in the mask.

This latter more general form is sometimes useful or necessary, for instance in

the calculation of the h-domes12 of an image (Vincent, 1993).

12The h-dome image Dh(I) of input image I is given by Dh(I) = I −RI(I − h). That is,
I minus the reconstruction by dilation of I − h, conditioned on I. Thus the scalar value h
governs the minimum height of the maximal regions which are isolated in the process.
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4.3.2 The Strengthened Form

In Algorithm 4.1 below, the reconstruction is determined directly in the marker

image J . Initially each pixel in J is either equal to the corresponding pixel in

I or it is equal to zero, (therefore by definition all non-zero pixels in J are at

their final value). Let m be the maximum value of the pixels in J . We note

that no pixel in the final image can take a value greater than m. We maintain

m lists. As a pixel is set to its final value it is placed in the list corresponding

to that value. An examination of the efficient handling of the lists and the

tracking of which pixels are finalised at any point is beyond the scope of this

discussion. The implementation of the algorithm is provided in Appendix B.

Examination of this code will illustrate our solution. For now we proceed in

general terms. Initialisation consists of placing each non-zero pixel in J into

its appropriate list. Following initialisation, processing proceeds starting with

list m and proceeding down towards list 1. While the current list is not empty,

the next element is removed and its neighbourhood is examined. For each

neighbour that has not already been finalised, J is set equal to the lesser of

the current list number and the value in I at this location, and the neighbour

is added to the corresponding list.

Algorithm 4.1: reconstruction by downhill filter (strengthened precondition):

• Find m, the maximum pixel value in image J

{m : N | m ∈ J ∧ ∀p : D • (m 1 J [p])}

• Place each non-zero pixel in J into its appropriate list

∀p : D • (J [p] 6= 0⇒ L[J [p]]← L[J [p]]⌢p)

• Process the m lists from high to low:

For n = m..1

While L[n] 6= ∅
p← head(L[n])

L[n]← tail(L[n])

For q ∈ NG(p)

If I[q] > 0 ∧ !finalised(J [q])

J [q]← min(n, I[q])

L[J [q]]← L[J [q]]⌢q
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4.3.3 Relaxing the Precondition

In Algorithm 4.2, with the weakened precondition on J it can no longer be

stated that all nonzero pixels in J are at their final value to start with. We still

initialise in the manner described above, but we must now cater for the fact

that we may need to remove pixels from one list (where they were initialised)

and place them onto another list (where they are finalised). As before, the

reconstruction is determined directly in the marker image J . Initially each

pixel in J is less than or equal to I. Let m be the maximum value of the pixels

in J and as before we maintain m lists. Initialisation consists of placing each

non-zero pixel in J into its appropriate list. Following initialisation, processing

proceeds starting with list m and proceeding down towards list 1. While the

current list is not empty the next element is removed and its neighbourhood

is examined. For each neighbour that has not already been finalised, J is set

equal to the lesser of the current list number and the value in I at this location,

and the neighbour is added to the corresponding list. If it was already in a list

it is also removed from that location.

Algorithm 4.2: reconstruction by downhill filter (standard precondition):

• Find m, the maximum pixel value in image J

{m : N | m ∈ J ∧ ∀p : D • (m 1 J [p])}

• Place each non-zero pixel in J into its appropriate list

∀p : D • (J [p] 6= 0⇒ L[J [p]]← L[J [p]]⌢p)

• Process the m lists from high to low:

For n = m..1

While L[n] 6= ∅
p← head(L[n])

L[n]← tail(L[n])

For q ∈ NG(p)

If J [q] < min(n, I[q])

If J [q] 6= 0

L[J [q]]← squash(L[J [q]]−⊲ {q})
J [q]← min(n, I[q])

L[J [q]]← L[J [q]]⌢q
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4.3.4 Algorithm Performance Tests

We implemented the five algorithms discussed and conducted a number of

tests using a wide range of image and volume datasets. A 2-D version of

each algorithm was written for tests conducted using the image data, and a

3-D version of each was prepared for use with the volumes. The first set of

implementations utilised the 2-D 8-connected neighbourhood, while the second

set used the 3-D 6-connected neighbourhood.

We also went on to develop a general purpose version of the downhill filter

that accepts an arbitrarily sized and shaped structuring element to allow for

maximum flexibility. As described earlier in this chapter, we conducted tests

with larger non-symmetrical neighbourhoods in order to examine the potential

for stepping over narrow regions of signal void in the images and volumes,

which might otherwise fracture the connected regions that we wish to isolate.

These subsequent experiments culminated in the development of the hybrid

reconstruction approach already described in Section 4.2.

Validation tests

In assessing the five algorithms, our first step was to perform a series of val-

idation tests to confirm that all five were both well-formed and correctly im-

plemented. We applied each function to a range of test images and volumes

and confirmed that all produced identical results pixel-for-pixel. Algorithm A,

which directly implements the definition of reconstruction by dilation using

iterated geodesic dilations, was taken as providing the baseline results for our

comparisons. The output generated by each of the other algorithms was com-

pared against that of algorithm A and we thus confirmed that all algorithms

performed correctly.

Fig. 4.9 shows before and after images for three of the datasets used in our

tests. Seeded regions are retained while other high intensity regions are at-

tenuated. In Fig. 4.9a the seed was placed at the outermost end of the spiral

arm in the top right hand sector of the image, and the four unseeded regions

(the border, the unmarked interlaced spiral, and two small regions at the cen-

tre of the image) can be seen to have been eliminated. In Fig. 4.9b the seed

was placed in the bright band half way across and a third of the way down
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the image, in the U-bend of the looped region that is the target object. The

three unconnected horizontal bars are thus removed in the filtered result. In

Fig. 4.9c the seed was placed in the broad descending trunk of the tree struc-

ture we wished to isolate and again the unconnected high intensity regions in

the image are eliminated as required.

(a) (b) (c)

Fig. 4.9: Filtering results on three test images demonstrating the elimina-
tion of unseeded regions of high intensity signal in the images while retaining
signal connected to the original markers. Arrows in the reconstructed im-
ages indicate the locations of the seed points used in these reconstructions.

Looking back to the top two rows of Fig. 4.8 we can see two volumetric datasets

rendered in maximum intensity projection, again each one before and after

filtering. As the data is 3-D, some regions of high intensity signal that appear

in the renderings to be in contact with the seeded region but that are in fact in

a different plane can be seen to have been eliminated. This serves to illustrate

how the filter can be used to clear the field around the objects of interest in

a volume allowing subsequent examination to better focus on the true regions

of interest.
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Execution timing tests

Once the basic implementation validation procedures had been completed, we

moved on to perform execution timing tests in order to characterise the rel-

ative performance of the five approaches on a range of data. Tables 4.2 and

4.3 document the results of these tests for five image and five volume datasets

respectively. The methods are labelled alphabetically in correspondence with

the labelling given in Section 4.3.1, with the downhill filter being added to

the classification as method E. For comparison purposes we note that all tests

were performed on a 1.8GHz Pentium 4 with 512MB of RAM.

Before Spiral Loop Study 1 MIP Study 2 MIP Blank

Method

A 47898.0 (7191) 2884.3 (409) 1892.1 (270) 1735.0 (247) 700.0 (130)

B 59.4 (17) 29.7 (8) 37.5 (9) 28.6 (7) 6.2 (2)

C 175.0 42.2 40.6 37.5 14.0

D 139.1 43.5 28.2 21.8 4.6

E 10.9 9.4 9.3 9.4 7.8

After

Table 4.2: Execution timings for the five algorithms tested, as applied
to five test images. All images are of dimensions 256 × 256. Times are in
milliseconds. Bracketed numbers indicate iterations required in methods A
and B. Methods C, D, and E are queue based rather than scan based and
as such do not yield an iteration count.

In Table 4.2 we present execution times in milliseconds for each of the five

algorithms as applied to each of five test images. As expected the standard

technique, method A demonstrates extremely poor performance relative to

all the other methods. Method E, the downhill filter demonstrates a clear

superiority in execution times across a range of data, with only the blank

image yielding better times in any of the other algorithms due to the higher

initialisation overheads involved in method E. In all cases the image size is

256× 256 pixels, and the data is eight bit.
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Note also that the times for method E vary by only a couple of milliseconds

across the entire range of test images (a variation of less than 40%), while

the most consistent of the rest (method B) shows variations of close to a

factor of ten in its execution times, and the largest intra-method variation

approaches a 70 times difference between best and worst. This reflects the

guaranteed single pass nature of the downhill filter in contrast to the effectively

unbounded nature of the other approaches. We attribute the small variations

that do exist in the execution times for method E to varying caching-related

overheads incurred on the hardware platform employed, based on the differing

order in which pixels are addressed throughout the image from one dataset to

the next.

The first test image consists primarily of two interlaced spirals and was in-

tended most especially to stress methods A and B, which both address the

image pixels in scan order and as such are particularly prone to poor perfor-

mance when faced with any kind of wrapped-up structure in the input image.

Methods C and D also fare particularly badly in this case due to the indis-

criminate way in which pixels are added to the FIFO queue for processing,

which can result in pixels being processed several times before their final value

is reached. Method E, by contrast, demonstrates little variation in its execu-

tion time for this image as compared with the other test images illustrating

its stability across all data configurations.

The next three images, the synthetic loop and the two maximum intensity pro-

jections, represent data in a more usual range of image structure, illustrating

the typical performance to be expected of each of the tested methods. Once

again method E performs most efficiently, while method A, as expected, fails

to approach the performance of the other algorithms.

The final image is a constant mid-grey and represents the most trivial form of

input. With a single pixel at the centre of the image used as a marker, method

A still requires as many iterations as the most distant pixel in the image in

order to reach completion. Methods B, C, and D all demonstrate their ability

to take advantage of the simple configuration and all achieve low execution

times, with B and D actually outperforming E for the first time. Method E

itself continues to perform well, with its single pass execution path once more

in evidence, maintaining a consistent performance.
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Table 4.3 shows results, recorded in seconds, for five of the test volumes used in

the study. Here the variations are even more pronounced than with the image

data, as once again timings on the standard technique, method A, illustrate

how slow this method can be, while the downhill filter again achieves the best

execution times recorded, across a broad range of datasets.

Method 3-D Spiral 3-D Roll Study 1 Study 2 Blank

A 104868.9 (255003) 6051.1 (13643) 403.0 (742) 227.5 (428) 137.0 (370)

B 189.0 (542) 7.5 (20) 8.9 (17) 12.5 (24) 0.7 (2)

C 58.4 53.7 23.6 21.5 2.6

D 54.2 54.1 14.7 12.6 0.5

E 2.5 1.9 3.4 3.3 1.2

Table 4.3: Execution timings for the five algorithms tested, as applied to
five test volumes. All volumes are of dimensions 298× 298× 60. Times are
in seconds. Bracketed numbers indicate iterations required in methods A
and B. Methods C, D, and E are queue-based rather than scan-based and
as such do not yield an iteration count.

Again the five datasets chosen for the study cover a number of levels of com-

plexity. All volumes were of the same size (298 × 298 × 60 voxels), and all

consisted of eight bit data. The first two were synthetic volumes consisting of

interlaced spirals of different configurations designed to stress the algorithms.

Method A takes close to 30 hours, and over a quarter of a million iterations to

fully process the first of these datasets. Method E does the same job in just

two and a half seconds.

Volumes three and four were the same volumes whose maximum intensity

projections were used in the image tests, and were included to represent data

within the usual expected input range for the filters. As before, a blank,

constant mid-grey dataset was used to test the most trivial case of input data,

resulting again in methods B and D outperforming the downhill filter for the

only time.

We have thus shown that the downhill filter offers an efficient alternative to

existing reconstruction by dilation approaches to region isolation. It exhibits

a number of clear advantages over the other approaches to reconstruction by

dilation examined in this study. The most important of these advantages may

be summarised as follows:
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1 Short execution time: The downhill filter proved to be faster than

any of the other four algorithms tested in all but the most trivial of

cases (reconstruction on a blank image), where the algorithmic overheads

dominate the execution time.

2 Consistent execution time: The downhill filter is insensitive to ex-

tremes of structure in the input data. Unlike the other algorithms tested,

execution times are not dependant on the nature of the data processed.

This makes the downhill filters behaviour predictable as well as fast.

3 Simple formulation: The concise nature of the downhill filtering al-

gorithm means that it is implemented in fewer lines of code than are

required for the other algorithms discussed. The implementation given

in Appendix B occupies just 40 lines of C code.

This demonstrates the downhill filter’s excellent performance, and in that con-

text shows reconstruction by dilation to be an attractive and highly usable

filtering tool ideal for many image processing tasks, and suitable for use in

time-sensitive, real-time applications.

4.3.5 Directed Filtering

The algorithmic pattern first implemented in the form of the downhill filter

can be generalised to form an optimal solution to a class of algorithms that

share a specific set of characteristics. We call this generalised algorithmic

pattern directed filtering. In concrete terms the following is required:– given

the final values for some subset of the sample points in a dataset, it is always

possible to determine the final values for at least some of the as yet unfinalised

“neighbours” to these sample points. If this is the case, then so long as the

neighbourhood used in defining a sample point’s neighbours is exhaustive in

its coverage (see Fig. 4.10), and some starting set of finalised sample points

can be determined in order to initialise the process, the pattern of directed

filtering is applicable.

Image processing techniques that are suitable for the application of this algo-

rithmic pattern include reconstruction by dilation (as investigated extensively

above), the grassfire distance transform, the watershed segmentation algorithm

and an object skeletonisation procedure. The basic algorithm consists of an
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initialisation phase followed by a single, ordered pass through the data, during

which each sample point is finalised.

(a) Exhaustive neighbourhoods (b) Non-exhaustive neighbourhoods

Fig. 4.10: Exhaustive and non-exhaustive neighbourhoods. The black dot
indicates the structuring element’s origin in each case. Using the neighbour-
hoods illustrated in (a) any pixel can be arrived at from any other. Thus
the whole image can be covered starting with any initial subset of pixels.
With the neighbourhoods in (b) full coverage can not be guaranteed.

The term directed filtering refers to the ordered fashion in which sample points

are addressed as the algorithm proceeds through this main phase of processing.

Processing commences at the highest (or lowest) value and proceeds down (or

up) until the farther intensity extreme in the data has been reached. In effect,

we utilise a random access queue, but the important feature is the controlled

manner in which we add new elements to the queue. This is what achieves

the directed (downhill or uphill) nature of the filter’s operation and guarantees

completion in a single pass through the data, as explained in Section 4.3.2.

Thus as we have already seen, in the case of reconstruction by dilation the

marker image dictates the highest value that can appear in the final output.

From here we proceed down through successive intensity levels finalising pix-

els to each level as we go (see Algorithm 4.1). Similarly in the case of the

grassfire distance transform for instance, we start with a binary image and

we can immediately determine that all figure (or foreground) pixels with a

ground (background) neighbour must take a distance value of one. This is

the initialisation phase. Then in the processing phase we continue, increasing

the distance incrementally and finalising at each stage those unfinalised pixels

contained in the neighbourhood of the previously finalised pixels. The result

is a distance map as illustrated in Fig. 4.11, indicating the distance for each

figure pixel to the nearest ground pixel in the image. If a 4-neighbourhood is

used, then a city block distance map is achieved, and if an 8-neighbourhood is

used, then a chessboard distance map is achieved (see Table 4.4).
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Chessboard distance = Max(dx, dy)

Euclidean distance =
√

dx2 + dy2

City block distance = dx + dy

Table 4.4: Given two points A and B such that ~AB = [dx, dy]T , then we
define the three standard distance metrics, Chessboard, Euclidean, and City
block, such that the Chessboard and City block distances provide lower and
upper bounds respectively for the true Euclidean distance from A to B.

(a) Original binary image (b) Grassfire distance map

Fig. 4.11: The grassfire transform yields a distance map indicating the
chessboard distance from each pixels to its nearest background neighbour.
The images above show a segmentation taken from a coronal MRI brain
scan and the greylevels in the distance map have been inverted for greater
clarity.

An implementation for the grassfire distance transform, which was used to

generate the results shown in Fig. 4.11, is included in the code section of

Appendix B. This provides a second concrete implementation (along with the

implementation for reconstruction by dilation, also included in Appendix B)

for the algorithmic pattern of directed filtering. As can be seen in the code,

this implementation examines the 8-neighbourhood of each pixel and as such

calculates a chessboard distance map, as described above. The implementation

provides a compact and efficient rendering of the transform and illustrates

further the general form taken by the directed filtering algorithmic pattern.
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Implementations

In this chapter we provide an overview of the implementation framework within

which the preprocessing techniques described in the main body of this thesis

have been applied. We present an outline of the complete MRCP processing

pipeline developed during the course of this work, in order to provide a well

formed context from which to view the application of the specific algorithms

and techniques that have been examined in detail in the preceding chapters.

To this end we give a step-by-step description of the processing applied to an

MRCP dataset from initial DICOM input to final processed results as pre-

sented for review to the end user. We highlight the place and importance

within this framework of the main processing steps whose investigation have

formed the body of this thesis. We also highlight where appropriate additional

areas of application that we have investigated in the course of our research,

applying our tools and techniques to the processing of data from sources other

than MRCP, in order to illustrate the wider applicability of these data pro-

cessing approaches. Beyond our main focus of pre-segmentation filtering for

MRCP data, we have already mentioned in previous chapters the application

of these techniques to the processing of whole body MRI data. In addition

to this, the work on adaptive smoothing has been applied to a wide range

of data types, taken from both medical and non-medical sources, where it

has demonstrated impressive levels of performance (Lynch et al., 2004, Ghita

et al., 2005a). While a full presentation of our work conducted in the analysis

of whole body MRI for the measurement and localisation of body fat tissue

is given in Appendix A, here we simply illustrate the application to WB-MRI

data, of the specific techniques that form our main focus in this thesis.
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5.1 Processing Framework

We have examined a number of key elements required in order to implement an

effective data preprocessing scheme so as to address the particular difficulties

encountered in the analysis of MRCP data, as a precursor to the application of

computer assisted diagnosis techniques. In order to achieve our goal, we have

implemented a data processing pipeline that takes raw MRCP data and gen-

erates a filtered dataset suitable for further analysis and visualisation. This

sequence of preprocessing steps is specifically designed to overcome the dif-

ficulties associated with the particular data characteristics demonstrated by

MRCP data.

Volumetric reconstruction

The data that initially comes from the MRI scanner is presented as a large col-

lection of individual data files saved in the DICOM format. Each file contains

the data for a single slice and typically all the files from several studies13, each

normally composed of a number of multi-slice series are saved into a single

location. Thus the first task is to sort through the files and recompose all the

studies and series present. To this end we must examine the DICOM header

information stored in each file so as to be able to determine how to group the

individual slices into volumes. The DICOM fields indicated in Table 5.1 are

read from each file and used to correctly reconstitute all the volumes present.

A database is thus built up that contains a list of all the studies available, and

within each study, the individual series that were acquired. We are then in

a position to load, review, and process any series from the DICOM database

that has been constructed.

13A study refers to all the MR data acquired during one visit by a subject to the scanner.
A study consists of one or more series. A series, in turn, consists of one or more individual
MR images, acquired in one go. A series can consist of a single image (e.g. a RARE series), a
sequence of images forming a volume (e.g. a HASTE or TRUFI series), or a set of individual
images (e.g. a scout series, typically of three axial and three coronal views, widely spaced,
and used to guide the acquisition of further series).
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Field Name Field Description

StudyUID Identifier string unique to this study

SeriesUID Identifier string unique to this series

Columns The slice width in pixels

Rows The slice height in pixels

InstanceNumber The slice number within the volume

PixelSpacing[0–1] Pixel x and y dimension in millimetres for this slice

SliceThickness Thickness of the slice in millimetres

ImageOrientationPatient[0–5] Two 3-D vectors parallel to slice rows and columns

ImagePositionPatient[0–2] The x, y, z coordinates of series origin in global space

Table 5.1: DICOM header fields used by our reconstruction routines.

Initially we examine the raw data

-1 0 1 2

y1

y2

y3

y4

y

x

Fig. 5.1: The cubic interpolation model fits

a cubic curve (y = ax3+bx2+cx+d) through
four consecutive sample points in the data
and thus allows an interpolated value y to
be calculated for any given x.

volumes and identify those volumes

(typically the coronal HASTE data

series present) that we wish to pro-

cess further. The data as collected

is invariably non-isometric in the

inter-slice direction. At this stage

it can be resampled onto an iso-

metric grid for easier review and in-

terpretation, typically using a stan-

dard tri-cubic interpolation scheme

(Fig. 5.1), which locally fits a cu-

bic interpolation model at each po-

sition in order to perform the data resampling required. The results of such

a data interpolation process are illustrated in Fig. 5.2, which shows an axial

view through a coronal HASTE dataset before and after interpolation.

While such interpolation procedures are useful for visualisation purposes, their

application will usually be left until after any other processing steps have been

performed. While such processing will often therefore have to take account of

the non-isometric nature of the data, this complication is outweighed by the

smaller size of the input dataset and the consequent faster execution times

achieved using the un-interpolated data. Since any interpolation scheme can

only estimate intensity values for the missing data based on the original, a

well designed non-isometric algorithm applied to the original data will always

perform at least as well as an equivalent isometric algorithm operating on

interpolated data.
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Intensity non-uniformity artifact

(a) Un-interpolated

HD

CBD

GB

(b) Interpolated

Fig. 5.2: The effect of tri-cubic interpolation in review data. The same
axial view through a coronally acquired fifteen slice HASTE MRCP dataset
is shown before (a), and after (b), the data has been interpolated in order
to achieve iso-metric voxels. The common bile duct (CBD), gall bladder
(GB), and hepatic duct (HD) are all depicted in axial cross-section. Notice
the intensity non-uniformity effect visible at the top of both views.

Intensity non-uniformity correction

The first phase of data preprocessing involves the correction of greyscale inho-

mogeneities in the data. As discussed in Chapter 2, coronal HASTE MRCP

data often demonstrates an inter-slice greyscale non-uniformity effect. This

effect can be clearly observed in Fig. 5.2, which depicts an axial cross-section

through the fifteen coronal slices in a typical coronal HASTE dataset. Elevated

intensity levels, particularly in the region of the liver tissue, can be seen in the

top several rows of these cross-sectional views, corresponding to an intensity

non-uniformity effect across the first several slices of the coronal data, exactly

as described in Chapter 2. As previously discussed, this step is also required

in the processing of WB-MRI data. The effect is more clearly illustrated in

this type of data as demonstrated in Fig. 5.3 where uncorrected and corrected

data is shown for comparison.

Thus, after the initial reconstruction phase, the next step in the processing

pipeline is to apply the greylevel homogenisation procedure of Chapter 2,

matching the data histograms between successive slices in the data volume.

Due to the characteristics of the MRI acquisition protocols utilised in the

collection of the MRCP data, intensity non-uniformities appear and need to

be compensated for. Thus we developed this histogram-based intensity non-

uniformity correction scheme, in order to minimise the effect of these greyscale
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(a) (b) (c)

Fig. 5.3: Intensity non-uniformity correction in multi-section whole body

MRI data. The original coronal sections (b) may be reconstructed into the
final whole body dataset either with (c) or without (a) the application of
an intensity non-uniformity correction procedure.

inhomogeneities and thus ensure the best possible intra-regional homogeneity

across the full extents of each dataset.

The principal novelties that distinguish our approach to this inter-slice and

inter-volume intensity non-uniformity correction task lie in the robust mode

detection procedure and the histogram preserving nature of the sample redis-

tribution phase. We designed the robust global mode detection approach in

order to provide superior noise immunity in the process of locating the two

most significant modes in a noisy multi-modal data histogram, resulting in

the stable and consistent operation of our correction procedure. Then, by

avoiding the introduction of extraneous new maxima and minima into the

data histogram during the process of sample redistribution, we assist in the

operation of subsequent histogram-based analysis operations.

Adaptive smoothing

The intensity non-uniformity correction phase of the processing pipeline is fol-

lowed by a gradient-weighted adaptive Gaussian smoothing step designed to

reduce noise, while at the same time preserving semantically important bound-

aries in the data. In this phase of the process we focus attention on the goal of

achieving a significant reduction in the considerable noise present in the MRCP

data, and to this end we developed a 3-D, gradient-weighted, adaptive filtering

scheme based on the Gaussian smoothing model. Fig. 5.4 demonstrates the

operation of this smoothing filter on one slice from an axial MRCP dataset.
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This approach is designed to operate in non-isometric data, and attenuates

signal noise, while at the same time preserving well the semantically impor-

tant discontinuities present in the data.

Fig. 5.4: An image from a thirteen slice axial HASTE dataset, unfiltered
and after twenty iterations of the smoothing filter have been applied.

(a) Whole body (b) Heart (c) Brain

Fig. 5.5: Adaptive smoothing applied to three types of MRI data. The
filter is easily tuned to the particular characteristics of the data being
smoothed, taking into account the levels of noise present and the boundary
strengths observed at the interfaces between important regions in the data.

In Fig. 5.5 we illustrate the operation of this filter on whole body, heart, and

brain MRI data respectively, highlighting the wider application of the tech-

nique. The versatile nature of the oriented, scaled and shaped ellipsoid mask

used in this smoothing filter provides a flexible smoothing operator that can

achieve the desired levels of regional smoothing and boundary preservation
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under a wide range of data conditions. The two tuning parameters, λ and

µ provide a simple, comprehensive, and intuitive method of control, with λ

governing the overall smoothing strength while µ controls the degree of direc-

tionality to be applied, from edge suppressing through isotropic and on to edge

preserving at the other extreme.

Thus the gradient-weighted adaptive Gaussian smoothing filter provides a pow-

erful de-noising operator based on an elegant and easily tuned anisotropic el-

lipsoid mask. Its operation is intuitive and offers a high degree of flexibility

and performance within a readily visualised and applied filtering framework.

Greyscale reconstruction

Next a targeted signal suppression technique is applied in order to remove

extraneous areas of high intensity signal from surrounding anatomical regions

(Fig. 5.6), leading to a considerably cleared field of view in the data volume.

Our hybrid reconstruction approach applies a non-geodesic morphological re-

construction procedure to the data in order to suppress the signal originating

from neighbouring structures in the scanned volume, while at the same time

preserving the signal due to the finely branching tree structure that we wish

to segment.

Fig. 5.6: Maximum intensity projections of one of the datasets from our
study, preformed on the original, geodesic reconstructed, and hybrid recon-
structed data volumes.

This goal of retaining the narrow branch features during the morphological

processing is addressed by our non-geodesic hybrid reconstruction approach,

which was developed as a generalisation of the traditional reconstruction by

dilation procedure. The geodesic growth properties that define reconstruction
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by dilation are relaxed in order to allow the degree of greylevel connectivity

required for a particular reconstruction task to be specified during the recon-

struction process. As a result we can avoid the signal drop-off in long narrow

features, which is a characteristic feature of the standard approach to morpho-

logical greyscale reconstruction.

Again we found useful wider application of these techniques for the morpho-

logical reconstruction of seeded regions in MRI data. In Fig. 5.7 a view from

an whole body MRI dataset is once again given, providing an illustration of

the application of this procedure to that class of MRI data. In this case the

primary goal is to suppress the signal originating from the region of the liver,

while preserving the widespread and in places weakly-connected body fat sig-

nal regions. By seeding the process with the highest intensity portions of the

body fat signal, which can be arrived at using a simple threshold, we then

preserve connected lower intensity portions of body fat signal, while effectively

suppressing the disconnected liver region, whose highest intensities overlap sig-

nificantly with the lowest intensities observed in the widely distributed body

fat regions. In this way we achieve an effective separation of the two classes of

tissue within the whole body dataset.

Liver tissue

Fat tissue

(a) Original (b) Reconstructed

Fig. 5.7: Morphological reconstruction as applied to whole body MRI data
so as to suppress signal from the region of the liver while preserving body fat
signal. Notice the fat region to the right side of the image, at an intensity
level very close to the liver tissue in the original data. After filtering the
distinction between the two regions is much clearer.
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A similar observation has also been made in relation to the signal observed

within the brain regions in these WB-MRI datasets, which once again demon-

strate a range of intensities that overlap with those observed in the fat regions

that are the target of our processing and analysis.

Biliary tree isolation

The data preprocessing techniques described above have been developed and

tested using a large database of MRCP studies covering a wide range of

both well-visualised and poorly-visualised pancreato-biliary tracts. The three

datasets shown in Fig. 5.8 illustrate coronal HASTE volumes in which the

pancreato-biliary system is generally well visualised. The pancreatic duct is

only clearly visible in the middle dataset, while the gall bladder is only in

evidence in the top volume, but the biliary tree is exceptionally well depicted

in all three. Such missing features often exist due to a lack of fluids in the

systems, as the protocols on which MRCP studies are based are designed to

highlight stationary fluids in the scanned volume. The degree of visualisation

of the finer branches in the tree is extremely variable, the three examples here

all show good visualisation.

By contrast, in the case of the two datasets illustrated in Fig. 5.9, the pancreato-

biliary systems are not much in evidence at all, and what little is visible is all

but obscured by the gastrointestinal fluid signal present in both datasets. In

the top volume the common bile duct and common hepatic duct are visible.

But the hepatic duct disappears above the initial bifurcation. The head of

the pancreatic duct is also faintly visible where it approaches the common bile

duct at the ampulla of Vater. In the case of the bottom dataset, slightly more

of the tree is visible (although the pancreatic duct is not in evidence). The

strong proximal signal due to gastrointestinal fluid has, however, presented an

additional difficulty, and as can be seen in the surface rendered segmentation

results on the right, it has proven impossible to successfully separate the sig-

nal from these two sources around the body of the common bile duct, lending

extra difficulty to the task of assessing the condition of the common bile duct

in this case.
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Fig. 5.8: MIP renderings and the corresponding surface rendered water-
shed segmentations in three datasets with well delineated biliary trees.

115



Chapter 5 – Implementations

Fig. 5.9: MIP renderings and the corresponding surface rendered water-
shed segmentations of two datasets with poorly delineated biliary trees.
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The surface renderings on the right in Figs. 5.8 and 5.9 were generated by first

segmenting the data using a marker-based watershed segmentation procedure

and then applying an efficient surface extraction algorithm developed from the

traditional marching cubes approach. This technique generates a consistent,

closed, and oriented triangle mesh (Fig. 5.10) suitable for fast, interactive ex-

amination using parallel and perspective projective rendering techniques.

(a) Wireframe mesh (b) Phong shaded surface

Fig. 5.10: Closeup detail showing a portion of a triangulated surface, as

a wireframe mesh with back-face culling (a), and surface rendering using a
Phong shading model (b).

Segmented data review and analysis

Once final processing and isolation steps have been performed, tools such as

those illustrated in Appendix B can be used in order to visualise and interro-

gate the data further. An orthogonal sections viewer allows the user to browse

the data in the axial, coronal, and sagittal planes, and to identify correspond-

ing locations in these and the surface rendered image views in the various views

provided by the tool. This allows for the comparison of different viewpoints

onto the same data, as for instance illustrated in Fig. 5.11, where a common

bile duct blocked with numerous stones of differing sizes in shown, first in a

2-D coronal slice, and then in a 3-D surface-rendered view, where voids left

in the bile signal indicate clearly the positions of the multiple stones that are

lodged in the duct. Fig. 5.12 shows the same reverse view of the dataset, this
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time in maximum intensity projection. The stones in the common bile duct

result in significant shadows in this type of rendering, but it is more difficult

to visualise clearly what is causing the obvious shadows within the common

bile duct in this type of MIP-rendered view.

(a) (b) (c)

Fig. 5.11: Stones in the common bile duct (circled in (a)), as demonstrated

in three dimensions, in posterior surface rendered view, (b) and (c).

Fig. 5.12: Stones in the common bile duct are less well visualised and
delineated using a maximum intensity projection rendering scheme. Their
presence is still well indicated in this quite extreme case, but in general MIP
provides a poor approach for visualising such features.

Interactive feedback can also provide further details to the user as they select

regions within the data. In this way the maximum of useful information can

be extracted from the acquired data. Volume visualisation tools provide the

user with a versatile volume and surface rendering interface to allow for the

generation of arbitrary 3-D rendered views from any location and at any angle
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situated either outside of or within the segmented tree structure. This pro-

vides for the possibility of generating external and virtual endoscopic views,

and simulated fly-over and fly-through image sequences, allowing the operator

to gain a better appreciation of the condition of the various ducts under exam-

ination. In this way a comprehensive set of computer assisted diagnosis (CAD)

tools can be developed, based on the enhanced data provided through this set

of data preprocessing procedures, leading to an improved level of utilisation of

the basic information furnished by an MRCP examination.
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Conclusion

In this chapter we provide a high-level summary of the research work conducted

to date and documented in the rest of this thesis, and an overview of the results

that have been achieved. We present a discussion of the progress made and

the challenges that remain outstanding in the overall task of developing a

robust and effective computer assisted diagnosis (CAD) system for the rapid

and comprehensive assessment of the pancreato-biliary system through the

assistive review and analysis of MRCP data.

Finally we include a complete list of the publications stemming from this work,

including journal, conference, and non-peer reviewed material. All of these

publications, along with supporting materials can be viewed in pdf format at

www.eeng.dcu.ie/˜ robinsok.

6.1 Summary

In this thesis we have examined the design, development, characterisation, and

testing of novel and efficient pre-segmentation filtering procedures designed to

achieve increased robustness and precision in the subsequent segmentation

and analysis of the biliary tree from MRCP data. Our initial analysis of the

MRCP data with which we would be working, identified the key characteristics

of this data that would present difficulties in the processing of such MRCP

volumes. This examination revealed MRCP to consist of cluttered and noisy,

low resolution, non-isometric volume data, often with significant intensity non-
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uniformities. We noted the biliary tree to be a fine branching structure that

demonstrates extreme variability in the level of its visualisation within the

data. These observations resulted in the development of the data preprocessing

approach presented in this thesis.

Based on these observations we have designed and developed a focused set of

image preprocessing algorithms, so as to facilitate the subsequent operation of

non-complex segmentation and computer assisted diagnosis (CAD) procedures.

Most notable in this regard are a number of techniques specifically designed

to address the key elements of this image processing task, relating to greyscale

inhomogeneity, noise, resolution, and signal clutter. The most important of

these techniques consist of the following elements.

Firstly a new histogram-preserving approach to inter-image intensity non-

uniformity correction addresses the observed lack of greyscale homogeneity

in typical HASTE MRCP data without compromising the data histogram of

the resulting, intensity corrected MRCP volumes. This improvement in data

uniformity results in superior performance of subsequent region classification

and analysis procedures.

Next we have provided a highly versatile adaptive smoothing filter imple-

mented as an oriented, scaled and shaped ellipsoid filter mask. This image

de-noising filter performs well when compared against similar techniques, and

offers a simple and flexible framework within which is implemented a powerful

and comprehensive adaptive data smoothing tool.

In addressing the problems encountered due to the widespread high intensity

clutter in the data, primarily due to signal from gastrointestinal fluids and

often extremely proximal to the signal from the pancreato-biliary system, an

efficient new algorithm for morphological reconstruction by dilation called the

downhill filter, and associated with this, a novel approach to the reconstruction

of fine branching structures in noisy volume data, were developed.

Through this combination of flexible and efficient preprocessing algorithms, an

effective route towards robust MRCP segmentation and analysis, and routine

CAD in the assessment of the biliary tree from MRCP has been developed.

In addition to these major elements, we have also highlighted the extensive

development of processing and visualisation tools and utilities, which has ac-
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companied this work, and the broad range of additional application areas that

have benefited from the processing techniques that we have developed, and

that have in turn assisted in testing and validating the approaches and the

procedures presented throughout this thesis.

6.2 Discussion and Further Work

We have presented in this thesis a data preprocessing approach that is designed

to prepare MRCP examinations for the subsequent application of analysis,

segmentation, and computer assisted diagnosis procedures. By addressing a

number of important issues encountered due to the undesirable features demon-

strated in the data produced by current MRCP protocols we have provided a

set of tools that enhance the ease of use and the level of usefulness of MRCP

for the assessment of the pancreato-biliary system.

In order to facilitate the application of CAD techniques in MRCP data, we

have aimed to reduce noise and interfering signal regions in the data, and

to increase the overall greyscale homogeneity across the slices of the MRCP

volumes. These objectives address the difficulties that traditional CAD pro-

cedures encounter in the kind of noisy and low resolution data that MRCP

provides. By cleaning and correcting the data in this way, we allow traditional

segmentation, classification, and analysis procedures to operate more robustly

in the difficult environment presented by MRCP. Only when such standard

CAD tools can be applied with confidence, will this kind of data be routinely

assessed with the aid of image processing techniques.

The next phase of the work required is therefore the adaption of existing CAD

approaches to the specific tasks and challenges presented by MRCP. Colon

CAD routines, for instance, typically address such tasks as the search for

polyps protruding from the colon wall. However, the high resolution that is

achieved in current virtual colonoscopy procedures means that such approaches

need significant redesign if they are to be applied to the identification of gall

stones in MRCP for instance, where the level of detail resolved in the scanned

data is far lower.

The typical role envisioned for CAD techniques in the assessment of MRCP

data is quite different to those currently being pursued in the more mature field
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of colon oriented CAD research. The much smaller volumes of data generated

in MRCP examinations means that the radiologist’s main concern is not so

much in the thorough coverage of all the acquired data, as it is in the case of

CTC, where datasets can run to hundreds of slices, but rather in the enhance-

ment of, and superior visualisation of noisy, and poorly visualised interesting

features present within the scanned biliary tree.

In this context it is clear why the maximum levels of data cleaning and ho-

mogenisation possible are required in order to make progress in MRCP CAD

applications. As such the work presented in this thesis represents an important

and significant step along the way towards the goal of effective, routine biliary

tree assessment from MRCP.

6.3 Publications Arising

The following list of publications stems directly from the work conducted dur-

ing this project. All published papers are available for download as pdf docu-

ments at: www.eeng.dcu.ie/˜ robinsok, along with additional code and support-

ing materials where appropriate. Publications are presented in three groupings

comprising journal, conference, and non-peer-reviewed material. Within each

group, citations appear in ascending chronological order.

Peer Reviewed Journal Level Publications

Efficient morphological reconstruction: A downhill filter K Robinson,

PF Whelan. Pattern Recognition Letters 25(15), 1759–1767, 2004.

MRI diffusion-based filtering: A note on performance characteri-

sation O Ghita, K Robinson, M Lynch, PF Whelan. Computerized Medical

Imaging and Graphics 29(4), 267–277, 2005.

Rapid automated measurement of body fat distribution from whole

body mri D Brennan, PF Whelan, K Robinson, O Ghita, R Sadleir, J

O’Brien, S Eustace. American Journal of Roentgenology 185(2), 418–423,

2005.
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Automatic seed initialisation for the expectation-maximization al-

gorithm and its application in medical imaging M Lynch, D Ilea, K

Robinson, O Ghita, PF Whelan. Electronic Letters on Computer Vision and

Image Analysis, Under review.

Peer Reviewed Conference Level Publications

Segmentation of the biliary tree in mrcp data K Robinson, PF Whelan,

J Stack. In Proc. Irish Machine Vision and Image Processing Conference,

Pages: 192-200, Galway, Ireland, 2002.

Non-linear diffusion filtering for the enhancement of mrcp data K

Robinson, PF Whelan, J Stack. In Proc. IPEM Volumetric Analysis of MR

Images, Pages: 16-17, London, UK, 2002.

Identification of body fat tissues in mri data D Ilea, O Ghita, K Robin-

son, R Sadleir, M Lynch, D Brennan, PF Whelan. In Proc. Optimization of

Electrical and Electronic Equipment, Pages: 227-232, Brasov, Romania, 2004.

Volumetric reconstruction: Matching and merging in dicom data K

Robinson, O Ghita, PF Whelan. In Proc. Computer Assisted Radiology and

Surgery, Page 1236, Chicago, USA, 2004.

Narrow branch preservation in morphological reconstruction K Robin-

son, PF Whelan. In Proc. Irish Machine Vision and Image Processing Con-

ference, Pages: 42-49, Dublin, Ireland, 2004.

A performance characterisation in advanced data smoothing tech-

niques M Lynch, K Robinson, O Ghita, PF Whelan. In Proc. Irish Machine

Vision and Image Processing Conference, Pages: 123-128, Dublin, Ireland,

2004.

Measurement and localisation of body fat in whole body mri K Robin-

son, PF Whelan, O Ghita, D Brennan. In 3rd Annual IEI Biomedical Engi-

neering Research Award, Dublin, Ireland, 2005 — Shortlisted paper.
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A 3d cad tool for body fat identification D Ilea, O Ghita, K Robinson,

M Lynch, PF Whelan. In Proc. European Congress of Radiology, Vienna,

Austria, 2005.

Intensity non-uniformity correction in multi-section wb-mri K Robin-

son, O Ghita, PF Whelan. In Proc. SPIE OPTO-Ireland, Dublin, Ireland,

2005.

Analysis of the pancreato-biliary system from mrcp K Robinson, PF

Whelan. In Proc. 18th IEEE International Symposium on Computer-Based

Medical Systems, Dublin, Ireland, 2005 — SFI Best Student Paper Award.

Invited and Non Peer Reviewed Publications

Computer aided diagnosis of medical image data in gastrointestinal

procedures PF Whelan, R Sadleir, K Robinson, H Fenlon, J Stack, P Mac-

Mathuna. In 7th Annual Conference of the Healthcare Informatics Society of

Ireland, Dublin, Ireland, 2002.

Segmentation and analysis of the biliary tree in mrcp K Robinson. In

Biomedical Diagnostics Research Seminar, Dublin, Ireland, 2003.

Morphological reconstruction: A downhill filter K Robinson. Research

Monograph: RM-03-03, Vision Systems Laboratory, Dublin City University,

Ireland, 2003.

Non-linear noise suppression strategies in medical image processing

K Robinson. In RINCE Research Seminar Series, Dublin, Ireland, 2004.

Computer assisted diagnosis (cad) for the rapid automated measure-

ment of body fat tissue from whole body mri PF Whelan, O Ghita, K

Robinson. In 12th Seminar on Theoretical Foundations of Computer Vision

(Seminar No 04251: Imaging Beyond the Pin-hole Camera), Dagstuhl, Ger-

many, 2004.

A 3d cad tool for body fat identification O Ghita, PF Whelan, K Robin-

son, D Ilea. In Joint Imaging Seminar, Vision Systems Group, Dublin City

University, and Trauma & Rehab RRG, Imaging Group, University of Ulster,

Belfast, UK, 2005.
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Appendix A

Body Fat Analysis

This appendix is adapted and expanded from the paper ‘Measure-

ment and Localisation of Body Fat in Whole Body MRI ’, shortlisted

for the 3rd Annual IEI Biomedical Engineering Research Award,

2005. It details research conducted alongside the MRCP project

described in the main body of this thesis and illustrates the wider

applicability of a number of the techniques described there.

Abstract—We examine the technical challenges relating to the ap-

plication of computer assisted diagnosis (CAD) techniques to the

quantification of body fat content and distribution in whole body

MRI (WB-MRI), addressing in particular the questions of fat as a

percentage of total body mass and the medial/lateral fat deposi-

tion ratio. Initially the overall body fat content is calculated using

a fully automatic four-stage adaptive segmentation procedure. We

illustrate the use of interactive visualisation and analysis tools to

examine in closer detail the fat distribution in any given area of the

body, and look at the task of further classifying the segmented fat

volume into the four primary subclasses of body fat: subcutaneous,

visceral, intermuscular, and bone marrow. Quantifying these sub-

divisions can be of particular importance as an indicator in certain

medical conditions. We discuss the significance of the presented re-

sults in terms of general fitness metrics, in particular for the assess-

ment of obesity, and as an important diagnostic indicator in other

conditions, and we highlight the potential for the application of these

techniques in routine medical screening and assessment procedures.
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I. Introduction

The ability to quickly and accurately measure and localise body fat content

presents significant opportunities in medical diagnostics and screening. The

assessment and monitoring of obesity is increasingly recognised as a pressing

concern as its incidence and impact grows. Its causes and its effects have

been extensively studied and reported in the medical literature where it has

been linked to a wide range of conditions including hypertension and coronary

heart disease, diabetes, and various types of cancer, as well as to psychological

disorders such as depression. As such, a fast and accurate route to routine

and comprehensive body fat analysis is an important goal for the medical

community, and medical imaging, through a combination of CAD techniques

and WB-MRI examinations, offers the potential to achieve this objective.

Many alternative approaches to total body fat estimation exist ranging from

the use of calipers, through water or air displacement methods, to x-ray and

electrical impedance based techniques. In addition, results are often inferred

from indirect metrics such as body mass index (BMI) and waist-hip ratio.

However, all of these suffer from one or more of a number of major short-

comings. Many lack accuracy, are time consuming and difficult to perform,

require expensive specialised equipment, or involve exposure to ionising ra-

diation. In addition, most fail to offer the ability to localise fat deposition,

which is increasingly recognised as an important diagnostic measure, as the

ratio of intra-abdominal fat to total fat is an indicator in many conditions.

MRI-based techniques also have their drawbacks, the most obvious being cost,

as the expense of commissioning, operating, and maintaining an MRI facility

remains high. On the other hand the WB-MRI based approach presented here

achieves excellent accuracy and localisation, involves short scanning and pro-

cessing times, and has the potential for use in routine screening as it does not

involve exposure to ionising radiation and is contraindicated in only a very few

individuals, subjects with heart pacemakers for example. As the availability

and use of MRI for medical screening applications continues to grow, proce-

dures such as MR-based whole body fat assessment will become increasingly

commonplace, and we believe that the potential benefits to be gained in the

widespread use of such a system will only help to accelerate this trend.
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In the rest of this appendix we present a technical review of our CAD sys-

tem for whole body MRI based body fat assessment, and discuss the results

achieved so far in the analysis of a database of 42 subjects (21 male and 21

female). We examine the relationship between percentage body fat and the

widely used body mass index (BMI), and discuss the shortcomings of the lat-

ter as a metric for the quantification of total body fat. We close with a brief

outline of the next phase planned for this project, to address the automation

of the final fat subclassification task, refining the initial segmentation so as to

differentiate between the various types of fat deposits that have been identi-

fied. We mention the difficulties that must be overcome in achieving this goal

in the framework of a fully automatic CAD system, and suggest a route to

tackling these challenges.

Fig. A.1: Five coronal slices from a thirty two slice whole body dataset.
Greyvalues have been inverted for clarity, so that fat tissues appear dark
and air light, while lean tissues occupy intermediate greylevel intensities.
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II. Method

Images are acquired in either six or seven slightly overlapping coronal sections

depending on the height of the subject. For each section 32 coronal slices are

generated covering the full thickness of the body from front to back with a slice

thickness of 8mm. The voxel dimensions are thus 2.02× 8.00× 2.02mm3 in x,

y, and z respectively. The standard coordinate system is used, with x running

from the subjects right to left, y running from the chest towards the back,

and z increasing from feet to head, with the subject lying head first supine

(face up) on the scanner table. The slices shown in Fig. A.1 are from a typical

study, illustrating the case of a 28 year old normal weight female subject. In

this case a voxel matrix of 256×32×937 has resulted, achieving complete cov-

erage of the body (the volume covered is approximately 517×256×1893mm3).

A. Histogram Matching & Data Smoothing

Before the individual coronal sections are recomposed into a single dataset

(see Fig. A.4 for details) the greyscale intensity maps for each of the sections

must be matched. Greyscale matching is necessary due to the fact that there

can be significant intensity offsets between successive coronal sections due to

the nature of the MRI acquisition process, see Fig. A.2. It is necessary to

minimise these effects in order to optimise the performance of the automated

analysis procedures to follow. We achieve this using an approach based on the

histogram matching scheme introduced in Chapter 2.

An intensity histogram is constructed for each coronal section (Fig. A.3), the

characteristic peak representing soft tissue is algorithmically identified in each

case, and the peaks are aligned so as to achieve a matched greyscale distri-

bution across all sections. Identifying the appropriate histogram peaks is a

relatively simple matter. More complex is the question of how to scale the in-

dividual grey maps so as to preserve a smooth histogram for the overall dataset

without stray peaks or voids. This is an important topic, which ensures that

subsequent histogram based calculations, for instance in the automatic selec-

tion of threshold bands, can be performed robustly.

A–4



Appendix A – Body Fat Analysis

Fig. A.2: Initial greyscale matching is needed as a preprocessing step
in order to facilitate the subsequent segmentation process. Here adjacent
coronal sections exhibit a significant grey mismatch on the left, which has
been largely eliminated in the normalised right hand image.
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Fig. A.3: Unnormalised and normalised histograms for the seven coronal
subsections in a whole body dataset. In the lower set of seven histograms
the soft tissue peaks have been aligned to achieve the desired normalisation.
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Fig. A.4: After greyscale matching is performed, the global coordinate
system defined in the DICOM image headers is used to perform vector based
volume reconstruction of the whole body MRI data. A transformation is
applied mapping each slice into its correct location within the final volume
dataspace.

We follow the histogram matching phase with the application of an adaptive

smoothing procedure to improve local homogeneity in the data. The aim is

to remove image noise while preserving the semantically important bound-

ary information. An anisotropic gaussian filtering is applied, modified by the

magnitude and direction of the local greyscale gradient vector. This can be for-

mulated for each voxel as the weighted mean of that voxel and its neighbours.

The adaptive weighting selection function (Eq. A.1) governs how much each

neighbour contributes to the weighted mean as the current voxel is smoothed.

The weight at each neighbour is calculated as a function of the dot product

(a · b = axbx + ayby + azbz) of the offset vector to that neighbour ( ~pq) and the

local greyscale gradient vector (∇u) calculated at the current location. The

parameter λ controls the overall strength of the smoothing. This is the initial

form of our boundary preserving smoothing approach (c.f. Eq. 3.10), as noted

at the end of Section 3.1 in Chapter 3.

wt( ~pq,∇u) = e−( ~pq·∇u
λ

)2 (A.1)
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This leads to an updated value for the current voxel as being the normalised

mean of the weighted neighbours as in Eq. A.2, where i indexes each neighbour

(including the current point) from 1 to n and vi and wti are the voxel value

and weight respectively, at each location.

v =

∑n

i=1(viwti)∑n

i=1 wti
(A.2)

This formulation results in an anisotropic smoothing of the data where the

local gradient vector controls both the strength of the smoothing applied at

each voxel and the degree to which that smoothing is constrained to operate

perpendicular to the gradient vector (along the local isosurface or boundary).

In this way we achieve the desired edge preserving effect in conjunction with

good regional smoothing, in preparation for the effective operation of the seg-

mentation phase to follow.

Fig. A.5: Data smoothing improves regional homogeneity in the data,
resulting in superior segmentation results in the fat classification stage of
the process.
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B. Whole Body Height, Volume, & Mass Estimation

Once the matched dataset has been recomposed the first step in processing is

to segment the entire body volume from the background. This is achieved by

thresholding the data at a level chosen based on the location of the histogram

local minimum between the background and lean tissue peaks, and then ap-

plying a 2-D hole filling procedure along the axial direction in order to arrive

at a solid whole body object in the data. This gives us a starting point for the

fat segmentation procedure to follow and since we know the voxel dimensions

also allows us to estimate the subjects height and volume. Once we have com-

pleted the fat segmentation step that follows we can additionally estimate the

subjects weight, based on the standard known densities for fat and lean tissue.

C. Body Fat Segmentation

The most important part of the process is the four phase body fat segmenta-

tion procedure. We can immediately see that the fat tissues in which we are

interested are located primarily in the smaller third peak and high intensity

tail of the data histogram. However, closer examination of the data reveals a

considerable degree of variation in the greylevels that correspond to fat. Even

after the histogram matching process the greyscale values for fat still over-

lap those associated with other nominally lower intensity tissue types such as

those representing liver and brain. Therefore accurate segmentation can not

be achieved by applying simple methods based on thresholding alone. In order

to cope with these issues we have devised a four step segmentation algorithm.

1 An initial threshold level is calculated based on an analysis of the data

histogram. The peak representing soft tissue is located and voxels whose

values fall above the end of this peak are marked as potential fat voxels

in the initial fat estimate.

2 We then apply a boundary enhancement procedure to compensate for

signal drop-off in some peripheral regions of the data. This is based on a

chamfer distance measure and applies positive weighting values in areas

around the boundaries of the region of interest. This process helps to

alleviate the undesirable consequences of partial volume effects at the fat

boundaries and in areas where the fat layer is very thin.
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3 Next we apply a 3-D region growing operator based on hysteresis thresh-

olding, which is applied using a form of conditional dilation. Background

voxels in the vicinity of fat voxels are conditionally added to the defined

body fat region based on a banded comparison of their greylevels to the

expected greylevels for fat voxels, derived from a statistical analysis of

the fat estimate so far.

4 Finally we apply a region refining process whereby the candidate voxels

are grouped into connected regions, which are then processed based on

their regional mean greyvalues. Regions with a higher mean value, indi-

cating a stronger fat signal are retained, while those with a lower value

are subdivided into accepted and rejected subregions.

Through this process we arrive at a

Fig. A.6: Fat segmentation

robust segmentation of the signal due

to fat tissue within the data volume.

See Fig. A.6, which shows a graphical

display produced from a segmented

dataset. The defined fat region as

shown in this coronal slice includes

components from all of the four ma-

jor fat subdivisions, and demonstrates

an accurate representation of the fat

deposits that have been imaged in

this subject.

For comparison Fig. A.7 illustrates

the results achieved using a simplis-

tic thresholding approach. Even with

the optimal threshold level manually

selected in this case much of the lighter

tissue in the liver region has been in-

cluded in the segmentation in A.7a

while our approach, shown in A.7b,

demonstrates accurate differentiation

between fat and nonfat tissues. It is

especially noticeable in the subcutaneous fat low down on the subjects left,

at the far side of the abdomen from the liver, that the voxel intensities rep-
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resenting fat are drifting down towards the intensities seen in the liver. This

slow variation throughout the dataset is one of the undesirable characteristics

of the data that our approach specifically aims to overcome.

(a) (b)

Fig. A.7: A straightforward thresholding approach fails to correctly clas-

sify some brighter regions of non-fat tissue as with the liver in (a). Our
multistage adaptive classifier (b) correctly handles the liver tissue, elimi-
nating it from the fat classification.

III. Results & Discussion

The analysis procedure that we have described was applied to a database of 42

whole body datasets. Initially numerical results were complied and the body

fat percentages were analysed. The segmentations achieved were reviewed vi-

sually by assessing the axial, coronal and sagittal slices in order to confirm

that the voxels specified as being body fat matched the true fat regions in the

data. 3-D renderings were also used to provide the best possible assessment of

the data.

A. Numerical Results

Once a dataset has been processed a wide range of results are available to

the user in both numerical and graphical formats. The initial system output

display is as in Fig. A.8 where a range of numerical results are presented to the

user. The two methods indicated in the results table correspond to the simple

thresholding and multi-phase segmentation approaches discussed. As such the

method one results are included in this research tool for reference and compar-

ison only. The method two results represent the final system analysis of the

input data. In this example the two methods show a fair degree of agreement
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in their calculated results. Across the complete range of datasets analysed the

simplistic approach often yields wildly inaccurate results, including much soft

tissue in its fat estimate. Our method on the other hand performs consistently

well on all the analysed datasets.

Series #1:   250 x 32 x 937,   2.022059mm x 8.0mm x 2.022059mm

Name:

Weight: 90.0kg

Sex: M

Date of birth: 20/10/1972

Estimated full body volume = 98,422.84cc

Estimated full body height = 1.89m

Calculated Body Fat Table:-

Method 1 Method 2

Body weight DICOM 90kg 90kg

Body weight calculated 103.14kg 102.91kg

Estimated BMI 28.73 28.67

Fat by volume 31,803.91cc 33,016.37cc

Fat by weight 29.2kg 30.31kg

% by volume 32.31% 33.55%

% by DICOM weight 32.44% 33.68%

% by calculated weight 28.31% 29.45%

Fig. A.8: System display for an overweight 32 year old male subject il-
lustrating results calculated by the simple and adaptive fat segmentation
procedures.

In the results table (Fig. A.8) estimates are made of the subjects height and

weight, and measurements are performed to calculate values for the actual and

percentage body fat detected, measured by volume and by weight. All of these

calculations are performed automatically without any initialisation or subse-

quent intervention being required on the part of the user. The entire analysis

process from raw input data to final results takes less than two minutes, exe-

cuting on a standard desktop computer.

B. Graphical Results

In addition to these immediately available numerical results a number of vi-

sualisation tools can provide for 2-D and 3-D graphical interrogation of the

segmented fat volume. Simple orthogonal review allows axial, coronal, and

sagittal sections to be examined as illustrated in Fig. A.9. The images can be

marked up in various ways to enhance the utility of the tool by highlighting

the regions classified as fat tissue.
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Male
Age

Measured Calculated Calculated Female
Age

Measured Calculated Calculated
Subjects BMI BMI % Body Fat Subjects BMI BMI % Body Fat

1 31 32.6 28.67 29.45 1 27 19.3 18.11 21.06

2 33 24.1 23.54 17.27 2 29 24.8 23.53 30.54

3 32 25.4 23.73 27.79 3 20 20.3 19.72 19.61

4 51 27.3 24.43 16.85 4 53 26.8 24.07 34.36

5 29 25.0 22.76 17.36 5 56 22.5 20.77 28.66

6 29 24.8 22.59 6.97 6 27 20.8 20.23 25.21

7 29 25.0 23.68 13.06 7 21 24.6 21.73 30.29

8 28 21.6 19.58 4.77 8 43 21.9 20.59 29.02

9 49 31.1 28.42 30.07 9 41 25.6 26.69 37.46

10 52 34.7 32.58 25.98 10 19 18.0 17.68 15.89

11 24 28.7 23.18 6.24 11 26 21.8 22.21 16.39

12 28 28.7 26.91 31.79 12 18 25.3 26.83 28.89

13 23 26.3 22.62 10.32 13 26 30.5 30.96 38.05

14 19 21.5 19.63 11.63 14 33 22.8 24.11 17.99

15 28 26.3 25.58 20.04 15 23 20.5 22.10 23.71

16 25 18.9 22.30 11.57 16 25 20.3 20.89 19.97

17 26 26.9 24.80 12.21 17 25 29.4 30.74 41.67

18 24 20.9 21.12 6.24 18 27 25.7 25.86 31.78

19 26 27.7 27.58 21.19 19 55 25.1 28.52 35.20

20 30 26.0 25.20 14.96 20 53 20.8 24.27 29.66

21 45 29.9 32.70 28.3 21 42 23.7 23.65 25.16

Table A.1: Body fat results from 42 whole body MRI datasets
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3-D volume rendered views are provided by way of a versatile data rendering

system, Fig. A.10, which provides an excellent overview of the data. When

this tool is used in conjunction with data space clipping as demonstrated in

Fig. A.11 it can be applied to effectively visualise the body fat distribution

within a given volume of interest, providing a more complete and detailed

view of the distribution of fatty tissue within the body.

Fig. A.9: Orthogonal section viewer showing an axial slice. The raw data is
displayed in the left hand pane while the identified fat regions are highlighted
in yellow in the right hand pane. Options for what is displayed in each pane
and how it is marked on the images are available through the menus.

Fig. A.10: A rendering tool allowing flexible manipulation and visualisa-
tion of the dataset using a number of volume rendering techniques.
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Body fat subdivisions

Subcutaneous
Visceral
Intermuscular
Bone marrow

Fig. A.11: Medial cutaway view depicting the left side of the body, from
abdomen to thigh, in an overweight 26 year old female subject demonstrat-
ing the four major fat subclassifications.

Using these tools it is possible to focus attention onto any chosen subregion

of the body and having thus defined a region of interest, detailed analysis can

once again be performed on just this targeted zone, generating an analysis of

the body composition in terms of fat mass and distribution.

C. Body Fat & BMI

One of the most commonly used body fat indicators is an indirect metric

called the body mass index (BMI), which is calculated as a person’s weight in

kilograms divided by the square of their height in metres. Table A.2 shows the

standard BMI bands and the weight level categories that they correspond to.

The BMI is a crude measure of a person’s level of body fat, having a num-

ber of well recognised failings. It is, none the less, widely used as a rough

indicator as to a subject’s state of health in terms of their body weight. As

an indicator of health and fitness it is particularly ill suited in respect of two
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BMI Category

Less than 18.5 Underweight

18.5 to 24.9 Normal weight

25 to 29.9 Overweight

Greater than 30 Obese

Table A.2: Standardised Body Mass Index (BMI) categories used in the

routine assessment of individual body mass: BMI = weight
height squared

kg/m2

groups, athletes and the elderly. In the case of highly trained athletes their

extremely low levels of body fat are counteracted by an unusually high muscle

mass that results in a misleadingly elevated BMI reading. On the other hand,

in elderly subjects especially, moderate or high fat levels can be disguised by

the effects of muscle wastage bringing the total body mass down and leading

to an artificially depressed BMI.
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Fig. A.12: Graph of BMI against percentage body fat illustrating the
distinct gender difference and the difficulty in extrapolating reliably from
BMI to actual body fat percentage. Men in general have a lower percentage
body fat than women for the same BMI. Subjects with very low body fat
but considerable muscle mass, such as athletes, exhibit elevated BMI values,
while muscle wastage in older subjects can have the opposite effect.
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In this study we examined the correlation between percentage body fat as

measured using our approach and the equivalent BMI levels for each subject.

The graph in Fig. A.12 illustrates our findings. By separating the data into

male and female subjects we can clearly demonstrate the gender difference,

showing that men tend to have a lower percentage body fat than women for

the same BMI value. This is the expected result, reflecting the differing body

compositions observed in men and women.

While the graph confirms that the general trends of body fat and BMI values

match, it indicates the complex nature of the relationship between these two

measures and highlights the limited degree to which BMI can be used in order

to extrapolate an estimate for percentage body fat. As previously mentioned

it is also the case that BMI yields no information as to the distribution of fat

within the body and as such its usefulness is limited as compared to the richer

source of data offered by a fully volumetric fat assessment approach such as

WB-MRI.

The BMI was calculated directly from the patients’ mass and height, and in-

directly using the segmentation results. The directly measured BMI values

of these datasets range from 18 to 35. Comparison of the direct and indirect

methods was used to validate the segmentation procedure and a good corre-

lation was found, see Fig. A.13. Much of the data spread in the graph in

Fig. A.13 is due to incomplete body acquisitions in the MRI scanner.

Restricting the data to the 21 most complete datasets, where data loss at the

extremities, especially at the feet of tall subjects, is kept to a minimum, results

in a far superior straight line fit with much reduced deviations from the fitted

line in the restricted data subsample. This is shown in the broken line and

its associated subset of data points indicated in Fig. A.13. The sample points

representing incomplete acquisitions all fall above the broken line and pull the

full sample trend line (the solid line) in an upward direction. This reflects the

relative effect of the missing data on the BMI and % body fat calculations.

The missed data represents a relatively small volume, and hence weight (the

feet and ankles), but can result in a disproportionately large variation in the

estimated height of the subject. With down pointing toes the change can be

as much as 30 centimetres in some cases. These two factors result in little dif-

ference in the estimated % body fat but can cause a significant elevation in the

estimated BMI value since the subject is estimated to be shorter but not much
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lighter than would be the case were the measurements based on a complete

dataset. Note that in the case of complete datasets the automatic method

consistently estimates a BMI less than the measured BMI. This is due to an

over estimation in the height caused by down pointing toes. Correspondingly,

calculated BMI’s based on incomplete datasets tend to be higher than the

equivalent measured values, for the reasons given. These observations support

the assertion that the automatic measurements achieved represent accurate

results for the data under examination.
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Fig. A.13: Comparing manually measured BMI and the automatic CAD
calculation. This illustrates that the CAD system does a good job in match-
ing the manual BMI measurements. This test was used as an initial valida-
tion of the segmentation procedure and demonstrates that the CAD system
developed produces reliable measurements. See the text for a full discussion.

D. Body Fat Subdivisions

This usefulness can be still further enhanced within the context of a volumetric

body fat analysis tool when the individual fat subclassifications of subcuta-

neous, visceral, intermuscular, and bone marrow are made available to the

user. The subdivisions as illustrated in Fig. A.11 were achieved using a man-

ual editing procedure. Another example of this can be seen in Fig. A.14 where

the axial slices corresponding to the start and end of the rendered subsection
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of the thigh are also shown. In these you can see where the various fat regions

intersect the axial planes. Recall that the data has been interpolated in the y

direction as the original dataset contains only 32 coronal slices.

Fig. A.14: Thigh section rendering and associated first and last raw axial
views depicting subcutaneous, intermuscular, and bone marrow fat deposits
in a normal weight 34 year old female subject.

Fig. A.15 illustrates a number of coronal and sagittal slices through the subvol-

ume rendered in Fig. A.11. Again interpolation is needed in order to generate

the sagittal slices, and the fat subclassifications have been marked manually in

all cases. These views illustrate the detail in which it is possible to examine the

fat distribution in a subject, and once the subclassifications have been defined,

useful calculations can be performed in order to quantify metrics such as the

visceral to total fat ratio.
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(a) (b) (c) (d)

Fig. A.15: Two coronal and two sagittal cross sections through the data
volume rendered in Fig. A.11. Dashed lines indicate the points of intersec-
tion between the four planes. (a) Posterior coronal section. (b) Anterior
coronal section. (c) Medial sagittal section. (d) Lateral sagittal section.
The segmented fat regions have again been classified and colour coded as
subcutaneous, visceral, intermuscular, and bone marrow deposits.

Our current focus in this project is towards the development of a semiauto-

mated fat subdivision procedure using a model for the expected fat distribu-

tion within the body. First we aim to automatically partition the dataset into

regions consisting of head, torso, arms, and legs. This will be followed by

clustering and labelling phases in order to arrive at a final classification of the

fat regions.

IV. Conclusion

This appendix has focused on the issues surrounding the preparation, segmen-

tation, and analysis of whole body MRI data for the detailed assessment of

body fat level and location. It has described an effective set of preprocessing

and segmentation operations designed to overcome the difficulties encountered

in the accurate and repeatable isolation of fat tissues in MR data of limited

resolution and quality. Results achieved on a database of 42 subjects were

presented and discussed, and the future direction for this investigation was

indicated. This illustrates the wider applicability and the effectiveness of the

preprocessing techniques introduced in the main body of this thesis and thus

serves to further emphasise the value and the potential of these techniques in

the context of medical image processing and CAD applications.
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NeatMRI

We developed the NeatMRI library and environment in order to provide a

flexible and easy to use framework in which to conduct the development and

testing of our image processing algorithms and procedures. In this appendix we

introduce the functionality of the library and illustrate some of the applications

that we have developed using the tools that it provides. We illustrate the two

routes to interfacing with the library, through Java and C, and provide a quick

reference for the full collection of procedures that the library provides.

B.1 Library

B.1.1 Introduction

The library comprises a large and growing collection of tools and procedures

for the processing, segmentation, analysis, and visualisation of two and 3-D

image data, along with all the low level utility functions necessary in order to

manipulate the data in a straightforward and powerful fashion. It exports all

these procedures, and provides interfaces to its functionality through both C

and Java.
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Using the library from C

Include VSGLib.h in the C project and access methods as illustrated below:

#include "VSGLib.h"

void main(void) {

int vol;

vol = VSGgetVolume(256,256,64); // Create volume

//...

VSGreleaseVolume(vol); // Release volume

}

Using the library from Java

Include VSGLib.java in the java project and access methods as illustrated

below:

public class Test {

public static void main(String[] args)

{

int vol = VSGLib.VSGgetVolume(256,256,64);// Create volume

//...

VSGLib.VSGreleaseVolume(vol); // Release volume

}

}
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The library interfaces through C and Java are identical except for the requi-

site differences in the declared types of some formal parameters, as shown in

Table B.1. Code fragments in C and Java follow, to illustrate the differences

in usage.

C Java

char * String

int * int[]

double * double[]

Table B.1: Parameter differences between C and Java.

This fragment of C code loads a PGM image into memory.

char *filename = "C:/images/image1.pgm";

int width;

int height;

int *image;

VSGgetPNMSize(filename,&width,&height);

image = (int *)malloc(width*height*sizeof(int));

VSGreadPGM(filename,image);

The same code fragment is implemented in Java as follows.

String filename = "C:/images/image1.pgm";

int[] width = new int[1];

int[] height = new int[1];

int[] image;

VSGLib.VSGgetPNMSize(filename,width,height);

image = new int[width[0]*height[0]];

VSGLib.VSGreadPGM(filename,image);
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B.1.2 Quick Reference

This section lists all 148 library functions in the current version, arranged into

functional groupings. A detailed description of the operation and use of each

routine is provided in the comprehensive ‘VSG Volume Processing Library —

Reference Manual’, which has been written to accompany the library.

General routines

VSGabout

Volume creation and deletion routines

VSGgetVolume

VSGcopyVolume

VSGloadVolume

VSGloadSlice

VSGresizeVolume

VSGreorientVolume

VSGcombineVolumes

VSGreleaseVolume

Image reading and writing routines

VSGsavePGMs

VSGsavePPMs

VSGgetPNMSize

VSGreadPGM

VSGreadPPM

VSGwritePGM

VSGwritePPM
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AVI movie sequence manipulation routines

VSGjoinAVIs

VSGcreateAVI

VSGopenAVI

VSGcloseAVI

VSGsetAVIFrameData

VSGgetAVIFrameData

VSGsetAVIFrameRate

VSGgetAVIFrameRate

VSGgetAVIFrameWidth

VSGgetAVIFrameHeight

VSGgetAVIFrameCount

Volume manipulation routines

VSGsaveVolume

VSGgetOrthogonalSlice

VSGgetObliqueSlice

VSGgetWidth

VSGgetHeight

VSGgetDepth

VSGgetPixelsPerImage

VSGgetVoxelsPerVolume

VSGgetDataMin

VSGgetDataMax

VSGgetDataSum

VSGgetDataSumSquared

VSGgetVoxel

VSGsetVoxel

VSGgetSlice

VSGsetSlice

VSGgetData

VSGsetData

VSGgetVoxelSize

VSGsetVoxelSize
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VSGgetRowOrientation

VSGsetRowOrientation

VSGgetColumnOrientation

VSGsetColumnOrientation

VSGgetGlobalOrigin

VSGsetGlobalOrigin

VSGgetHistogram

VSGsetGreyData

VSGset2DBorder

VSGset3DBorder

VSGinvert

VSGshiftGreyRange

VSGthreshold

VSGadaptiveThreshold

VSGdoubleThreshold

Volume processing routines

VSGcopyData

VSGcopyNonZeroData

VSGcopySubVolume

VSGsubtract

VSGminimum

VSGmaximum

Volume filtering routines

VSGgradient

VSGgrassfireFilter

VSGmeanFilter

VSGmedianFilter

VSGlaplacianFilter

VSGmorphologyErode

VSGmorphologyDilate

VSGmorphologyConditionalDilate

VSGmorphologyOpen
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VSGmorphologyClose

VSGmorphologyGradient

VSGmorphologyInternalGradient

VSGmorphologyExternalGradient

VSGmorphologyReconstructByDilation

VSGadaptiveFilter

Volume segmentation routines

VSGmarkerGuidedWatershed

VSGactiveRegionClassifier

VSGclusteringClassifier

Object map routines

VSGallocateObjectMaps

VSGreleaseObjectMaps

VSGgetObjectMapCount

VSGvolumeToObjectMap

VSGobjectMapToVolume

VSGobjectMapToObjectMap

VSGgetObjectMapMin

VSGgetObjectMapMax

VSGgetObjectMapVoxel

VSGsetObjectMapVoxel

VSGsetObjectMapData

VSGlabelExists

VSGchangeLabel

VSGfloodFill

VSGlabel

VSGsuppressObject

VSGgetObjectBoundingBox
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Structuring element routines

VSGgetStructuringElement

VSGbuildStructuringElement

VSGbuildIsotropicStructuringElement

VSGmakeStructuringElement

VSGreleaseStructuringElement

VSGgetStructuringElementSize

Colour lookup table (LUT) routines

VSGgetVolumeLUTPointer

VSGgetRenderLUTPointer

VSGresizeColourLUT

VSGinvertLUT

VSGsetLUTValue

VSGsetLUTRamp

VSGsetLUTChannelRamp

VSGsetLUTRainbow

VSGsetLUTMixedRainbow

VSGgetNumberOfLUTs

VSGgetSizeOfLUTs

VSGgetLUTValue

VSGgetColour

Surface routines

VSGloadSurface

VSGextractSurface

VSGextractReliefSurface

VSGreleaseSurface

VSGsaveSurface
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Volume rendering routines

VSGgetVolumeRenderParam

VSGreleaseVolumeRenderParam

VSGsetDefaultVolumeRenderTransform

VSGsetVolumeRenderType

VSGsetVolumeRenderQuality

VSGsetVolumeRenderThreshold

VSGsetVolumeRenderClippingPlane

VSGsetVolumeObjectVisibility

VSGrenderVolume

Surface rendering routines

VSGgetSurfaceRenderParam

VSGreleaseSurfaceRenderParam

VSGsetDefaultSurfaceRenderTransform

VSGsetSurfaceRenderType

VSGrenderSurface

General rendering routines

VSGsetRenderRotation

VSGsetRenderScale

VSGsetRenderTranslation

VSGincRenderRotation

VSGincRenderScale

VSGincRenderTranslation

VSGresizeRenderImage
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B.2 Algorithms

In this section we provide concrete implementations for a number of the key

algorithms and procedures developed and presented in this thesis. A list of

the routines documented in this section, along with brief descriptions and an

indication of how many lines of code each routine occupies, is given below in

Table B.2.

Name Description Size

LinearX Calculate x given y and two other points,

using linear interpolation.

4 lines

LinearY Calculate y given x and two other points,

using linear interpolation.

4 lines

QuadraticMaxMinY Calculate the y position of the extrema of

the quadratic passing through three points.

4 lines

CubicY Calculate y given x and three other points,

using cubic interpolation.

4 lines

FindMinMaxPair Implementation of Algorithm 2.1 on page 39 32 lines

FindFixedPoints Implementation of Algorithm 2.2 on page 46 9 lines

ReBinHistogram Implementation of Algorithm 2.3 on page 48 24 lines

ReSizeBins Implementation of Algorithm 2.4 on page 49 30 lines

IntensityCorrectImage Given a histogram distribution allocate the

correct number of samples to each bin.

63 lines

Gradient Calculates a local greyscale gradient vector

in 2-D non-isometric data.

16 lines

GaussianSmooth Performs gradient-weighted adaptive Gaus-

sian smoothing in 2-D non-isometric data.

35 lines

DownhillFilter Algorithm 4.1 (page 96): The downhill filter

for efficient reconstruction by dilation.

40 lines

GrassFire The grassfire distance transform imple-

mented using the directed filter algorithm.

42 lines

Table B.2: List and brief descriptions of the algorithms and routines for
which C code implementations are provided in the rest of this section.
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B.2.1 Intensity Non-uniformity Correction

The following C routines implement the key components of the algorithms

described in Chapter 2 for histogram based inter-slice intensity non-uniformity

correction.

double LinearX(double y, double x1, double y1, double x2, double y2)

{

return((y*(x1-x2)-(x1*y2-x2*y1))/(y1-y2));

}

double LinearY(double x, double x1, double y1, double x2, double y2)

{

return(x*(y1-y2)/(x1-x2)+(x1*y2-x2*y1)/(x1-x2));

}

double QuadraticMaxMinY(double y1, double y2, double y3)

{

return((y3-y1)*(y3-y1)/(16.0*y2-8.0*(y3+y1))+y2);

}

double CubicY(double x, double y1, double y2, double y3, double y4)

{

return(y2+((y3-(y1/3.0+y2/2.0+y4/6.0))+(((y1+y3)/2.0-y2)+((y2-y3)/2.0+(y4-y1)/6.0)*x)*x)*x);

}

void FindMinMaxPair(int *histo, int size, int *A, int *C)

{

int B;

int i,j;

*A=0;

for (i=1; i<size; i++)

if (histo[*A] < histo[i])

*A=i;

B=*C=0;

for (i=*A-1; i>0; i--) {

for (j=i-1; j>=0; j--) {

if (histo[j]-histo[i]>histo[*C]-histo[B]) {

B=i;

*C=j;

}

}

}

for (i=*A+1; i<size-1; i++) {

for (j=i+1; j<size; j++) {

if (histo[j]-histo[i]>histo[*C]-histo[B]) {

B=i;

*C=j;

}

}

}

if (*A>*C) {

B=*C;

*C=*A;

*A=B;

}

}

void FindFixedPoints(int *histo, int A, int C, double *P)

{

P[1]=QuadraticMaxMinY(histo[A-1],histo[A],histo[A+1])*2.0/3.0;

while(histo[A--]>P[1]);

P[1]=LinearX(P[1],A,histo[A],A+1,histo[A+1]);

P[2]=QuadraticMaxMinY(histo[C-1],histo[C],histo[C+1])*2.0/3.0;

while(histo[C++]>P[2]);

P[2]=LinearX(P[2],C-1,histo[C-1],C,histo[C]);

}
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void ReBinHistogram(int *src, double *dst, int size, double *P, double *PMax)

{

int i=0;

double fp,ip;

for (; i<=PMax[1]; i++) {

fp=modf(LinearY(i,0.0,0.0,PMax[1],P[1]),&ip);

if (ip<1)

dst[i]=CubicY(fp-1.0,src[0],src[1],src[2],src[3]);

else

dst[i]=CubicY(fp,src[(int)ip-1],src[(int)ip],src[(int)ip+1],src[(int)ip+2]);

}

for (; i<=PMax[2]; i++) {

fp=modf(LinearY(i,PMax[1],P[1],PMax[2],P[2]),&ip);

dst[i]=CubicY(fp,src[(int)ip-1],src[(int)ip],src[(int)ip+1],src[(int)ip+2]);

}

for (; i<=size-1; i++) {

fp=modf(LinearY(i,PMax[2],P[2],size-1,size-1),&ip);

if (ip<size-2)

dst[i]=CubicY(fp,src[(int)ip-1],src[(int)ip],src[(int)ip+1],src[(int)ip+2]);

else

dst[i]=CubicY(ip+fp-(size-3),src[size-4],src[size-3],src[size-2],src[size-1]);

}

}

int ReSizeBins(double *src, int *dst, int size, int numVoxels)

{

int i;

int remainder;

int sum=0;

double R=0.0;

for (i=0; i<size; i++)

R+=src[i];

for (i=0; i<size; i++) {

dst[i]=(int)(src[i]*numVoxels/R+0.5);

sum+=dst[i];

}

size=CompressHistogram(dst,size);

remainder=numVoxels-sum;

if (remainder<0) {

remainder=-remainder;

size--;

while (remainder>=dst[size])

remainder-=dst[size--];

dst[size++]-=remainder;

} else if (remainder>0) {

while (remainder>dst[size-1]) {

dst[size]=dst[size-1];

remainder-=dst[size++];

}

dst[size++]=remainder;

}

return(size);

}
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double WeightFunction(int pos, int *img, int w, int h)

{

int i,x,y,dx,dy;

double top=0.0;

double bot=0.0;

x=pos%w;

y=pos/w;

for (dy=-2,i=0; dy<=2; dy++) {

for (dx=-2; dx<=2; dx++,i++) {

if ((dx!=0 || dy!=0) && x+dx>=0 && y+dy>=0 && x+dx<w && y+dy<h) {

top+=img[x+dx+(y+dy)*w]*delta[i];

bot+=delta[i];

}

}

}

return(top/bot);

}

typedef struct {

int pos;

int val;

double wt;

} tInfo;

int LessThan(const tInfo *a, const tInfo *b)

{

if (a->val < b->val)

return(-1);

else if (a->val > b->val)

return(1);

else if (a->wt < b->wt)

return(-1);

else if (a->wt > b->wt)

return(1);

else

return(0);

}

void IntensityCorrectImage(int *histo, int *img, int w, int h)

{

int i;

int val=0;

int cnt=0;

tInfo *ptr;

ptr=(tInfo *)malloc(w*h*sizeof(tInfo));

for (i=0; i<w*h; i++) {

ptr[i].pos=i;

ptr[i].val=img[i];

ptr[i].wt=WeightFunction(i,img,w,h);

}

qsort(ptr,w*h,sizeof(tInfo),LessThan);

for (i=0; i<w*h; i++) {

while (cnt>=histo[val]) {

cnt=0;

val++;

}

cnt++;

img[ptr[i].pos]=val;

}

free(ptr);

}
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B.2.2 Gradient-Weighted Smoothing Algorithm

A concise implementation of the gradient-weighted adaptive Gaussian smooth-

ing algorithm in 2-D non-isometric data. Greater efficiency can be achieved by

the use of lookup tables, thus avoiding repeated calculations in a number of

locations. The implementation given here sacrifices some efficiency in favour

of simplicity and clarity in presentation. The implementation directly mirrors

the form given in Algorithm 3.1 on page 60 of this thesis.

double Gradient(int *data,int w,int h,int px,int py,double dx,double dy,double *gx,double *gy)

{

double wtx1,wtx2,wty1,wty2;

double *p1,*p2,*p3;

wtx1=dx/(3*dx*dx+dy*dy);

wtx2=(dx*dx+dy*dy)/(3*dx*dx*dx+dx*dy*dy);

wty1=dy/(3*dy*dy+dx*dx);

wty2=(dy*dy+dx*dx)/(3*dy*dy*dy+dy*dx*dx);

p1=data+w*(py-1)+px-1;

p2=data+w*(py )+px-1;

p3=data+w*(py+1)+px-1;

*gx=(*(p1+2)*wtx1 + *(p2+2)*wtx2 *(p3+2)*wtx1)-(*p1*wtx1 + *p2*wtx2 *p3*wtx1);

*gy=( *p3 *wty1 + *(p3+1)*wty2 *(p3+2)*wty1)-(*p1*wty1 + *(p1+1)*wty2 *(p1+2)*wty1);

return(sqrt((*gx)*(*gx)+(*gy)*(*gy)));

}

void GaussianSmooth(int *src,int *dst,int w,int h,double dx,double dy,double lambda,double mu)

{

int px,py; // coordinates of current pixel

int qx,qy; // offset to neighbour

double gx,gy,gm; // gradient x, y, and magnitude

double wtq,wtsum,val;

double wt1,wt2;

double v1,v2;

wt1=1.0/(lambda*lambda*exp(mu)*exp(mu));

wt2=(exp(2.0*mu)-exp(-2.0*mu))/(lambda*lambda);

for (py=1; py<h-1; py++)

{

for (px=1; px<w-1; px++)

{

gm=Gradient(src,w,h,px,py,dx,dy,&gx,&gy);

wtsum=0.0;

val=0.0;

for (qy=-1; qy<=1; qy++)

{

for (qx=-1; qx<=1; qx++)

{

v1=sqrt(dx*dx*qx*qx+dy*dy*qy*qy)*gm;

v1=v1*v1;

v2=dx*qx*gx+dy*qy*gy;

v2=v2*v2;

wtq=exp(-(v1*wt1 + v2*wt2));

wtsum+=wtq;

val+=wtq*(*(src+(py+qy)*w+px+qx));

}

}

*(dst+py*w+px)=(int)(val/wtsum+0.5);

}

}

}
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B.2.3 Downhill Filter: Strengthened Precondition

This is an extremely compact and efficient implementation of the downhill

filter. It requires that the form of the mask image input be restricted as

explained in the text of Chapter 4. Efficiency can be improved still further, in

the order of 30 to 40 percent, by unwrapping the two innermost for loops and

optimising the resulting code, but even in the compact form presented here it

is in the general case faster than the best of the alternatives tested.

void DownhillFilter(const int *mask, int *marker, int width, int height)

{

int ix,iy,ox,oy,offset,maxVal=0;

int currentQ,currentPixel,pixelsPerImage=width*height;

int *istart,*iarray;

for (offset = pixelsPerImage-1; offset >= 0; offset--)

if (marker[offset] > maxVal)

maxVal = marker[offset];

istart = (int*)malloc((maxVal+1)*sizeof(int));

iarray = (int*)malloc(pixelsPerImage*sizeof(int));

memset(istart,0xfe,(maxVal+1)*sizeof(int));

memset(iarray,0xff,pixelsPerImage*sizeof(int));

for (offset = pixelsPerImage-1; offset >= 0; offset--) {

if (marker[offset] != 0) {

iarray[offset] = istart[mask[offset]];

istart[mask[offset]] = offset;

}

}

for (currentQ = maxVal; currentQ > 0; currentQ--) {

currentPixel = istart[currentQ];

while (currentPixel != 0xfefefefe) {

istart[currentQ] = iarray[currentPixel];

ix = currentPixel%width;

iy = currentPixel/width;

for (oy = iy-1; oy <= iy+1; oy++) {

for (ox = ix-1; ox <= ix+1; ox++) {

if (ox>=0 && oy>=0 && ox<width && oy<height && iarray[offset=ox+oy*width]==0xffffffff) {

marker[offset] = mask[offset]>currentQ?currentQ:mask[offset];

iarray[offset] = istart[marker[offset]];

istart[marker[offset]] = offset;

}

}

}

currentPixel = istart[currentQ];

}

}

free(istart);

free(iarray);

}
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B.2.4 Grassfire Distance Transform

This is a compact and efficient implementation of the grassfire distance trans-

form, based on the directed filtering algorithmic pattern described in detail

in Chapter 4. It provides a fast, single pass implementation of the transform,

which outputs a distance map indicating the shortest chessboard distance from

each pixel in the image to the nearest background pixel.

// input : src - figure non-zero, ground zero

// output : dst - chess board distance to nearest ground pixel

void GrassFire(const int *src, int *dst, int width, int height)

{

int ix,iy,ox,oy,offset;

int head=-999;

int tail=-1;

int pixelsPerImage=width*height;

int *iarray,*p;

p = (int*)malloc((pixelsPerImage+1)*sizeof(int));

iarray = p+1;

for (offset = pixelsPerImage-1; offset >= 0; offset--) {

if (src[offset] != 0) {

dst[offset] = -1;

} else {

dst[offset] = 0;

if (head == -999) {

head = iarray[-1] = offset;

} else {

iarray[head] = offset;

head = offset;

}

}

}

if (head != -999) {

while (head != tail) {

tail = iarray[tail];

ix = tail%width;

iy = tail/width;

for (oy = iy-1; oy <= iy+1; oy++) {

for (ox = ix-1; ox <= ix+1; ox++) {

if (ox >= 0 && oy >= 0 && ox < width && oy < height &&

dst[offset = ox+oy*width] == -1) {

dst[offset] = dst[tail]+1;

iarray[head] = offset;

head = offset;

}

}

}

}

}

free(p);

}
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B.3 Applications

We have developed a wide range of data processing, analysis, and visualisa-

tion tools within the framework of the NeatMRI library. Here we provide an

overview of the kinds of tools that we have constructed in the course of this

project, illustrating the versatility and flexibility of the NeatMRI environment.

At the top level of all of our applications we provide a database browser. Be-

low is an example of such a browser, displaying a study from our general MRI

database. This particular study consists of seven individual series, and repre-

sents an examination of the subjects head.

The menus at the top of this browser provide access to all the subsidiary tools

integrated into the application, as described below. The list to the left contains

all the studies registered within the current database. A study consists of one

or more series. The list of series that comprise the current study, highlighted

in the study list, are displayed in the centre panel, and a thumbnail image for

each is also shown along the bottom of the browser. Double clicking a series

or its thumbnail loads that series into memory. Currently loaded series are

displayed in the rightmost panel.
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The file menu provides the following set of functionality:

• New DICOM studies can be scanned, recon-

structed, and added to the current database.

• Multi-section volumes can be reconstructed using

the DICOM header information.

• The database can be purged, deleting all studies

so as to leave an empty database.

• Volumes can be loaded in four different ways:

1 – Load exactly as saved in size and orientation

2 – Load interpolated to yield cubic voxels (1×1×1mm3)

3 – Load interpolated and resliced into an axial orientation

4 – Load a volume not registered in the current database

• The selected volume in the loaded volume list, or all volumes, can be

unloaded from memory, freeing all associated space.

• Volume details can be displayed in a dialog box, as below.

• An intensity histogram for the current volume can be calculated and

displayed in a popup window.

• The ‘About’ dialog box can be displayed.

NeatMRI

About NeatMRI

Copyright c 2004, by Paul F. Whelan. All rights reserved.
Vision Systems Group, Dublin City University

www.eeng.dcu.ie/~vsl : vsg@eeng.dcu.ie

OK

• The application can be exited.
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The segmentation menu provides the following functions:

• The four steps in body fat analysis can be applied

one at a time:

1 – Isolate and characterise the whole body.

2 – Apply the basic segmentation procedure.

3 – Apply the adaptive procedure.

4 – Store the results as an html page.

• The four steps in body fat analysis can be applied in one go.

• The four steps can be applied to every volume in the database.

• Any one of a number of segmentation procedures can be applied to the

current volume.

The tools menu provides the following set of functionality:

• The current volume can be browsed in an axial,

coronal, or sagittal orientation.

• The current volume can be examined using a flex-

ible multi-view orthogonal sections viewer
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• The current volume can be rendered and manipulated in a set of ren-

dering tools, using a number of possible volume and surface rendering

algorithms. Below we see a maximum intensity projection (MIP) volume

rendering and a Gouraud shaded surface rendering of the same dataset

showing the segmented biliary tree. The surface was constructed using

a variant of the marching cubes algorithm.

• Multiple volumes from the same study can be merged using the recorded

DICOM coordinate system information to achieve registration.

• An adaptive smoothing filter based on gradient-weighted Gaussian smooth-

ing can be applied to the current volume to reduce noise in the data.
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B.3.1 Body fat tools

The prospective study conducted into the measurement and localisation of

body fat in whole body MRI lead to the development of a number of notable

enhancements to the basic set of tools described so far.

NeatMRI
Body Fat Analyser

Firstly the basic browser interface was extended so as to provide full reporting

of segmentation and analysis results. Since in whole body MRI each study

consists of only a single series the space in the central panel is used to display

each set of results as they are calculated, as illustrated below.
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The orthogonal section viewer tools were enhanced to display multiple views

of the orthogonal slice data, providing useful options for zoom, highlighting,

contrast enhancement, and data markup, as well as image saving.

A versatile LUT editor was also developed in order to allow flexible control over

the colour lookup table used in generating the displayed images in these and

other visualisation tools such as the surface and volume rendering applications.

An extensible library of useful standard LUTs is provided to help maximise

the ease of use of the LUT editor.
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A more comprehensive volume rendering interface was also implemented allow-

ing for full control over the rendering procedure. Below are shown two views

of this new interface. The first is a MIP of a whole body dataset, while the

second shows a greyscale gradient rendering of a dataset subregion.

The home button returns the rotation, scale, and translation parameters to

predefined values allowing quick return to a default view. Tradeoff between

render quality and speed is possible from the ‘Render quality’ dropdown menu,

which provides four settings from course to fine. The six ‘Clipping Planes’

sliders allow for dataspace clipping to be preformed such that region of interest

can be specified and examined in detail, eliminating interference from non-

relevant regions of the data.
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