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Abstract

Eamonn Boyle BA, BAI, MENG

This thesis provides a complete framework that enables the creation of photorealistic 3D human 
models in real-world environments. The approach allows a non-expert user to use any digital 
capture device to obtain four images of an individual and create a personalised 3D model, for 
multimedia applications. To achieve this, it is necessary that the system is automatic and that the 
reconstruction process is flexible to account for information that is not available or incorrectly 
captured. In this approach the individual is automatically extracted from the environment using 
constrained active B-spline templates that are scaled and automatically initialised using only image 
information. These templates incorporate the energy minimising framework for Active Contour 
Models, providing a suitable and flexible method to deal with the adjustments in pose an individual 
can adopt. The final states of the templates describe the individual’s shape. The contours in 
each view are combined to form a 3D B-spline surface that characterises an individual’s maximal 
silhouette equivalent.

The surface provides a mould that contains sufficient information to allow for the active de­
formation of an underlying generic human model. This modelling approach is performed using 
a novel technique that evolves active-meshes to 3D for deforming the underlying human model, 
while adaptively constraining it to preserve its existing structure. The active-mesh approach incor­
porates internal constraints that maintain the structural relationship of the vertices of the human 
model, while external forces deform the model congruous to the 3D surface mould. The strength 
of the internal constraints can be reduced to allow the model to adopt the exact shape of the bound­
ing volume or strengthened to preserve the internal structure, particularly in areas of high detail. 
This novel implementation provides a uniform framework that can be simply and automatically 
applied to the entire human model.

Active Modelling of Virtual Humans
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C h a p t e r

I n t r o d u c t i o n

1.1 Introduction

Virlual worlds have been in existence for several years, providing users with new experiences 

through the development o f innovative computer games, the reconstruction o f ancient cities and 

virtual reality applications, to name but a few. Although full immersion is still not feasible, a user’s 

experience can be greatly enhanced using personalised human models. To satisfy the demand for 

models, the creation o f realistic human models has infiltrated the world of computer games and 

virtual worlds. Moreover, increasingly applications are facilitating the creation of personalised 

characters, avatars, etc. to renew interest in existing applications and to draw attention to new ones. 

This has resulted in continuous development of techniques for the creation of virtual, realistic, and 

anatomically correct human models for use in both real-time and offline applications. In film 

studios where there exist bigger budgets, large number of cameras can be used to capture images 

that are combined in a user-assisted reconstruction process to create high-quality realistic human 

models. Presently, not every user has access to this type of technology or the technical expertise 

necessary to create such models, but still requires the same level o f realism. The most common 

methods that are currently used in games involve the capture of images and texturing a default 

model with the face of the captured individual, for example in FIFA051 and Quake2.

There are numerous different approaches to the creation and animation of virtual humans, 

depending primarily on the final application but also on the input data, the quality of the model 

required and the destination device (which in many cases is not limited to a single device). The 

input data consists of either images captured from a single or multi-camera setup (Hilton et al. 

1999), data from a whole body scanner (Ju & Siebert 2001) or models for sculpting in modelling 

environments (Kalra et al. 1998).

In addition, to provide standard representation o f human models, the Motion Picture Experts 

Group (MPEG) and the Web3D organisations have collaborated to produce the humanoid ani­

mation standard which forms part of both the MPEG-4 standard (MPEG4 1998) and the VRML 

(Virtual Reality Modelling Language) 2.0 standard (VRML 1997).

The approach described in this thesis provides a flexible automated low constrained image

'EA Games: www.ca.corn
2ID Games: wimu.idsof ttuare.cxnu
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based method that enables a home-user with the tools to create realistic human models with non­

specialised equipment that can be seamlessly immersed into existing worlds and animated using 

existing animation streams. The approach builds on previous research in the area of active contours 

models (ACMs), also known as snakes, introduced by Kass et al. (1987) as a method to solve a 

variety image and machine vision tasks. ACMs are a general technique for matching a deformable 

model to an image using energy minimisation.

In particular, this approach presents a constrained ACM in the form of a deformable template 

that is automatically initialised close to the individual in the captured images and that deforms 

to minimise the ACM’s energy while adhering to the predefined constraints. The extracted 2D 

contours describe accurately the individual’s shape. The contour extracted in each view is then 

combined to form a 3D bounding volume using a silhouette based reconstruction technique. The 

bounding volume represents the maximal silhouette equivalent of the individual and contains suf­

ficient information to allow for active deformation of an underlying generic human model. Our 

modelling approach is performed using a novel technique that extends active-meshes to 3D, to de­

form the underlying human model, while adaptively constraining it to preserve its existing struc­

ture (Molloy & Whelan 2000). The active-mesh approach incorporates internal constraints that 

maintain the structural relationship of the vertices of the human model, while external forces de­

form the model congruous to the bounding volume mould. The strength of the internal constraints 

can be reduced to allow the model to adopt the exact shape of the bounding volume or strength­

ened to preserve the internal structure, particularly around the face and in areas o f high detail. This 

novel implementation provides a uniform framework that can be simply and automatically applied 

to the entire human model.

1.2 Motivation

The main motivation behind this research is to provide the home-user3 with any digital camera 

(including web-cams and camera enhanced mobile phones) the ability to create their own person­

alised human models that can be used in a variety of interactive virtual environments. In providing 

such a facility, it will enhance the individual’s experience in the virtual world and encourage the 

creation o f virtual communities where individuals can interact with and recognise one another.

In developing this system, it is necessary to provide a set of tools that a home-user can simply 

use to create a realistic model that can be incorporated easily into existing and future virtual 

environments. The system should be automated or provide a user interface that requires a low- 

level o f user interaction to produce the model. The greater the level o f automation in the system, 

the more universally applicable the system will be.

The system should facilitate the accurate extraction of shape information to ensure that the 

models can be personalised and easily integrated into different environments. Thus the model 

should conform to a standard representation. The extraction of the shape information should be 

robust, to extract the shape from a minimum number of views in any environment, and should not 

be dependent on the individual adopting a pose for a prolonged period.

3A home-user (or non expert user) is classified as a user with little or no expertise in creating 3D content and who 
does not have access to any sophisticated equipment.
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The reconstruction process must be flexible to allow the home-user to change the appearance 

of their model for different environments. In gaming environments, this is important to allow 

the individual to take on the attributes of a character and to reuse existing animation data. It 

is essential that the deformation of the default character, to take on the shape of the individual, 

should be automatic and preserve the detail of the underlying model to reconstruct the non-convex 

contours is achieved while deforming to the extracted shape of the individual to provide a highly 

personalised model. This is particularly important when such data cannot be readily extracted 

from the image data.

By providing a flexible method for the creation of human models, it is possible to provide 

greater interactive experience in new and diverse on-line 3D applications. These applications 

include personalised fashion shows, self-diagnosis for certain medical conditions and the visual­

isation of the user in a new house or apartment, etc. To realise this, the models must be flexible 

and crucially conform to a standard representation.

Further motivation for this research is to explore the minimum requirements for the extraction 

of an individual from a real environment, to determine the minimal requirements for building a 

realistic human model, to demonstrate that it is possible to create accurate human models from a 

limited set o f views and that silhouette-based reconstruction is a valid approach to human mod­

elling. Thus, existing approaches for the creation of human models are examined in order to 

determine what aspects are most suitable for the creation of human models in real environments 

and to establish the key elements that constitute a flexible reconstruction process. In particular, 

the examination of existing techniques indicates what restrictions are placed on the individual, 

the quality of the 3D models and the cost in the system in terms of setup, expertise required to 

interpret the data and the flexibility of the created models.

An additional motivation that was not explicitly considered at the outset o f this research, but 

which grew in significance as the research progressed, is the provision of an approach with a 

low-overhead that seamlessly permits the use of the captured data to modify an underlying model 

while ensuring that the existing internal structure is maintained. This has implications beyond the 

modelling o f an individual, for example in morphing one object to approximate another shape; 

this is a common method in existing animation packages requiring considerable interaction and 

cannot in general, be applied to the object as a whole unless the object has a simple structure.

1.3 Contributions

This thesis makes a number of important contributions in the two fields of image processing and 

machine vision. In particular, this thesis describes a complete system for the capture, creation and 

animation of virtual human models that can be used in various virtual environments. It begins by 

completing a review of active contour models and current reconstruction techniques that facilitates 

the determination of minimum requirements for the creation of human models using images cap­

tured in real environments. The theories that are expounded are validated with extensive testing 

using real-world data.

The significant aspects of this research are identified, and they consist o f the following major 

contributions:
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•  This approach is innovative in that it attempts to impose a minimum number of constraints at 

all stages, from image capture through to the 3D modelling o f the individual. In particular, 

the system captures only four images of the individual who adopts a static pose in each 

image. The extraction of the individual is achieved using an template that is automatically 

initialised and requires a limited amount of user interaction. Furthermore, the bounding 

volume is automatically created, as is the application of active-meshes. The provision of 

a system capable of enabling a non-expert user to create and modify their own models is 

an important achievement and step in providing greater access to new virtual experiences. 

A prerequisite for such system is that it permits the use of off-the-shelf technology and 

supports the capture of data in unconstrained real environments.

•  In achieving the overall goal, there are two interwoven themes that contribute to a number 

of significant developments.

1. The first is the development of a generally applicable template that can be used to 

automatically extract an individual from their environment using constrained active 13- 

spline contours that are automatically initialised within the captured images. The final 

position of this template accurately describes the shape of the individual. The devel­

opment and application of such a template for the accurate extraction of human shape 

information has not previously been identified in the extensive literature reviewed.

2. The second contribution provides a logical step in generating the B-splines extracted 

from each view to perform the 3D reconstruction of an object as a 3D B-spline surface. 

It integrates the image data that is extracted in each view to create a 3D bounding 

surface using silhouette based reconstruction. This is combined with an underlying 

model to create a human model which can be easily animated with varying levels of 

realism and that conforms to the humanoid animation standard. This validates the use 

of silhouette-based approach to the reconstruction of human models.

3. Thirdly, this approach culminates in a novel formulation of active-meshes for the active 

deformation of an underlying model to rebuild the fine data that cannot be extracted 

using silhouette based reconstruction from four views. This formulation provides a 

3D active framework that uses the active contours extracted from 2D images, which 

contain important shape data, to create a 3D active surface. The active surface for­

mulation is represented as a B-spline surface and incorporates large and small-scale 

deformations in a single formulation. Internal constraints maintain the structure of 

the vertices of the human model, while external forces deform the model according to 

the bounding volume mould. The strength of the internal constraints can be varied to 

allow the model to adopt the exact shape of the bounding volume or to preserve the 

internal structure. This novel implementation provides a uniform framework that can 

be simply and automatically applied to the entire human model.

In addition, auxiliary contributions associated with this research include:

•  A method for the automated initialisation of parametric active contour models.
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•  The specification o f criteria for the automatic insertion or removal of control points.

•  The creation of different human models with different levels of realism and detail.

•  The evaluation of the level of clutter in images.

•  A simple texturing technique that can be applied to modelling photorealistic humans.

•  A simplified method for storing 3D shape information.

1.4 Organisation

The organisation of this thesis is as follows:

Chapter 2 discusses active contour models; in particular, it provides a complete review of the 

evolution o f the active contour models since their inception in (Kass et al. 1987) and discusses 

the different formulations including parametric and geometric active contour models. This de­

scription contains a detailed mathematical description of the active contour model and how this 

has been optimised and reformulated to enable active contours to be used in diverse applications. 

This includes the reformulation in terms of B-splines and their general applicability for use as 

templates. This review facilitates the development o f techniques that are described in chapter 4 

for the extraction of the individual from their surroundings.

Chapter 3 provides a description of available 3D reconstruction techniques for the creation 

of both rigid and articulate 3D objects. Following this, the techniques that have been applied to 

the creation of human models are discussed in detail with particular emphasis on photographic 

techniques which stress the importance o f devising a complete system. This review provides a 

basis for the modelling techniques that are formulated in chapter 4.

Chapter 4 describes the main design approaches that have been considered for the creation of 

virtual human models and the different techniques that have been developed for the personalisation 

of an underlying model and how the active contour models applied automatically in the form of 

pre-constrained templates for the extraction o f the individual from the scene and the creation 

of the human models. This chapter also indicates the necessity for the provision of the active 

deformation of the underlying model and how this is formulated in 3D to seamlessly modify the 

underlying model while conforming to internal constraints.

Chapter 5 contains an extensive set of tests and results that highlight the success and failures 

o f the methods proposed in Chapter 4. This section contains a series o f tests that were undertaken 

to verify the correct implementation of the techniques. It culminates by showing that the reformu­

lation of the active-meshes enables significant enhancement for the modelling of human models 

and improves the photo-realism of the underlying model. Additionally, it shows that the process 

can be applied in general for the creation of advanced 3D content.

Chapter 6 summarises the research undertaken and provides a review o f the results. A list of 

publications stemming from this research is furnished. Finally, suggested future research direc­

tions are discussed.
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A c t i v e  C o n t o u r  M o d e l s

Chapter ______________________

2.1 Introduction

Active contours models (ACMs) are a popular method used to solve a variety of image analysis and 
machine vision tasks. They are often called “snakes” because of the fact that they appear to slither 
across images to arrive at the desired solution. ACMs are an example of the general technique of 
matching a deformable model to an image using energy minimisation. The fundamental theory of 
the ACMs was largely developed by Kass et al. (1987). Snakes have been applied in various guises 
and in various imaging domains, most notability in the medical imaging domain (Mclnemey & 
Trezopoulos 2000), and the use of templates has enabled snakes to be applied successfully in other 
image domains for the analysis of dynamic image data and 3D image data (Curwen & Blake 1993).

ACMs are energy minimising curves that continuously deform and minimise to fit desired 
image features. They provide a low-level means of detecting simple image information, including 
light and dark lines, edges and terminations. Furthermore, ACMs facilitate the combining of 
this image information in a meaningful manner that enables its use in higher-level processes. In 
particular, the use of snakes facilitates the accurate definition of object boundaries. One of the 
significant advantages that ACMs and, in general, deformable templates have over other competing 
low-level imaging techniques is that they facilitate the incorporation of higher-level information 
in the definition of the template, encompassing elements of image data and model-based control 

strategies (Sonka et al. 1999).
The classification of ACMs as deformable templates can, in part, be achieved by analysing how 

they locate features of interest, how they represent the actual contour and by the target applications. 
In (Kass et al. 1987), the features are located by placing either an open or closed contour in the 
vicinity of the feature (or object) that is to be extracted. The minimisation process then guides 
the contour to locate the particular feature, while the balloon model, introduced by Cohen (1991), 

locates the particular feature by expanding to the strongest edge or feature in the region about the 

contour.
There are two common methods for the representation of active contour models. The first and 

the original is that of the parametric snake which is essentially an ordered set of discrete points
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(also termed snaxels1) . The second, which is more recent development and independent of the 
contour parameterisation, is the geometric active contour model. Both of these models facilitate 
the representation of the various forces that enable the contours to deform/evolve to the correct 
solution (Malladi et al. 1995, Caselles et al. 1997).

In the late 1980’s and the early 1990’s, the idea of using active contour model as templates 
was considered by many authors including Blake & Isard (1992), Blake & Isard (1998) and 
Cootes et al. (1992). They used the general energy minimising technique to allow the creation 
of deformable templates. The templates describe the general or average shape of the object to 
be extracted and then based on training sets the allowable movement of the control points was 
formulated. These templates were redefined by Blake & Isard (1998) using B-splines and applied 
successfully to motion tracking and other real-time applications.

The objective of this chapter is to study and compare the different theoretical frameworks of 
active contour models. It starts by considering the original ACM proposed by Kass et al. (1987). 
Then, parametric and geometric active contour models are described. In addition, the different 
variations on the original model are explored and assessed in this chapter along with the different 
elements that have been incorporated to facilitate the creation of templates including the reformu­
lation of the active contour models to incorporate non-rational uniform B-splines (NURBS).

2.2 Active Contour Model Definition

Snakes as proposed by Kass et al. (1987) are designed to provide a unified approach to low- 
level vision tasks including: edge and line detection, motion capture and stereo matching. The 
overall objective is to design an energy minimising function whose local minima comprise the set 
of alternative solutions available to higher-level processes. The local image minima correspond 
to desired image properties. The snake is a model-based active contour initialised close to or 
around the object of interest by manually placing a discrete set of points called control points. The 
snake’s energy depends on its shape and its location in the image. The fundamental difference 
between this method and any that have preceded is that it intends to provide higher-level processes 
with information about the image that is not confined to a single solution. In essence, low-level 
image information is extracted and then higher-level image processing applications can group or 
interpret the information in a manner dependant on the desired output. This is realised using an 
energy minimisation framework in which constraints are used to ensure that the minimum solution 
is obtained based on local information. In addition to this, snakes have the advantages that when, 
a gap exists in the edge image, the contour can still determine the objects boundary, and similarly 
when several smaller objects (or regions) constitute a whole object, the ACMs can be used to 
provide a single contour to outline the entire object.

There are two main elements in the definition of active contour models. The first is the def­
inition of a deformable contour model that is used to extract objects from a scene. This includes 
the definition of forces that are used to control the deformation of the contour. The second is the 
energy minimisation process that is undertaken to arrive at the desired solution.

'T h e  term  snaxel is derived from  the contraction o f  the term snake elem ents.
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In (Kass et al. 1987) the snake is defined parametrically using an ordered number of control points 
that are placed close to the object of interest in the image. The snake is created by a spline that 
interpolates all the control points. It is possible to have either an open or closed snake, for example 
see Figure 2.1. The positions of the control points define the shape and energy of the snake. The 
contour is represented as an ordered set of n  points Vi — (xi, y,) i — 0...n — 1. Thus every control 
point has a 2D position in the image.

2.2.1 Contour Representation

¿ = 0

(a) Open Contour (b) Closed Contour

Figure 2.1: Examples of Initial Contours

The original snakes are modelled

ESnake ~  f  ^Snake{v(^s))ds (2 . 1 )
JO

E'Snake = f  [^Internali^i3)) “I” ^Externali^i^)) -Econstraint{v (s ))]ds (2 .2 )
JO

Defining the snake as a closed contour has the advantage of periodicity and also eliminates 
some of the difficulties that are encountered in calculating the energy at the first and last points. 
This will be more evident in the discussion on internal energy below. The energy contained in the 

contour consists of two parts: the internal and the external energy. The internal energy will move 
the contour towards a smooth curve and the external energy will pull the contour towards regions 
or features with desired properties.

The Internal Energy

The internal energy is composed of a first and a second order terms which control the elasticity 
and the stiffness of the snake. The internal energy works to minimise the distance between control 

points. This minimisation is counteracted by the external forces which attract the control points 
to features in the image. The relative significance of these forces is controlled by weighting para­
meters. The internal energy is sometimes referred to as the régularisation term and using the thin 

plate model, it can be expressed as
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E Internal =  (a (s) |v s (s) |2  +  0 (s )  \Vss (s) |2 ) / 2 (2.3)

where v s  =  and v s s  =  and a  and ¡ 3  are arbitrary functions that determine the contours 
tension and rigidity respectively. The functions a  and /3 provide the possibility to change the topol­
ogy of the elastic contours. There are no guidelines for setting a  and ¡ 3  (Williams & Shah 1992). 
In several implementations, their values are taken as constant and (Fua & leclerc 1990) (Neuen- 
schwander et al. 1994) show that the values chosen are fairly image independent. In (Samadani 
1989) a  and ¡ 3  are redefined as space-varying functions, which facilitates changes in the continu­
ity. The first order term in Equation 2.3, vs makes the snake behave like a thin membrane and the 
second order, v s s , term acts like a thin plate and a ( s )  and / 3 ( s )  control the relative significance of 
each term. Setting /3(s) =  0 at a point allows the snake to become second order discontinuous and 
develop a comer. The value of the first order term will tend to be larger when the average spacing 
between the control points is large and the second order term will tend to be larger when the curve 

is bending rapidly.
The discrete representation of the internal energy is important for determining the snake’s en­

ergy and for the implementation of the energy minimisation process in (Amini et al. 1988). Using 

the discrete approximation allows the image to be considered as a discrete grid, as opposed to the 
formulation o f (Kass et al. 1987) which permits control points to lie between discrete coordinates.

1  n
EInternal ~   ̂ ^  y - 1 1 “I" 2Uj I Wj-j-lJ ^ (2.4)

i = 1

If  the snake is defined as an open contour then some restrictions or boundary conditions have 
to be introduced to accurately update the position of the end points. In particular, the second order 
term relies on three points and thus it cannot be reliably calculated at the end points. If this term is 
omitted from the calculation of the energy at the end points then the end points, will move towards 
its nearest point causing the length of the snake to contract. On closer inspection of Equation
2.4, it can be seen that to minimise the first order term, the distance between two points must be 
minimised. This causes the contour to shrink, possibly to a point. Using the hard constraints that 
are introduced by Amini et al. (1988), the effects of this problem can be reduced.

In (Williams & Shah 1992), the first order term is reformulated to cause the control points 
to be evenly spaced on the contour and removes the shrinking behaviour of the contour. This is 
achieved by incorporating the average distance, d ave, between control points into the first order 

te rn  as follows:

d — da ê |vj Vi_i| (2.5)

Where d is the regularised distance between the control points Vj and v*_i
This ensures that control points having distance near the average distance will cause the first 

order term to be closer to zero. This can be normalised by dividing by the largest value of the
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neighbourhood that a control point can move to in a single iteration. Williams & Shah (1992) 
calculate the second order term as a measure of curvature and if the curvature is above a defined 
threshold then a comer is allowed to develop by setting ¡3 =  0.

The External Energy

This discussion on the external forces will consider the image forces and constraints that influence 
the minimisation of the snakes. The external forces counteract the minimisation of the contour 
by increasing or reducing its attraction to a particular feature in the image. The image forces are 
derived from the image data over which the snake lies. Several examples of these forces are found 
in the literature and some of the most common are described in this section.

Each of the external forces that are used to control the evolution of the snake are combined 
using the following formulation:

EExternal ^ L in eL in e  ^Edge-^Edge “I" WTerminationETermination (2-6)

where u>une, uiedge and u>termination are used to control the significance of each element, i.e. to 
control its attraction to a particular feature. If additional external forces are required, they are 
simply added to the above equation.

1. Line Functional
The line-based functionality is used to attract the snake to lines of a particular intensity. By 
adjusting the sign of uiune the snake can be either attracted to light or dark lines.

Eline =  I { x ,y ) (2.7)

where I ( x ,y )  is the image intensity at a particular point.

2. Edge Functional
In general, the edge information is calculated in the pre-processing stage. A description of 
the different operators available for the creation of edge maps are described in (Sonka et al.

1999). The edge-based functional is the most widely used external force. These forces are 
used to guide the contour to areas where edge information is strongest. In (Kass et al. 1987), 
no specific edge detection technique is specified and the edge functional is defined as:

Eedge =  ~\W I(x,y)\2 (2 .8 )

where V is defined as the gradient and the negative sign means that the contour is attracted 

to strong edges.

In (Williams & Shah 1992), the discrepancies in gradient magnitude are addressed by scal­
ing the values of the gradient-based on its neighbourhood. This results in the following edge 

functional:

/ m in  -  m a g (v i)\ ^
V m a x  — m in  J

10



where m in  =  m in\grad{xi,yi)\  and m a x  — m ax\grad(xi,yi)\  are the minimum and 

maximum value in the gradient in the neighbourhood of a control point respectively and 
m ag (v i) =  \grad(xi,yi)\ is the magnitude of the edge at the control point Vi and is calcu­
lated using Equation 2.8. This gradient term is negative so that points with large gradient 
values will have small values attracting the contour to these points. If the difference between 
minimum and maximum values in the neighbourhood is less than 5, then the denominator 
in Equation 2.9 will be set to 52. This provides a measure that prevents large differences in 
the value of the image energy when the gradient magnitude is measured in a nearly uniform 
neighbourhood.

Jacob et al. (2004) highlight that the gradient-based edge energy is heavily dependent on the 
parameterisation of the snake, i.e. if the snake is re-parameterised in terms of a parameter 
s' =  w (s), where w is a monotonically increasing one-to-one warping function, it will 
result in a different value for the gradient-based edge energy. In addition to this, the use of 
the scalar gradient energy will result in the control points being attracted to regions of high 
gradient, In (Jacob et al. 2004), a new gradient-based image energy is proposed that takes 
the integral o f the scalar field derived from the gradient vector field. This is expressed as

E grad =  j f k - ( V ( / ( a ) )  x d r  (2 .1 0 )

-  ¿ V ( I ( s ) )  ' ( d r x  k) (2.11)

||</r||n(r)

where k  is the unit vector orthogonal to the image plane3 and n (r ) denotes the inward unit 
normal to the curve at r. This is illustrated in Figure 2.2.

Figure 2.2: Gradient and normal to the curve. V (/(s ) )  denotes the gradient at s, dr  is the normal 
along the contour, C , and n  is the inward unit normal vector (Jacob et al. 2004).

2The m ain reason fo r having a cu t-o ff value o f  5 can be seen using  the fo llow ing values: 47, 48 , 49. U sing  these 
Figures the  gradient m agnitude w ould  be 0, —0.5 , or —1.0 for points w ith essentially  the sam e gradient m agnitude. On 
the o ther hand w ith 5 as a m in im um  value the gradient term  w ould be —0.6, —0.8 , o r —1.0 w hich is a m ore accurate 
representation o f  the sim ilarity  o f  the  values.

3T he vector k  is chosen depending on the direction in w hich  the  curve is described, such that n ( r )  =  M “ * e  
inw ard un it norm al (Jacob et al. 2004).

11



It has been proposed by Fua & leclerc (1990) to replace the gradient magnitude by its loga­
rithm since the external energy is proportional to the gradient information, which can vary 
rather rapidly due to image contrast or noise. Other approaches to the problem have sug­
gested that the direction as well as the magnitude should be considered as a solution to 
getting more precise edge information (Xu & Prince 1998ft), but in (Neuenschwander et al. 
1994) it is claimed that the result of the different methods, including using the Euclidean 
distance from the control point to the nearest edge, provide very similar results.

3. Termination Functional
The termination functional sometimes referred to as the comer functional, is used to guide 
the snake to line terminations and comers within the image. This is achieved using a slightly 
smoothed version of the original image4, H (x , y) =  G n (x, y ) * I ( x ,  y), where G n (x, y) is a 
Gaussian operator applied to the original image. Let 0(x, y) be the gradient directions along 
the snake in the slightly smoothed image and let

be unit vectors along and perpendicular to the gradient directions 0 (x ,y ) . The curvature of 
the level contours in the smoothed image can then be written as:

In (Kass et al. 1987), the line terminations and comers are extracted in subjective contour 
illusions to illustrate that when insufficient image information can be reliably extracted from 
the image the active contours can be used to generate an accurate contour and the internal 
constraints of the active contours provide a smooth curve. In general, when sufficient edge 
information exists, attraction to line terminations can be incorporated into the edge energy 

functional.

4. Springs and Volcanoes
In addition to using image information, it is possible that user specified elements can be used 
to constrain the movement of the snakes (Kass et al. 1987). These forces are implemented 
as springs and volcanoes and provide forces that push and pull the snake towards or away 

from certain features or regions respectively. The spring forces are usually used to force 
the contour to move towards a desired feature, see Figure 2.3 (b). One end of the spring is 
attached to the contour and the other connected to a fixed point, connected to another point

4The sm oothing o f  the im age is an im portant step in the reliable generation o f  the second derivative and establishing 
the zero-crossings. The effect o f  the sm oothing is to reduce the noise (Sonka et al. 1999)

n  =  (cosd, sin9) and n i  =  (—s in 6 ,co s9 ) (2 .1 2 )

E 'TeTm d n ± O H /dn
86 _  d 2H /d n \

(2.13)

(2.14)
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on the snake or dragged by the mouse. The spring force between two points v\ and v -2 is 
defined as —k{v\ — v^)2 and this term is simply added to Equation 2.6. The volcano is used 
to push the contour away from one region in the image and towards another region or to 
push it out of one local minimum and into another, see Figure 2.3 (a). This force is defined 
as a repulsion force and can be defined as py where r  is the distance between a control point 
Vi and a reference point v. It is possible that more than one spring force or volcano can be 
used to guide the snake to the correct solution.

(a) (b)

Figure 2.3: (a) the volcano pushing the contour away and in (b) the spring force attached to a 
control point on the contour (Molloy 2000).

2,2.2 Energy Minimisation

The energy minimisation procedure adopted plays a critical role in the success of a particular algo­
rithm. The original algorithm of Kass et al. (1987) obtains a minimum using the Euler-Lagrange 
method with finite differences. Some of the potential problems associated with this method were 

highlighted in (Amini et al. 1988, 1990) regarding the stability of the algorithm. In this section, 
different minimisation techniques that have been applied to minimising the energy of active con­
tours are discussed in relation to a number of parameters relating to the stability of the method, 
the correctness of the solution, the running time, memory allocation and the robustness of the 
algorithms.

The minimization process in (Kass et al. 1987) is a finite difference method (FDM). This is an 
iterative technique based on the calculus of variations and takes implicit Euler steps with respect 
to the internal energy and explicit Euler steps with respect to the image and external constraint 
energy. This approach can be described as a finite difference method in which the contour behaves 
as a set of masses linked by a zero length string (Cohen 1991). This results in the contour shrinking 
to a point if no external or image forces act on the snake, The system of equations that results from 
the Euler-lagrange equation requires 0 [ n )  time which is typical of an iterative method. In addition 
to the stability issues, this approach is sensitive to local noise because the energy is only calculated 
at each of the control points and not at all points along the contour. However, if the number of
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control points in the contour are increased, then the gap between the control points decreases 
which causes the stiffness of the snake to increase5.

Other approaches have been proposed. These include:

• Finite Element Method (FEM),

• The dynamic programming approach and

• The fast algorithm and the greedy fast algorithm - both of which are variations on the dy­
namic programming approach.

Finite Element Method

A finite element method is proposed by Karaolani et al. (1992) as an improvement on the finite 
differences method proposed by Kass et al. (1987). This method makes the active contours more 
sensitive to fine detail in the image by sampling the image forces that act along the length of 
the active contour. This is in contrast to the original implementation in which the image is only 

sampled at the control points.
The contour (,s) is divided into a number of elements6, in which the elastic, stiffness and 

image forces seek their own local minima. The snake is expressed as a hermite cubic spline with 
low order continuity at joints. Splitting the contour into different elements results in the compu­
tation of 2n e equations, where n e is the number of elements. At each element, an approximation 
to the length of the element (in the (x — y ) space) is computed and the number of elements is 
proportional to the length in pixels.

This approach shows that by sampling the contour along its length it can provide more accu­
rate minimisation and, moreover, sampling between the control points is more computationally 

efficient than increasing the number of control points. One of the possible drawbacks (limitations) 
of this method is that it requires the individual to specify a priori the number of control points 
based on the expected size of object of interest. This requires the use of prior knowledge or to 
provide an initial segmentation o f the object and means that the sample locations are based on the 
initial contour. This can be overcome in the dynamic programming approach where it is possible 

to increase the number of control points as the contour evolves.
In the paper by Cohen & Cohen (1993), the finite element method is put forward as a method 

that can reduce the number of control points, which is important in the extension of active contours 
to 3D. A series of similar experiments to Karaolani et al. (1992) is described highlighting the fact 
that FEM has a lower complexity than FDM and provides more stable results.

Dynamic Programming Approach

Since the snake is active, it is always trying to minimize its energy and thus it displays dynamic 
behaviour and lends itself to dynamic programming. Amini et al. (1990) proposed an approach

5This decision m ust be taken prio r to the initialisation o f  the active contour because the E uler-lagrange m inim isation 
does not facilita te the dynam ic insertion  or rem oval o f  control points

6A n elem ent is described as the distance betw een two control points.
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to solve the minimisation procedure that overcomes instabilities that exist in the original Euler- 
Lagrange method and the fact that the control points tend to bunch together at a strong portion 
of the edge. In addition to this, the dynamic programming approach allows hard constraints to 
be hard coded into the movement of the snake. This ensures that the algorithm is independently 
stable. This approach takes into account the discrete nature of the problem that is faced when 
working with digital images.

In general, in dynamic programming solutions to the minimisation problem the contour is 

considered as the position vector v  =  V\,V2 , -.vn , where Vi — (a;,, yt) and the energy of the snake 
is given by

n
Esnake =  ^  (2-15)

¿ = 1

where

{ ai\vi -  Vi_i |2  +  Pi\vi- 1  -  2 Vi +  vi+i\2 \
E i =  -  b E^xternali^i) (2.16)

The approach assumes that the position vector Vi can have at most m  degrees of freedom. The 
vector therefore can take only a finite set of values. This introduces a computational limitation 
on the algorithm, because by increasing the size of the neighbourhood (degrees of freedom), the 
number of operations increases substantially, i.e. the operations at each iteration are of the order 
of 0 ( n m 3) (Chandran & Potty 1998). This situation with 9 degrees of freedom is shown in Figure
2.4, The situation illustrated shows the minimal path within the search space about the respective 
control points. This method, like that of Kass ct al. (1987), will cause the snake to converge to a 
single point if it is not initialised correctly or if no image forces are available.

The dynamic programming approach was considered the most suitable approach for the ex­
traction of the individual from a real environment. The primary reasons for this are the ability to 
incorporate hard constraints in the model and the ability to add additional control points. These 
reason are further detailed in Section 4.3.5 and tested in Section 5.3.3

The Fast and Greedy Fast Algorithms

Williams & Shah (1992) detail a fast method for solving the minimisation process that includes the 
hard constraints introduced by Amini et al. (1988). This method is an order of magnitude faster 
than the previous approaches. This approach includes a continuity term and a curvature term in 
addition to the image and external energy terms. A different formulation is used for the continuity 
term that ensures that the control points are more evenly spaced on the contour. Alternatively, 
in the fast greedy algorithm proposed by Lam & Yan (1994), which is a fast iterative method 
for calculating the minimal energy, relies on the assumption that the neighbours of the control 
point having minimum value also have small values, and thus the search space can be halved 
by considering alternative searches of the neighbourhood7. These alternative search patterns are 
shown in Figure 2.5 . By alternating these searches, the whole neighbourhood will be searched.

7T he patterns 1 and —1 are used  by Lam  & Yan (1994) to signify alternative search patterns.
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Figure 2.4: This figure depicts the correspondence between a decision set and image pixels for 
dynamic programming with number of states, m  =  9. The curve indicates the optimum position 
of each control point based on a particular criteria set. Each of the control points can move to one 
of the nine squares in the grid at a particular iteration. The position that is adopted minimises the 
energy configuration for a particular iteration. This is indicated by the curved arrows.

■

• V * ft

■

. V 1+

(a)
ft ft

V ,

ft ft

.  V ±

(b)

Figure 2.5: (a) neighbourhood searched when pattern = 1 in fast greedy algorithm, (b) neighbour­
hood searched when pattern = — 1 in fast greedy algorithm. This approach reduces the number of 
operations at each iteration, assuming that the area around the minimum will also contain small 
values (Lam & Yan 1994).
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2.3 Problems with the Snakes

There arc several elements in the formulation of active contours models proposed by Kass et al. 
(1987) that reduce the automated application of snakes. This section follows on from Section 
2.2.2, which described alternative methods for minimising the contour’s energy. It describes some 
of the problems of active contours and details techniques that have been proposed to overcome 

some of these issues.
In (Kass et al. 1987), the positioning of the snake requires an expert user to position the snake 

close to the contour of interest, and automated positioning of the contour was not considered. 
Automated approaches to the initialisation of the active contour are discussed in Section 2.3.1. 
This is followed by a discussion on the use of a régularisation term to determine the relative 
importance of the internal and external energy terms. In Section 2.3.3, the balloon model of 
Cohen (1991) provides a method to move the contour out of local minima with the inclusion of 
an inflation force. Dual Snakes described in Section 2.3.5 use two snakes to improve fitting active 
contour in face detection applications. Further to this, topologically adaptive snakes attempt to 
address the issues related to the change of topology of the active contours which is not possible in 
the original formulation and is also considered in Section 2.6 where geometric active contours are 
discussed.

In Kass et al. (1987), an iterative technique involving the calculus of variations has been ap­
plied to minimise the energy in the contour. There are a number of issues that are associated 
with this technique, including: stability and convergence (Chandran & Potty 1998). In particular, 
Amini et al. (1990) state that in the theory of calculus of variations, the concept of the absolute 
minimum is not clear defined and that the best solution to the iterative problem is a relative mini­
mum. In addition, instability can be introduced in the calculation of higher order derivatives, since 
the problem is formulated on a continuous plane and solved using an approximate method.

2.3.1 Initialisation of the Snakes

The objective of initialisation is to place the contour in close proximity to the contour, so as to 
facilitate speedy convergence. This is one of the most important aspects of any approach because 
they rely on local image information to deform to the desired object. Snakes do not solve the entire 
problem of finding salient image contours and require other mechanisms to position them in the 
vicinity of the desired contours. Different methodologies involving the use of standard imaging 
techniques8 have been developed to facilitate the automated initialisation of the contour (Neuen- 
schwander et al. 1994). To date, these techniques are application specific and generally result in (or 
from) templates that are applied to extract particular objects from the scene. In addition to placing 

the contour somewhere near the desired solution, it is necessary to specify the approximate shape 

o f the contour. This effectively amounts to an initial course segmentation of the image.
One of the most general and widely used techniques is that of the generalised Hough Transform 

that is described in (Ballard 1981). In image space, a pair of quantised parameters can represent 
a line segment. The complete set of possible lines for the whole image can be represented by an

8S tandard  im aging techniques involve the application o f  fi Iters and sm oothing algorithm s to the im age in an attem pt
to extract m ore inform ation from  the  im age. (Sonka et al. 1999)
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accumulator array whose axes are the parameters characterising the line. Thus at each (x ^ y i) 

edge image point, the accumulator array is incremented for every possible line through the point 
(xi, yi). If  many edge responses lie on the same line, then this results in a high value at the position 
in the accumulator array corresponding to that line.

An alternative method for the initialisation of the snakes is proposed by Neuenschwander et al. 
(1994), which enables the initialisation of the snake by specifying only the first and last control 
points. The user chooses these points. This reduces the complexity of the initial contour that is 
used to extract a particular feature. Then the image component at the end points is switched on. 
This is followed by the switching on of other control points successively from both ends moving 
towards the centre. This enables the snake to find the smoothest path. These are termed “static 
snakes” by the authors. Although this approach applies primarily to open contours, it highlights the 

advantages of using a reduced number of control points until the contour approaches a minimum, 
because in certain instances, when the initial contour is far from the final position the snake can 
get stuck in undesired local minima due to irrelevant edge information.

A fast method for the initialisation of active contours is proposed in (Mobahi et al. 2004) for the 
development of robots that can interact naturally with humans. This is achieved by using so called 
“Self Organised Contours” (SOC), which localise a region of interest (ROI). Rather than search the 
whole image, only a small fraction of the image is searched. The method first initialises a number 
of agents randomly over the image. This is the self-organisation phase of the approach. Regions 
that change between frames and edges are treated with higher significance and the behaviour of 
each agent depends on three parameters, namely position, velocity and energy. If  the energy of an 
agent reaches zero, then the agent is discarded. When the self-organisation is complete, agents are 

only scattered over feature regions. The energy of an agent is initialised as a non-zero value which 
continually decreases over time and to zero if it is not in an active region.

2.3.2 Régularisation of the Snakes

The performance of the active contour model can be encouraged to be more robust through the 
régularisation of the internal and external energy terms in the form of a dynamic equation. As pre­
viously described, the internal energy of the snake imposes continuity and smoothness constraints 
on the snake while the external energy is used to attract the snake to salient image features. The 
introduction of a régularisation term can be used to control the significance of each of these con­
straints. The snake model can be regularised by the introduction of a régularisation parameter A. 
From the discrete form of the internal energy in Equation 2.4, and following the notation in (Lai 
1994), the régularisation parameter can be incorporated as follows:

V a  — axg m in I ^   ̂AiE jnternai -(- (1 Ai)E E x êTnai j (2.17)

where A * <E [0,1] are the régularisation parameters. By setting A »  (1 — A) encourages 
régularisation and strong models that are resistant to noise while A <§: (1 -  A) will increase the 
attractiveness of the snake to image information including noise.

18



In (Lai 1994), a technique for the régularisation of the snake through the use o f the minmax 
principle permits the automatic determination of values of the régularisation parameter along the 
contour. This results in a trade-off at each iteration along the contour and is expressed in the form:

where the solution snake V* and the solution régularisation parameters A* (=  Ai,A 2 ,.. A„)
are calculated by finding the snakes V  with the minimum energy determined by the sum of the 
maximum of Equation 2.17 for each value of A j appropriate to the control point.

2.3.3 The Balloon Model

Another approach to the energy minimisation process was suggested by Cohen (1991) based on 
the Galekin solution of the FEM. The Galerkin solution of the FEM has the advantage of numerical 
stability and better efficiency (Press et al. 1992). This approach is applied to the closed contour 
case and finds exceptionally good stability and in addition, attempts to overcome the problems 
associated with the original snake, including the behaviour of minimising to a straight line when 
not placed in close proximity to a desired object. The balloon model uses an additional inflation 

force, so the balloon constantly inflates, passing through edge fragments that are too weak to 
contain the inflation but resting on stronger edge features. The applications are clear for the balloon 
model, such as medical imaging, tracking closed internal organs (such as the cavities in the heart) 
in noisy image scans (using noisy ultrasound and magnetic resonance images). It is very important 
in dealing with the balloon model that it is prevented from overstepping the edges of the feature 
of interest. Cohen (1991) used the FEM and prevents a step size of more than two pixels. The 
algorithm works very accurately in the example of tracking the contractions of the left ventricle 
of the human heart. This approach is particularly important in the case of closed or nearly closed 
contours. This formulation permits the snake to overcome isolated energy valleys resulting from 

spurious edge points.
The second problem that has been highlighted is that active contours have difficulties progress­

ing into boundary concavities. Different methods have been proposed to address this problem, in­
cluding multi-resolution methods, pressure forces, and distance potentials. One idea to overcome 
this problem is to increase the capture range of the external force fields and to guide the contour 
toward the desired boundary.

2.3.4 Fourier Snakes

in the article by Staib & Duncan (1992), a method for segmentation using of parametrically de­
formable models that use boundary and global shape information is proposed. The parametric 
model is based on elliptical Fourier decomposition of the boundary. This method is developed 
primarily for use in the extraction of natural objects and those found in biomedical images. The 
objects in general have a tendency towards some average shape with numerous variations near this 

average shape.

(2.18)
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The Fourier representation expresses the curve in terms of an orthogonal basis. This allows 
the representation of any object as a weighted sum of a set of known functions and makes the 
parameters distinct and avoids redundancy. These can be used to generate all types of closed 
curves using relatively few parameters. The contour can be viewed as being composed as the sum 
of rotating phasors, each individually defining an ellipse and rotating with a speed proportional to 
their harmonic number. It is important for the curve representation that the Fourier components are 
continuous and periodic9. The Fourier descriptors can be used to describe open contours, although 
a straightforward representation of this would cause discontinuities. This is avoided by tracing 
along the curve and then retracing back to the start and forming a closed path. In this approach, 
the internal energy is calculated analytically, and the external energy is calculated by sampling 
the curve at regular intervals as well as computing image features (e.g. gradient magnitude and 
direction) at each point. The direction of the gradient is important as it determines the direction 
of greatest increase of the function value, and the iterative approach takes steps in the direction of 
the gradient.

2.3.5 Dual Active Contours

Gunn & Nixon (1994) introduced the notion of dual snakes to solve problems associated with face 
detection. In this approach, one active contour is initialised inside the desired feature and one 
outside it. This reduces the sensitivity o f the initial contours to initialisation by constraining the 
space in which the active contour should lie. The two contours are coupled using spring forces 
that cause the two contours to be attracted to each other and to image features. This approach 
also has the advantage that additional higher-level information, such as geometric shape can be 
incorporated into the snake model (Gunn & Nixon 1994).

The mean contour is generated from the mean position of points on the inner and outer con­

tours.

m ea n (s )  =  ^  in n er (s )  +  ou ter(s)  (2.19)

Further to this, dual snakes have been generalised in (Gunn & Nixon 1995) and showed that 
they can improve the snake’s ability to move into non concave areas. In addition, the dual snakes 
can be combined with a model in which the contours have no tendency to expand or contract other 
than to attain a prior shape. In (Gunn & Nixon 1996), the dual shapes are applied to accurately 
segment the boundaiy of the head using a dynamic programming approach in which each contour 
point is constrained to lie along a line joining the two initial contours. Each line is discretised into 
M  points. In this approach, it is assumed that the frontal face image is captured against a plain 
(uniform) background and an initial estimate is required to place the snake. In (Gunn & Nixon

1997), the dual snakes are combined with a local shape model1 0 to improve the parameterisation, 
and in (Nixon et al. 1997) are used to enable the extraction of parameter for face recognition by 
the establishment of a boundaiy that located the chin and the upper hairline.

9This is im portant as it ensures that the shape can be described in a single cycle through 360".
l0The local inform ation is incorporated to m ake the tw o contours rotation, translation  and scale independent, addi­

tionally  the con tour should  be in equilibrium  w hen it is sim ilar to an estim ated  contour so that it has no preference to
contract o r expand o ther than to acquire its natural shape.
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Topologically Adaptable Snakes (T-snakes), introduced by Mclnemey & Trezopoulos (1995), ex­
tend the functionality of the parametric snakes while retaining all of the features of traditional 
snakes, such as user interaction n , constraint forces and volcanoes etc. The additional functional­

ity is achieved by superimposing a regular grid over the image. This grid is used to re-parameterise 
the deforming snake model iteratively. The deformation scheme extends the geometrical flexibility 
of the snake to deal with complex shapes.

The T-snakes are defined as closed contours and a set of control points connected by ad­
justable springs. Users can interact with this model by using spring forces and other constraints. 

The model’s deformation is controlled by discrete Lagrangian equations of motion. One of the at­
tractive features of this approach is that the control points and the interconnections do not remain 
constant as the snake moves towards the image features. The re-parameterisation is controlled by 
a grid, which is superimposed over the image. This makes the snake model relatively independent 
of its initial position.

T-Snake Model

The T-snake is defined as discrete set of N  control points indexed i — 1, ...,7V connected in 
series by a set of N  elements. Associated with each control point are time varying positions 
X j ( i )  =  \xi(t),yi(t)], tensile forces a i( t ) ,  rigidity forces Pi(t), and f i  external forces. This is 
expressed as a first order differential equation of motion:

m  ¿Xj +  t¿Xj + o c i+  &  =  $  (2 .2 0 )

where x* is the acceleration of node i, Xj is its velocity, m i is the mass, 7 \ is the damping coefficient 
that controls the rate of dissipation of the kinematic energy of the control points and t\ is an 
external force that attracts the model towards image edges. The term a* is a force that attempts 
to preserve the length of the snake and (3i is a rigidity force that resists bending. This equation is 
simplified by setting the mass density m i equal to zero, m j =  0 V i  This preserves the dynamic 
nature of the model and it comes to rest when the applied force balances the internal forces.

Simplicial Decomposition

The grid that is used to approximate the snakes motion is an example of the space partitioning by 
simplicial decomposition 12. The simplical decomposition provides an unambiguous framework 
for the creation of local polygon approximations of a contour or surface model. An example of the 
grid is shown in Figure 2.6 (a). The set of triangles in the grid that intersect with the contour form 
a 2D combinatorial manifold. The contour intersects each triangle at two distinct points, each of 
which is located on different edges. This means the edges of the intersected triangles to be used 
to approximate the contour. The vertices of the triangles can be classified based on the position of

11 U ser in teraction  is described as a features as it is not generally  incorporated in a geom etric  snake form ulation see 
Section 2.6

l2A sim plicial cell decom position is also called a  triangulation.

2.3.6 Topologically Adaptable Snakes
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the contour. The vertices of the triangles that are inside the contour have the same “sign”. There 
are three possibilities for sign assignment, these are shown in Figure 2.6 (b). All three vertices 
will have a negative sign if they are completely outside the contour or all positive if the triangle 
is completely inside the contour or a combination of positive and negative signs if the contour 
intersects the triangle.

X \ \ \ \ x \ X \ X X
\ \ X \ \ X \ \ X

X X X X --\ \ \ X X X X
\ X X \ \ \ \ X X x X
\ X X \ \ \ \ \ X X
\ X X \ \ \ \ \ \ X X X X
\ \ \ X x NX \ \ X X \ X
\ \ \ X \ \ \ X X X X X X
\ \ X \ N \ X X X X X X
\ \ \ \ \ s \ X X .
\ \ \ \ '■ X X X \
\ \ . \ \ \ \ X \ X
\ \ X V

Figure 2.6: (a) simplicial approximation of the contour model constructed by subdividing the 
image using a cubic grid, (b) the cell classification (Mclnemey & Trezopoulos 1995).

This model is useful when contours intersect and topological changes are required. In addition 
to its positional information, each control point stores the edge and cell number it intersects and 
each boundary cell stores a reference to the control points which form the line intersecting the 
triangle. Therefore, when a snake intersects with another snake or collides with itself, a topological 
change is required (Mclnemey & Trezopoulos 1995). A decision is required when more than one 
line intersects a triangle. Then two line segment endpoints are chosen on different edges of these 
boundary triangles and they are connected to form a new line segment.

Both discrete and T-snakes suffer from the drawback that the movement of a single control 
point affects the entire length o f the contour; a small change in the position of a control point tends 
to strongly propagate throughout the entire snake. This can be described as a global propagation of 
the change of a particular control point. Moreover T-snakes are not immune to initialisation, and 
while the ability to split and merge improves the flexibility of the original parametric snake model, 
it is not as applicable as implicit methods which can be used when the topology is unknown.

2.4 G-Snakes - Deformable contours: Modelling and Extraction

G-snakes is a general method that addresses the problems of modelling and extracting arbitrary 

deformable contours from noisy images. This approach attempts to combine global and local 
deformations. The motivation behind this is that global templates contain fewer parameters and 
cannot exercise local control along the contour. In contrast, local models generally contain more 
parameters and have good local control but are not suitable for the incorporation in global models 
as they tend to get trapped in local features (Lai 1994).
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The G-snake or general approach is designed for the representation of arbitrary shapes. The 

contour model is based on a stable and regenerative shape matrix that is invariant and unique under 
rigid motions, This approach is applied to the image to locate objects that are similar to the initial 
contour. The similarity is modelled using Markov random fields13 (Lai & Chin 1995, Lai 1994). 
In particular, this is achieved by representing a point as a linear combination of two independent 
vectors.

Global deformations correspond to the effects of rigid motion such as scaling, rotation, stretch­
ing and dilation. These operations can be represented by affine transformations. (Lai & Chin 1995,
1998) show that the regenerative shape matrix (or shape matrix) is unaffected by affine transforma­
tions. To represent a family of contours that exhibit small shape irregularities, an internal energy is 
induced from the shape matrix and a variance matrix, which contains location dependent weighted 
deformations. Then the Gibbs measure14 is used to express the conditional probability of a given 
point as a conditional probability of its two basis points which is more realistic for modelling local 

deformations (Lai 1994).
In Lai & Chin (1995) state that the range of possibilities that exist when using a rigid template 

means that it may cover all possible transformations, although this can be improved by restrictions 
introduced by learning or by using prior knowledge. Moreover, the following assertion is made in 
favour of deformable templates:

The expected correlation o f  a matched template decreases with deformation

The proof of this assertion can be found in (Lai 1994) which illustrates that the use of rigid tem­
plates yields poor performance as the variation of expected deformation increases. Consequently, 
the proposed deformable template is generalised to account for this global variation caused by 
rigid motion while retaining the ability for local control.

The active contours are generalised by redefining the internal and external energies to incorpo­
rate the global deformations. This formulation is analogous to that of Kass et al. (1987), although 
the original internal energy only constrains the solution to the class of controlled continuity splines 
15. This formulation generalises E int by allowing for the incorporation of prior models to create an 
attraction towards a particular type of contour. This model is termed a generalised active contour 
model. The model is initialised through the generalised Hough transform.

The minimisation process that is employed in this method uses the properties of a random 
Markov field to localise the operations, i.e. the minimisation is decomposed into n  independent

l3M arkov random  fi eld  theory  is a branch o f  probability  theory  that provides a foundation for the characterisation 
o f  contextual constraints and  the derivation o f  the probability  distribution o f  interacting features. T he theory attem pts 
build the very general p robabilistic m odel o f  the Ising m odel

l4The G ibbs m odel is a probabilistic m easure derived from  the Ising m odel and defi nes the energy function that is 
used to m easure the entropy (a m easure o f  the am ount o f  uncertain ty  in the outcom e o f  an event o r output o f  a system ) 
o f  a system . The G ibbs d istribution expresses the neighbourhood relationship i.e. the probability  o f  a certain  value at 
a point j, given all the values o f  probability  at all o ther points o f  a lattice is the sam e as the probability  o f  the value at 
that point by  considering  the neighbours o f  the point j. T his is expressed m athem atically  as P{crj = a\ak, k /  j)  = 
P(crj =  a | a*:, k E Nj) w here Nj is the neighbourhood o f p o in t j .  This property is also indicative o f  a M arkov random  
Field.

15H andling  local contour deform ations is based on learning from  a set o f  train ing  exam ples. T he absence o f  dom ain 
know ledge about the  object shape m ay  cause inaccuracies in the tracking, especially  w hen the m otion is non-rigid (Lai 
&  Chin 1995).
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stages, where each stage considers only three neighbouring points. This idea was first proposed 
by Amini ct al. (1990) using dynamic programming.

A linear search is used in the minimisation algorithm. The search region must be sufficiently 
large to include at least part of the solution otherwise the contour will not deform to the correct 
solution. There are a number of search strategies considered. These are designed to search large 
regions without increasing the complexity of the algorithm. In the initial stages, it is prudent to 
rapidly inflate or deflate the contour to locate the neighbourhoods of the global minima. This 
is achieved by searching in the normal directions at each control point (Lai & Chin 1998). The 
basic line search restricts the search region which contains all the points on the normal vector. 
The stratified line search extends this idea to encompass even larger search by breaking the region 
normal to the points into disjoint segments.

2.5 Reformulation of the Active Contour Model

To facilitate the use of active contour models in different applications, the original snake model 
has been reformulated to incorporate different external forces and different minimisation tech­
niques. To facilitate the use of snakes in real-time, the original energy-minimising spline has been 
reformulated in terms of B-spline contours. This has several advantages including local control 
over the contour. The more recent reformulation in terms of non-rational uniform B-splines curves 
(NURBS) provides even greater local control by the inclusion of weights that can be adapted de­
pending on the curvature of the curve (Meegama & Rajapakse 2003). Reformulation in terms of 
B-splines and NURBS is described in sections 2.5.1 and 2.5.2 respectively, including the particular 
advantages of each method.

These reformulations make it easy to increase the number of control points in the snake and 
to examine the external forces that act along the length of the contour, a problem which was not 
considered in the original paper of Kass et al. (1987) and which enables the model to increase the 
local flexibility of the contour. In addition to this, the NURBS snake has the added ability, through 
the use of weights, to increase the local flexibility without increasing the number of control points.

2.5.1 B-spline Snakes

In the original snake formulation, the snake’s convergence was rather slow particularly in the 
isolation of comers. This led to the developments described in Section 2.2.2. In (Amini et al. 
1988), the curve is approximated by a polygonal approximation of the curve, but this can no longer 
guarantee smoothness and the only way to include a comer is to set a  =  0 at some locations. A 
better approach proposed by Menet et al. (1990) uses a parametric B-spline approximation of the 
curve. In this model, the curve is replaced by a B-spline approximation and the energy of the 
approximation is minimised. This model is referred to as the "B-snake ” model. A description of 

B-spline curves and surfaces can be found in Appendix A.
Using the B-spline approximation, the curve is split into segments (spans) and the breakpoints 

between each segment, called knots, which are common to two neighbouring curve segments. 
Each of these segments is approximated by a piecewise continuous polynomial function which
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can have any order16, k, and is obtained as a linear combination of basis functions TV.; and a set of 

control points P j expressed as

m m
C (u )  =  J 2 Ni(u )P i  =  J 2 ( X iNi(.u )’ y iNi(u )) (2.21)

■¿=0 ¿ = 0

The {N i(u ) ,i  =  0,1, ,.,m } are piecewise polynomial functions that form a basis for the 
vector space of all piecewise polynomial functions of the desired degree and continuity for a fixed 
knot sequence. The control vertices form a control polygon which exhibits a strong convex hull 
property and the curve is contained within the convex hull of its control polygon (Piegl & Tiller 

1997).
The first stage involves finding a control polygon. This is achieved by performing a least 

squares fit of the data by the B-spline curve, effectively minimizing the distance between the 
original data and the approximation. This is achieved using a least squares approximation of the 

curve and is described using the following expression (Piegl & Tiller 1997):

*  =  £  IC {u j)  -  D j I2  =  -  X j)2 +  (y(Uj) -  y j )2) (2.22)
j =o j =o

where p  +  1  is the number of discrete data points on the curve and Uj is some parameter 
associated with the j th data point and C (u j)  is given by Equation 2.21. This equation is then 
solved using LU decomposition to provide the approximation of the curve. The choice of the 
number of vertices, m  +  1, determines how close the B-spline curve approximates the original 
data. The B-spline curve is then substituted into the discrete approximation of the snake Equation
2.4. Then the equation to be minimised becomes (Menet et al. 1990):

+
p . m m

E = E  { 2a{Ui) [ ( D * ^ i M ) 2 +  E  w ' ( uj ) ) s 
j= 0  i —0 ¿=0

1 m m
+  ( J > 7 V " ( ^ ) ) 2] + * > ( « ,- ) ) }  (2.23)

i= 0

The local control over the B-spline means that moving the position of one control point only 
effects a small part of the curve. The continuity of a B-spline can be changed at a control point by 
the use of multiple knots. Give that the continuity at a particular knot is defined as C k ~ 2  and with 
fj, the multiplicity degree at a knot the continuity is then reduced to When p, =  k  — 1 the
corresponding control point is interpolated. This property enables the development of a comer by 
reducing the continuity at a particular knot.

In addition, it has been shown that in general, representations using B-spline basis functions 
require fewer parameters than point based approaches and thus result in faster optimisation algo­

rithms. Also, such models have inherent regularity and do not require additional constraints to

l6A kth o rder polynom ial has k coeffi eients. Therefore a quadratic has order 3 and a cubic polynom ial has order 4
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force smoothness (Jacob et al. 2004). In (Kim 1999), the energy within the B-spline was discre- 
tised and minimised using a dynamic programming approach.

In (Tang & Zhuang 1998), an adaptive B-spline snake is proposed. An optimal edge detection 
filter is used to extract edge potentials at different resolutions. Then a non-uniform B-spline curve 
is used to represent the contour and to approximate the image edge as close as possible. The 
adaptive B-spline active contour model uses non-uniformly distributed control points although 
initially uniformly distributed points are used along the initial contour with interval t between 

the B-spline control points for fast computation. These control points form the initial vector v°. 

During the evolution, a displacement measure v l — vt_l is used to adjust the control points, and 
then obtain a new active contour, along which a new group of uniformly distributed nodes with 
interval t. The procedure is continued until the energy of the active contour is minimized. Then 

the contour is searched for segments with high curvature or hard comers and redefined with N  

control points and M  discrete curve points q(i) along the B-spline active contour. The points are 
re-distributed according to the curvature along the curve. A greater the density of control points is 
necessary to represent a curve with higher curvature. Thus the resolution of the B-spline curve is 

adapted to the curvature of the contour.

2 .5 .2  N U R B S  S n a k e s

In certain situations, the use of Non-Uniform Rational B-splines (NURBS) curves is considered 
to provide greater control using fewer control points. The greater flexibility is introduced to the 
snake model by the use of weighting parameters. Although B-spline snakes perform better than 
traditional snakes, individual control points need to be duplicated to achieve high curvature and 
force the curve to interpolate the control points. Meegama & Rajapakse (2003) propose a snake 
model that uses NURBS in which the weighting parameters are automatically adjusted to control 
the flexibility of the curve at each control point. The weighting parameters are adapted according 
to the curvature of the contour without increasing the number of control points.

(Meegama & Rajapakse 2003) provide a definition of the snake model in terms of NURBS and 
describe how the internal and external forces are included within this framework. In Appendix A, 
NURBS, which extends the flexibility of B-splines, are defined as

(2.24)

n —1

(2.25)
i=o

where

(2.26)

This can be expressed in matrix form as v(s) =  p TR (s) where p  — (Pq, p {, p h - i ) T and 
R (s)  =  (R 0(s), R i ( s ) , R n- 1(s))T .



This is incorporated into the snake model by defining the internal energy as:

E in t(v (s))  =  a |p r R '( s ) | 2  + /3 |p TR " ( s ) | 2  (2.27)

and the external energy as

E ext(v (s ))  =  - 7 |V /p TR ( S ) | 2  (2.28)

The internal and external energy are combined within the energy minimisation formulation so
that the position of a control point at time t  +  1 , v (s , t +  1 ) is given by

v (s, t + l )  =  arg  min (E int( v ( s , t )) +  E ext( v { s , t )) (2.29)
v (s ,t )

Curvature based weight adjustment

The use of NURBS provides the possibility to have grater local control on how the contour can 
approximate the image information. This section describes how the weights of a NURBS snake 
effectively control the local shape of the contour based on its curvature properties, without mov­
ing or duplicating the relevant control points. Let v (s, w.t) be the family of curves obtained by 
changing the weight Wi at a control point p , ,  and v (s , W{ =  0 ) is the set of curves when Wi is set 
to zero. Then, from Piegl & Tiller (1997) v  can be expressed as:

v (s, Wi)  =  v (s , Wi =  0)) +  r (p i  -  v (s , Wi =  0))) (2.30)

where

N j,k(s)w i 

N jtk{s)w j

From Equations. 2.30 and 2.31, it is clear that as the weight Wi associated with the control 
point p i is increased, r  is increased, and hence, the point v (s ,w ¿) moves toward p* along the 
vector p i — v(s , w.b =  0) as shown in Figure 2.7. Similarly, v (s , W{) moves away from Pj if r  is 

decreased.
Let p* denote the position o f a control point with weight w\ at time t and n(y(s, t)), the curva­

ture at a point v (s , t ) If the maximum curvature within the spline segment v (s), s 6  [s,;, Sj+p+i), 
at time t, K £, exceeds a pre-defined value (for example the average curvature along the NURBS 
curve), the new weight w ¿ + 1  of the control point p * + 1  is updated such that

=  (232) 

where the parameter r] G 5ft controls the amount of attraction of the curve towards the control 
point and || k ( s , t )  || is the maximum curvaturc of the closed NURBS curve. In Equation 2.32, the 
curvature K l is divided by the maximum curvature in order to normalise the weight modification.

K l
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i+1

Figure 2.7: The movement of a point on the curve v(s) towards the desired control point as the 
associated weight is increased (Meegama & Rajapakse 2003).

2.6 Geometric Active Contour Model

Geometric active contours are based on the theory of curve evolution and level set methods. Curves 
evolve using only geometric measures 1 7  , resulting in a contour evolution independent of the 
curve’s parameterisation, thus avoiding the need to re-parameterise the curvc repeatedly or to 

explicitly handle topological changes (Caselles et al. 1997, Malladi et al. 1995). The parametric 
representations of the curves themselves are computed only after the evolution of the level set func­
tion is complete. Geometric active contours can be applied to model arbitrarily complex shapes, 
including shapes with significant protrusions and in situations where no a priori assumption about 
the objects boundary (topology) is made.

Geometric active contours have many advantages over parametric active contours, such as 
computational simplicity, the possibility to split and merge, the ability to change curve topology 
during evolution 18 and the ability to evolve in the presence of sharp comers in a seamless fashion. 
As previously described, parametric active contours are represented explicitly as parameterised 
curves. Now geometric active contours are introduced as level sets o f two dimensional distance 
functions that evolve according to an Eulerian formulation.

The basis of the approach introduced by Malladi et al. (1995) is that it is not always possible 
to specify the topology of an object prior to its recovery. For example,

• this is an important issue in object tracking and motion detection applications where the 
topology can change rapidly depending on the position of the observer.

• When closed contours change their connectivity and split undergoing changes in topology.

l7T he geom etric m easurem ents are m inim al distance curves (or geodesics) that are m ade in R iem annian space, whose 
m etric  is defi ned by  the im age content,

l8It additionally  rem oves the problem s associated  w hen points on the contour cross over each o ther causing the 
con tour to kink.
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2.6.1 Curve Evolution

Level Set Methods

A level set starts with a given boundary separating one region form another and a speed that 
controls how each point on the interface can move. The speed can depend on a variety of physical 
effects. A level set approach does not track the motion of the individual points on the boundary, 
but takes the original curve and creates a cone-shaped surface, shown in Figure 2.8, that has the 
important property that it intersects the xy  plane exactly where the curve sits. The surface on the 
right of Figure 2.8 is called the level set surface and the red front is called the zero level set.

Figure 2.8: Illustation of the Level sets approach, (a) the original curve and (b) equivalent level 
set surface.

Fast Marching Methods provide an alternative means of evolution to the level set approach. 
They are designed for a problem set in which the sign of the speed function never changes, i.e. 
the front is always moving forward or backward. This converts the problem to a stationary for­
mulation, because a front will only cross a point once. This can be used to speed up the evolution 
(Malladi & Sethian 1996). Level Set Methods are designed for problems in which the speed func­
tion can be positive in some places and negative in others, so that the front can move forwards in 
some places and backwards in others. While significantly slower than Fast Marching Methods, 
embedding the problem in one higher dimension gives the method tremendous generality.

Contour Representation

Let </>(x, t) be a 2D scalar function whose zero level set defines the geometric active contour. In 
(Caselles et al. 1997, Malladi et al. 1995), the geometric active contour model evolves cf> using the 

following formulation:

<j>t =  c[K +  V0) |V 0 | (2.33)

where k is the curvature, V0 is a constant and

C =  C(x) =  l  +  |V ( G ,( x * / ( x ) ) | (2'34)
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is an edge potential derived from the image. According to Caselles (1995), the term c(k  +  Va) 

determines the overall speed of the level set of </>(x, t) along the direction normal to the curve. The 
value k  has the smoothing effect on the contour and V0 is the constant speed at which the contour 
either contracts or expands. The combination in Equation 2.33 combines internal and external 
constraints consistent with the parametric model and the external constraints have the effect of 
stopping the evolution in a particular direction.

In (Xu et al. 2000), this formulation works well with objects that have good contrast, because 
if high contrast is not guaranteed or if the boundary is incomplete, then the contour can pass over 
the boundary of the object. This problem is in part rectified by including an additional stopping 
term. Thus Equation 2.33 is reformulated as

4>t =  c(k +  V0)\V(f)\ +  Vc • V(j> (2.35)

This stopping term Vc ■ V 0 pulls the contour back if it passes the boundary. Although this 
additional term improves the boundary leaking problem, it does not provide a satisfactory solution. 
Several alternatives have been proposed by Caselles et al. (1997) and Kichenassamy et al. (1996).

Boundary Detection

At an ideal edge, E ext is expected to be zero since | V / | =  oo and g{r)  —► 0 as r  —> oo, where g 

is an edge detector. Thus the goal is to send the edges to zeros of g. Ideally, it is also important to 
send the internal energy to zero. Since the images are not formed by ideal edges, the internal and 
external energy term are weighted identically and have an equal contribution to the minimisation 
process (Caselles et al. 1997). This is consistent with Fermat’s Principle1 9 and provides a link 
with between curve evolution active contours and this approach, i.e. minimising the geodesics 
measures is the same as minimising the energy in the active contour.

Changing Topology

(Caselles et al. 1997) state that the classical energy of snakes can not directly deal with changes in 
topology. The topology of the initial curve will be the same as the possibly wrong final curve, i.e. 
errors in the initial parameterisation of the contour are propagated through the contours evolution.

2.6.2 Relationships betw een Param etric and G eom etric M odels

Similarities between the two active contours are apparent although the precise nature of these 
relationships is explored by Xu et al. (2000). (Xu et al. 2000) state that the majority of relationships 
between the two types of curves have been established by neglecting the rigid forces. In addition, 
it states that overall, the equivalences currently established in the literature do not relate a full 
family of parametric models to their geometric equivalent. As a result, it is difficult to design 
geometric active contours that take advantage of the wealth of parametric models that have been 

previously established. For example:

l9In (C aselles et al. 1997) Fermat’s Principle is states that: in an isotropic m edium  the path taken by light rays 
in passing  from  a point A to a poin t B are extrem a corresponding to the traversal-tim e (as action). Such paths are
geodesics w ith respect to the new  m etric  (i , j  =  1 ,2 ) .
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• it is not clear how one would incorporate non-conservative external forces, such as the forces 
defined in (Xu & Prince 1998a),

• it is not clear how to incorporate regional pressure forces.

It has been well documented that the use o f elastic internal forces may cause an undesirable 
shrinking effect, whereas the use of rigid internal forces can smooth the contour without this 
adverse result with a relative low overhead (Williams & Shah 1992).

Although Xu & Prince (1998a), show that it is possible to find equivalences for the majority 
of external forces that are applied to parametric active contours, it is not apparent how external 
spring forces or variable tension and rigidity can be defined in the geometric representations.

2.7 Templates

Machine vision systems attempt to create internal models of the processed scene and update them 
using an appropriate sequence of processing steps that must be performed to achieve a given result 
for a particular task (Sonka et al. 1999). The attraction of using prior knowledge in machine 
vision is that it is hard to make progress without it. The use of prior information moves the 
task of interpretation from general to goal-directed processes (Blake & Isard 1998). Methods for 
fusing prior knowledge with observations are of crucial importance and any difference between 
the observation and the predicted shape can be classified as an error. The prior assumptions can 
be varied, by adjusting the elastic parameters of the template. In addition, more specific models 
can be constructed using flexible curves in which the parameters, such as kinematic variables, 
sizes of subparts and the angle-hinges which join them can be adjusted either interactively or 
automatically. A model that permits such deformation is known as deformable template and is a 
powerful tool in analysing images.

Often the smoothness and the constraints introduced in the original snake model are not suffi­
cient to encourage the snake to converge, and prior knowledge needs to be introduced to the snake 
model to achieve stable behaviour. If all the control points are allowed to vary somewhat freely 
overtime, the tacked curve can rapidly tie itself into unrecoverable knots.

2.7.1 D e fo rm a b le  T e m p la te s

Inclusion of hard constraints in the default template can be achieved by using a parametric shape- 
model r ( s ;X )  with relatively few degrees of freedom. This is known as a deformable template. 
The template is matched to the image in a manner similar to snakes by searching for the parameter 
vector X  that minimise the external energy. The internal energy is included as a régularisation 

term (Blake & Isard 1998). The internal energy i? jnt(X ) contains a quadratic function of X  that 
encourages the template to relax back to a default shape. The external energy E ext(X ) comprises 
the sum of various integrals over image-feature maps.

Spline snakes are a common method of representing curves used in templates. These are a 
smooth curve between a set of control points, and the shape of the curve is completely defined by 
the knot positions. B-splines are the most common implementation of splines. A description of B- 

splines can be found in Appendix A. The use of B-splines enables the calculation of the bending
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energy analytically and it is simple to sample the curve at multiple points where the external 
energy can be calculated and used to optimise and modify the position of the control points. In 
this section, the curves are expressed uniquely as B-splines. The notation that is used is consistent 
with that introduced by Blake & Isard (1998).

The Control Vector

In reality, dealing with control points is not the most convenient method for representing B-spline 
data, and in (Blake & Isard 1998), control vectors Q are introduced as a first stage towards defining 
shape-spaces. The control vector Q consists of the control point coordinates. Thus for a parametric 
spline curve r(s) =  (x (s ) ,y (s ) )

Q = where Q x =

I  q§ \ (

and Q y - (2.36)

V 1 /

The coordinate functions can be expressed as x ( s ) =  B T (s)Q x and y (s) =  B T (s)Q y where 
B (s) is a vector B-spline basis function such that

r (s )  — U (s)Q  for 0 < s < L (2.37)

where

U (s) =  / 2 ® B t ( s )
B T ( s )  0 
0 B t ( s )

(2.38)

which is a matrix of size 2 x 2N q and I m  denotes an rn x m  matrix.
The properties such as norm and inner product can be redefined in terms of the control vectors 

and a full derivation of how this is achieved is found in (Blake & Isard 1998).

Shape-Space Models

Shape-space was introduced by Blake & Isard (1998) as a means to reduce the shape variability. A 
distinction is made between the spline-vcctor Q £ S q that describes the basic shape of an object, 
introduced above, and the shape vector X  G S , where <S is a shape space while S q is a vector 
space of B-splines20. The Shape-space is defined as:

Shape-space is the linear param eterisation o f  the set o f  allow able deformations o f  a 

base curve.

The requirement that the shape space be linear is made to ensure simplicity in terms of computa­
tion. In mathematical terms, the shape space S  — C(W , Qo) is a linear mapping of a shape-space

20In general, the  shape-space has sm aller dim ension than  the B-spline vector space. T he dim ension o f  the shape 
space and the B -spline vector space are denoted  as N x  and N q respectively.
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vector X  e  R Nx to a spline vector Q e  R jV<2

Q =  WX  +  Q 0 (2.39)

where W  is a N q  x  N x  shape matrix. The constant offset Qo is a template curve against which 
shape variations are measured. The matrix W  is composed of columns which are the vectors of 

the basis of the shape-space. An example of a shape-space is the space of Euclidean similarities 
with four degrees of freedom or the planer affine group of transforms with six degrees of freedom. 
Other transform groups do not readily form shape-spaces and it is not always possible to represent 
the shape-space in minimum dimensions. Euclidean similarity and Affine Transforms, are shape- 
spaces because there exists an X  for which Q =  W X

For example consider the .Euclidean similarities (Blake & Isard 1998). Give a template curve 

ro(s) represented by Qo form a shape space, S , with shape matrix

The first two columns control the horizontal and vertical translations and the third and forth 
columns cover rotation and scaling. Some Examples of shape represented in the space of Euclid­

ean similarities are:

•  X  =  (0, 0, 0, 0)T represents the original template shape Qo

•  X  =  (1 ,0 ,0 ,0)T represents the template translated 1 unit to the right

•  X  =  (0 ,0 ,1 ,0)T represents the template doubled in size

• X  =  (0,0, cos 6 - 1 ,  sin 0)T represents the template rotated through an angle 6

The properties such as norm and inner product can be redefined in terms of the shape-space 
and a full derivation of how this is achieved is found in (Blake & Isard 1998) where the centroid 
and additional moments are also redefined.

In the context of the problem of curve fitting, shape-space is combined with an energy land­
scape to encourage the curve to approximate the image-feature curve. This acts as a way of encour­
aging smoothness and reducing the shape variability. Suppose the image features were expressed 
in the form of a spline curve r f  where r f(s) =  U (s )Q /. If the fitted spline is restricted to shape 
space and using an edge-based energy landscape the fitting problem then becomes a problem of

This effectively is an expression in shape space that minimises the difference between the template, 
Qo. and the image curve, Qf ,  that it is fitted to. The fitting can be improved by biasing the curve 

towards the mean shape.

(2.40)

m in \\WX +  Qo -  Q f  ||2
X

(2.41)

The solution X  =  X  is given by X  =  W + ( Qf  -  Qo) where W + is the pseudo-inverse of W.
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In this approach, a shape is represented as a set of points and training sets of samples are examined 
to determine the average position of the shape points. This approach has many advantages over 
rigid models when objects of the same class are not identical. In such cases, flexible models, 
or deformable templates, can be used to allow for some degree of variability in the shape of the 
imaged object (Cootes et al. 1992).

Cootes et al. (1992) describe a method of shape modelling based on the statistics of labelled 
points placed on a set of “training” examples. This model consists of the mean positions of the 
points and a number of vectors describing the modes of variation. In this approach, the labelling 
of the points is important as each labelled point represents a particular part of the object or its 
boundary. To ensure that the points are correctly labelled, it generally requires someone familiar 
with the model to place the points.

To create the mean statistics for the shapes, it is essential that the training shapes are aligned. 
This is achieved by scaling, rotating and translating the training shapes so that they correspond as 
closely as possible. Each of the points are weighted and in general, the weights are used to give 
more significance to those points that tend to be most stable over the set of training sets, i.e. the 
points that move least with respect to the other points on the shape. This ensures that minimisation 
process will be dictated by the points that move least and reduce the influence of stray points.

Once the shapes are aligned, the mean shape and variability are calculated. This enables the 
modes of variation, the ways which the points tend to move together, to be found. These are 
established by applying principal component analysis to the deviations from the mean. For each 
point, l , . . . ,n ,  its deviation from the normal is calculated and its covariance is presented in a 
2n  x 2n  matrix. The modes of variation correspond to the eigenvectors of the covariance matrix. 
The largest eigenvalues describe the most significant modes of variations of the elements used to 
calculate the covariance matrix. The majority of the variation can usually be described by a small 
number of modes (Cootes et al. 1995) and any shape in the training set can be approximated using 
the mean shape and a weighted sum of the deviations

The points on the mean model do not have to lie on the boundary of object as they can represent 
internal features or sub-components. The models are linear, like those described in 2.7.1. This 
method is inefficient at modelling bending or rotation of one subcomponent about another.

Learning Deformable Models for Tracking Human Motion

The task of surveillance involves observing a scene for a considerable length of time. In the 
situation that a single camera, monitors a scene, it is possible to extract dynamic information from 
an image sequence. Baumberg (1995) present such an approach that attempts to extract human 
motion. The difference observed over a series of frames is thresholded. It is important that the 
thresholding is based on the expected size of the object in the image. This enables the identification 
of the silhouette of the object of interest. This difference is then blurred and thresholded to reduce 
the effects of noise. This enables the extraction of the individual’s silhouette from the image 

sequence.
In (Baumberg & Hogg 1994), the exact shape of the individual is not sought but a reasonably

2.7.2 Active Shape Models
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consistent shape vector is extracted. The boundary of the silhouette is described by a B-spline 
contour that interpolates 40 uniformly distributed control points. The B-spline contour is fitted 
to the silhouette providing a reasonably close approximation. The control points are treated in 
the same manner as described in (Cootes et al. 1992). Tracking the movement of regions from 
one frame to the next enables a direction for motion to be extracted. This information is then 
associated to each control point. Using this model, it is possible to infer 2D direction of the 
motion of a person, in terms of image coordinates.

2.7 .3  T r a c k in g  u s in g  A c t iv e  C o n t o u r  M o d e ls

When the scene, or objects within it, start to move, the task of locating the moving objects becomes 
more difficult. This problem is known as tracking and can be solved by introducing dynamic ele­
ments in the active contour model. In (Blake & Isard 1998), the dynamic models are referred to as 
“dynamic contours”. Active Contours can be applied dynamically to temporal image sequences. 
In dynamic applications, an additional layer of modelling is required to convey any prior knowl­
edge about object motions and deformations. For this purpose, the active contours are redefined 
as time and space varying curves and terms to account for inertia and viscosity. This is expressed 
mathematically as:

inertial force v externalf orceinternal forces

where p is the mass density and 7  is the viscous resistance from the medium surrounding the snake. 
In this formulation, there is a large degree of freedom and without imposing prior knowledge the 
snake can potentially move and deform to any shape.

When tracking movements between frames, it is not sufficient to compare the previous position 
of the curve with its current position. This is because the discretisation caused the curve to undergo 
small perturbations around the equilibrium points. However, tracking the position o f the curve for 
a few iterations distinguishes between perturbations around the equilibrium, and motion towards 
equilibrium by the curve.

2.8 Active-meshes

ACMs have been reformulated as active-meshes that are used in unconstrained environments to 
perform tracking of objects in an image sequence (Molloy & Whelan 2000). The approach uses 
meshes to track strong features in images. An example is shown in Figure 2.9 in which an ambu­
lance is tracked. The strong features, such as edges and comers, are used as vertices of a mesh. 
Setting the constraints involves generating internal forces between the mesh vertices. In (Mol­
loy & Whelan 2000), the forces applied to each node are proportional to the distance between 
the current length of the interconnecting lines and the reference length giving the mesh its elastic 
properties. Additional rigid forces are applied to encourage the distance between vertices to return 
to the reference distance which can expand slowly over a number of iterations if it is subjected to 

a consistent external force.
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Figure 2.9: Example of the application of active-meshes. (a) shows the generated mesh that is used 
to track the position of the ambulance in an image sequence and (b) shows the motion vectors that 
are generated by the ambulance (Molloy 2000).

The Internal Forces

The mesh structure is generated using a Delaunay triangulation that connects the mesh points to 
their natural neighbours. The mesh lines have elastic properties that enable the mesh to deform 
and track the movement of the mesh points. The internal forces are proportional to the difference 
between the current length and the reference length of the interconnecting line. The rigid proper­
ties of the mesh attempt to force the mesh lines to return to then reference length while the elastic 
properties give the mesh the flexibility to track points. The reference length is not fixed and can 
change and adopt a new length if the mesh is stretched by a number of consistent external forces 
over a significant number of iterations. The internal energy is expressed as:

FLine =  i'cur (•&')$L^x L CUT( % j ' ) (2.43)

where mesh lines have a current length (L cur), ase t length (L aet) and/3/, =  {L set—L cur) j a i ,L cur. 

L Cur(%) and L cur(y) represent the x and y components of the current mesh line lengths which 
determine the internal energy, i is a unit vector with same axis as the mesh model, a / ,  is a user 
defined factor to limit the effect of forces.

At each iteration L set =  L set +  a j ( L cur — L set) where a /  is a user defined factor that limits 
the change in length of the line length.

The External Forces

The External forces are applied to the mesh nodes independent of the mesh lines and are derived 
from image data. The image forces pull the mesh nodes towards image features points. The forces 
are determined by the Euclidean distance between the mesh node and the location of the feature 
and a scale factor that is determined by suitability of the match feature.

The most suitable match is found by comparing the 3 x 3 area surrounding the current node 

and the 3 x 3 area surrounding the possible match comers detected within a circular search space 
with a predefined radius, r. Then for all of the comer matches with Euclidean distance d < r, to
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the current node are considered. The total intensity difference is 

1

J T =  J 2  3-710 “I“ i "F Uno “t" j )  I{pcn  i Vcn ~f~ j ) |  (2-44)
i j = — 1

where n 0 is the current node and cn is a comer within the radius r. The comer point is chosen that 
minimises the value of I t - It is subsequently normalised to establish a match strength, S m . The 
indicies i and j  are the horizontal an vertical coordinates in the circular search space.

Thus for a single node the external force is given by:

Fext — fiextdix'jix “1“ fiextd^y^iy (2.45)

where /3ext =  a E ( r  — d / r )  and a #  is a user defined property that determines the significance of 
the force that the external forces have over the mesh.

Force Combination

These forces are combined using a weighting factor that is inversely dependent on the Euclidean 
distance separating two connected nodes and is expressed as:

N
f t  =  l - A / £ A )  (2.46)

■¿=1

Thus the force on the centre node is

N

=  <2-47)
1 = 1

2.9 D iscussion

This section provides a review of previous active contour models. In particular, it has been shown 
that active contours have undergone and continue to undergo change since their inception; in 
some cases, to overcome apparent weaknesses2 1 in the original implementation and in others, the 
reformulation is necessary to enable the active contours to be applied in new domains. Although
geometric active contours, as described in this chapter, are perhaps fundamentally separated from
the original active contour model, they provide enhancements that are not easily integrated into the 
original model while the development of deformable templates based on active contour models is 
potentially the principal technique to enable higher-level information to be brought to bear on the 

task of extracting known objects from an image.
The section also draws attention to the semblance of the energy minimization framework in 

different forms, including the active mesh formulation discussed in Section 2.8 and the incorpora­
tion of additional constraints in the framework to solve specific problems in the domain of medical 
imaging. It also details different reformulations in terms of B-splines and NURBS, both of which

2'T h e  w eaknesses are not related  to  the algorithm ic m ethodology o f  active contours but how  it can be applied to 
specifi c p roblem s or how  the p rocess can be autom ated
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are key to application of snakes in real-time applications and can provide greater local control over 
the positioning of the final curve.

This review provided a vital step in deciding how the active contours can be used for the 
extraction of an individual from their environment. It follows from an examination of existing 
techniques for the identification and extraction of objects from images. Moreover, this review 
has highlighted and confirmed that implicit (geometric) models are best suited for situations in 
the recovery of unknown topologies and extraction of complex shapes, although they are not as 
convenient as parametric models for known shape and visual presentation of intermediate stages 
or for user interaction.

The following reasons are considered as validation in the choice of parametric active contour 
models for the extraction of individuals from real environments:

• In (Jacob et al. 2004), it is shown that since the parametric snakes represent the curve ex­
plicitly, it is easy to introduce a priori shape constraints into the snake framework. This is 
important to enable the incorporation of shape information on the structure of the contour. 
To date, it has not been possible to introduce constraints in the geometric active contour 
framework that can dictate how the contour should evolve as this is entirely dependent on 
parameterisation of the contour and the image forces.

• Mclnemey & Trezopoulos (1995) highlight that parametric snakes as opposed to geometric 

snakes introduced by Caselles et al. (1997) and Malladi et al. (1995) are well suited when 
the topology o f the object is fixed and known a priori. Parametric active contours are best 
as they provide greater control and enable the contour to deform in a pre-described manner.

• In addition, to incoiporate the flexibility to adapt to any topology, geometric active contours 
tend to be computationally more complex as they evolve a surface as opposed to a curve.

• The final position of a geometr ic contour does not provide an easily interpretable shape. If a 

contour description is required, it is necessary to fit a curve to describe the extracted shape. 
Moreover, during the iterative process comparisons, with exiting shapes is difficult. This is 
in contrast to the parametric methodology that can be easily examined at any iteration.

Parametric definitions are used because a pixel free representation is sought which is necessary 
to develop a template that can be easily adapted to the extraction of any individual. Additionally, 
the use of parametric contours is considered appropriate since:

• ft is important to take advantage of the fact that the shape of the object to be extracted is 
known in advance.

• It is necessaiy to introduce constraints to force the contour to move in the desired fashion, 
and while constraints cannot be incorporated in the approach proposed by Kass et al. (1987), 

they have been successfully introduced under the auspices of dynamic programming by 
Amini et al. (1988).

• The boundary o f the individual will have different characteristics, for example the texture 

or colour of the clothing the individual wears. Thus if a level sets approach is employed,
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the contour will have to evolve over multiple boundaries within the image to successfully 
extract the individual as a single region.
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B u i l d i n g  V i r t u a l  H u m a n s

Chapter ________________________

3.1 Introduction

The creation of virtual human models that are used to populate virtual worlds is a diverse area 
which has received significant interest in recent years. This has led to the development of various 
techniques for the creation of realistic human models that are used in numerous applications over 
an increasingly wide range of devices. These applications have made it possible for individuals 
to interact in new mixed and virtual reality applications including video conferencing (Weik et al.
2000) (Kompatsiaris et al. 1998) (Wingbermhle et al. 1997), virtual worlds (Prince et al. 2002) 
and network games. The virtual humans are also used in diverse applications from virtual tourism 
(Papagiannakis et al. 2004) to fashion (Cordier et al. 2003) and sports (Klein et al. 2002). Addi­
tionally, new applications are being continually devised to take advantage of the 3D human models 
(Sobrevida et al. 2000).

All of these techniques have different requirements in terms of the quality of the final content 
and how this content should be delivered (in real-time or offline), and the specification of the ter­
minal device. In general, the techniques that are used for the creation of the models depend on the 
type of applications that the models are created for. In computer games, motion capture systems 
are the preferred method for data capture because of the real-time constraints giving interaction 
and animation a higher precedence over the fine detail, while in the creation of characters for films 
the quality of the model is paramount for successful integration of the model and thus a combina­
tion of technologies including the use of range scanners, or multiple images, and often additional 
sculpting is required to generate the final character. In web based and increasingly mobile appli­
cations, different Level of Detail (LOD) models are being produced to take advantage of available 
bandwidth (Collins & Hilton 2001).

This chapter starts by providing a review of various approaches that exist for the 3D recon­
struction of rigid objects and scenes. The different approaches that are described are assessed in 
terms of their suitability for use by non-expert users and their practicality in reconstructing non­

static objects such as humans. This is supplemented by a review of the existing techniques that 
have been applied to the creation of “Virtual Humans”. This includes a description of the tech­
niques for the estimation of pose and shape information which build on the Active Shape Models
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and the templates that are described in Chapter 2. Finally, this chapter concludes by highlighting 

the aspects that are deemed important by the author in the development of a flexible approach to 
the creation of human models.

3.2 General Approaches to 3D Reconstruction

Early computer vision aimed at understanding how explicit geometric representations of a 3D 
world may be reconstructed from 2D images. There are a number of aspects related to this prob­
lem of representation and they resulted in a number of different reconstruction techniques based 
on: intensity gradient and flow fields, reconstruction of 3D surface depth and orientation and 
motion fields (Trezopoulos 1998). Under Marr’s paradigm, 3D vision is formulated as the 3D 
reconstruction of an object from an image (or a series of images) of a scene. The first two stages 
of the vision process involve converting an image to a primal sketch and converting that primal 
sketch to a 25 D sketch. This is followed by the conversion of the sketch to a 3D model. This 
involves the extraction of 3D geometric description of the scene and the quantative determination 

of the properties of the object in the scene.
The task o f 3D reconstruction involves solving three interrelated problems:

1. Feature visibility in images: i.e. how to determine whether or not the relevant object is 
contained in the image (even partially contained in the image).

2. Representation: this relates to the choice of model for the observed world, at various levels 

of complexity.

3. Interpretation: this covers how the data is mapped to the 3D (real) world (Sonka et al. 1999).

These problems can be solved in either a bottom-up or top-down (model based) approach based 
on the amount of prior information available:

1. Reconstruction, bottom-up: This aims at reconstructing 3D shape of an object from an 
image or set of images when very little a priori information is available. In this approach, 
the idea is to create a 3D model from real world objects,

2. Recognition, top-down, model based vision: The available a p riori information about the 
objects is expressed by means of models (templates), where 3D models are of particular 
interest. The inclusion of additional constraints in the model makes it possible to infer data 
that is not available in an underdetermined vision task.

In general, 3D Reconstruction is a difficult task for a number of reasons including:

• The fact that 3D reconstruction is an ill-posed problem that requires the extrapolation from 
less dense 2D information to a richer 3D domain.

• The extraction of correspondences between images which form the basis for 3D geometrical 
properties are based on image intensity values that are subject to variation.

• The existence of occlusion and the presence of noise in the images.
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The premise for 3D reconstruction of scenes and objects from two images using calibrated cameras 
is presented by Longuet-Higgins (1981), in which it is shown that the essential matrix1 contains 
sufficient information to compute the structure of a scene if eight point matches are known. The 
solution is obtained from solving a set of simultaneous linear equations. This approach does not 
detail how the eight-points should be determined although it highlights degenerate configurations 
that will cause the algorithm to fail. These include the following configurations:

• if as many as four points lie in a straight line,

• if as many as seven of them lie in a plane,

• if six points lie at the vertices of a regular hexagon,

• or if 8  points are located at the vertices of a cube.

Thus in general, it is necessary to calculate more than eight-point correspondences between the 
images and then use a subset of all points. Hartley (1997) applies the same algorithm to compute 
the fundamental matrix from images captured with uncalibrated cameras. The fundamental matrix 
can be used to reconstruct a scene but only up to a projective transformation.

It has long been established that is it possible to extract the structure of a scene with the 
establishment of five point correspondences, but this results in a set of non linear equations and 
involves an iterative solution. This work has been improved by Roach & Aggrawal (1979) and by 

Faugeras & Maybank (1990).
The calculation of the points of correspondence can be achieved by using a number of well 

known approaches including point matching, line matching and comer detection, all of which are 
important in tracking methods and in the recovery of 3D (Sonka et al. 1999).

It is necessary that a series of checks needs to be carried out on the points to ensure that no 
degenerate configurations exist. In addition, to establish points of correspondence necessary for a 
complete 3D reconstruction o f an object requires numerous images captured close together. This 
provides a high correlation between the images. All points of correspondence will not be available 
in each image (Dyer 2001). This increases the complexity of the reconstruction process and, in 
general, requires an expert user to ensure that sufficient information is captured in each view. 
Alternatively, if multiple cameras are used, then it is imperative that the cameras are calibrated or 
that correspondences between the images can be obtained to ensure that accurate reconstruction 
can be completed. Many different partial models may result, which must be combined to form a 
single consistent model, and there is no way of handling occlusions or differences between views 

(Dyer 2001).

'T h e  essential m atrix  conveniently  encapsulates the epipolar geom etry o f  the im aging configuration . T he sam e 
a lgorithm  m ay be used  to com pute a m atrix  w ith this property from  uncalibrated  cam eras, fn th is case o f  uncalibrated 
cam eras, it has becom e custom ary  to  refe r to  the m atrix  so derived as the fundam ental m atrix . See (H artley & Z isserm an 
2000) fo r m ore details.

3.2.1 The Eight-point Algorithm
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3.2.2 Silhouette Based Reconstruction

Silhouette based techniques provide an alternative approach to reconstruct objects from images 
when it is not possible to extract sufficient points of correspondence. Although silhouette based 
approaches are unable to reconstruct non-convex (concave) parts of surfaces, there exist numerous 
methods for construction o f models from a set of silhouette images. A comprehensive list is 
described in (Dyer 2001) and the references therein.

A silhouette is a 2D projection of an object from a particular viewpoint. In image terms, the 
silhouette is the part of the image that contains the projection of the object as opposed to the 
background. In general, it is possible to recognise a convex object from its silhouette. The basis 
for examining volume intersection, as a method of 3D reconstruction, is that the silhouettes can 
be simply and reliably obtained from intensity images, and it is not necessary to find multiple 
correspondences between all images. The only requirement is that the positions of the viewpoints 
are known (Laurentini 1994). The basis idea of silhouette based reconstruction is shown in Figure

3.1.

(a) (b)

Figure 3.1: Volume intersection approach to reconstruction, (a) shows a simple shape recon­
structed from two silhouettes, (b) shows a situation when the true shape of the object can not be 
reconstructed (Laurentini 1994).

Although silhouette based reconstruction is proposed as a method for the construction of 3D 
objects, it is not possible to construct every convex object from a series of silhouettes and, in 
general, the closest approximation that can be obtained is called the “visual hull” of the object. 
Only objects coincident with the visual hull, can be reconstructed. The visual hull as introduced 

by Laurentini (1994), is defined as:

Definition 1 : The visual hull V H (S , R ) of an object S  relative to a viewing region R  

is a region of E 3  such that, for each point P  G (S, R ) and each viewpoint V  G R, the 
half-line starting at V  and passing through P  contains at least a point of S.

This highlights an important role that the viewing region R  plays in the reconstruction of 
an object. Laurentini (1994) defines the terms silhouette-active surface and inactive surface are 
defined. The silhouette-inactive surface can take on any shape without affecting the silhouette of 

the object while any point on the silhouette-active surface is part of the surface of the object and on
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the boundary of V H (S , R ). Following on from this, Laurentini states that there is a unique visual 

hull not exceeding the convex hull of S, relative to all viewing regions that enclose S  and do not 
enter the convex hull. Thus any point Q belonging to V H (S , R') also belongs to V H {S , R ”) and 
vice versa, since a half-line from a particular point on the object will intersect the viewing regions 
R' and R ” . As the number of viewpoints is increased, the object can be reconstructed with greater 
accuracy (higher precision), although if the viewpoints do not contain sufficient variation then it 
is impossible to accurately extract the 3D shape information.

The visual hull can be computed based on the simple observation that a point does not belong 

to the visual hull if there are lines passing through this point that do not intersect the object since 
its image cannot be found in all silhouettes of the object. This is illustrated in Figure 3.2 The 
visual hull for 2D scenes is equal to the convex hull of the object, and in 3D scenes it is contained 
in the convex hull (Dyer 2001). The visual hull is illustrated in Figure 3.2.

Figure 3.2: Illustration of an object’s visual hull from 4 views4.

A 2D silhouette of a 3D object constrains the object inside the volume obtained by back pro­
jecting the silhouette from the viewpoint and a number of silhouettes specify a bounding volume 
that is created by the intersection o f the silhouettes. This technique is known as volume inter­
section (VI) and it recovers the closest volumetric description of the object that can be recovered 
using silhouette-based reconstruction. The reconstructed object provides information about the 
external boundary of the object, but this does not provide complete shape information.

To determine which parts of the visual hull are coincident with the surface of the original 
object and those parts that may contain un-reconstructable concavities, it is necessary to consider 
each point in the visual hull. A line passing through any point of the visual hull must share at least 
one point with the object. Any point in the visual hull with at least one line that passes through the 
point without intersecting the visual hull at any other point is defined as a surface point. Further to
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this, only edges with this property can be reconstructed. This enables the establishment of points 
that play an important role in estimating the shape of the object. Cheung et al. (2003) extend this 
with the concept of bounding edges in. A bounding edge is defined as:

Definition 2\ A bounding edge E *  is the portion of a ray r j  such that the projection of 
E j  on the image planes of all other cameras lies completely inside the silhouettes2.

While staying within the bounds of the silhouettes, it is impossible to accurately extract all the 
finer details on areas such as the face, and thus the concavity or so callcd “complementary part” 
of the surface can take on different shapes without affecting the silhouette. This provides a basis 
for the use of an underlying model that can be scaled based on the information in the extracted 
silhouettes and then provides the necessary constraints for the reconstruction of the finer details.

Laurentini (1997) discusses the necessary considerations that should be considered in the re­
construction of objects from silhouettes. In addition to this, the theoretical minimum number 
of silhouettes required to reconstruct an object is examined. The result of the discussion is that 
a curved patch cannot be reconstructed from a finite number of intersections and that a concave 
polyhedral with n  faces and viewpoints outside the convex hull may require an unbounded number 
of intersections to be successfully reconstructed.

3 .2 .3  V o lu m e t r ic  (S cen e ) R e c o n s t r u c t io n

The construction of volumes or surfaces that are consistent with the input images is an alternative 
approach to traditional correspondence based methods for scene reconstruction and is based on 
computations in three-dimensional scene space. Volumetric methods offer flexible visibility mod­
els and explicit handling of occlusions. The space in which the scene occurs is represented through 
a discretised volume of voxels and occupancy decisions are made about whether a volumetric el­
ement belongs to the objects in the scene. Figure 3.3 shows a simple 2D example to determine 
which parts of the scene are outside the visual hull of the object and those that are inside the visual 
hull. In Figure 3.3 (b), the squares that are filled indicate that the complete pixel is inside the 

visual hull of the object.
There are a wide variety of methods for the construction of volumetric models, including the 

construction from a set of silhouette images discussed in (Dyer 2001) and the references therein. 
A volumetric scene is modelled explicitly in a world coordinate frame and the volume of space in 
which the scene resides. Volumetric modelling of scene space assumes there is a known, bounded 
area in which the objects of interest lie. This area is frequently assumed to be a cube surrounding 
the scene. A method for establishing this volume is presented in (Martin & Aggarwal 1983). The 
most common approach to representing this volume is as a regular tessellation of cubes, called 
voxels, in Euclidean 3D-space. Octrees 3 can be used to make the implementation more efficient 
(Srivastava & Ahuja 1990). Octree can be used in Figure 3.3 (b) to subdivide the voxels on the

2A ssum e that there are K  cam eras and that u) is a point on the boundary silhouette in v iew  k. T hen r j  is the ray 
through cam era centre k passing  through u ).

3O ctrees are a h ierarchical variation on the spatial occupancy enum eration  designed  to address the dem anding 
storage requirem ents o f  dense 3D  data. A n octree is obtained by successfully  subdividing a volum e into eight equal 
octants along  each 3D  axis.
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(a) (b)

Figure 3.3: Illustration of how simple decision are made to decide if a voxel is inside the visual 
hull, (a) shows a sphere within the field of view of three cameras. The intersection of lines 
indicating the field of view of each camera forms the visual hull of the object, (b) shows a coarse 
reconstruction of the object the shaded squares indicate the voxels inside the visual hull of the 
object4.

boundary of the object’s visual hull that are not filled to determine if part of pixel is contained 
within the visual hull or not.

Many algorithms have been developed for constructing volumetric models from a set of silhou­
ette images, including (Martin & Aggarwal 1983) which attempts to derive a 3D object description 

from images that do not depend entirely on feature point correspondences. I f  the visual hull is not 
calculated accurately, the photo-realism of the scene will be significantly reduced when new views 
are generated. To increase the accuracy, more information from silhouettes can be used during the 
reconstruction. The main source of such information is colour (Slabaugh et al. 2001),

In volumetric reconstruction, it is necessary to start from a bounding volume that encloses the 
entire scene. This volume is then discretised into voxels and a voxel occupancy description is 
defined based on the intersection of the back projected silhouette cones. The intersection test is 
the most important task in the voxel-based algorithms. This is achieved in a number of different 

ways:

•  In (Noborio et al. 1988), the silhouettes are back projected, producing a set of cones that 
intersect in 3D.

•  In (Srivastava & Ahuja 1990), the intersection detection is achieved efficiently by decom­
posing it into a coarse-to-fine sequence of intersection tests

•  In (Szeliski 1993), the intersection is determined by projecting each voxel into all of the 
images and seeing if it is contained in all of the silhouettes. This process is illustrated in 
Figure 3.4, in part (a) the voxel does not correspond to the object in the tree images and in 
part (b) the voxel projects to the object in each image.

To increase the efficiency of the voxel testing procedure, most methods use octree represen­

tation and implement a coarse-to-fine hierarchy (Dyer 2001, Srivastava & Ahuja 1990). This hi­

4From  S. Seitz p resentation  ‘F rom  Im ages to Voxels”, S IG G R A PH  2000 C ourse on 3D  Photography.
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(a) (b)

Figure 3.4: (a) the voxel projects in two views to background, (b) the voxel projects to the same 
color in all three views (Brisc 2004).

erarchy enables the volumctric construction of scenes and objects with different resolution (Brisc 
2004). A decision on the occupancy decides whether a volumetric primitive contains objects in 
the scene or not. If  a projected voxel does not intersect a silhouette in at least one view, then it 
is removed (marked transparent) and if  a projected voxel intersects only silhouette pixels in each 
image, then it is marked opaque. Otherwise the voxel projection intersects both background and 

silhouette and the octree representation is sub-divided.
When the images are not binary, then additional photographic information can be used to 

improve the 3D reconstruction process. These photo-consistent approaches can be used to addi­
tionally constraint the reconstruction, such that a valid 3D scene model that is projected using the 
camera matrices associated with the input images must produce synthetic images that are the same 
as the corresponding real input images. The photo-consistency checks the colour similarity of the 
pixels that a visible voxel projects onto, e.g. Figure 3.5. If the voxel colour is the same in all 
images or within an agreed level of deviation, the voxel is consistent and will be kept, otherwise 
it is carved5 from the reconstruction. It is possible that many 3D scenes will be consistent with 
the images and so the image consistency does not guarantee a unique solution (Dyer 2001, Kutu- 
lakos & Seitz 2000). In most photo-consistent implementations, the surfaces are assumed to be 
Lambertian 6  and the voxel’s centroid is projected into each of the images. In addition, the limits 
of photo-consistency need to be set, and this can have a major influence on the outcome of the 

reconstruction of the scene.
Voxel colouring is an approach to volumetric reconstruction of scenes that reconstructs the 

photo hull of the scene. It is an efficient method that visits the voxels in a particular order to 
perform photo-consistent checks on each voxel. To achieve this, it requires specific placement 
of cameras, particularly if it is not possible to surround the scene with the cameras (Seitz & Dyer
1999). This is improved upon using the generalised voxel colouring (GVC) algorithm proposed by

5C arving o f  voxels effectively rem oves them  from  the reconstruction process. T his is achieved by  setting their 
opacity  to be transparent. The carving o f  one voxel generally  changes the v isibility  o f  o ther opaque voxels

6T he L am bertian refbctance m odel occurs w hen every surface appears equally  bright in all d irections regardless o f 
the  illum ination
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Figure 3.5: This figure illustrates how the pixel data in each image can be used to determine if the 
reconstruction is consistent with the captured data.

Slabaugh et al. (2004) which supports arbitrarily placed cameras and have minimal requirements 
on the order in which the voxels are processed. Moreover, Slabaugh et al. (2004) provide a com­
prehensive description of volumetric reconstructions using multiple arbitrarily placed calibrated 
cameras. This approach attempts to provide few restrictions on the type of camera used, or on the 

position from which the images are captured.
Voxel visibility is important when one voxel is occluded by another in any one of the camera 

viewpoints and is defined as the line segment connecting the centre of voxel x  and the optical 
centre of any one of the cameras intersects voxel y, then x  occurs after y in the ordering. This or­
dering ensures that all possible occluders of the voxel with respect to every camera have previously 
been visited. Thus, visibility testing is dependent only on the labels of voxels visited previously, 
enabling a one-pass algorithm (Dyer 2001).

In general, volumetric scene-space methods allow widely-separated views, but generally de­
pend on calibrated cameras to determine the absolute relationship between points in space and 
visual rays. There exist different techniques to convert from a voxel representation to surface 
meshes, surfels7, etc., increasing the flexibility of the volumetric reconstruction process (Slabaugh 
et al. 2001). The complexity of the model and its accuracy depend on the coarse-to-fine definition 
and depending on the size of the images and the amount of detail that is available. It may not be 
possible to determine in advance what amount of detail is available and this could lead to a blocky 
representation of parts of a scene that require a fine resolution or a very fine resolution for parts of 

the scene that can be better represented using a coarse resolution.
Volumetric scene reconstruction is an important element in the creation of easily navigable 

scenes and provides techniques to build scenes from off-the-shelf cameras and the ability to inte­
grate the different views sequentially into the existing model. Although the approach can operate

7A  surfcl is a  contraction o f  the w ords surface and elem ent
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in real environments, the building of the volumes is highly dependent on the photo-consistency that 
is dependent on the lighting conditions. This means that some prior processing may be needed to 
ensure that the correct model is extracted. The volumetric scene reconstruction provides an ideal 
way to build scenes, although it does not detail how specific objects are segmented from the scene. 
In addition, in (Carranza et al. 2003) polygon based reconstruction is favoured over volumetric 
reconstruction because 3D graphics engines are best suited for rendering polygons.

3 .2 .4  S c a n n in g  T e ch n iq u e s

It is difficult to extract 3D shape information from intensity image of real scenes directly. Another 
approach is to measure the distance from the viewer to points on the surfaces in the 3D scene 
explicitly; such measurements are called geometric signals, i.e. a collection o f 3D points in a 
known co-ordinate system. If the surface is measured from a single viewpoint, it is called a range 

image or depth map. Such explicit 3D information, being closer to the geometric model that is 
sought, makes geometry recovery easier.

Two steps are needed to obtain geometric information from the range image:

1. The range image must be captured,

2. Geometric information must be extracted from the range image. Features are sought and 
compared to a selected 3D model. The selection of features and geometric models leads to 
one of the most fundamental problems in computer vision: how to represent a solid shape.

According to Neugebauer8, it is important to capture a suitable number of range images to 
enable the complete reconstruction of an object. Attempting to predict where the most appropriate 
views should be captured from is an on going task. One approach to predicting the next view is 
described in (Klein & Sequeira 2000), although no method is detailed how this number should be 
suitably determined. The approach of Neugebauer also highlights that if the scanning device does 
not capture images at the same instant as scanning the object, then depending on the object the 
images can be captured subsequently using a common digital camera.

While scanners provide advantages over photographic techniques, they still do not overcome 
the problems associated with occlusions and extraction of dynamic 3D data. Thus, additional 
methods need to be considered because the extraction of 3D data is not exclusively used for the 
reconstruction of scenes or objects. For instance, 3D data can be used to categorise how a particular 
individual moves. While an estimate of this motion can be extracted from a single image or a scan 
in general, the most accurate information is extracted using multiple images or using sensors that 

form part of a motion capture system. These and other issues are described in Section 3,5.1 where 
in addition to the capturing of 3D data for the purposes of 3D reconstruction, additional data is 
captured to establish the pose and animation information associated with an object.

8R econstructing  3D  m odels o f  R eal-W orld O bjects from  R ange D ata and C olour im ages P eter N eugebauer, CG 
topics 5/99

49



3.3 3D Reconstruction (Vision)

This section provides a review of some of the foremost techniques that exist for the creation of 
3D objects and scenes, primarily from photographs, although some approaches that construct ob­
jects using range data are considered. The central problem addressed is concerned with multiple 
images: i.e. when given two or more images of a scene, possibly a camera model, points in these 
images which correspond to the same point in the world coordinate system, it is possible to con­
struct a description of the 3D spatial relations between the points in the world (Faugeras & Loung 
2 0 0 1 ).

3D Modelling and Rendering Scenes from Photographs

Modelling of 3D scenes from images is a challenging problem that has been a research topic for 
many years. A number of algorithms have been proposed that allow the extraction of complex 
3D scenes from a sequence of images. Initial approaches related to robot guidance and how to 
extract sufficient information to allow the robots to move around an environment. This required 
only an estimate of the scene structure and, in general, did not perform a complete 3D reconstruc­
tion. Recently, the emphasis o f the research has changed, focusing on obtaining accurate scene 
information and the generation of 3D objects that are present in the environments. These objects 
can be used in computer graphics and virtual reality applications (Pollefeys et al, 2000).

A significant amount of research has been devoted to the problems encountered by the large 
amount of calibration that is required and the restrictions that are placed, in particular on the 
camera motion. Using calibrated systems requires a high degree of expertise. In unconstrained 
environments, when the cameras are not used in calibrated systems, it is necessary to recalibrate 
the system each time that it is used. This reduces the flexibility of the system and the acquisition 
of the information. Projective reconstruction is used to reconstruct the object. This technique is 
based on previous research by Faugeras & Loung (2001) and Hartley & Zisserman (2000). These 
techniques proved that it was possible to reliably reconstruct an object up to an arbitrary projective 
transformation. In the techniques, the fundamental matrix was estimated from image pairs.

Debevec et al. (1996) proposed a hybrid method for modelling and rendering of architecture 
models using a small set of images. This approach exploits the constraints that are characteristic 
of architectural scenes and is illustrated in Figure 3.6. This enables the construction of parts of the 
buildings that are occluded, and the simplification of geometrical elements and their replacement 
with primitives. This is combined with a model-based stereo algorithm that enables the recovery 
of real scene information which is used to adjust the underlying model of the scene. In addition, 
the textures that are used when rendering the scene are view dependent, and this reduces the 
complexity of the final rendered model. The use of the model approach enables the reconstruction 
process to overcome some of the weaknesses of a purely image based reconstruction process, 
primarily the fact that the information in the photographs needs to be similar for reliable results 
to be obtained. This requires the use of many images from similar positions. This can require 
significant supervision and would require the capture of an unrealistic number of images and 
subsequent processing to derive depth and correspondence information. The distance between 
viewpoints also limits the number of new viewpoints that can be created (Debevec et al. 1996).
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(a) (b) (c) (d)

Figure 3.6: (a) A photograph o f Berkeley’s clock tower, with edges marked in green, (b) The 
model recovered by the method of Debevec et al. (1996). Although only the left pinnacle was 
marked, the remaining three, including the one not visible in the captured image were recovered 
from symmetrical constraints in the model, (c) shows that the accuracy of the model can be verified 
by projecting it into the original photograph. In (d) a synthetic view of the clock tower generated 
using the view-dependent texture-mapping method.

The task relies on a certain amount of user interaction to build the model, to process the input 
images and to select the relevant images for the construction of a particular building. In addition, 
the user carries out the initial modelling of the scene. Features, such as edges that correspond 
between the images and the model are marked. Then a task of minimising the difference between 
the edges marked in the images and the model edges is automatically undertaken. The minimisa­
tion process enables the computation of the camera positions and facilitates the texture mapping. 
The results that are achieved by Debevec et al. (1996) show that by using the hybrid approach, 
architecture can be reconstructed to a high level of detail and that the symmetry, which is strongly 
evident in the building design can be used to compensate when detail is missing. This approach is 
not as general as other approaches for modelling 3D scenes but shows the advantages that specific 
systems, particularly model-based system have.

Pollefeys et al. (2000) present a more general approach to scene reconstruction. The main 
objective is to allow off-the-shelf cameras to be used to acquire images by freely moving the 
camera around the object. Neither the camera motion nor the camera parameters are known in 
advance. The 3D model that is created is a scaled model of the original object that is captured. The 
textures used to texture the surfaces are also obtained from the images. The self-calibration of the 
camera system is important in many applications to produce a complete Euclidean reconstruction. 
This is a step up from the projective reconstruction. One assumption is that the same camera is 
used for the capture of the entire sequence. In addition to this, it is assumed that the same intrinsic 
parameters hold for all images captured. The system gradually obtains more information about the 
scene and the camera setup. The reconstruction starts with two images and calculates a projective 
frame of reference, and for the subsequent images the projective frame defined by the first two 
images is used to extend the projective reconstruction. To automate the projective reconstruction 
process, it is assumed that the images form a sequence in which consecutive images do not differ
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too much. Thus the local neighbourhood about a scene point should look similar if the images are 

close together in the sequence. An example of this reconstruction process is shown in Figure 3.7 
which contains four images that are taken from the Arenberg Castle in (Pollefeys et al. 2000) and a 
reconstruction of the castle. Based on this assumption, it is possible to find point correspondences 
between consecutive images, although the correspondences are not maintained through all the 
captured images. The disadvantage with this is that it is necessary to have a large number of 
images to do a complete 3D reconstruction o f a large object.

Figure 3.7: (a) contains four images o f the set used in (Pollefeys et al. 2000) for the reconstruction 
of the Arenberg castle with the reconstruction shown in part (b).

Once the complete projective reconstruction is completed the position and orientation of the 
cameras are known for all the viewpoints. This information is obtained by calculating the epipolar 
geometry assuming some basic intrinsic parameters such as rectangular pixels, principal point at 
the centre of the image, etc are known. The Euclidean reconstruction provides accurate results of 
the scene that is reconstructed, and while the detail that is extracted is highly refined in comparison 
to Debcvec et al. (1996), only the part of the building that appears in the photographs is visible 
and the range of view points is limited. Nevertheless the approach in (Pollefeys et al. 2000) lends 
itself to the reconstruction of small scale objects more easily.

Other correspondence based approaches include that of Beardsley et al. (1997) that implements 
a sequential updating of the 3D scene and recovering the camera positions and providing an affine 
and projective structure o f  the scene. This is in contrast to the previously described methods that 
perform the reconstruction using all available frames. This approach uses comer detection to 
identify the important points o f correspondence within the images.

Klein & Sequeira (2000) apply scanners to 3D modelling of real indoor scenes. This approach 
attempts to overcome the problem of suitably scalable planning algorithms for the acquisition of 
different sized data. This approach uses a specialised capture unit that is composed of a laser 
scanner mounted on an tripod that can be moved from one location to the next to capture the 
necessary data maps. In general, the tripod can have variable height and scanning angle, and thus 
eight parameters need to be determined (three for position, two for the direction angle, one for
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each of the horizontal and vertical field o f view and one for the resolution). The results o f Klein & 

Sequeira (2000) show that it is possible to automate the capture of data for the construction of 3D 
scenes, although this system is not suitable for use by a non-expert user as it requires the setting 
of different parameters depending on the data that is to be captured, and to ensure registration 
between different range images, it is necessary to have 0 %of the pixels over-lapping thus limiting 
the motion between each range image.

The effectiveness of the above approaches rely on the accurate extraction of correspondences, 
and the matching parameters tend to fail as the base-line increases the effects of occlusion become 
more pronounced and the possibility of modelling the scene geometry becomes more complex. As 
a consequence, these methods are not well suited to the arbitrary positioning of cameras (Slabaugh 
et al. 2004).

The approaches described in this section provide accurate reconstruction of scenes and can be 
used to enhance an individual’s virtual experience, but they require the user to have a significant 
level of expertise to create the models. The expertise is necessary to ensure that the informa­
tion contained in each view does not vary significantly from the previous captured image, or the 
calibration of the cameras each time that they are used to account for the particular settings that 
are chosen, or finally, require the use of particular modelling tools to simplify the reconstruction 

process.

3.4 3D Object Pose Estimation

The recognition of 3D objects9 from 2D images is an important element in many vision systems. 
To accurately recognise the object, it is first necessary to establish the pose of the object. To date, 
no generic approach has been established that can perform the task of recognising objects that 
humans, can in general, easily undertake. In particular, according to Chang & Ghosh (2000), the 
approach that humans use indicates that implicit 3D information is used to recognise the objects. 
In this section, some of the general approaches to pose estimation and object recognition are 
discussed. This acts as a forerunner to the discussion in Section 3.5.1, on the extraction from 
images of human pose and animation information.

According to Bergevin & Levine (1993), the task of generic pose estimation should be con­
sidered at a high-level, particularly when trying to extract the pose from a single view. This is 
important in building a general system, but in the majority of situations systems are developed for 
a particular task, and a general system adds unnecessary complexity. They highlight that humans 
can recognise objects from simple line drawings and use this as a basis for the development of a 
generic object recognition system. This is implemented in a manner that attempts to build coarse 
descriptions of the objects from single view edge maps. In (Bergevin & Levine 1993), the problem 
of recognising unexpected 3D objects from single 2D views is investigated. The PARVO (Primal 
Access Recognition of Visual Objects) system is discussed as a beginning in the goal of obtain­
ing a systematic (or computational) implementation of pose estimation. This system is applied to 
simple geometrical objects such as cups or other objects composed of primitive shapes.

9T he objects that are considered  in this section are p rim arily  rigid objects
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A major problem associated with object recognition in unconstrained and complex environ­

ments is the determination of the pose. To enable the extraction of sufficient information, it is 
necessary to constrain the motion or the pose of an object. It should also be noted that the con­
straints should not place a major restriction on possible viewpoints or the pose of the object to 
ensure that a true estimate o f pose and thus shape can be reliably extracted (Brophy et al. 2004).

An alternative approach to the task of recognising objects or estimating the pose of the ob­
ject can be obtained using a generalised cylinder based approach described in (Zerroug & Neva- 
tia 1995). Two approaches arc presented based on SHGCs (straight homogeneous generalised 

cylinders), a straight-axis primitive and PRGCs (planar right generalised cylinders) and a curved 
(planar) axis primitive which form a large class of man-made objects. The different generalised 
cylinder elements are used to describe the different classes of objects based on information ex­
tracted from the image. The pose is estimated using a matching procedure that attempts to match 
the image information to an equivalent model.

1

Figure 3.8: Example of pose of an object detected using the process in (Zerroug & Nevatia 1995). 
Each detected object is described as a graph where nodes are parts and arcs labeled joint relation­
ships between parts.

Brophy et al. (2004) present a number of approaches to determine the pose of an object using 
various labels. The basic idea is that if easily identifiable labels are placed on an object, then 
it should be possible to identify the pose of the object through image processing and machine 
vision analysis. The use of a known label enables the establishment of the 3D pose from a single 
2D image. In a similar manner, Martin & Aggarwal (1983) discuss the properties of special 
illumination conditions that can indicate surface orientations.

A learning stage is important for training a pose estimation system.This is achieved by consid­
ering the object from a number of different views, in a manner similar to that employed by humans

! ENB-T0-B0DY N0N-U1SIBLE-J0INT 1 : END-T0-B0DY VISIBLE-JOINT
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to recognise a 3D object. Chang & Ghosh (2000) use spherical manifolds 10 to represent the poses 

of the object that is to be determined. This approach is designed to automatically identify aircraft. 
A total of 684 different poses of each aeroplane are used as training sets. This is then used to 
establish the recognition of other views not used in the training of the model and on real objects 
with a high degree of accuracy. Chang & Ghosh (2000) advocate the use of 3D models when 
possible to generate the necessary views of the model for training purposes. This is also discussed 
in (Hutenlocher & Ullman 1990) in conjunction with a description of a model based approach to 
pose estimation and recognition of solid objects with unknown 3D position and orientation from 
a single 2D image. The transformation in the image is calculated by using correspondence pairs 
on the model and the image. The approach firstly computes possible alignments using a minimum 
number of correspondences between the model and the image features. The alignments are then 
verified by transforming the model into image coordinates and comparing the results.

It is important to realise that the extraction of the pose of an object initially depends on the 
ability to recognise features in the captured image. As discussed above, this involves a certain 
amount of learning. The estimation of the pose can be enhanced when information from additional 
views is considered. This is of particular importance when considering articulate objects which 
can undergo non-rigid deformations, which is discussed in terms of human pose analysis in Section

3.5.1.

3.5 Creation of Virtual Humans

With the increased availability of digital cameras, powerful graphics cards, 3D graphic engines 
and increased processor speeds, the possibility for a home-user to create and modify their own 
model is not unforeseen. This will facilitate the personalisation of various applications including 
interactive games. The key element necessary to enable this is the flexibility of both the capture 
and the reconstruction process. The provision of the techniques that enable an individual to create 
their own model will inherently be automated or require at most very limited user interaction. 
Moreover, it is imperative that the models can be created using off-the-shelf digital cameras and 
that there are no (or very few) restrictions imposed on the individual in terms of camera set up 
or the use of a controlled environment. In addition, the 3D reconstruction technique must be 
able to overcome inaccuracies that may result from simplifying capture procedure. This can be 
surmounted through the use o f an underlying model (Hilton et al. 1998) (Lee, Goto & Magnenat- 
Thalmann 2000) (Cohen. & Lee 2002) which is modified using shape information extracted from 
the captured data, or through the use of texturing that can enhance the appearance of the model 

(Boyle 2004) (Boyle et al. 2005).
This section is organised as follows: the key stages in a system creating 3D human models are

l0In real w orld applications it is m ore than often not required  to decide i f  w e have an im age o f  a specifi c object, but 
given an im age recognise the object relating  to  it from  a large data base. T his is possib le using  an index o f  som e shape 
invariant that can be calculated  from  im age m easurem ents. Because o f  the am biguity  form ed w hen projecting  3D onto 
2D  there is no unique shape invariant function. H ow ever it is possible to fi nd  invariant functions such that the set o f  all 
points corresponding to a feasib le im age o f  the object is a m anifold. This m anifo ld , given the  invariant function used, is 
unique to each object and an im age corresponding to this object m ust be  on the m anifold. H. M urase and  S. K. Nayar, 
‘V isual learn ing and recognition  o f  3-D  objects from  appearance,” International Journal o f  C om puter V ision, vol. 14, 
pp. 5-24, 1995.
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discussed and reviewed. Firstly, the techniques for acquiring the data are described and assessed in 
terms of the quality of the captured data, cost and level of knowledge required to set up the capture 
system and to interpret the data. The processing of the data is then described in particular, for the 
photogrammetric approaches as they offer the most flexible approach to creating virtual humans. 
The next section then examines how the realism of the models may be increased by texturing and 
by using modelling tools.

3 .5 .1  D a ta  A c q u is i t io n

The acquisition of data is fundamental to the creation of any 3D content and in particular, the cap­

ture of non-rigid complex objects introduces additional problems such as requiring an experienced 
user. The capture process must be robust and some amount of post processing may be required to 
extract the relevant information from the captured data. The most common methods for recovery 
of 3D human data are from range (or whole body) scanners, motion capture devices and pho- 
togrammetric/optical systems. A distinction is made between motion capture systems that require 
the individual to wear sensors and photographic systems that require the individual to undergo 
particular motions to identify particular joint information.

M otion C apture

Motion capture plays an important role in the abstraction of motion information from particular 
environments. This is an invasive method that requires the individual to wear sensors which are 
tracked. This tracking information is then used to provide a model with the same motion (Gleicher 
& Ferrier 2000). This is popular within computer games becausc it provides the characters with 
realistic movements. Two examples of motion capture systems are shown in figures 3.9 and 3.10. 
Motion capture systems are used primarily for the extraction of pose information and animation. 
The information that is captured can be used to personalise an underlying model. The sensor 
data can initially be used to alter the topology of the model using the position of sensors and the 

distance between sensors.
(Welch & Foxlin 2002) review various motion tracking systems for view control, navigation, 

avatar animation, etc. In effect, there are various techniques ranging from mechanical, acoustic to 
magnetic and optical, none of which is suitable to solve problems of every technique and applica-

There are two types of motion capture; the first is classified as on-line motion capture and this 
uses magnetic sensors to plot the movement of joints and this can be directly fed to the model 
to mimic that animation (Babski & Thalmann 2000). Other on-line methods include the use of 
ultrasonic or mechanical sensors. The second type of motion capture systems are off-line systems 
which obtain the pose information through multiple views. It takes longer to extract the motion but 
provides more accurate results, in particular, for extraction of subtle gestures and also facilitates 
accurate joint location and the extraction of data for the creation of 3D models (Plankers & Fua 

2003).

11 G ypsy M otion C apture System s, M eta M otion  Capture: ruvnu.mctamotion.com.. last accessed April 2005.
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Figure 3.9: The Gypsy Motion capture System is shown. This motion capture system is an electro 
mechanical system that consist of an exoskeleton made of lightweight aluminium rods that follow 
the motion of the performer’s bones 11.

Figure 3.10: Real-time Motion capture System that captures the individuals movements and ani­
mates a model to produce the same motions . 1 1

57



The main weaknesses in these approaches for the creation of flexible models relate to the 
tracking of the individual sensors that require a large amount of post-processing by a skilled user 
to isolate and locate individual sensors. This has been improved by introducing a skeleton that is 
used to help predict the location of particular sensors (Boulic et al. 1998) (Plankers & Fua 2003) 
(Herda et al. 2000). Both on-line and off-line motion capture systems can take advantage of the 
skeleton, although the on-line model lacks the finer movements. The input 2D sensor locations are 
expressed in multiple-camera image space and between two and seven cameras are used to track 
the sensors giving extrapolated sensor trajectories which help to resolve ambiguities by predicting 
the future locations of the sensors and aid the construction of a 3D model.

Magnetic, ultrasonic and acoustic sensors are ideal for capturing the motion information that 
is important for realistic movements, but it does not provide sufficient means for the creation of a 
personalised and photo-realistic human model. It is not suitable for low-cost flexible implemen­
tations because of the cost of such a system, in terms of both equipment and processing time. In 
addition to tracking the sensors, optical motion capture systems facilitate the extraction of image 
data that can be used to create realistic human models. However, to accurately extract the shape 
and motion information at the same time would require a system of (possibly calibrated) cameras 
thus reducing the possibility of using this technique in a flexible framework. A major advantage 

of using the sensors is that particular information can be easily extracted based on the locations 
of the sensors although they must be accurately positioned and can possibly move. Motion cap­
ture systems, while reasonably accurate, do not fit into widely and easily accessible immersive 
environments (Cohen. & Lee 2002). (Plankers & Fua 2003).

Range Scanners

3D whole body range scanning provides some of the best results for the creation of models but the 
cost and the quantity of data provided makes it difficult to use in practical applications. It has the 
advantage that the surface variation of the object is readily known and can be easily separated from 
its environment although the environment is generally constrained (Sonka et al. 1999). Another 
advantage that range sensors have is that they are non-invasive. The operation of a range scanner 
involves the projection of a structured light pattern onto the surface of an object and capturing 
a digital image of the projected pattern (Collins & Hilton 2001). Optical range sensors measure 
the 3D location of points on the surface and produce a cloud of points. It is then necessary to 
triangulate between the projector and camera to reconstruct the distance of points on the surface 
from the camera producing a depth map.

There are several types of range scanners that are currently available. Examples range from the 
whole body colour 3D scanner produced by Cyberware7  M 12  to the Polhemus 3Space FastSCAN 
™  handheld laser scanner13. The whole body scanner is a complete system designed specifically 
for capturing the shape of the human body in a single scan (Ju et al. 2000, Buxton et al. 2000). The 
capture system is shown in Figure 3.11. It produces high quality models (see Figure 3.12) although 
such a system is expensive and it is not suitably portable for flexible use. The Polhemus handheld 
laser scanner emits a laser beam from a wand as it is smoothly swept over an object. In both

12C ybcrw are W hole B ody C olour 3D  Scanner: wuiw.cyberware.com, last accessed  April 2005
l3P olhem us FastSC A N : www.f astsamSD .com, last accessed A pril 2005
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systems, it is nccessary to combine the different sweeps over the object. This combination is made 

easier in the case of the whole body scanner, as the location of each scanner is known. Registration 
is required between views to generate a complete surface of a 3D object. One software tool 
available for this task is Rapidform 2004 produced by INUS technology Inc.14, which is available 
to compute the registration, to complete the triangulation and generate the complete model. The 
final model requires further processing to split it into individual body parts to enable animation of 
the model (Ju et al. 2000).

Figure 3.11: Example of a model created with the cyberware system12.

Apart from whole body scanners, range scanners have not been used for capturing the shape of 
an individual as the number of sweeps that are required would require the individual to stand still 
for an unacceptable length of time. Therefore, it is not currently feasible to use hand held scanners 
to create a human model although the process has been successfully applied to the reconstruction 
of statues (Curless & Levoy 1996) (Hilton & Illingworth 2000).

l4R apidForm  2004: wvnn.rnpiiif nrm.mm, last accessed April 2005
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Figure 3.12: The Cybreware whole body scanner system12.

Photogrammetric/Optical Systems

The capture of data using a single camera or a number o f cameras encompass what are regarded as 
the most difficult approaches to the creation of 3D human models. In particular, the information 
can be captured from a single camera (Hilton et al. 1998) (Brisc & Whelan 2004), from a system 
of cameras (Kakadiaris & Metaxas 1998) (Cohen. & Lee 2002) or from a video sequence. Unlike 
a range image, it is not possible to extract depth information from a single view, and thus it 
is necessary to use two or more different views of an individual or object to extract any depth 
information which can be used to produce a projective reconstruction of the object. In general, it 
is necessary to calibrate the cameras either prior to the capture of the data or from the data that 
is obtained during capture to be able to produce a Euclidean reconstruction. This is a difficult 
task that is described in Section 3.3 and well documented in (Faugeras 1993, Hartley & Zisserman 
2000, Pollefeys et al. 2000, Brisc 2004, Han & Kanade 2000). It is also necessary to identify 
key features in each view and find correspondences between each image. Having established the 
correspondences, it is possible to extract 3D information. There are various techniques available 
for the establishment of correspondences, including the use of comer detectors (Sonka et al. 1999).

Photogrammetric systems are the most promising approaches to the creation of flexible capture 
systems because of the large availability of digital cameras, including camera enabled mobile 
phones and web cams, although the success of such a system depends on both the quality of the 
images that are captured and the usability/flexibility of the reconstruction process (Hilton & Fua
2001). Moreover, in a flexible system the minimum number of images necessary to create the 
photo-realistic human model should be captured, but reducing the number of images makes it 
increasingly difficult to extract correspondence and introduces occlusions.

3 .5 .2  B u i ld in g  a  V i r t u a l  H u m a n

This section provides a review of existing 3D reconstruction techniques, primarily photographic, 

which have been applied to the extraction of pose and shape information for the creation of human 
models. The concept of building a virtual human is a complex task that incorporates a certain
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amount of prior knowledge about the structure of a human. This information is necessary for 
automation, to accurately extract the shape information, to overcome occlusions and for facilitating 
the prediction of where certain parts of the body are likely to be found.

Kakadiaris & Metaxas (1998) propose a system for the acquisition of the human pose and 
shape information from multiple views. This approach uses three cameras to capture sequences 
of images and it does not use a prior model. It achieves automated joint localisation and can 
subsequently extract shape information to facilitate the creation of a 3D human model. In this 
approach, the individual is required to undergo two different sets of movement to extract firstly 
the pose and then to extract the 3D shape information and to overcome the occlusions among the 
body parts. The position of the cameras leads to scaling issues as only three camcras arc used, 
one in front of the individual, one above and one to the left of the individual. The camera setup is 
shown in Figure 3.13. All the shape information from the right of the body is therefore biased.

*

Figure 3.13: Example of the camera set up in the approach of Kakadiaris and Metaxas (Kakadiaris 
& Metaxas 1998).

Requiring the individual to undergo a series of movements can lead to errors in the capture 
procedure if  a step is omitted. Thus the system is best operated under the supervision of an expert 
user. The movements undertaken to identify the left arm using this process is illustrated in Figure 
3.14 In addition, requiring a set up with three cameras makes this approach unsuitable for use in a 
flexible system.

The 3D reconstruction is achieved by firstly building a model of the human standing and 
to incrementally refine this by extracting the different body parts as they become visible in the 
different views. The 3D shape of a body part is obtained at the end of the appropriate set of 
movements. The reconstruction of the leg is shown in Figure 3.15. This means that the shape 
fitting is carried out in 2D and the 3D estimation is performed only once. Two mutually orthogonal 
views and their spatial relation are used to create the 3D model. This enables the intersection of 
the two views that form the meridians whose planes are parallel to the planes of the contours. The 

remainder of the 3D shape is then interpolated.
The technique of Cheung et al. (2003) creates a human model from multiple silhouette im-
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Figure 3.14: Example of the types of movements an individual must undertake in the approach of 
Kakadiaris and Metaxas (Kakadiaris & Metaxas 1998).

Figure 3.15: Example of the reconstruction of the leg and the general approach to combining the 
2D shape information (Kakadiaris & Metaxas 1998).



ages. This approach extends the classical notion that silhouettes have to be extracted at the same 

instance of time or relate to a static object to be relevant in the computation of a valid visual hull. 
This enables the silhouettes extracted at different time instances to be used to extract the shape 
information of an articulate human. This paper builds on the visual hull concept introduced by 
Laurentini (1994) (that describes the maximal shape of the object created by volume intersection) 
by defining that the edges are the lines that correspond to points on the object boundary that can 
be projected into every view to a varying degree.

Cheung et al. (2003) tested their approach with both synthetic and real sequences of rigidly 
moving individuals. The synthetic images are captured using a virtual scene with 8  camcras and 
the model is made to rotate around the z-axis. In the real sequences, the individual stands on a 
turntable with unknown speed and 30 frames per second are captured with 8  calibrated and colour 
balanced cameras. The results that are presented seem to lack the real detail that is obtained 
from other multiple camera reconstruction techniques, since it is not possible to reconstruct all the 
cavities from a limited set of views (Laurentini 1997), although the texture adds to the appearance, 
particularly around the face where the eyes can be seen. This approach consists of two interlaced 
stages that correctly segment the silhouettes of each articulated part and estimate the motion of 
each individual part using the segmented silhouette. No apparent constraints are imposed on 
the individual and like (Kakadiaris & Metaxas 1998), the joints and the body parts are extracted 
sequentially. This system is unrealistic for a low-cost or flexible approach and requires a large 
amount of overhead in terms of timing, and it is also impractical to have an 8  camera setup. In 
addition, the environment used appears to be controlled allowing easy extraction o f the individual 
silhouettes. The reconstruction of a synthetic model and the reconstruction of an individual are 

shown in figures 3.16 and 3.17.

id )

Figure 3.16: Results of the Cheung et al. approach applied to synthetic data (Cheung et al. 
2003).(a) one of the input images (b) unaligned color surface points and (c) shows the aligned 
colour surface points and (d) refined visual hull.

Other multi-camera approaches for the estimation of pose that could be used for the creation
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(a) (b) (c)

(d)

Figure 3.17: Results of the Cheung et al. approach applied to real human body (Cheung et al. 
2003).(a) one of the input images (b) unaligned colour surface points and (c) shows the aligned 
colour surface points and (d) refined visual hull.

of a 3D human model include (Cohen et al. 2001), (Iwasawa et al. 2000) and (Bottino & Lau- 
rentini 2001). In (Cohen et al. 2001), an approach is taken for finding the body posture of an 
individual from a multiple camera set-up. The silhouettes are extracted using a background learn­
ing technique which requires a large set of images to generate a Gaussian distributed model of the 
static part of the scene. Correspondences between the different views are extracted using epipolar 
geometrical properties, and the integration of the different views enables the 3D representation to 
be inferred from synchronised video streams and mapped to a generic articulated body model. In 
(Cohen et al. 2001) and (Iwasawa et al. 2000), it is not clear what the user is required to undertake 
to achieve accurate reconstruction of an individual and what parts are automated.

This research is extended in (Cohen. & Lee 2002) where a system using two or more cameras 
tracks an individual and fits a skeleton which can be adjusted over time to the captured data. The 
tracking method is based on particle filtering without requiring the estimation of widths of body 
segments that vary among individuals. This is achieved by using a similarity measure between the 
articulated model and the captured data. The process of 3D reconstruction included in (Cohen. & 
Lee 2002) does not capture the individuals complete data, thus this can only be an estimate.

Wingbermhle et al. (1997), propose a method for the creation of human models for video 
conferencing systems. It requires the use of a stereoscopic system in a controlled environment to 
extract the individual’s shape information and only the upper part of the body is created, which 
makes the model unsuitable for alternative applications. The use of flexible triangular mesh that 
adapts to the shape of an individual provides an efficient method for the modification of the shape 

in real-time. One of the major problems with this work is that the initial joint positions need to 
be manually extracted from calibrated views of the individual. In an extension to this work by 
Weik et al. (2000), the individual is required to sit on a turntable in a controlled environment and
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the necessary shape information is extracted for the creation of a human model and while this is 
successful it is not suitable for general use. Figure 3.18 shows the underlying mesh structure and 
the textured mesh with data for a particular individual.

Figure 3.18: Models created for video conferencing systems (Wingbermhle et al. 1997). (a) shows 
an example of the flexible underlying mesh and (b) the final textured mesh.

Brisc & Whelan (2004) attempt a complete voxel based reconstruction of the individual. The 
individual is required to wear markers and stand still for a period of time while a series of images 
are captured from different viewpoints. To take account for the unknown viewpoints, calibration 
patterns are placed at different locations around the individual. It is not explained how possible 
variations that occur between the different images are incorporated into the model. Using the vox­
els enables the user to specify the resolution that a particular part of the individual is reconstructed.

Model Based Approaches

Model based approaches take advantage of prior shape information to simplify and aid the extrac­
tion of shape and motion information. Model based approaches are popular in the development 
of characters for computer games where the game play has priority over the detail, as, in general, 
games are designed for the movements of a default or generic models. In this situation, tex­
ture mapping can be used to give the underlying model the appearance o f a particular individual 
(Hilton et al. 1999), (Lee, Goto & Magnenat-Thalmann 2000), (Villa-Uriol et al. 2003). Using an 
underlying model offers advantages over competing methods including:

•  The model can help to overcome problems caused by occlusions.

• The final textured and/or deformed model can be easily immersed into existing virtual 

worlds.

•  The joint positions are known in advance and thus the final model can be easily animated 
using existing animation streams (Hilton 2003).

•  In mobile applications or in virtual worlds, the model can be locally stored and the partic­
ular textures associated with an individual can be communicated reducing the data that is
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communicated.

If non-deformable models are used which cannot adapt to differently sized bodies the final models 
will be the same size and they can be very similar in appearance. In addition, during the capture 
process the motions that the individual can undertake may be restricted and the final model will 
not truly reflect the motion of the individual (Kakadiaris & Metaxas 1998).

One of the most complete model based systems is that of Hilton et al. (1999). In their approach, 
the individual is required stand against a photo-reflective blue screen. A single camera is used 
to capture four images of the individual. The individual adopts a particular pose to enable the 
accurate location o f important features and turns 90° degrees between each capture allowing four 
orthographic projections to be obtained. The images are then used to modify an underlying model 
by generating four corresponding silhouettes of the underlying model and identifying key features 
on the silhouettes and captured images. These key features allow the captured data of the front and 
back views to be split into seven different parts. This is important in the texturing o f the model, as 
it ensures that the texturing is carried out part by part, and ensures that scaling is maintained. The 
results of this approach show that it is possible to create realistic models with a relatively flexible 

set up. The images are capturcd with a standard digital camera in a controlled environment. In 
addition, the model is deformed to take on the appearance o f the individual that is captured. This 
is achieved by estimating the displacement of 3D points between the projection of the surface 
of the underlying models and the surface of the captured individual. The complete set o f steps 
undertaken to create the model are shown in Figure 3.19.

The work o f Hilton et al. (1999) was extended by Lee, Goto & Magnenat-Thalmann (2000), 
Lee, Gu & Magnenat-Thalmann (2000), Lee (2002). In Lee’s approach, the main emphasis is on 
the creation o f H-Anim models from data captured in real environments. Three images of the 

individual are captured in a real environment using a single camera. To simplify the camera cali­
bration process, a method of direct estimation based on the distance between the camera and the 
individual or using the individual’s height is used to scale the model in each view. An interactive 
feature extraction process is initiated to permit the individual to be located in the images. These 
features correspond to those extracted by Hilton et al. (1999) and additional estimates are used for 
the localisation of joints like the knees and elbows. The location of these joints is important for 
modifying the body parts of the underlying model to match the captured shape information. A 
heuristics based silhouette approach is used to extract the individual from the background. In this 
approach, a Canny edge detector (Canny 1986) is applied to the image, then a colouring-like link­
ing algorithm is used to link the edges into connected segments. To avoid potential errors, the line 
segments are split into short segments. The segments are then evaluated to decide if the bound­
aries are correctly extracted and form an ordered set of edge segments. In this procedure, it is not 
clear how much user interaction is required to accurately segment the background. Following this, 
an edge growing technique in combination with texture blending is used, to account for possible 
errors in the extraction process. This is important because it ensures that the background is not 

textured to an individual’s body model and overcomes problems caused by different illumination 
conditions and errors in the boundary extraction process. This process also uses separate images 
for the creation of the face and thus enables the complete reconstruction of the face that ensures 
a high resolution when examined closely. Examples of the final model are shown in Figure 3.20.

66



( i l ) Generic model ( l>>Model projection (c i Captured images

ùi> vim le l silli.HK-uc <c> Captured image data silluuicue

ff #  f  «  

m

/  (0  Dunce 2d mapping o f data imaaeon mode! silhouette

H

A

,, ip ) iD  Model (lu  Anim ation o f reconstructed 3D model

w
l\

(i ) Colour .11) model (.It Anim ation o f reconstructed 3D colour model

Figure 3.19: The Hilton et al. system for the reconstruction of an individual. (Hilton et al. 1999)
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It has b een s h o w n  in (Boyle et al. 2005) that highly realistic faces can be obtained f r o m  l o w  reso­

lution i mages that capture the w h o l e  b o d y  b y  using facial features to correctly position the facial 

i m a g e  o n  the underlying model.

(a) (b) (c)

Figure 3.20: T h e  creation of h u m a n  mod e l s  in real environments (Lee, G o t o  &  M a g n e n a t -  

T h a l m a n n  2000). (a)showa original images with the silhouettes super-imposed m a r k e d  in yellow, 

(b) T h e  final H - a n i m  m o d e l  c o m b i n e d  with the seperately reconstrucred face an d  (c) s h o w s  the 

untextured updated m m o d e l .

Villa-Uriol et al. (2003) extend the approach of Hilton et al. (1999) to create mod e l s  of in­

dividuals with u n k n o w n  poses. This approach m a k e s  use of a video sequence an d  constrains the 

individual to stand o n  a turntable reducing the flexibility of the approach. Moreover, the approach 

requires the calibration o f the camera. In this approach, it is not stated if the sequence is captured 

in a real or constrained environment. This approach introduces greater flexibility into the capture 

process, but it increases the complexity of the reconstruction process. This m a y  provide a better 

fit of the captured data to the underlying model, although n o  additional kincmatic information is 

obtained.

Ju et al. (2000) take advantage of the high quality m o d e l s  created b y  a w h o l e  b o d y  scanner 

b y  comb i n i n g  t h e m  with available h u m a n  animation m o d e l s  to enable a particular individual to 

be i m m e r s e d  in a virtual world. This approach starts b y  developing a technique for segmenting 

the 3 D  m o d e l  into individual b o d y  parts as the scanner provides a single surface with thousands 

(and possibly millions) of points with little or n o  semantic information. This is a n  automated 

approach that provides accurate segmentation of the b o d y  into the different parts a n d  allows the 

identification of possible joint locations that are used to animate the model, (see Figure 3.21). This 

technique is sufficient in the cases w h e r e  the individual w ears tight fitting clothes as it is possible 

to take advantage of crevasses in the b o d y  that are not obvious w h e n  the individual wears clothes. 

This w o r k  is extended in (Ju &  Siebert 2001) (Sibiryakov et al. 2003) to enable the personalisation 

of the underlying m o d e l  a n d  the generation a n d  animation of the characters.
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Figure 3.21: Segmentation of the scanned b o d y  into individual b o d y  parts (Ju ct al. 2000). 

3.5.3 3D Modelling Environments

T h e  generation of h u m a n  m o d e l s  using 3 D  modelling environments is an effective tool that can 

be used to o v e r c o m e  s o m e  of the problems encountered in adding realism to the m o d e l  an d  in 

the development of correct musc l e  simulation. This information in general, can not be accurately 

extracted f r o m  a 3 D  body-scan or f r o m  a series of images captured at an y  time instance. Thus, to 

reliably extract an d  generate h u m a n  m o d e l s  that def o r m  as real individuals, it is important to have 

different simulation environments available to create the small m o v e m e n t s  that are associated with 

an individual. Moreover, modelling environments provide valuable tools when:

1. ft is not possible to get the exact shape of the face, hands or other b o d y  parts,

2. A  player wants to c hange the appearance o f a default character in a game,

3. Capturing data m a y  be used as basis for h u m a n  m o d e l  ( w h e n  only a limited n u m b e r  of views 

are available),

4. T h e  n u m b e r  of polygons that are required is set prior to reconstruction, for instance w h e n  

real-time constraints are important (Kalra &  M a g n e n a t - T h a l m a n n  1998),

5. A  single i m a g e  or images f r o m  a set of old images are only available, then a modelling 

environment can be used to reconstruct missing information and provide an approximation 

to the h u m a n  shape.

Moreover, modelling environments are important in developing predefined m o v e m e n t s  or gestures 

that are important w h e n  i m m e r s i n g  real-time simulated h u m a n  m o d e l s  in g a m e s  a n d  virtual envi­

ronments (in particular multi-user environments) w h e r e  effective interaction b e t ween users adds 

to the sense of presence.
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In (Kalra &  M a g n e n a t - T h a l m a n n  1998), a detailed description of different tools that are avail­

able for the creation of accurate m o d e l s  are described as well as the w a y  the information captured 

in images can be successfully manipulated to provide greater realism to the face a n d  hands of the 

model, ensuring that the skin can be modelled an d  deformed. Research in this d o m a i n  has been 

extended and recent publications such as (Seo &  T h a l m a n n  2004, Gutierrez et al. 2004, Magnenat- 

T h a l m a n n  &  H . S e o  2004) provide h u m a n  m o d e l s  for use in diverse applications.

T h e  use of modelling environments that enable the specification of the smallest joints and 

the finer m o v e m e n t s  that have b een generated based o n  close examination o f various individuals, 

offering the possibility to take flexibly created mod e l s  an d  enhance their appearance b y  a skilled 

user. This ha d  been highlighted o n  the face and o n  the hands, as it is difficult to extract accurate 

information based o n  the captured data using either a photogrammetric approach or using a b o d y  

scanning approach. In addition, once the m o d e l  is created these additional features can be added to 

increase the realism a n d  generate m o v e m e n t s  that will be able to distinguish o ne individual f r o m  

another.

Figure 3.22: T h e  .S'culpter character creation tool (Kalra &  M a g n e n a t - T h a l m a n n  1998). E x a m p l e  

of h o w  the facial im a g e  is c o m b i n e d  with an underlying m o d e l  to sculpt the m o d e l  to take o n  the 

appearance of the individual.

T h e  approach of Kalra et al. in (Kalra &  M a g n e n a t - T h a l m a n n  1998) involves capturing the 

basic h u m a n  information a n d  creating a f r a m e w o r k  that is capable of deforming (modelling) and 

animating h u m a n s  in real-time. T h e y  propose an interactive m e t h o d  for modelling the face a nd 

this increases the speed of creating a face m o d e l  that conforms to the real-time restrictions. This 

technique involves the use of several images of each part of the body, as the modelling is d one 

in different stages, including particular modelling for the h e a d  a n d  the hands. This is b e y o n d  the 

scope of an average user. T h e n  the b o d y  is built in a n u m b e r  of stages that conforms to the layered 

approach. A t  each layer the complexity a n d  realism increases. T h e  final stage requires interactive 

texture fitting to ensure that the m o d e l s  are textured correctly (Kalra &  M a g n e n a t - T h a l m a n n  1998). 

This is the procedure that is followed in the character studio plug-in used for character creation in 

3 D  Studio M a x .
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3.6 Discussion

H a v i n g  e x a m i n e d  the different m e t h o d s  available for the creation or 3 D  reconstruction o f objects, 

it is apparent that the quality of the reconstruction depends o n  t w o  principal factors. T h e  first is 

that the shape of the final m o d e l  an d  the realism is only as accurate as the initial segmentation 

of the object f r o m  the background, w h i c h  is greatly simplified, w h e n  a plain or k n o w n  b ack­

ground is used. Secondly, the level of detail within digital images is limited to pixel accuracy. 

Various approaches w e r e  e x a m i n e d  for the creation of 3 D  models, primarily focusing o n  photo­

graphic techniques because the techniques using scanners a n d  moti o n  capture devices are b e y o n d  

the m e a n s  of m o s t  users. T h e  photographic techniques that w e r e  described ranged f r o m  single 

to multiple cam e r a  systems capturing either still images or video sequences. T h e  captured data 

has b e e n  used to provide photorealistic modelling to defo r m  underlying m o d e l s  or to animate an 

existing model.

T h e  first part of this chapter focused o n  the existing techniques that arc used to reconstruct o b ­

jects f r o m  real environments. E a c h  of the techniques w a s  e x a m i n e d  to determine w h i c h  approach 

or w h a t  parts could be used in a flexible a n d  automated approach to h u m a n  modelling.

• A p p r oaches using multiple images captured f r o m  u n k n o w n  viewpoints required the estab­

lishment of correspondences b e t w e e n  consecutive frames, w h i c h  is only possible if the 

frames are taken f r o m  a similar viewpoint. These constraints m a k e  it difficult for a n o n ­

expert user to capture the images an d  any applications based o n  this m e t h o d  of reconstruc­

tion require the capture o f  m a n y  images. Moreover, this requires the individual being cap­

tured to maintain the s a m e  position during the capture phase, a n d  any m o v e m e n t s  can in­

troduce errors in the reconstruction process. T h u s  such m e t h o d s  are not considered flexible 

enough.

• Silhouette an d  volumetric approaches to reconstruction using images provide an alternative 

that does not rely o n  the establishment of correspondences b e t w e e n  images. W h e n  only 

greyscale or black a n d  white images are considered, the extraction of silhouettes needed for 

the reconstruction is reduccd an d  facilitates a complete reconstruction. T h e  use of greyscale 

images is not viable with current virtual environments. W i t h  colour images the versatility 

of the approaches can b e  increased, and using techniques such as photo-consistency are 

valuable in the extraction of the silhouette and the determination of the associated volume.

B o t h  of these approaches require k n o w l e d g e  of the centre of projection for each image  

captured to create the visual hull of the object to be reconstructed. Volumetric approaches 

are well suited for the reconstruction of scenes and w h e n  a large n u m b e r  of images are 

available, but they are sensitive to m o v e m e n t s  b e tween each i m a g e  captured. T h e  uses 

of space carving techniques are computationally expensive, an d  it is not specified h o w  a 

particular object can be separated f r o m  its environment. Silhouette based approaches are 

not ideally suited to the reconstruction of scenes because they focus o n  the extraction of an 

object f r o m  the scene to establish the visual hull of the object. In silhouette based approaches 

the resulting visual hull contains the m a x i m u m  information that can be obtained without
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capturing images inside the c o m p l e x  hull of the object 15. Importantly, silhouette based 

approaches are computationally less expensive and can generate a visual hull f r o m  a limited 

set of images.

• In the approaches discussed, using multiple cameras required the calibration of each cam e r a  

a n d  the establishment of a c o m m o n  frame of reference for each i m a g e  captured. In addition, 

specialised hardware is required to impl e m e n t  simultaneous capture f r o m  multiple cameras. 

T h e  extraction of calibration data is essential for an accurate Euclidean reconstruction of 

the object, although a projective reconstruction can be achieved without the calibration. 

Furthermore, the use of a single camera, as o p p osed to multiple c a m e r a  set-ups, greatly 

simplifies the calibration process a nd facilitates the creation of a flexible system, as h o m e -  

users should not be expected to have several cameras or be required use a multiple c am e r a  

system.

3.6.1 Discussion on Human Modelling

In this chapter, the creation an d  use of virtual h u m a n  m o d e l s  has b e e n  presented. In particular, they 

are s h o w n  as an important process for enhancing an individuals experience in a virtual world. H u ­

m a n  m o d e l s  are used in a w i d e  range of applications, and several techniques exist for the creation 

of such models. This provides several challenges that are not present in the 3 D  reconstruction of 

other static objects. Their importance is also evident in the n u m b e r  of different approaches that 

are tailored towards the creation of realistic h u m a n  models.

This chapter also highlighted that n u m e r o u s  techniques have b een developed for the extraction 

of an individual’s pose an d  animation data. This is a challenging task a nd is not suitable in the 

development of a flexible automated approach to the creation of h u m a n  m o d e l s  that can be used 

b y  a non-expert user. A s  a consequence, the individual should adopt a single predefined pose 

similar to that detailed in (Hilton et al. 1999), for the reason that requiring the user to undergo 

such m o v e m e n t s  reduces the flexibility of the technique a n d  to get accurate information requires 

a multiple c a m e r a  set-up or the use of a video cameras. Significantly, having a particular pose 

enables the automation o f the reconstruction process.

T o  develop a flexible approach for the creation of h u m a n  m o d e l s  for virtual worlds, silhouette 

based approaches provide the simplest approach to extract the relevant shape information, and 

in (Leon &  Sucar 2000) it has been s h o w n  that it is possible to distinguish one individual from 

another based o n  information contained in a single silhouette a nd as stated above this reduces the 

reliance o n  the establishment of correspondences. Significantly, the vast majority of techniques 

used for the extraction of shape information relied o n  the extraction of the individual’s silhouette, 

although s o m e  of the finer detail is lost w h e n  the silhouettes are combined. T h u s  w h e n  using 

silhouette based methods, it is necessary to provide a m e t h o d  that can re-create the fine detail that 

cannot b e  reconstructed.

O n e  approach to m o d e l  of the fine detail combines the silhouettes with an underlying m o d e l  

w h i c h  can be easily d e f o r m e d  using the shape information in the silhouettes. This provides a

15T he com plex hull o f  the object is defi ned as the region that is intersected by  any line betw een tw o points in the 
object. In  situations that that the surface contains concave surfaces the com plex hull includes regions th a t are no t part 
o f  the  object.
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flexible approach to personalising the underlying model. T h e  shape information can be used to 

create m o d e l s  of varying level of detail. A t  the lowest level of detail the silhouettes can be used to 

simply texture the m o d e l  a n d  provide mod e l s  that are suitable for use in application destined for 

mobile devices. Importantly, c ombining the captured data with an underlying m o d e l  permits the 

use of a predefined n u m b e r  of polygons. Additionally, c ombining the silhouettes with underlying 

m o d e l s  m a k e s  it easier to integrate the final m o d e l  into existing virtual worlds or can be readily 

m a d e  so. T h u s  the m o d e l s  that are created should be consistent with existing standards, including 

V R M L  (1997) and M P E G 4  (1998). This provides the advantage that existing animation streams 

can be used to animate the mod e l s  in the virtual environments. Moreover, in the provision of a 

flexible system, it is not reasonable to expect an individual to undergo a complete set o f  m o v e m e n t s  

for complete personal characterisation, a n d  n e twork restriction an d  g a m i n g  environments m a y  

force the c o m m u n i c a t i o n  o f  predefined motions to enable efficient m o v e m e n t s .

This review highlights that there is n o  obvious flexible approach for the creation of realistic 

h u m a n  m o d e l s  that can be guaranteed to provide the desired results. T h e  best approach to creat­

ing a n  accurate h u m a n  m o d e l  will probably require the combination of a n u m b e r  of the described 

techniques to ensure that all complexities are extracted. This is b e y o n d  the m e a n s  of m o s t  users 

in terms of software a nd expertise. H o wever, to obtain greater realism it is necessary to provide 

further m e t h o d s  that enable the texture (or outer skin level) to take o n  the m o v e m e n t s  that w o u l d  

ordinarily be caused b y  m uscle m o v e m e n t s .  A p p r oaches to achieving this are introduced in S e c ­

tion 3.5.3 but a complete description of such techniques is currently b e y o n d  this research. This is 

perhaps the greatest challenge in providing realistic models, an d  to d o  this successfully, a lot can 

be learned f rom the research that is being carried out in facial animation to provide greater realism 

(Kshirsagar et al. 2003) (Lin et al. 2002).
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D e s i g n  A p p r o a c h e s

Chapter I _______________

4.1 Introduction

In this chapter, five approaches towards the flexible creation of virtual h u m a n  mod e l s  developed 

b y  the author for the purposes of populating virtual worlds are presented. In each case, the in­

dividual is captured in a real environment. T h e s e  approaches illustrate h o w  the segmentation of 

the individual progresses f r o m  simple backgrounds to m o r e  c o m p l e x  backgrounds. In addition, 

the personalisation of the m o d e l  progresses f r o m  the simple texturing of a default m o d e l  to the 

deformation of this m o d e l  using the captured i m a g e  data.

T h e  primary goal in devising a flexible system is that non-expert users1 will b e  able to auto­

matically create realistic h u m a n  models an d  subsequently simply m o d i f y  the models. T h u s  it is 

imperative that the system is automatic or requires a m i n i m u m  a m o u n t  of user interaction.

T h e  t w o  ma i n  aspects of this research are interspersed within this chapter. T h e  first is the seg­

mentation of the individual f r o m  the background, and the second is the development of a frame­

w o r k  that enables the information in the captured images to be c o m b i n e d  to create a photo-realistic 

m o d e l  of the individual, a so called “virtual twin”. In the development of the system, the n u m b e r  

of restrictions that are i m p o s e d  o n  the individual are reduced, as are the constraints o n  the envi­

r o n m e n t  an d  type of c a m e r a  used in the capture. In addition to this, the system developed m u s t  be 

robust a n d  o v e r c o m e  any occlusions or errors that are introduced to the system during the capture 

phase. This chapter also highlights the development of the constrained B-spline templates and the 

validation of silhouette based reconstruction for the creation of photorealistic h u m a n  models.

A s  discussed in the previous chapter, there are several photographic based approaches for the 

creation of h u m a n  models. T h e s e  can b e  loosely categorised as: multi-resolution, multi-camera 

approaches giving high quality accurate 3 D  mod e l s  and low-cost an d  flexible systems using re­

stricted views to provide photo-realistic 3 D  models. T h e  author’s approaches described in this 

chapter fall largely under the latter category, w h e r e  f rom a limited set of views, individuals are 

captured to create photo-realistic h u m a n  models.

T h e  first technique that is described in this chapter is an initial approach and an extension of 

the approach of Hilton et al. (1999) to real environments an d  uses a simplified texturing procedure

'in  the context o f  this research a non-expert user o r hom e-user is classified as an individual w ho is not trained or 
experienced in the area o f 3D  m odel creation, or in the area o f  im age analysis.
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to produce photo-realistic models. T h e  second approach facilitates the extraction of the individ­

ual f r o m  cluttered environments using a constrained B-spline template that is derived f rom the 

active contour mode l s  described in Chapter 2. T h e  third approach builds o n  the t w o  proceeding 

approaches an d  uses facial features in conjunction with the B-spline templates to i mprove the re­

alism of the h u m a n  model. T h e n  the fourth approach provides a silhouette based reconstruction 

technique that enables the individual to generate his or her o w n  mo d e l s  that can b e  used to incor­

porate an accurate shape description of the individual. T h e  final approach extends the silhouette 

based approach and enables the user to undertake small an d  large scale deformations of an under­

lying m o d e l  to approximate the bounding v o l u m e  created using the silhouette based reconstruction 

process.

4.2 Approach 1: Towards the Creation and Animation of Virtual Hu­
mans

This approach, as described in (Boyle 2004), w a s  designed as a low-cost technique for the au­

tomated creation of virtual h u m a n s  using a n u m b e r  of images of a person taken in a uncluttered 

background. T h e  approach involves the creation of personalised 3 D  m o d e l s  by combi n i n g  the 

captured images with an underlying H - A n i m  model. Silhouettes of the m o d e l  are created that 

correspond approximately to the captured images of the person. T h e s e  are used to define a 2 D - 2 D  

texture m a p p i n g 2. T h e  normal vector for each tri-face of the m o d e l  is used to determine which 

i m a g e  is used in texturing a particular face in a 2 D - 3 D  mapping. This approach builds o n  the 

approach of Hilton et al. (1999) by extending the approach to operate in real environments and 

extends that of Lee, G o t o  &  M a g n e n a t - T h a l m a n n  (2000) b y  providing an automated approach to 

extract the individual fr o m  the images.

T h e  system is c o m p o s e d  of four m a i n  elements that f o r m  a chain for the creation of virtual h u ­

m a n s  a nd is illustrated in Figure 4.1. T h e  next section describes h o w  the silhouettes of the models 

are generated. This can b e  carried out without prior k n o w l e d g e  of the h u m a n  to be captured. T h e n  

the capture process is described a nd in particular h o w  the user is s e g m e n t e d  f rom the background. 

This is followed b y  a description of h o w  the 2 D - 2 D  texturing is achieved an d  finally a description 

of h o w  the nor m a l  vectors are used to texture the underlying model.

4.2.1 Silhouette Creation

T h e  creation of silhouettes for the m o d e l  is achieved b y  placing the m o d e l  at the origin in a 3 D  

coordinate system. T h e  3 D  vertices that f o r m  the m e s h  of the m o d e l  are projected to a 2 D  plane 

3m a w a y 3, effectively forming a virtual camera. This is achieved through the use of a camera 

projection matrix (Sonka et al. 1999, Faugeras 1993). In Equation 4.1, the c a m e r a  projection 

matrix, P ,  is created b y  multiplying the scaled orthographic projection matrix b y  the transform

22D -2D  texture m apping involves transform ing data  that is contained in one 2D  shape or region to another while 
m arinating  the pixel o rder in the orig inal shape o r  region.

3A d istance o f  approxim ately 3 m  is chosen because in the real-w orld setup this is the m inim um  distance from  the 
individual that the cam era can be placed to cap ture the all o f  the individuals data. A t this d istance a plane 2m h igh and 
1 .5 m  w ide can be projected  to the im age plane.
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Figure 4.1: Flowchart with the m a i n  elements in the system for approach 1.

matrix, D ,  w h e r e  f u an d  f v are the horizontal an d  vertical focal lengths.

fu 0 Ou 0
R t

0 fv 0 ov
° 3 1

_ 0 0 1 0
>>

D

T h e  coordinates (ou , ov ) represent the coordinates of the principal point or the i m a g e  centre. 
T h e  matrix D  is c o m p o s e d  of a sub-matrix: R ,  a 3 x  3 rotational matrix, and t w o  vectors t, a 3 x  1 

translational vector, a n d  0, a 3 x  1 zero valued vector.

T h e  2 D  projections can b e represented in V R M L  (1997) but they require 3 D  coordinates for 

their representation, the third dimension being the s a m e  for all points. M P E G 4  (1998) facilitates 

the representation of 2 D  scenes within 3 D  worlds and vice-versa. This 2 D  representation can be 

used to provide a preview in the situation w h e n  the user has a n u m b e r  of 3 D  m o d e l s  for use in an 

application.

T o  facilitate the texture m apping, the points are projected to an i m a g e  plane using a modified 

c a m e r a  projection matrix. T h e  parameters of this matrix are determined b y  the size of the required 

image. T h e  i m a g e  centre is located at ( ima9e£‘)ldth) image-height  ̂ jn  p jx e ]s y ^ e  values for f u and 

f v are obtained iteratively b y  projecting a 2m x  1 . 6 m  plane so that its projection is completely 

captured b y  the i m a g e  and the b oundary of the cube corresponds to the b o u n d a r y  of the plane. T h e  

values f u a n d  f v are multiplied b y  the i m a g e  width an d  height respectively to convert f r o m  cam e r a  

coordinates to i m a g e  coordinates.

A  silhouette is created corresponding to each available image. T h e  modified projection matrix 

is used a n d  the points are projected to the i m a g e  plane. T h o u g h  the basic shape of the m o d e l  is 

discemable, there is n o  defined boundary. Thus, before the i m a g e  is rendered, the information,
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(a) (b) (c)

Figure 4.2: T h e  default H - A n i m  m o d e l  used for the creation of virtual h u m a n s ,  (a) s h o w s  a front 

v iew of the model, (b) an d  (c) s h o w  front an d  side views generated using the projection matrix in 

Equation 4.1

w h i c h  is contained in the H - A n i m  file for connecting the vertices, is used to join the points in the 

i m a g e  plane (see Figure 4.2 (b) an d  (c)).

Restricting the views m a k e s  it possible to create the silhouettes o nce a n d  use t h e m  every time 

the procedure is called. This enables the automatic creation of virtual h u m a n s  w h e n  the individual 

adopts a set pose because if the c a m e r a  is in the s a m e  position, then the centre of projection of each 

i m a g e  to b e  used is the same. Additionally, it is possible to adjust the pose of the m o d e l  to approx­

imate that of the individual in a m a n n e r  similar to that described in (Hilton et al. 1999), although 

this results in the silhouettes of the m o d e l  being created each time an individual is captured.

4.2.2 Image Capture

A  variable approach to capture the images w a s  adopted to facilitate the capture of images from 

different devices. T h e  research undertaken b y  Hilton et al. (1999) used 7 5 6  x  5 8 2  images giving a 

resolution of 4 0  x  4 0  pixels for the individual’s face. This approach uses images with 6 4 0  x  48 0 

pixels as the default size because s o m e  current w e b c a m s ,  c a m e r a  e n h a n c e d  mobile phones an d  n e w  

e nhanced p h o n e s  offer the possibility of creating the images of this size a nd greater. Figure 4.3 

s h o w s  examples of captured images. T h e  i mages contain an individual in a standard pose taken 

against an uncluttered background. Other approaches that separate an individual f r o m  a simple 

b a c k g r o u n d  are discussed in Section 5.3. This pose is essential to allow accurate identification of 
the b o d y  parts. T h e  b a c k g r o u n d  is r e m o v e d  b y  smoothing the i m a g e  using a Gaussian filter with
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standard deviation, a =  0.54, a n d  assuming that the four c o m e r s  in the i m a g e  contain background 

information ( S o n k a  et al. 1999). T h e  Gaussian filter is used to suppress noise in the images and 

to m a k e  it easier to generate a region m ap. In Figure 4.3 (a), using the four c o m e r s  of the image 

will not provide sufficient information to accurately r e m o v e  the background. In this situation, 

the boundary of the images is traced an d  the values along the boundary of the i m a g e  are used 

to develop m o r e  regions that are classified as background. This b a c k g r o u n d  is then subtracted 

f r o m  the image, resulting in a silhouette of the individual. This is repeated for each view of the 

individual. T h e  resulting silhouettes contain the information necessary to personalise the H - A n i m  

model.

(a) (b)

(c) (d)

Figure 4.3: E x a m p l e s  of images captured for the creation of the virtual h u m ans.

In Figure 4.4 (b), the different regions in the Figure 4.3 (a) are shown. T h e  application of the 

Gaussian filter to this i m a g e  is s h o w n  in Figure 4.4 (b). T h e  n u m b e r  of regions is significantly 

decreased in Figure 4.4 (d). Gro u p i n g  of these regions can be used to estimate the individual’s 

location. In fact, the n u m b e r  of regions decreases f rom over 4 0 0  to 3 7  regions. Although the 

ba c k g r o u n d  is not o n e  uniform region in Figure 4.4 (b), tracing boundary of the image, the major 

regions are connected to the e dge of the i m a g e  a nd the s a m e  colours are observed b e t w e e n  the 

legs. In Figure 4.4 (d), the right a r m  of the individual is shaded the s a m e  colour as the background

4Setting the standard  deviation to  0.5 is an approxim ate m ethod and in general is dependent on the im age and can 
no t be reliably autom atically  set. In addition, it is not expected  that the hom e-user should have to se t a.
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beside it. This occurred because the n u m b e r  of regions is u n k n o w n  prior to the segmentation and 

thus r a n d o m  colours are used to distinguish the regions visually.
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Figure 4.4: Illustration of the effects of applying a Gaussian filter to the images, (a) s h o w s  the 

original image, (b) s h o w s  4 0 2  regions in the original image, (c) s h o w s  the Gaussian s m o o t h e d  

i m a g e  a n d  (d) s h o w s  the 37 regions in the s m o o t h e d  image.

4.2.3 Texturing

T h e  front a n d  b a c k  views of the individual are used to establish correspondences b e t w e e n  the 

m o d e l  silhouettes a n d  the individual. This is based o n  the algorithm presented in the paper by 

Hilton et al. (1999). This algorithm forms an important part in the identification of key joints. 

Using the position of the joints and the key features, the m a i n  c o m p o n e n t s  of the b o d y  are identified 

in the b a c k  and front views.

T h e  2 D - t o - 2 D  m a p p i n g  is carried out using t w o  images, on e  of w h i c h  contains either a b o d y  

part extracted using the feature extraction (Hilton et al. 1999) or a complete i m a g e  submitted by 

the user, for e x a m p l e  a side view. T h e  second i m a g e  contains the equivalent m o d e l  silhouette 

for example. T h e  texture m a p p i n g  uses scale factors to ensure that the information is m a p p e d  

accurately. W h i l e  the vertical scale factor is calculated based o n  the height of the t w o  images, 

the horizontal scale factor is calculated for each r o w  in the image. This ensures n o  background  

information is m a p p e d .  T h u s  the horizontal scaling factor is defined in terms of the n u m b e r  of
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pixels in a particular r o w  that are not backgr o u n d  elements, an d  the horizontal index at which 

the first no n - b ackground pixel is encountered is stored. This 2 D - t o - 2 D  m a p p i n g  is illustrated in 

Figure 4.5 for the left a r m  using the front view a n d  the c o m b i n e d  textures for the front and back 

views are s h o w n  in Figure 4.5.

(b)

Figure 4.5: 2 D  to 2 D  texture m a p p i n g  of the b o d y  (a) s h o w s  the i m a g e  data of the a r m  is m a p p e d  

to the a r m  silhouette of the arm. In (b) the c o m b i n e d  data is s h o w n  for the front and b a c k  views.

W h e n  the 2 D - t o - 2 D  texture m a p p i n g  is complete for each b o d y  part in the front and back 

views, the individual c o m p o n e n t s  are recombined to f o r m  a complete textured silhouette for the 

back an d  front views. T h e n  these are c o m b i n e d  with the side views into a single image. This 

provides an alternative to producing a 3 D  i m a g e 5 of the individual images. This is essential, 

as V R M L  only has a single field for specifying the texture coordinates. In generating texture 

coordinates, each sub-image is accessed through an offset equal to the sub-images width. T h e  

selection of the images an d  the generation of the texture coordinates, are determined b y  the normal 

vectors. T h e  norm a l  vectors are created so that they all project a w a y  f rom the tri-faces of the mesh. 

Thus, the tri-face of the m o d e l  with a normal vector projecting in the direction of a c a m e r a  centre 

uses the i m a g e  p r oduced f r o m  that viewpoint. In a real scenario, the normal vector m a y  project 

between t w o  or m o r e  cameras. Equation 4.2 is used to determine w h i c h  i m a g e  is used to texture a 

tri-face. This equation is derived f r o m  the vector dot product with u  an d  v  nonzero vectors an d  9 
the angle b e t w e e n  t h e m  satisfying O < 0 < 7 r  ( Anton 1994).

C ° S  0  =  77--------- 7 ^ 7 — ¡7 ( 4 . 2 )

II u  II II v  ||

In Equation 4.2, u  represents the translational vector of a c a m e r a  centre a n d  v  represents the 

normal vector for a tri-face. For each tri-face, angle 9 is calculated for each c a m e r a  centre and 
the m i n i m u m  value of 9 establishes the i m a g e  used to texture the tri-face. T h u s  for each tri-face, 
a value indicating the c a m e r a  centre is stored. U s i n g  this approach, it is possible to texture the 

complete m o d e l  using t w o  images, provided that the angle of separation b e t ween the t w o  cameras 

is sufficiently large to give g o o d  coverage of the individual, for e x a m p l e  using the front and back

The 3D image is equivalent to the integrated texture map described in (Hilton et al. 1999).
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views. In addition, it m a y  simply be adapted to use any n u m b e r  of cameras. This principle is 

illustrated in Figure 4.6. In this figure the normal vectors project a w a y  from the faces of the object 

a nd closest c a m e r a  centre is determined b y  Equation 4.2

Figure 4.6: This figure illustrates the role of the normal vectors have in determining the i m a g e  that 

is used to texture a face of the model.

T h e  texture coordinates are generated b y  projecting the 3 D  vertices to a 2 D  plane using the 

modified projection matrix. T h e  2 D  coordinates correspond to points inside the silhouettes o n  the 

reconstructed texture image. T h e n  depending o n  w h i c h  projection matrix is used the 2 D  points 

are translated to correspond to their location in the c o m b i n e d  image. T h e  2 D  coordinates are then 

normalised b y  dividing the £ — coordinates b y  the effective width of the c o m b i n e d  i m a g e  and the 

y— coordinates b y the effective height because texture coordinates are normalised in V R M L .  T h e  

final textured m o d e l  using the front an b ack images in Figure 4.5 is s h o w n  in Figure 4.7.

4.2.4 Issues Highlighted in the Approach

• In this approach, it can be seen that it is necessary to i m p rove the realism of the m o d e l  

a n d  that the clarity of the face is important in the recognition of the m o d e l  in the real e n ­

vironment. T o  practically use this approach, it is imperative that the face is textured with a 

m i n i m u m  of images to ensure that the photo-realism is maintained.

• T h e  extraction process that is described only permits the individual to b e  extracted f rom 

the environment w h e n  the backgr o u n d  is non- c o m p l e x  a nd consisting of very f e w  features. 

T h u s  a m o r e  general approach to the segmentation of the individual f r o m  the b a c k ground is 

required. If the s a m e  underlying m o d e l  is textured, then all the individuals created will have 

the s a m e  shape in the virtual worlds. A  possible alternative is to have a selection of models 

available to the user. T h e  user can then choose the m o d e l  that best matches their shape and
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Figure 4.7: E x a m p l e  of the textured m o d e l  using the 2 D  texture m a p  in Figure 4.5. (a) contains 

three views of the static m o d e l  textured with the captured data for the sequence s h o w n  in Figure 

4.3, (b) s h o w s  three views of the m o d e l  in (a) as it is animated using a walking sequence.

then use this to create the corresponding 3 D  model.

• T h e  advantage of this m e t h o d  is that once the silhouette information is extracted a n d  textured 

to the final model, the m o d e l  can be  easily animated a n d  this enables the incorporation of 

the m o d e l s  into virtual worlds.

• T h e  use of different templates or the modification of the templates in response to the input 

data m a y  b e  m o r e  realistic if different m o d e l s  are used to m o d e l  different individuals and 

take account of differences in clothing, hair a nd b o d y  shape.
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4.3 Approach 2: Creating Active B-Spline Templates

This approach is an important stage for the automated extraction of the individual f r o m  their 

environment for the creation of virtual h u m a n s  for use in virtual worlds. This m e t h o d  uses the 

s a m e  capture procedure as in A p p r o a c h  1. T h e n  constrained deformable B-splines templates are 

used in each view to automatically extract the user f rom a real environment. W h i l e  minimising the 

snake’s energy, a skeleton is automatically incorporated into the model.

Firstly, the i m a g e  capturing process is described detailing the pose that the individual should 

adopt an d  h o w  this influences the development of the templates. T h e n  the process of extracting 

the user from a real environment is described, a nd this includes a description of the B-spline 

templates a nd h o w  they are generated, constrained to accurately extract the users shape/silhouette 

a n d  automatically fit the skeleton to the model. A  system overview is s h o w n  in Figure 4.8. This 

figure s h o w s  the complete system for the initialisation, the fitting of the templates an d  h o w  the 

extracted i m a g e  data is c o m b i n e d  with the underlying m o d e l  to provide a personalised h u m a n  

model.

Inpul lour orthogonal v iew s 
o l the captures Individual

Figure 4.8: Flowchart with the m a i n  c o m p o n e n t s  of A p p r o a c h  2.

4.3.1 Image Capture and Definition of the Individual Pose

T h e  i m a g e  capturing process is implemented in such a m a n n e r  that does not i m p o s e  strict c o n ­

straints on an individual. T h e  process involves capturing four images of the individual. E a c h  

i m a g e  has a resolution of 6 4 0  x  480. T h e  images are captured with a single fixed low-cost off-the- 

shelf camera, an d  b e tween the capture of each i m a g e  the individual rotates 90°. This enables the 

capture of the four orthographic projections wh i c h  contain sufficient information to create a real­

istic h u m a n  model. This capturing technique is based o n  that proposed b y  Hilton et al. (1999). In 

each situation, the individual stands approximately 3 m  f r o m  the camera. A n  alternative approach, 

as adopted in (Lee, G o t o  &  M a g n e n a t - T h a l m a n n  2000) allows the user to specify the distance
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b e t ween the c a m e r a  an d  the individual or else indicate an approximate height of the individual in 

the images because it is felt that, in certain situations, valuable information that adds to the realism 

is lost w h e n  the individual does not occupy a significant portion of the image, for e x a m p l e  w h e n  

capturing the images of a child.

In the approach described in (Hilton et al. 1999), the images are captured against a photo- 

reflective blue screen backdrop enabling easy segmentation of the ba c k g r o u n d  using a chroma-key 

technique that identifies the background pixels based o n  the percentage of blue in each pixel. In our 

approach, the i mages are captured against a real background. T h e  segmentation of the individual 

f r o m  the b a c k ground is described in Section 4.3.2. O u r  m e t h o d  constrains the individual to occupy 

the centre of the i m a g e  in each capture. E v e n  in the simplest of real-world situations, capturing a 

complete i m a g e  of an individual will additionally capture the floor, wall an d  other elements that 

appear in the background.

In order to reliably extract and locate particular features, the person should adopt the pose 

similar to that s h o w n  in Figure 4.9 (hereafter referred to as the standard pose). This pose requires 

the individual to stand with their feet apart a nd with their a rms raised. This ensures that the armpits 

a nd the crotch area can b e  easily (accurately) located. A n o ther requirement that has b e c o m e  

apparent f rom initial testing is that the individual should look directly at the c a m e r a  a n d  if possible 

a little above the camera. This is to ensure that all the features of an individual’s face are visible. 

This is important because the face is a highly detailed region a n d  can significantly enhance the 

realism of the model, and in the side views it is used to gain m o r e  defined profile information. 

In the side views, the individual is required to keep their hands at their side an d  to ensure that 

the hands are not in front or behind the rest of the body, as this will affect the silhouette of the 

individual.

T o  get an accurate m o d e l  it is important that the individual wears tight fitting clothes, the 

tighter the clothes the closer the final m o d e l  will approximate the true f o r m  of the individual. This 

is in part justified, since w h e n  the final m o d e l  is animated the effects of the animation will be 

m o r e  evident o n the clothing than on the b o d y  itself, i.e. if the individual m o v e s  then w e  see the 

m o v e m e n t s  through the clothes. This is important as the templates should be flexible e n o u g h  to 

d efo r m  to the particular b o d y  shape of every individual. T h e  possibility of creating m o d e l s  of the 

individual wearing other clothes is discussed in Section 6.4.2.

Rational for Pose Restriction

A s  described in Chapter 3, the determination of the pose of any object, even an inarticulate object, 

is difficult f r o m  a set of images, mo r e o v e r  from a limited set of images. T h u s  in developing a 

sufficiently flexible system that can be used b y  a non-expert user, it is necessary to:

• either restrict the pose of the individual,

• constrain the environment (including lighting),

• constrain the m o v e m e n t  of the individual,

• use additional cameras to capture nu m e r o u s  images f rom a large n u m b e r  of viewpoints,
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(a) (b)

(c) (d)

Figure 4.9: A  set of captured images for an individual.

• rely o n  significant interaction to locale the joint an d  associate the features to a default view 

of a similar object,

• or enforce a combination of these constraints.

Us i n g  the capture set u p  described previously, if it w a s  permitted that the individual could 

adopt an arbitrary pose, then the hands or a rms could possibly occlude vital information, for ex­

a m p l e  if the a r m  w a s  across the face or behind the individual. If the h a n d  w a s  in front of the body, 

then it w o u l d  b e  subjected to a different projection resulting in disparities a n d  scaling problems. In 

addition, the difference in pose b e t w e e n  each capture w o u l d  m a k e  it extremely difficult to estab­

lish correspondences b e t w e e n  the silhouettes that are captured. T h u s  restricting the pose ensures 

that the template can b e  generally defined with sufficient flexibility to automatically extract the 

individual in any environment, a n d  using a standard pose, it enforces scaling constraints o n  the 

m o d e l  as all the b o d y  parts that are identified in the front, b ack a nd side views can b e  a s s u m e d  to 

undergo approximately the s a m e  projection to the i m a g e  plane.

Using a standard pose reduces the variation in the position that feature points have relative 

to each other. T h e  alignment of the individual silhouettes can b e  achieved b y  the application of 

the m e t h o d  introduced b y  Cootes et al. (1992) and detailed Section 2.7.2. In addition, if the pose 

in Figure 4.9 (a) is adopted the variation in position of the key features identified in Figure 4.11 

is significantly reduced. T h e  position of the arms is the only exception, but this is addressed in 

Section 5.3.4.
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T h e  variation in the pose is lo w  a nd limited to the change in position of the arms. However, 

in the initialisation processes involving the use of the bounding b o x  or the user-assisted approach 

T h e  location of the a rms are identified, this facilitates the adjusting of the template. In addition, 

the key features are the m a i n  points an d  the intermediate points identified w h e n  extracting the 

individuals silhouette are all relevant to the location of the key points, T h u s  using either of the 

initialisation procedures, the location of the head, feet a nd arms are k n o w n .  This is sufficient to 

initialise the template and reduces the n eed to establish the m o d e s  of variation.

4.3.2 Template Generation using Active Contours

Requiring the individual to adopt a standard pose m e a n s  that the variation b e t w e e n  captures of 

different individuals will be small, a n d  this facilitates the use of templates that are well suited 

to the extraction of objects that undergo small variation f r o m  the m e a n  shape. T h e  templates 

that are used to extract an individual’s shape are derived f r o m  the active contour mode l s  a n d  are 

i m p l e m e n t e d  as active B-spline templates (Boyle &  M o l l o y  2005a). T h e  decision to use B-splines 

results f r o m  the fact that they offer greater local control than the original spline based snakes and 

that B-splines are in c o m m o n  use in c o m p u t e r  graphics.

T h e  use of the active contours is considered because it gives the template the ability to adapt to 

an y  contour a n d  can reliably a n d  simply describe any boundary. Moreover, it can define boundaries 

w h e n  sufficient edge information is not available. This is essential as the b o undary contour is 

highly complex. In addition, defining the initial contour as a template enables the inclusion of 

constraints that can control h o w  the snake evolves and ensure that the template is modified in a 

suitable manner.

Splines are ideal for defining the contour that describes the shape of an individual because 

unless they are severely stressed, they can maintain second order continuity. Splines can be defined 

mathematically as continuous cubic polynomials that interpolate a n u m b e r  of control points. T h e  

polynomial coefficients for natural splines are dependent on  all n control points. Thus, changing 

the position of one of the control points affects the entire curve an d  involves operating on an n + 1 

b y  n +  1 matrix (Foley et al. 1990, Piegl &  Tiller 1997). B-splines have been chosen because 

they consist of curve segments that are only dependent o n  a f e w  of the control points. This offers 

an e n h a n c e m e n t  over the use of splines, as the m o v e m e n t  of an individual point does not require 

the modification of the complete curve (template) and thus greater local control is achieved over 

the deformation of the template. In addition to this, it m a k e s  the B-spline templates suitable for 

real-time applications (Blake &  Isard 1998) a n d  for animation.

Generation of the Mean Template

T h e  m e a n  templates are generated initially b y  taking a set of images of 10 distinct individuals and 

interactively fitting a B-spline contour to define the basic shape of the individual in each view. 

This process is similar to the training sets used by  Cootes et al. (1995) to find the m e a n  position 

of points. E x a m p l e s  of the images captured are s h o w n  in Figure 4.10.

T h e  fitting of the template to the i m a g e  information is carried out in a two-stage process. 

Initially, a user will place the m a i n  control points around the individual in the images. T h e n  the
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(d) (e) (f)

Figure 4.10: E x a m p l e s  of the captured images used for the generation of the template.

control points are automatically interpolated with a B-spline curve. This is performed to permit the 

user to determine h o w  well the template fits the captured data. T h e  contour is closed to ensure that 

continuity is maintained at the ends. A t  this stage, the user has the option to m o d i f y  the template 

b y  either m o v i n g  or r e m o v i n g  the existing control points or adding n e w  control points. T h e  second 

stage involves generating a contour using the final positions of the user positioned control points, 

a n d  using the energy minimisation process to ensure that the control points defining the template 

are o n  the correct edges in the image. This is completed in each of the four views for an individual. 

T h e  user has the option to use the front template on the b ack i m a g e  a n d  interactively adjust this to 

fit the template to the i m a g e  information, or alternatively, the user has the option to use previously 

generated templates and adjust t h e m  to fit the shape of the captured individual.

Following this, the contours are e x a m i n e d  to enable the identification of important features, 

including the m i n i m u m  an d  m a x i m u m  values for the horizontal an d  vertical control points. This 

is used to define scaling factors an d  in the normalisation of the templates. Other key features 

identified include the armpits, the crotch, the hands, feet a n d  the centroid, w h i c h  are important 

lan d m a r k  points used in aligning the templates and in fitting the skeleton to the final model. T h e s e  

points are identified in Figure 4.11. Identifying these points in each set allows a m e a n  template to 

be created.

Unlike the process described in (Cootes et al. 1992), w h e n  the user is specifying the control
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Figure 4.11: T h e  k ey points that are identified b y  automatically e xamining the B-spline contour 

silhouette, (a) s h o w s  the key points identified o n  front an d  b a c k  views an d  (b) s h o w s  the key points 

found o n  the side views.

points to describe the shape of the captured individual the n u m b e r  of control points used is not 

predetermined. This is necessary to account for variations in the shape of the captured individuals. 

In ( B a u m b e r g  &  H o g g  1994), w h e n  the contour is initialised, a set of control points are equally 

spaced around the boundary of the individual, w h i c h  is possible since the variation of the silhouette 

over a n u m b e r  of frames is sought and not a description of the individual’s shape. H owever, the key 

features identified in Figure 4.11 have a fixed position relative to each other, thus it is not possible 

to evenly position the control points along the contour. T h e  generation of the m e a n  template is 

controlled b y  the ke y  features and not the points between them. In addition, establishing the key 

features permits the initialisation of the template. T h e  various approaches to the initialisation and 

establishment of the key features are discussed in Section 4.3.3. T h e s e  approaches s h o w  that it is 

only necessary to scale the generic template for its correct initialisation.

T h e  m e a n  template is s h o w n  in Figure 4.12, it s h o w s  the key features, the controls and an 

approximation of the skeleton that can be generated based o n  the key feature locations.

In completing this task it w a s  observed that the greatest variation in the template structure w a s  

the position of the arms. This can be seen in the difference b e t ween Figure 4.10 (b) and Figure 

4.10 (f). T h u s  on e  of the m o s t  important aspects in the placing a n d  initialisation of the template 

involves locating the arms. In general, the s a m e  template is used for the b a c k  and front views, 

while in the side views the s a m e  template is used although it is flipped about it central axis to 

reflect the difference in pose.

4.3.3 Template Initialisation

T h e  initialisation of the template (active contour) is on e  of the m o s t  important aspects to ensure that 

the minimisation process converges to the correct solution. In (Kass et al. 1987), the positioning of
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Figure 4.12: T h e  m e a n  template generated, (a) s h o w s  the m e a n  template with the control under 

the a rms a n d  b e t w e e n  the legs, (b) s h o w s  an approximation of the skeleton that is automatically 

fitted to the skeleton data.

the snake relied o n  an expert user to position the snake close to the object (region) of interest and 

automated positioning of the contour w a s  not considered. Since then, different techniques have 

b e e n  developed for the initialisation of active contours and in general are application specific as 

discussed in Section 2.3.1.

In this section, different approaches to the initialisation of the template are described and 

discussed as to their applicability to different types of captured i m a g e  data. T h e  first approach that 

is developed is a user-assisted initialisation of the template. T h e  second uses an edge m a p  to enable 

the positioning of the template based o n  the centroid of the edge information. T h e  third approach 

e m p l o y s  the subtraction of the captured views to define a difference m a p  that has the additional 

advantage that the template can be simply scaled. A  comparison b e t w e e n  the different approaches 

is then presented. Finally, other approaches that w e r e  considered are detailed including: using 

the difference b e t ween frames in a video sequence, to initialise the template, or the use of face 

detection techniques to isolate the face.

User Assisted Initialisation

Allowing the user of the system to initialise the template in each view is the simplest case to 

consider and, provided that the user specifies the key points accurately, then the initialisation will 

be successful. T o  enable the correct initialisation the user m u s t  specify the position of the top of 

the head, the feet, the hands, the armpits an d  the crotch. This information is sufficient to permit 

the additional points to be interpolated. This process is illustrated in Figure 4.13.

T h e  m e a n  template is initially aligned b y  calculating the centroid of the points identified b y  the 

user an d  positioning the centroid of the m e a n  template at that location. T h e  m e a n  template is scaled 

vertically, based o n  the difference b e t w e e n  the top of the head an d  the feet, an d  scaled horizontally 

in t w o  stages. T h e  first horizontal scaling is based o n  the position of the armpits. This is used
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to scale the horizontal dimension of the b o d y  and legs of the template. Then, depending on the 

relative position of the hands to the armpits, the a r m s  will b e  scaled a n d  positioned appropriately.

Figure 4.13 s h o w s  the initial positions that the individual has selected for the features a nd the 

template generated based o n  the user selected points.

(a) (b)

Figure 4.13: T h e  initial positions that the individual has selected for the features.

In the side views, the side template can then b e  initialised b y  the user in o n e  of t w o  approaches. 

T h e  first involves the specification of the key points at the top of the head, the feet a n d  the left and 

right m o s t  points o n  the individual’s body. T h e s e  points are indicated in Figure 4.11 (b). These 

points can then be interpolated using the m e a n  template. This template is easier to initialise as 

its silhouette appears as a simple object. T h e  second approach involves selecting an approximate 

centre of the individual an d  then specifying another point either the m a x i m u m  or m i n i m u m  vertical 

value.

Initialisation Using Edge Information

This approach involves the use of the C a n n y  e dge detector to generate an e dge m a p  of the input 

i m a g e  ( C a n n y  1986). T h e  e dge information can be invaluable in defining different structural ele­

m ents within the scene a n d  also in guiding the active contour. Although, in certain situations, the 

n u m b e r  of edges can outweigh the information that is in the edge m a p  (Ballard &  B r o w n  1982). 

T h u s  before the e dge information is calculated, a smoothing technique, such as a Gaussian filter 

used in Section 4.2,2 is used to s m o o t h  the image. This is inherent in the C a n n y  edge dctector 

( C a n n y  1986). This reduces the effects of w e a k  edges in the image. T h e  centroid of the edge 

information in the i m a g e  acts as a centre for the positioning of the template, although it does not 

provide sufficient information to scale the template to fit the i m a g e  data. In this case, it requires 

the user to drag the k ey points into position. This approach w a s  tested o n  several types of images, 

but in the situations w h e r e  the ba c k g r o u n d  clutter w a s  considerable the quality of the initialisation 

w a s  reduced. This is illustrated in Figure 4.14, w h e r e  the n u m b e r  of edges in the i m a g e  m a k e s  

it difficult to isolate the exact shape of the individual in the image. T h e  effects of changing the
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parameters of the C a n n y  e dge detector are also illustrated in Figure 4.14. This illustrates a n eed to 

have a m e a s u r e  to determine the level of clutter to set the parameters of the C a n n y  e dge detector. 

S u c h  a m e a s u r e  is discussed in Section 5.3.
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Figure 4.14: Effects of applying the C a n n y  e d g e  detector to images capture in a cluttered environ­

m e n t  C a n n y  (1986). (a) a nd (d) s h o w  the original images, (b) and (e) illustrate the edges generated 

w h e n  the C a n n y  e dge detector has <x =  1 a n d  the lower threshold, T 1 set to 100 an d  the upper 

threshold set to 255, (c) an d  (f) illustrate the edges generated w h e n  the C a n n y  e dge detector has 

a =  2 a n d  the lower threshold, T1 set to 1 0 0  an d  the upper threshold set to 255. T h e  images 

illustrate that w h e n  significant n u m b e r  of edges are extracted that it is difficult to initially position 

the template,

(b)

Automatic Initialisation using Difference Map

In this approach, the template is initialised using a subtraction technique in w h i c h  the back and 

front images are subtracted f r o m  each other and similarly the side views are subtracted. B a c k ­

gro u n d  subtraction techniques using the capture of an additional i m a g e  w e r e  also considered. 

S o m e  of the tests associated with b a c k g r o u n d  subtraction are described in Section 5.3.1. There 

are t w o  m a i n  reasons that the use of another i m a g e  w a s  not considered. T h e  first relates to the 

fact that the individual casts a s h a d o w  in a real environment, m e a n i n g  ba c k g r o u n d  subtraction will 

not accurately extract the shape of the individual. T h e  second reason is that it w a s  not considered 

that an individual should capture an additional image. Since the individual is positioned in the 

centre of the i m a g e  and that the c a m e r a  is a s s u m e d  to b e  in the s a m e  position for each capture, the
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backgr o u n d  will have high correlation, and thus w h e n  subtracted, the areas in the i m a g e  with the 

greatest difference relate to the individual. This enables the positioning of the b o u n d i n g  bo x  that 

facilitates the horizontal a n d  vertical scaling of the template.

(a) (b)

Figure 4.15: (a) s h o w s  the front and b ack subtraction that produces the difference m a p  an d  (b) 

s h o w s  the difference m a p  p r oduced for the subtraction of the side views.

T h e  initial b o u n d i n g  b o x  (100 pixels b y  3 0 0  pixels) is positioned using the centroid of dif­

ference pixels in the subtracted images. This b o x  automatically expands independently in four 

directions to e n c o m p a s s  the area of the difference pixels. Apart f r o m  scaling the template, the 

bounding b o x  provides additional information for the positioning of the arms. In particular, the 

left an d  right sides of the b o unding b o x  correspond to the extremes of the arms. T h e  final posi­

tions of the b o u n d i n g  boxes are s h o w n  in Figure 4.15 (a) and (b). T h u s  using this information, 

it is possible to m o d i f y  the position of the a rms in the templates a n d  thus accurately initialise the 

template.

T o  improve the minimisation process a n d  to reduce the effects of unrelated edges, the edge 

pixels in the e d g e  i m a g e  that lie outside the b ounding b o x  are negatively weighted to encourage 

the contour to m o v e  to the correct solution. This reduces the effect that these edges have on 

the minimisation process. It is important that the edge information is not completely discarded, 

because if the b o u n d i n g  b o x  is not accurately placed, then it is possible that s o m e  vital edge 

information will be  located outside the bou n d i n g  box.

Comparison of Initialisation Techniques

T h e  images in Figure 4.16 s h o w  the automatic a n d  m a n u a l  positioning of the templates. In Figure 

4.16 (a) and (d) the template is manually positioned, and in Figure 4.16 (b), (c) an d  (e) the template 

is automatically positioned. T h e  m a i n  difference is in the localisation of the hands, w h i c h  is highly 

dependant o n  the colour of the b a c k ground and m a y  not b e  accurately determined using automated 

initialisation. Furthermore, in the m a n u a l  fitting, the contour fits the data m o r e  accurately, this 

because the key features are clearly identified and thus the contour is better scaled to approximate 

the captured data.
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(a) (b) (c)

(d) (e)

Figure 4.16: (a) an d  (d) s h o w  m a n u a l  fitting of the template to the front view, (b) a n d  (c) s h o w  

automatic fitting of the template to the s a m e  images an d  (e) s h o w s  the automatic fitting of the 

template a side view.

In the side view s h o w n  in Figure 4.16 (e), the initialisation process is simpler because the 

individual stands with their a r m s  at their side an d  initialisation is determined b y  the four extremes, 

the head, m a x i m u m  an d  m i n i m u m  horizontal coordinates. T h e  m a n u a l  a nd automatic initialisation 

produce identical results for the side views.

Alternative Approaches to Initialisation

In addition to the approaches described in this section, alternative approaches to the initialisation 

of the template have b e e n  considered.

• Hilton et al. (1999) propose the use of a photo-reflective blue screen, although the use of the 

blue screen o n  its o w n  does not eliminate problems associated with s h a d o w s  an d  thus the 

requirement of special lighting is need e d  to enable the individual to be accurately segmented 

f r o m  the background. This w a s  not considered, as it is not practical in a flexible system 

designed to operate in a h o m e  environment.

• O n e  alternative approach in real environments is to use a face detection m e t h o d  such as 

described in (Cooray &  Uscilowski 2004), w h i c h  can provide an accurate location of the
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face within the frontal images and possible estimates in the side images. This approach 

w o u l d  not provide sufficient information in the b a c k  i m a g e  but the initialisation in the front 

i m a g e  could b e  used to initialise the procedure in the back image. Although, skin detection 

algorithms can be used to provide information o n  the location of the hands in the image, it is 

also highly dependant on  the clothing w o r n  b y  the individual. This could cause difficulties 

for initialisation, e.g. if the individual w a s  wearing short trousers or h a d  a short-sleeved 

shirt.

• Motion-tuned active contours offer the possibility to reliably locate the individual in any 

environment b y  capturing the individual a n d  the slight m o v e m e n t s  that he or she either 

consciously or unconsciously m a k e s  over a f e w  seconds using a video camera. A n  approach 

that extracts the b o undary of an individual using a video sequence is described in ( B o m p i s  

et al. 2005). T h e  idea of using an im a g e  sequence for the extraction of an individual f r o m  a 

real environment has been previously presented in ( B a u m b e r g  &  H o g g  1994). In particular, 

it w a s  used for the tracking of an individual an d  not for accurate extraction of an individual’s 

shape information. This approach attempts to extract the complete shape requiring the whole 

b o d y  to m o v e  during the capture phase. If the template previously described is used in 

conjunction with the motion data it will b e  possible to accurately position it even if complete 

motion data is not available. This approach w a s  not presently considered because only still 

images are used, but it is discussed in greater detail in Chapter 6.

4.3.4 C onstraints to Control the E volution o f the Tem plates

T h e  initial template that is used for the front a n d  b a c k  views is s h o w n  in Figure 4.12. T h e  inclusion 

of the constraints w a s  considered necessary after initial testing of the automated fitting process in 

the front an d  b a c k  images because the control points m o v e d  towards the closest edge. This w a s  

particularly evident under the a rms an d  b e t ween the legs w h e r e  s o m e  control points defining the 

template converged to the s a m e  edge depending o n  h o w  the templates are initialised. This is s h o w n  

in Figure 4.17.

In the case of the automatic initialisation of the contour, it is impossible to k n o w  the location of 

specific control points relative to the edges in the image. T h u s  constrains are introduced between 

the legs and under the arms. T h e s e  constraints take the following form:

• T h e  direction in w h i c h  the control points b e t w e e n  the legs can m o v e  is limited, i.e. the 

control points w e r e  forced to m o v e  a w a y  f r o m  each other. Rather than enforcing a direction 

in w h i c h  the control points can m o v e ,  it w a s  initially considered that the control points 

could not c o m e  within a certain distance of each other, relative to the initial distance or 

the inclusion of a volcano6 b e t ween the legs and under the a r m s  (Kass et al. 1987). T h e  

simplest an d  m o s t  effective approach involved the introduction of a repulsion force between 

the nearest control point on the opposite side of the template.

• A  second linearity (or approximately linear) constraint w a s  introduced to ensure that the 

control points b e t w e e n  the legs a nd under the a r m s  m o v e d  uniformly towards the correct

6A volcano as introduced in (K ass et al. 1987). Volcanoes act as a  repulsion force betw een a point on the im age at 
a d istance from  a  point on the snake. The larger the value o f  the peak o f  the volcano the stronger the repulsion  force.
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(a) (b)

(c)

Figure 4.17: T h e  incorrect convergence of the template control points. In (a), the initial position 

of the template is shown. In (b), the position of the contour after 2 0  iterations is shown, it can be 

seen that under the right a r m  a n d  b e t w e e n  the legs the contour is converging to the s a m e  edge. In 

(c), the situation is s h o w n  after 6 0  iterations.

solution and, in s o m e  cases, speeded u p  the convergence process. T h e  linearity constraint 

involves taking a series of control points under the a r m  a n d  b e t w e e n  the legs a n d  examining 

the slope of the line that passes through these control points to establish so as to determine 

if the points are converging to the s a m e  e d g e  or if o n e  of the control points is trapped in a 

local m i n i m u m .

T h e  linearity is also used to validate the location of the armpits and the crotch as at this 

point, the slope of the lines should change dramatically, an d  if the control point identified in 

the template to correspond to this feature is not positioned at an effective point of inflection, 

then a valid location of these points is not considered to b e  found.

These constraints are shown in Figure 4.18.
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(b)

Figure 4.18: Starting with the contour after 2 0  iterations s h o w n  in Figure 4.17 a n d  for the purpose 

of demonstrating the effects of the constraints, the constraints are manually introduced b etween 

the legs a nd under the a r m s  b y  selecting each n o d e  an d  changing the direction that the control 

points can move, (b) s h o w s  the effect of introducing the constraints after a further 2 0  iterations.

4.3.5 Minimisation of the Templates Energy

T h e  energy minimisation pa r a d i g m  defined for active contours is ideally suited to the p r oblem 

of fitting the templates to i m a g e  features. In particular, active contours enable the inclusion of a 

variety of external energies to control h o w  the contour evolves in the presence of specific features. 

T h e  final version of the contour also ensures that even w h e n  an e dge or other boundary information 

is missing, a complete b o u n d a r y  description of the individual can b e  obtained and the use of control 

points m a k e s  for efficient storage of the final contour.

A s  described in Section 2.2.2, there are a n u m b e r  of approaches to the minimisation of the 

energy in the active contour. In the original paper by K a s s  et al. (1987), the minimisation w a s  

achieved using an iterative technique. A t  each iteration, the implicit Euler steps with respect to the 

internal a n d  external energy arc taken. A n  alternative to this procedure, w h i c h  is adopted in this 

research, is the d y n a m i c  p r o g r a m m i n g  approach of A m i n i  et al. (1990). This m e t h o d  is guaranteed 

to find the m i n i m a  within a predefined search space. T h e  search space about a particular control 

point is used to define the possible positions that the control point can m o v e  to. T h e  search space is 

specified as a 3 x  3 grid around a control point. In addition to this, an extra on e  dimensional search 

space for the external energy calculations is introduced. This search space is defined perpendicular 

to the slope of the line passing through the tw o  neighbouring control points of the current control 

points 7. T h e  edge feature m a p  is e x a m i n e d  along this line to find the closest edge. It is possible 

to set the size of this search space an d  in practical situations it is set to a limit of 10 pixels from 

the current control points. A n y  edges outside of this range are considered to have n o  influence 

o n  the minimisation procedure at that iteration. This search space is illustrated in Figure 5.12 (a). 

Since the template is defined with a strong attraction to high intensity edges, if it occurs that the 

template lies inside the bou n d a r y  of the individual then the attraction to the edges will cause the

7T he perpendicular o r  norm al direction is searched to reduce the effects o f  contraction on the con tour as detailed in 
(B lake &  Isard 1998, Jacob et al. 2004). A lso it is considerably m ore efficient than a spiral search.
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snake to exp a n d  towards the individual’s boundary, an d  thus it is possible to accurately extract 

the boundaries, even w h e n  the template is not well positioned. Thus, it is not necessary to define 

an expansion force like that in ( C o h e n  1991). In particular, the contribution of the edges in the 

minimisation procedure is based o n  the strength of the edge pixel found within the search space of 

a current control point and its distance from the current control point.

T h e  approach of A m i n i  et al. (1990) w a s  considered a superior approach to the original imple­

mentation for our application. T h e  major reason is that it facilitates the inclusion of constraints in 

the definition of the minimisation procedure. Similarly, in the case of digital images, little infor­

mation is gained by considering positions that are between t w o  coordinate locations o n  the im a g e  

grid. Moreover, it is possible to include measures to restrict the distance b e t w e e n  control points, 

i.e. if t w o  control points m o v e  within a certain distance of each other then the next best location 

that minimises the energy is a s s u m e d  to b e  the m i n i m u m  energy for that control point.

Parametric active contours are considered a m o r e  appropriate approach than geometric active 

contours. Indeed, the template is parametrically defined an d  the controls that are introduced to 

control the deformation a nd the evolution of the contour cannot be incorporated into the geometric 

active contour f r a m e w o r k  ( X u  et al. 2000). Other reason related to the decision to use parametric 

snakes are described in Section 2.9.

Termination Conditions

T h e  contour is a s s u m e d  to have extracted the correct boundary w h e n  the minimisation process 

stops or the difference b e t w e e n  the current energy level and the previous level has reduced b e l o w  a 

threshold. It is necessary to determine if the correct boundary has b een extracted. This is achieved 

automatically b y  examining each of the control points and ensuring that they lie on an edge in the 

e dge feature map. E a c h  control point that is not located o n  an e dge is further examined. Algorithm

1, determines h o w  to encourage a control point to m o v e  to an edge. Algorithm 2, determines if it 

possible to reduce the n u m b e r  of control points to describe the boundary.

4.3.6 Issues Highlighted in this Approach

• T h e  i m a g e  information that is extracted using the contours is projected or m a p p e d  to the 

silhouette of the m o d e l  using the texture m a p p i n g  procedure in sections 4.2.2 and 4.2.3. 

Active contours provide a m o r e  accurate boundary extraction process that results in a m o r e  

accurate m a p p i n g  of the i m a g e  information to the model.

• T h e  quality of the face (of the model) o n  the m o d e l  significantly reduces its quality (photo­

realism). This is primarily because the texture that is produced for the face is based o n  a 

significantly small area of the image, and in s o m e  instances, is further scaled to m a p  it to 

the underlying model.

• In m a p p i n g  the information to the underlying model, significant shape information is being 

sacrificed and the personalisation of the mod e l s  is being reduced. T h e  final positions of the 

four B-spline contours contain information a nd the possibility exists to use this information 

to create a m o d e l  of the individual.
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Algorithm 1 Automatic Insertion of Control Points
loop

for each control point

{first pass}

C h e c k  if all points are located on an edge 

if control point not o n  e d g e  then 
check neighbouring control points 

if neighbouring control points o n  edges then
a d d  n e w  control point either side of current control point 

else if neighbouring control points not o n  edges then 
search space normal to the control point, is increased 

end if 
end if 

end loop

{second pass} 

loop
for each control point 

if control point not o n  e dge then 
check if its position has ch angcd 

if Position has not c h a n g e d  then 
ask for user assistance 

else
minimise contour’s energy an d  update current control position 

start second pass 

end if 
end if 

end loop

Algorithm 2 Automatic R e m o v a l  of Control Points
D ete r m i n e  if three control points are linear

loop
for each control point n

if control points n —  1, n  an d  n + 1 are linear then
r e m o v e  the central control point

minimise the energy in the contour

if neighbouring control points on edges then
ad d  n e w  control point either side of current control point

else if neighbouring control points not on edges then
search space normal to the control point, is increased

end if
end if

end loop
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4.4 Approach 3: Using Facial Feature Extraction to Enhance 3D Hu­
man Models

A s  discussed in Section 3.5, the face of an individual provides significant detail that is important in 

determining the quality an d  realism of the m o d e l  that is produced. T h u s  to provide photo-realism 

of the model, it is important that the face is highly detailed. This can be achieved b y  finding 

correspondences b e t w e e n  features o n  the face of the individual an d  the face of the model. T h e  

predominant features o n  an individual’s face are the nose, the eyes a nd the mouth, w h i c h  provide 

geometric dependencies a n d  constraints for precise face localisation. T h e s e  dependencies are used 

to accurately position the individual’s face on the m o d e l  in order to e n h ance the realism of the 3 D  

h u m a n  model.

Ho w e v e r ,  the locations of these features are c o m m o n l y  used in other applications, e.g. the 

normalised facial i m a g e  for the creation of the M P E G - 7  Face Recognition (FR) descriptor is o b ­

tained using the predefined eye locations ( M P E G 7  2002). T h e  majority of applications use only 

the frontal i m a g e  for the purposes of extracting fecial information, an d  in general, the larger the 

i m a g e  area containing the face the m o r e  reliable the feature localisation. In the approach described 

in this section, the side v iew is also considered as it provides additional information for locating the 

facial features. Significant m e t h o d s  developed for the localisation of facial features are discussed 

in (Boyle et al. 2005, Che l a p p a  et al. 1995).

T h e  structure of the system for creating a personalised 3 D  m o d e l  is presented in Figure 4.19. 

Elements of the process are described in details in the following sections; firstly the necessary 

requirements enabling the accurate capture of the facial i m a g e  data are described as well as any 

issues arising while fitting the template. Finally the texturing process that incorporates the facial 

features is detailed and s o m e  results are shown.

Figure 4.19: Facial features localisation algorithm.
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T h e  basis of the i m a g e  capture process is the s a m e  as previously described in Section 4.3.1. In 

addition to this, the individual should look directly at the c a m e r a  or little above the camera. This is 

to ensure that all the features of an individual’s face are visible w h i c h  is important for the extraction 

of the facial features. This should also be the case in the side view to provide accurate profile 

information. Figure 4.20 s h o w s  examples of the images that were used to test this approach. T h e  

b ackgr o u n d  in the images, s h o w n  in Figure 4.20, are not extremely cluttered because the principle 

is to demonstrate that the location of the facial features can be used to e n h ance the model, but the 

s a m e  principles can be applied to images captured in m o r e  c o m p l e x  environments.

4.4.1 Im age C ap tu re  and  Tem plate F itting

(a) (b) (c) (d)

Figure 4.20: E x a m p l e s  of the capture images used to for testing this approach.

It is necessary to have accurate segmentation of the individual f r o m  the ba c k g r o u n d  to ensure 

that it is not textured to the underlying model. This is achieved using the templates described in 

the previous section. T h e  subtraction of the images used in the initialisation of the template is 

s h o w n  in Figure 4.21. T h e  estimate of the bounding b o x  is s h o w n  in each of the cases.

(a) (b) (c) (d)

Figure 4.21: Results of subtraction of the front and back views an d  the subtraction of the left and 

right views.

4.4.2 Face Localisation

T h e  facial region is well localised b y  the final b o d y  contour an d  it can be used for the precise 

localisation of the facial features. In the case of the frontal view of the face, the colour s e g m e n ­

tation is applied to the facial region an d  the facial c o m p o n e n t s  are found. T h e  segmentation is
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carried out in three steps: an initial segmentation, followed b y  feature extraction a nd classification 

(Boyle et al. 2005). T h e  results of the feature localisation in the front view is s h o w n  in Figure 4.22

(a). T h e  extraction of the facial features is detailed in w o r k  undertaken b y  C o o r a y  &  Uscilowski 

(2004).

eye valley

__ nose (Ip

mouth valley 
chin clilf

(b)

Eya v i 11ny 

Hoaa

Mouth V * _!
chin al-iff’

(c) (d)

Figure 4.22: Facial features locations in (a) front view an d  (b) side v iew h ead with the key features 

marked, (c) s h o w s  the front v iew of the m o d e l  with the key features m a r k e d  a n d  (d) s h o w s  the key 

features identified o n  the side v iew of the head, image.

T h e  location of the shoulders in the front view is used to provide a initial estimate of the 

base boundary of the head in the side view. T h e  feature location in the side views of the head is 

achieved b y  scanning the contour, defining the h e a d  f r o m  the top to the bott o m  a n d  searching for 

the d o m i n a n t  valleys and peaks in the h ead contour using gradient analysis. W h e n  considering the 

right-hand side view of the h e a d  as s h o w n  in Figure 4.22 (b), the nose tip can b e  found as the peak 

o n  the right h a n d  side boundary, the eyes should be placed in the valley above the nose p eak and 

the lips f orm small peaks b e l o w  the nose tip. T h e  valley of the chin provides information about the 

bott o m  b o undary of the face, w h i c h  in general cannot be reliably located in the front view because 

of shadow. If the ear in the side view of the head is visible a nd not covered with hair, its location 

can b e found using the segmentation technique used for the features extraction f r o m  frontal view 

images (Boyle et al. 2005).

4.4.3 Texturing and Personalising the Model

T o  texture the underlying model, four silhouettes corresponding to the captured images are g e n ­

erated. T h e s e  are used for establishing correspondences b e t ween the captured images a nd the 

underlying model. T h e  approach is based on feature extraction algorithm in (Hilton et al. 1999). 

T h e  establishment of features is essential to enable the accurate texturing of the model. H a v i n g  

the correspondences enables the texturing of the m o d e l  on a part-by-part basis, ensuring that the 

scale of the different b o d y  parts is preserved. In the texturing algorithm proposed in (Boyle 2004)
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a n d  described in a Section 4.2.3, the nor m a l  vectors for each tri-face of the m o d e l  are used to 

determine w h i c h  i m a g e  is used to texture that face of the model. T h e  major limitation with the 

approach in Section 4.2.3 is that the face is not accurately textured, a nd this reduces the realism of 

the model. T o  o v e r c o m e  the limitation of this approach, the facial features are located o n  the face 

of the m o d e l  a n d  o n  the face in the captured images. T h e s e  are used to align the individual’s face 

with that of the model. T h e s e  features are indicated in Figure 4.22 and the geometric relationships 

are s h o w n  in Figure 4.23. T h e s e  relationships a n d  distances are used for scaling an d  validation.

Figure 4.23: T h e  locations of the facial features a n d  the distances b e t w e e n  t h e m  used for defor- 

mating the underlying model.

T h e  distance b e t w e e n  the eyes de (see Figure 4.23 (a)) is used for scaling the texture i m a g e  in 
the horizontal direction. This distance is also used for the creation of the M P E G - 7  F R  descriptor 

an d  is essential for defining the size of the h ead ( M P E G 7  2002). This ensures a high level of 

recognition of the m o d e l  in a virtual world. T h e  vertical size of the texturing i m a g e  is adjusted 

using the distance b e t ween the eyes an d  the centre of the m o u t h  dm. T h e  three points representing 
the eyes a n d  m o u t h  locations are used to calculate the centre of the facial region an d  to position 

the facial texture o n  the underlying m o d e l  in the front view.

T h e  side view images deliver information required for the e n h a n c e m e n t  of the h e a d  m o d e l  

v i e w e d  f r o m  the sides of the head. A s  s h o w n  in Figure 4.23 (b), the triangle d r a w n  between 

the eye, the m o u t h  and the ear is used for determining the scaling factor for side images. T h e  

distance b e t w e e n  the ear an d  the eye d,i determines the depth of the head m o d e l  whilst the distance 
b e t w e e n  m o u t h  and eye should be equal to the distance dm in the frontal view and can be used 

for the validation of the vertical dimensions of the image. W h e n  the ear is covered with hair and 

not visible, the h ead b o undary is used for finding the depth of the h ead model. O n c e  the facial 

information has been aligned, the texturing technique in Section 4.2.3 is used to texture the facial 

region of the model.

4.4.4 Outcome of Texturing the Model Using the Facial Components

T h e  results obtained using the proposed m e t h o d  to enhance the realism of the h u m a n  models, 

using the facial features, are presented in Figure 4.24 and Figure 4.25. It can be clearly seen that 

the quality of the models that use the facial features in the texturing of the m o d e l  provides superior 

results. In Section 5.4.3, additional m o d e l s  are generated and observed at different depths from
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the viewer to observe the differences in the quality of the texturing. T h e  images in Figure 4.20 are 

used to texture the underlying m o d e l  in Figure 4.24. In this figure, the complete m o d e l  is textured 

using the information f rom the four orthogonal views. Figure 4.24 (a) s h o w s  the m o d e l  textured 

without using the facial features to position an d  scale the facial texture, an d  Figure 4.24 (b) sh o w s  

the m o d e l  with the aligned facial features.

(a) (b)

Figure 4.24: T h e  created h u m a n  m o d e l  with (a) misplaced facial features a n d  (b) aligned facial

features.

In Figure 4.25, the results for a second set of images are c o m b i n e d  to texture the s a m e  under­

lying model. In this set of results, only the upper b o d y  an d  the h ead are s h o w n  a n d  the difference 

can b e  easily seen w h e n  the features o n  the m o d e l  are positioned accurately. In Figure 4.25 (a), the 

frontal i m a g e  is shown. In Figure 4.25 (b), the simply textured m o d e l  is s h o w n  a n d  Figure 4.25

(c) an d  (d) s h o w  t w o  views of the textured m o d e l  w h e n  the facial features are used to position the 

facial texture. In Figure 4.25 (a) it can b e  seen that the head of the individual is slightly tilted and 

in parts (c) an d  (d) the face is correctly aligned. This is achieved b y  calculating the m e a s u r e  dm in 

Figure 4.23 f r o m  the average vertical coordinate for each eye.

4.4.5 Issues Highlighted in this Approach

• T h e  en h a n c e d  m o d e l  still does not provide high detail of the eye regions, although this 

technique can b e  used to texture the m o d e l  using a separate high resolution facial im a g e  

(Lee, G o t o  &  M a g n e n a t - T h a l m a n n  2000) or m a p p i n g  each of the facial feature separately.

• T h e  information in the fi nal contour is used to accurately locate the h ead of the individual 

but the scaling of the images still reduces the quality of the final m o d e l  a n d  the shape in-
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(C ) ( d )

Figure 4.25: T h e  second h u m a n  m o d e l  textured with the facial i m a g e  in (a), (b) s h o w s  the m i s ­

placed facial features and (c) (d) s h o w  t w o  views of the m o d e l  with aligned facial features.

formation that is extracted is not being fully utilised. T h e  m a i n  reason that this information 

is not fully utilised, is that this approach .shows that improving the quality of the texturing 

of the face can a d d  greatly to the personalisation of the model, even without modifying the 

body.

• T h e  presented m e t h o d  can improve the realism of the 3 D  h u m a n  mod e l s  for low-resolution 

devices such as P D A s  or mobile phones, providing a low-cost solution to the creation of 

personalised 3 D  m o d e l s  without requiring costly full 3 D  reconstruction.
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4.5 Approach 4: Silhouette Based Models of an Individual

T h e  silhouette based approach described in this section provides a convenient a n d  flexible m e t h o d  

for the 3 D  reconstruction of h u m a n  models. In particular, based o n  the m e t h o d  described in 

Chapter 3, a silhouette based approach provides the m o s t  flexible m e t h o d  for the reconstruction of 

an object provided that the viewpoints are k n o w n  in advance. T h e  information in the silhouettes 

can b e  c o m b i n e d  to create a model. S u c h  a m o d e l  w o u l d  include information that is discarded in 

previously described approaches. This relates primarily, to the shape information that is extracted 

using the active contours (Boyle &  M o l l o y  2 0 0 5b).
Passive techniques for capturing shape information and/or inferring 3 D  shape f r o m  a set of 

multiple images provide the basic input for shape-from-silhouette approaches. T h e y  have estab­

lished themselves as a technique for recovering the approximate surface shape of a n object b y  

capturing the subject against a k n o w n  b a c k g r o u n d  (Laurentini 1994), such as a blue-screen. T h e  

images fr o m  multiple views are c o m b i n e d  to determine the spatial v o l u m e  occupied b y  the object 

an d  reconstruct a surface model. This approach can b e  used to produce highly realistic object 

mod e l s  w h e n  c o m b i n e d  with a texture m a p p i n g  technique.

In (Slabaugh et al. 2004), silhouette based reconstruction is described as the simplest f o r m  of 

volumetric multi-view reconstruction. U s i n g  silhouette-based reconstruction of an individual is a 

difficult task, but it can be achieved provided that foreground/background segmentation at each 

reference view is possible an d  relatively simple to implement. In this case it is not necessary to 

i m p l e m e n t  measures to establish the visibility of points in each image. In the approach described in 

this section, the silhouettes are extracted f r o m  each i m a g e  using the template created in approach

2  and described in Section 4.3. T h e  viewpoints are k n o w n  in advance since the c a m e r a  position 

does not change b e t w e e n  views a n d  the individual rotates 90° bet ween each capture.

T h e  final position of the active contours described in detail in Section 4.3 define four silhou­

ettes of the individual that are expressed in terms of control points in a 2 D  plane. T h e  2 D  B-splines 

provide a m i n i m a l  representation of the b o d y  contours and, in Section 4.5.1, are c o m b i n e d  to cre­

ate a 3 D  B-spline surface representing the m a x i m a l  object silhouette equivalent of the individual 

that acts as a bou n d i n g  v o l u m e  an d  is used as an approximate h u m a n  model. A n  overview of the 

m a i n  system elements are s h o w n  in Figure 4.26. Moreover, the photo-realism of the m o d e l  can be 

increased if the i m a g e  data used to texture the m o d e l  is not scaled.

4.5.1 Alignment of views in 3D

In the construction of the h u m a n  model, the first stage involves aligning the extracted silhouettes 

in 3D. T h e  t w o  views, n a m e l y  the left an d  the front views, are positioned in 3 D  b y  aligning 

the m i n i m u m  vertical point o n  the front silhouette with the m i n i m u m  vertical point in the left 

silhouette8. T h e  m i n i m u m  vertical values correspond to the top of the head. T h e s e  points are 

chosen to ensure that the photo-realism of the face is achieved and thus that of the model. Aligning 

the silhouettes using the m i n i m u m  vertical values explicitly incorporates a higher priority for the 

alignment of the head.

sT he m inim um  vertical poin ts on the silhouettes are used because the im age coordinates are m easured  from  the top 
left corner o f  the image.
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Part3 Part 4

Figure 4.26: Illustration of the m a i n  c o m p o n e n t s  of the system in approach 4.

In respect to the capture process described in 4.3.1, the silhouette of the side view has a larger 

vertical length. T h e  difference in length is typically of the order of five or six pixels. This results 

f r o m  the fact that the individual stands with their legs apart in the front view and stands with their 

legs together in the side view. After the alignment of the views, the vertical difference only affects 

the feet of the model.

Combining the silhouettes

T h e  2 D  silhouettes are expressed in terms of the 2 D  control points, an d  after the alignment of the 

silhouettes in 3 D  it is necessary to transform the control points to 3 D  this is achieved based on the 

view alignment. T h e  front a n d  b ack silhouettes are parallel to the x —  y axis in 3 D  a nd the side 

silhouettes are rotated to be parallel to the y — z axis in 3D. T h u s  the axis passing through the x 
value for the m i n i m u m  vertical point is used as a central axis for the rotation of the left view. T h e  

control points in each 2 D  v iew are then explicitly transformed into 3 D  b y  setting 2:-value of the 

control points in the front v iew equal to 0 an d  setting the x-value of the control points in the left 

view to zero.

T h e  alignment of the views m e a n s  that at each vertical location four values are available. If the 

explicit vertical values are required, these can b e  calculated b y  interpolating the B-spline curves 

( M o o r e  et al. 2005). T h e  four values correspond to the m a x i m u m  silhouette equivalent of the 

individual, f r o m  t w o  views a n d  is illustrated in Figure 4,27. This figure also illustrates that the 

finer detail that is inside the silhouette of the individual cannot b e  recovered f r o m  the silhouettes. 

This is particularly evident on the face, w h i c h  is the m o s t  detailed part of the b o d y  a n d  has a high 

n u m b e r  of concavities. O n  other b o d y  parts, this is not as evident, for e x a m p l e  the legs.

H a v i n g  aligned the contours, it is possible to generate a simple B-spline surface passing 

through the four extremes at a particular vertical height9. This is completed for the h e a d  and the 

entire upper b o d y  of the individual. This results in a series of parallel elliptical B-spline curves. T o  

increase the accuracy of the curves at a vertical height, prior information about the h u m a n  shape 

is used to interpolate n e w  control points at a vertical level. This prior information is designed

9T he repetition  o f  the knots in the knot vector is used to insure that the B-Spline curve passes through the extrem es 
at a vertical height.
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(a) (b) (c)

Figure 4.27: parts (a) a n d  (b) s h o w  examples of the 2 D  front an d  left silhouettes a n d  part (c) s h o w s  

the t w o  silhouettes aligned in 3 D  space.

to m a k e  the front of the face a n d  the upper b o d y  relatively planar in comparison to the elliptical 

surface. This process does not attempt to rebuild the complexities of the individual’s face, as this 

task w o u l d  result in a exhaustive procedure that w o u l d  reduce the flexibility of the approach.

T h e  3 D  B-spline surface is generated b y  considering the control points as a bidirectional w e b  

of control points, t w o  knot vectors10 an d  tw o  univariate B-spline basis functions, N  . This is 

expressed as:

n m

S(u, v) =  ^ 2  N hp(u ) N j,q (v ) p i , j  (4-3)
2=0 j=0

wh e r e  P a r e  the 3 D  control points an d  U — {0,..., 0, up+i, 1, ...1} a n d  V =
{0,..., 0, u 9+ i , ..., vs- q- i , 1, ...1} are t w o  knot vectors a n d p  a n d  q are the degree of the curve. U 
has p +  1 knots a nd V has s +  1 knots. T h e  n u m b e r  of iterations b e t w e e n  control points can be 

increased or decreased depending o n  the required level of detail. This is illustrated in Figure 4.30 

w h e r e  the contours for the h e a d  are closer together than o n  the rest of the body. A lso the bo d y  

parts are s h o w n  in different colours in the front view.

T h e  n e w  control points that are interpolated at a particular height d o  not extend past the visual 

hull of the c o m b i n e d  silhouettes. This is in line with Laurentini (1994), w h e r e  it is stated that 

points a n d  surfaces inside the visual hull can take o n  a ny form, provided that they d o  not exceed 

the visual hull of the individual.

T h e  silhouette based reconstructions of the legs an d  the a r m s  are treated separately a nd d e ­

scribed in the next t w o  subsections. T h e  legs require the introduction of a rotation element to align 

the legs in each of the views ( M o o r e  et al. 2005). T h e  a rms are treated separately because the 

depth information of the ar m s  cannot be reliably extracted in the side views.

l0T he knot vectors determ ine how close the  B-spline curve approxim ates the control polygon.
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There are tw o  approaches to the reconstruction of the legs. T h e  first approach involves ignoring 

the fact that, in the front views, the legs are apart. In this approach, the legs are reconstructed by 

using four points at vertical height and, in a m a n n e r  similar to that described above, basic shape 

information is incorporated. This results in a mis-alignment of the side a n d  front views, but as the 

structure of the legs is close to uniform, the shape difference is not adversely affected.

T h e  second approach uses the approximate location of the b o n e  passing d o w n  the leg of the 

individual (see Figure 4.28). T h e  axis is aligned b y  rotating the leg through 9° such that it is paral­
lel with the '¿/-axis. T h e n  it is aligned with the information in the side view. This is used to create a 

series of ellipses parallel to the x — z plane. W h e n  the ellipses are completely reconstructed, each 

of the control points that are interpolated, are rotated back through 0° to realign the legs. This 

process generates a m o r e  accurate reconstruction of the leg. This is illustrated in Figure 4.28.

Reconstruction of the Legs

Figure 4.28: A  schematic of h o w  the leg is rotated about the y — axis to construct the legs. 

Reconstruction of the Arms

T h e  reconstruction of the a r m s  is a m o r e  challenging process because it is only possible to reliably 

extract information f r o m  the front view. T o  account for the information that is missing in the 

side view, a simple approach w o u l d  a s s u m e  that the a rms are approximately circular a n d  that the 

diameter extracted in the front view can be used as a solid estimate of the depth information. 

This results in a rms that have highly cylindrical shape, see Figure 4.29 (a) w h e r e  the true shape 

of the a rms is not accounted for. Furthermore, the upper a r m s  that are extracted in the front and 

b a c k  view d o  not have a complete cylindrical shape as they connected to the upper b o d y  of the 

individual and w h e n  c o m b i n e d  with the reconstructed b o d y  d o  not align correctly with the rest of 

the body.

In (Cohen. &  L e e  2002), the information related to a missing dimension of a b o d y  part is esti­

m a t e d  using the information based o n  a generic h u m a n  m o d e l  that is scaled based o n  the available 

information. This approach is incorporated into the silhouette based reconstruction process for the 

a r m s  an d  results in an accurate reconstruction of the hand. T h e  second an d  m o r e  successful tech­

nique applied to reconstructing the arms take into account depth information fr o m  the upper b o d y

Vertical Axis

Pivot Pomi

x Mid-point of r_crotch and 
crotch

0 Angle of rotation required
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and uses the generic shape of the model. T h e  clothing an individual wears covers the shoulder a nd 

the upper arm, thus an y  m o v e m e n t  of the upper a r m  w o u l d  b e  observed in the clothes. T h u s  using 

the depth of the upper b o d y  to reconstruct the parts of the a r m  that are above the armpit results in 

a better shape of the final model.

(a) (b)

Figure 4.29: (a) s h o w s  the simple reconstruction of the a r m s  f r o m  t w o  views. It is clearly seen 

that shape of the a r m  does not approximate the shape of the individual’s arm(In this case only t w o  

control points are interpolated b e t w e e n  points on the control points extracted in the front view). In 

(b) the use of the depth f r o m  the upper b o d y  is s h o w n  f r o m  tw o  views.

T h e  reconstruction of the a r m s  using this technique is s h o w n  in Figure 4.29 (b). T h e  width 

of the upper a r m  is created using the information available in the front silhouette an d  the depth 

information is created using that width of the silhouette in the side view, T h e  reminder of the 

arms, b e l o w  the armpit, is created using scale information f r o m  the m o d e l  underlying m o d e l  a nd 

the width of the a r m  in the front view. T h e  use B-spline curves to approximate the shape of the 

a rms m e a n s  that the fine detail of the hands is sacrificed.

4.5.2 Combining of the Body Parts

T h e  b o d y  parts are c o m b i n e d  using the key features that are extracted in Section 4.3.2. T h e  key 

features allow the individuals b o d y  parts to be recombined a n d  correctly aligned with each other. 

T h e  key features also allow the estimation of the skeleton of the individual, w h i c h  can be equally 

used for the positioning o n  the b o d y  parts. This is m o r e  significant in terms of the animation of 

the m o d e l  a n d  can be interpolated after the b o d y  parts are created.

T h e  results of the combination are s h o w n  in Figure 4.30. In this figure, the a r m s  are connected 

to the upper b o d y  using the location of the shoulder a nd the armpit. T o  ensure that the a rms are 

connected to the upper b o d y  the control points o n  the inside11 of the shoulders a nd armpits are 

used in the reconstruction of the arms. This permits an overlapping of the B-spline surfaces. T h e  

legs are joined to the b o d y  using the information about the position of the crotch a nd the Lcrotch 

and r_crotch ke y  points.

11 On the right hand side o f  the m odel, inside is used to indicate a control po in t to the left o f  the arm pit and the 
shoulder, O n the left hand side, inside is used to indicate a contro l point to the rig h t o f  the arm pit and the shoulder
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Figure 4.30: T w o  views of the 3 D  B-spline surface created f r o m  Figure 4.9 using v o l u m e  intersec­

tion.

4.5.3 Texturing the Final Volumetric Model

This involves re-using the techniques developed in A p p r o a c h  1 w h e r e  the information inside the 

extracted silhouette of the individual is m a p p e d  onto the silhouette of the model. In this case, the 

extracted silhouette of the b a c k  of the m o d e l  is m a p p e d  onto the extracted front silhouette of the 

individual. This is necessary to ensure that the extracted texture in the b ack view is m a p p e d  onto 

the b ounding v o l u m e  of the individual.

T h e  texturing of the b o u n d i n g  v o l u m e  is seen as an intermediate stage in generating a person­

alised m o d e l  of the individual. W h i l e  the extracted silhouettes of the individual contain accurate 

shape information w h e n  placed in 3D ,  it lacks the finer details. This approach s h o w s  that while it 

is possible to personalise the bou n d i n g  v o l u m e  with a texture m a p ,  the missing detail cannot be 

completely c o m p e n s a t e d  for.

In applications designed for mobile devices, the h u m a n  m o d e l  can be created b y  directly tex­

turing the bou n d i n g  surface. High-resolution views of such a m o d e l  are s h o w n  in Figure 4.30. This 

m o d e l  is created using the four images f r o m  w h i c h  Figure 4.9 belongs. This m o d e l  has significant 

advantages over other low-cost solutions (Hilton et al. 1999, Lee, G o t o  &  M a g n e n a t - T h a l m a n n  

2000). In particular, since the textures are not transformed the photo-realism of the m o d e l  is i m ­

proved even w h e n  the detail o n  the underlying m o d e l  is missing and w h e n  textured the face of the 

m o d e l  is textured with the individual in the front view (see Figure 4.31 (a)). T h e  size of the m o d e l  

is representative of the captured individual.

4.5.4 Issues Highlighted in this Approach

In addition, if the visual hull is not calculated correctly (accurately) the photo-realism of the m o d e l  

will b e  significantly reduced w h e n  n e w  views are generated. T o  increase the accuracy, m o r e
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Figure 4.31: T w o  views of a textured m o d e l  in Figure 4.30.

information f r o m  silhouettes can be used during the reconstruction. T h e  m a i n  source of such 

information is colour. In practice silhouette based modelling is confined to modelling objects that 

can b e  segme n t e d  f r o m  their environment rather to than the creation of 3 D  scenes. According to 

Laurentini (1994), the viewing region contains the viewpoint that are allowed for observing the 

object as well as the object itself. O u r  approach is designed to avoid scale problems a n d  through 

the capturing of images f r o m  different positions, it w a s  observed that the visual hull does not 

vary significantly an d  thus the four views that are captured are sufficient to get m a x i m a l  silhouette 

equivalent.

• Ho w e v e r ,  silhouette based approach alone cannot reconstruct surface concavities. Close- 

range photogrammetric approaches have b een developed, w h i c h  reconstruct 3 D  shape from 

matches b e t w e e n  images. T o  generate the close range images involves capturing images in­

side the c o m p l e x  hull of the object a n d  establishing i m a g e  features matches b e t w e e n  images 

is obtained either manually or automatically to recover mod e l s  of surface shape (Collins 

&  Hilton 2001). T o  extract this additional information the individual w o u l d  b e  required to 

stand in the s a m e  position for an extended period of time or else a system w o u l d  need to be 

devised to have a multiple c a m e r a  set-up. B o t h  of these reduce the flexibility of a system 

a n d  increase the complexity involved in the reconstruction of the model.

• T h e  quality of the reconstruction depends o n  the accuracy of the segmentation. In addition, 

the silhouettes that are extracted only contain the visual hull of the individual. T h u s  the 

finer details are lost in the reconstruction. Alt h o u g h  s o m e  of the finer detail is lost in the 

reconstruction process, it has b e e n  s h o w n  in ( C h e u n g  ct al. 2003) that texturing can b e  used 

to enhance the appearance of the model.

• T h e  reconstruction is specific to the individual that is captured but the intermediate values 

d e p e n d  o n  the shape information that is pre-coded. This d epends o n  the basic idea that the
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• T h e  depth information for the arms cannot be recovered accurately from the silhouettes and 

is obtained in a m e t h o d  based o n  that in (Cohen. &  L e e  2002), using a m e t h o d  of similarity 

between the dimensions of the extracted b o d y  parts a n d  a  generic model.

• T h e  prior k n o w l e d g e  related to the animation information in the underlying m o d e l  is lost.

• T h e  complexity of the m o d e l  can be predefined an d  is related to the n u m b e r  of control points 

used.

human body can be modelled as elliptical shapes.
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4.6 Approach 5: The extension of Active-Meshes to 3D

In approach 4, the 3 D  bou n d i n g  v o l u m e  is automatically created using v o l u m e  intersection that 

com b i n e s  the front contour and a side contour to f o r m  a 3 D  B-spline surface. T h e  four contours are 

used to position the skeletal information that is extracted using the 2 D  feature detection algorithm. 

A p p r o a c h  4 is a step closer to complete personalisation of the model, as it is generated using shape 

information that is specific to the individual being created. A s  highlighted in Section 4.5.4, the 

m o d e l  is not easily animated a n d  lacks the fine detail that can be used to distinguish on e  individual 

f r o m  another. A n  innovate reformulation of the active-meshes is presented in 3 D  as a m e t h o d  

to o v e r c o m e  both issues. T h e  technique is based the energy f r a m e w o r k  developed b y  Mol l o y  

&  W h e l a n  (2000) for motion tracking an d  extended to actively d e f o r m  an underlying m o d e l  to 

take on the shape of the bou n d i n g  volume. This approach c o m b i n e s  the notion of rigidity and 

elasticity introduced in (Molloy &  W h e l a n  2000) to permit a 3 D  m o d e l  to d e f o r m  to the shape of 

the individual while retaining the internal structure using internal constraints b e t w e e n  the m e s h  

vertices. Preserving the internal structure is important in maintaining the fine detail that cannot be 

extracted using the silhouette based approach, described in the previous section. In addition, for 

the animation of the model, the positions of the joints are k n o w n  an d  ensures that the m o d e l  can 

be easily animated.

Figure 4.32: T h e  m a i n  c o m p o n e n t s  of the Active-Mesh modelling tool.

In this approach, the b o u n d i n g  surface and the underlying m o d e l  can be considered as active 

surfaces, although in the descriptions that follow the term, active surface is used to refer to the 

underlying model, since it is being actively def o r m e d  b y  the bo u n d i n g  surface. In terms of the 

traditional notion of snakes, the bou n d i n g  surface acts as an external force. T h e  bo u n d i n g  surface is 

a B-spline surface that is generated in Section 4.5. T h e  shape of the b o u n d i n g  surface approximates 

that of the captured individual.

4.6.1 Specification of the Internal and External Constraints

T h e  user has the option to specify the internal a nd external constraints that act o n particular sec­

tions of the m o d e l  or else the defaults can be used. T h e  default internal constraints are used to 

ensure highly irregular parts of the underlying mesh, e.g. the face, retain the s a m e  structure while 

the external forces attempt to pull the vertices towards the b o unding surface.
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T h e  internal constraints determine h o w  the m e s h  can deform. If the internal constraints are 

strong, the m e s h  will attempt to preserve its original shape an d  structure at each iteration. This is 

particularly important around the face of the individual because if the internal constraints d o  not 

preserve the structure then the concavities o n  the face will d e f o r m e d  under the influence of the 

external forces. T h u s  strong internal forces are nee d e d  for parts of the m o d e l  that contain strong 

detail. For other parts of the b o d y  w h e r e  the fine detail does not affect the realism of the model, 

for e x a m p l e  o n  the legs, the internal forces can permit greater elasticity to enable the underlying 

m o d e l  to d e f o r m  to the shape of the bo u n d i n g  volume. Within the active-mesh formulation the 

incorporation of the internal constraints m u s t  be sufficiently flexible to allow different parts of the 

m e s h  to have different internal constraints. This is achieved b y  specifying the rigidity for each 

element of the mesh. T h e  internal forces can be applied uniformly across a particular m e s h  or at 

individual points depending o n  h o w  the m e s h  is to b e  deformed.

This is expressed in the following equations an d  illustrated in Figure 4.33:

F  Line =  Lcur “I" LCur(y)@L'iy ^‘cwr(%')fi]/i,z (4.4)

w h e r e  L sei and Lcur are the set an d  current length of the lines joining to vertices of the m e s h  at

Bounding Volume Patch

Bound Mesh Model

Figure 4.33: Internal a n d  external energies. T h e  internal forces act along the m e s h  lines an d  are 

indicated b y  the vector F ¿ m E  an d  the external forces are generated using the normal vector, n, to 
the m e s h  element.

particular iteration,

P L  =  ( 4 . 5 )

QlLcut

a n d  Lcur[x), Lcur(y) a nd Lcur(z) represent the x, y a nd z c o m p o n e n t s  of the current m e s h  line 

lengths, w h i c h  determine the internal energy, i is a unit vector with s a m e  axis as the m e s h  model, 
q l  is a user defined factor to limit the effect of forces a n d  oil is represented visually o n  the m o d e l  

a n d  has the visual range (0, 255) that is normalised to ensure that the internal forces are not under 

biased. A  closer inspection of the (3l parameter s h o w s  that it is related to the length of the m e s h -  

line connecting tw o  vertices in the m e s h  a n d  is independent of the position of each of the vertices. 

This is important in 3 D  because it permits the m e s h  to be globally transformed, possibly under
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the influence of a strong external force an d  still retain its structure. In Equation 4.5, the numerator 

enco m p a s s e s  a central element in the forces that act o n  a particular node. If the current length 

is bigger than the set length, the ¡31 parameter will b e  negative an d  will act to reduce increase 
in length of the mesh-line. T h e  parameter a/,, determines the significance of the F u ne, if is 

small then /3l will be large an d  will permit only small changes in length. If is large then /3l 
will be  small an d  will permit significant changes in length. T h e  effects of a £  an d  Bl are tested in 
Section 5.6.

Visually representing the internal forces on the m o d e l  is important because in 3 D  it can be 

difficult to select a vertex to e x a m i n e  its connections. T h u s  using different colours to represent the 

strength of the internal constraints provides an intuitive w a y  of visualising the areas of the m o d e l  

that are tightly bound. Moreover, since the rigidity of a vertex also depends o n  the rigidity of the 

neighbouring vertices, it is usual to consider the rigidity of an area of the surface as o p p osed to an 

individual vertex. This is also an important feature in providing a user assisted determination of 

the internal constraints. A n  e x a m p l e  of the visually represented internal forces is s h o w n  in Figure 

4.34. T h e  red areas represent areas with strong rigidity and tightly b o u n d  vertices. T h e  lighter red 

parts of the m e s h  that surrounds the red areas indicates w e a k e r  internal forces w h i c h  are formed 

w h e r e  tightly b o u n d  vertices are connected to w e a k e r  b o u n d  vertices.

Figure 4.34: Visual m a r k i n g  of the rigidity o n  the underlying model. T h e  red parts have strong 

rigidity a n d  tightly b o u n d  vertices. T h e  lighter red parts indicate w e a k e r  internal forces.

T h e  intersection of the n or m a l  vector f r o m  each vertex of the underlying m o d e l  an d  the 3 D

b o u n d i n g  surface is used to determine the external forces that affect vertices of the model:

Fext = Pextd{x)ix “h Pextdijĵ iy +  Pext̂ i,̂ )iz (4.6)

w h e r e

f t * = Q- (dr * ~ ^  (4.7)
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and d is the distance normal f r o m  n* to the intersection of the normal with the bou n d i n g  v o l u m e  
a n d  dmax is the m a x i m u m  normal distance f r o m  the underlying m o d e l  vertices controlled b y  a 

single patch o n  the b o unding volume, his is necessary to ensure that the vertices in a particular 

part of the m e s h  are d e f o r m e d  relative to the strongest force affecting this part of the mesh. This 

is important in preserving the structure of the mesh.

T h e  combination of the forces involves multiple line connections at each vertex of the model, 

and thus there are multiple forces at each vertex. This is illustrated in Figure 4.35. T h e s e  forces are 

c o m b i n e d  using a weighting factor that is inversely dependent o n  the Euclidean distance separating 

t w o  connected nodes and is expressed as

A = i -  = 7r V  (4'8)

T h u s  the force o n  the centre n o d e  is

N

F 0 =  J 2 & F i (4.9)

1=1

Figure 4.35: C o m b i n i n g  the Forces at a single node. This adapted to 3 D  a n d  is based o n  a diagram 

in (Molloy &  W h e l a n  2000).

T h e  resultant force determines the m a x i m u m  change in length of a particular line b e t ween t w o  

vertices. In a highly elastic case, this can be used to position the n e w  vertices. A lthough in general, 

at each iteration the length of the line is scaled to a fraction of this change.

LSet =  Lset +  ai(Lcur Lset) (4.10)

w h e r e  a; is a user defined factor that limits the change in the line length. This introduces elasticity 

that can be set to determine the rate of expansion of the model. This is an important factor if the 

underlying m o d e l  is not completely within the bou n d s  of the active surface.

Relative Elasticity

T h e  internal energy term in Equation 4.4 provides a strong m e t h o d  for ensuring the rigidity of the 

m o d e l  is preserved. A s  the external forces pull the vertices o n  the internal m o d e l  towards the active 

surface, the strength of the internal forces increases because the average distance b e t w e e n  each of
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the vertices increases a nd thus the internal forces have a greater influence in the force combination 

equation, Equation 4.9. This causes the minimisation process to prematurely e n d  without reaching

the desired solution.

In the original implementation of the active m e s h e s  in (Molloy &  W h e l a n  2000), maintain­

ing the internal structure is an important feature as parts of the object can disappear or reappear 

b e tween consecutive frames. Also in tracking applications the shape of the object will change 

slowly over a n u m b e r  of frames, possibly d u e  to parts of the shape that are occluded in on e  frame 

c o m i n g  into view in the next, while in 3 D  the underlying objective is to m o u l d  the internal surface 

approximates the external surface. T h u s  the strict rigidity requirement in 2 D  is relaxed to permit a 

gradual expansion towards the external surface. This is defined as “relative rigidity” a n d  is intro­

duced b y  preserving the rigidity relative to the average length of each connecting line in the mesh. 

This ensures that the strength of the internal forces does not increase as the m o d e l  is m o u l d e d  to 

approximate the bounding surface.

W h e n  the rigidity is strong, the internal surface will b e  pulled towards the active surface but 

will maintain its original structure that is the relative distance b e t w e e n  the vertices will remain 

constant. This ensures that areas that contain strong rigidity will be maintained.

Consistent External Forces

Initially, the external forces are calculated based o n  the normal distance f r o m  a vertex o n  the 

internal m o d e l  to w h e r e  it intersects the active surface. This is calculated b y  representing the line 

in parametric f o r m  an d  then using the following equation for the intersection of a line a nd a plane12

^ _  ax0 +  by0 + cz0 + d 
anx +  bny +  cnz

w h e r e  ax +  by + cz +  d — 0 is the equation of the plane, n = (nx, ny, nx) is the equation of the 
normal vector passing through the point Pa =  (xQ , y0, za).

Unlike the 2 D  case w h e n  t w o  lines intersect, the possibility exists, in 3D, that the normal will 

intersect m o r e  than on e  plane. This can occur since three points define an u n b o u n d e d  plane. T o  

check that the normal intersects b e t ween the points, it is necessary to perform a n u m b e r  of checks.

1. F r o m  Equation 4.11, it is first necessary to ensure that the value t that is calculated is greater 
than zero to ensure that the intersection is in the direction of the normal.

2. T h e n  a ray-tracing algorithm is e m p l o y e d  to ensure that the particular combination of ver­

tices is intersected. T w o  approaches are considered. T h e  first involves projecting the tri-face 

into 2 D  along the normal direction with greatest magnitude. This m e t h o d  is not considered 

practical in cases w h e n  the size of the tri-face is small according W a t t  (2000). T h e  sec­

o n d  approach involves s u m m i n g  the angles b e t w e e n  each of the vertices an d  the point of 

intersection of the ray in the plane. If the s u m  of the angles equals 360°, the point lies on 

the particular tri-face. This operation is computationally m o r e  expensive but guarantees a 

unique intersection.

l2T he param etric  equation o f  the line and the equation o f  the plane are derived in A ppendix  A.
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T h e  initial formulation of the external forces described above does not have sufficient strength 

to d e f o r m  the underlying surface sufficiently. This occurred because the normal distance f rom 

the vertex to the active surface w a s  continually decreasing as the vertex m o v e d  towards the active 

surface. T h u s  the internal forces b e c o m e  d o m i n a n t  an d  halt the deformation process. This is 

o v e r c o m e  b y  calculating the centre of the current b o d y  part that is being modelled and projecting 

a line f r o m  this centre through the vertex o n  the internal surface an d  finding w h e r e  this intersects 

the active surface. This distance results in a stronger external force that remains constant over a 

n u m b e r  of iterations. This is consistent with the approach described in (Molloy &  W h e l a n  2000) 

in w h i c h  it is stated that the m e s h  will d e f o r m  w h e n  subjected to a consistent external force over a 

significant n u m b e r  of iterations.

4.6.2 Termination Process

T h e  minimisation process is terminated w h e n  the magnitude of the force exerted over a vertex is 

insufficient to change the position of the vertex. In general, this occurs w h e n  the vertex o n  the 

internal surface lies on the external surface and thus the effect of the external force is reduced to 

zero. W h e n  this occurs, the internal forces can result in the vertex m o v i n g  o n  the active plane since 

the neighbouring vertices m a y  be m o v e d  resulting in small internal forces m o v i n g  the vertex.

This termination condition will not ensure that the shape will d e f o r m  exactly to the active 

surface. This is particularly evident w h e n  the shape of the active surface is substantially different 

f o r m  the underlying model, for e x a m p l e  w h e n  a sphere is being actively d e f o r m e d  into a cube, 

see Section 5.6.2. This occurs because the closest point f rom the underlying m o d e l  to the active 

surface is not necessarily located o n  the boundary of t w o  tri-faces. T h u s  once a vertex lies on a 

tri-face, it does not necessarily m o v e  towards a control point o n  the active surface. Furthermore, 

the goal is to approximate the b o unding v o l u m e  because w h e n  the internal constraints bind the 

underlying surface tightly the vertices of the underlying m e s h  will not rest o n  the b o unding vol­

u me. This m e a n s  that the termination condition has to be modified based o n  the rigidity of all the 

vertices of the underlying model. This is discussed in greater detail in Section 5.6.2.

It is possible to force this constraint, but in the situation that the underlying m o d e l  has m o r e  

vertices than the active surface, m o r e  than on e  point w o u l d  be forced to the s a m e  point o n  the 3 D  

active surface, causing undesired effects.

4.6.3 Issues Highlighted in this Approach

This approach illustrates a complete system that captures the individual shape an d  provides a 

flexible m e t h o d  that can generate an accurate m o d e l  of the individual. In addition, this approach 

provides a complete active m e t h o d  that can be applied to m o u l d  any shape into another shape.

In respect to silhouette based h u m a n  modelling, this approach enables the creation of an ac­

curate h u m a n  m o d e l  f rom a limited n u m b e r  of views. T h e  underlying h u m a n  m o d e l  is m o u l d e d  

to take on the shape of the b ounding volume. In particular, this approach enables the m o d e l  to be 

simply animated and incorporate, shape information specific to the individual, both of which are 

clear advantages over A p p r o a c h  4.

This approach provides the h ome-user with a unified m e t h o d  for deforming an underlying
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m o d e l  through the inclusion of adjustable constraints that can b e  used simultaneously to limit the 

deformation of parts of the m o d e l  while relaxing the constraints o n  other parts of the m o d e l  to 

permit the m o d e l  to d e f o r m  an d  take o n  the shape of the b o u n d i n g  volume. This approach is 

simple to apply, an d  for the purposes of modelling an individual, it permits the incorporation of 

default constraints that enable the underlying m o d e l  to b e  automatically d e f o r m e d  to take on the 

shape of the individual.

4.7 Discussion

In this chapter, the different approaches that are developed to extract the h u m a n  shape information 

a n d  construct h u m a n  m o d e l s  f r o m  a limited n u m b e r  of images w a s  described. This culminated in 

a definition of a flexible m e t h o d  to actively m o u l d  a ny shape into another shape and, in particular, 

r e m ould an underlying m o d e l  to take o n  the reconstructed volume. E a c h  approach described in 

this chapter can b e  used to provide a h u m a n  m o d e l  that can b e  used in different environments. T h e  

validation of these techniques is detailed in Section 5.6.

In the first approach, the primary object is to investigate h o w  existing techniques can be e x ­

tended to separate the individual f r o m  a real environment an d  to provide a simple m e t h o d  to texture 

an underlying model. This m o d e l  could be easily incorporated into m obile application or used as 

a lo w  resolution m o d e l  to replace impostors13 in certain m obile applications (Boyle et al. 2004).

T h e  second approach focuses o n  the extraction of accurate shape information f r o m  a limited 

set of images captured in a cluttered environment. This approach encapsulates the constraints 

necessary to extract an individual f r o m  a real environment in the f o r m  of a full b o d y  template. 

This template is unique, in that n o  other m e t h o d  attempts the accurate extraction of a h u m a n  f rom 

a real environment in a single operation. T h e  added accuracy introduced with this m e t h o d  enables 

the accurate determination of the shape of an individual a n d  a better texturing of an underlying 

model. T h e  accuracy of the template fitting is discussed in Section 5.3.6. Other applications of this 

technique enable comparison over time or d e m o g r a p h i c  analysis of individuals (Boyle &  M o l l o y  

2005a).

T h e  third approach is intended for use in g a m i n g  environments or in virtual worlds w h e r e 

the characters are predetermined and limited modifications can be m a d e  to personalise the model. 

This approach, unlike current m e t h o d s  used in g a m i n g  environments, permits the texturing of the 

underlying model, not just the face, to take o n  the appearance of the individual. This approach 

co m b i n e s  the active templates developed in A p p r o a c h  2 with the geometric relationships between 

facial features to improve the level of personalisation of the m o d e l  (Boyle et al. 2005). This 

approach also facilitates the use of automated m e t h o d s  for the recognition of an individual in a 

virtual environment based o n  the 3 D  model.

T h e  fourth approach provides a m e t h o d  for recombining the silhouettes an d  building a b o u n d ­

ing v o l u m e  that is representative of the captured individual f rom a limited set of views. This is 

important in providing accurate shape information and demonstrates that, although a 3 D  m o d e l

l3An im postor is a  sim ple rectangle w ith a  texture im age attached. It is used to replace high-detail geom etric m odels 
that are m ade up o f  thousands o f  triangles and are expensive to draw. Im postors are used fo r h ighly detailed  buildings 
and virtual hum ans. T hey are also used to replace geom etry  o f  far-off buildings, as the extra detail afforded by geom etric 
m odels canno t be  seen across large (virtual) distances.
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can be created; it does not provide the full realism that the end-user requires an d  motivates the 

approach developed in A p p r o a c h  5. In addition to this, the m e t h o d  validates the use of silhouette 

based reconstruction of h u m a n  mode l s  a n d  s h o w s  that c o m b i n i n g  the silhouettes with s o m e  prior 

shape information, a representative 3 D  structure can be created. In terms, of practically using this 

model, it is a non-trivial task to animate these m o d e l s  because unlike the preceding approaches, 

no  underlying m o d e l  is used a nd thus only limited joint information can b e  extracted.

T h e  final approach e n c o m p a s s e s  aspects of the earlier approaches an d  c o m b i n e s  t h e m  with a 

innovative implementation of active-meshes in 3 D  that seamlessly c o m b i n e s  the information in 

the b o unding v o l u m e  as an active surface that can b e  used to m o d i f y  the underlying model. This 

approach lends itself to automatic and interactive application to various 3 D  modelling tasks. In 

this approach it is applied specifically to rebuild the fine details of an individual and to preserve 

the skeletal information of the underlying model. T h e  application of the active deformation to 3 D  

is an important achievement of this approach and o v e r c o m e s  complexities in other approaches that 

limits its use b y  n o n  expert-users. In particular, the visual representation of rigidity simplifies the 

specification of constraints an d  is important because users not familiar with 3 D  navigation m a y  

prefer to apply the constraints o n  different 2 D  views of the model.

T h e  methodologies that have been developed are fully automated a nd thus are suited for use 

by non-expert users. T h e  approaches can facilitate user interaction. This has a n u m b e r  of uses:

• In situations w h e r e  the level of clutter14 m a k e s  it impossible to reliably extract the individual 

f r o m  the ba c k g r o u n d  a n d  m a n u a l  guiding of the active contours is necessary.

• Similar interaction is required w h e n  the individual is wearing clothing that is the s a m e  colour 

as the background.

• A  user m a y  w a n t  to reformulate the templates to extract other objects f rom a real environ­

ment.

• W h e n  using the active modelling of a 3 D  object, the user m a y  w a n t  to set the rigidity or 

elasticity of the underlying m o d e l  to create the desired model.

All the approaches permit m o v e m e n t  b e t w e e n  captures to generate the h u m a n  m o d e l s  based on 

limited images captured using a single c a m e r a  in a h o m e  environment. This is important because 

the individual is not required to adopt the s a m e  pose for a long period of time an d  there are no 

issues related to setting u p  a n d  synchronising a system for multiple captures. In the approaches, 

it is possible to accurately extract joint locations a n d  identify key features that are essential. T h e  

capture process only considers the capture of clothed models, thus, at best, the final m o d e l  will be 

an approximation of an individual’s shape.

i4A s assessm ent o f the level o f  clu tter is m ade in Section 5.3.
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I m p l e m e n t a t i o n ,  T e s t i n g  a n d  R e s u l t s

Chapter ______________________________________

5.1 Introduction

This chapter provides details of the different experiments undertaken to verify a n d  test the a p ­

proaches developed in Chapter 4. T h e  primary objective within this chapter is to present results 

for each approach an d  to indicate in w h i c h  situations each approach is applicable as well as to 

enforce the rationale for the progression of the research.

In each case, the individual w a s  captured in a real environment with varying levels of clutter. 

T h e  level of clutter w a s  classified to allow comparison, w h e n  possible, with alternative approaches. 

Following this, various filters an d  pre-processing operations that were considered to i m p rove the 

separation (extraction) of the individuals f r o m  their environment are discussed. This culminated 

in the active B-spline templates developed in A p p r o a c h  2 (see Section 4.3). T h e s e  templates are 

tested in different environments an d  e x a m i n e d  to verify their correct operation.

In the previous chapter, certain results are presented to explain the rationale behind the design 

process. Th e s e  results constitute a subset of the results set that are presented in this chapter. T h e  

complete set of results s h o w s  h o w  each approach performs in different real environments and 

analyses the creation stages: f r o m  i m a g e  capture through to the final m o d e l  creation. T o  achieve 

this, n u m e r o u s  sets of images we r e  captured in diverse environments to create the template an d  to 

assess each approach. T o  illustrate the progression through each of the approaches, a core set of 

images w a s  used to enable a suitable comparison to be undertaken between each approach.

A t  each stage, the final m o d e l s  are discussed from a n u m b e r  of perspectives including the 

realism of the models, the complexity, in terms of the n u m b e r  of polygons used, the reconstruction 

process an d  h o w  of the m o d e l  is animated.

T h e  implementation is carried out in the Java p r o g r a m m i n g  language. T h e  underlying reasons 

for the choice a n d  Java’s practicality are discussed throughout this chapter. T h e  primary reasons 

behind this decision include the fact that Java is platform independent an d  thus users with different 

devices can avail of the software. Moreover, it is envisaged that a final application could be m a d e  

available to a home - u s e r  via a w e b  interface as a Java Applet.

Finally, the results are analysed in comparison to s o m e  other h u m a n  modelling approaches 

detailed in Chapter 3. A lthough direct comparison is not possible, the c o m m e n t s  of the other
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authors are useful to highlight areas that have been improved upon.

5.2 Image Capture

T h e  capture of the images is important in determining the quality of the model, In general the 

larger the image, the higher the quality of the captured data w h i c h  is available. Currently, the 

quality of images that can be captured with off-the-shelf digital camera, c a m e r a  phones etc, is 

continually increasing. E x a m p l e s  of the i m a g e  sizes available with current c a m e r a  en h a n c e d  m o ­

bile p h o n e s  an d  w e b c a m s  are presented in the table 5.1.

Manufacturer M o d e l I m a g e  Resolution Photo A l b u m  Size/ 

C a m e r a  T y p e

N o k i a 6 6 3 0

7 6 5 0

6 8 2 0

1 280 x  96 0 

6 4 0  x  4 80 

3 5 2  x  288

10 M B  shared m e m o r y

3 . 6 M B

N / A

Motorola V I 0 5 0 1280 x  960 up to 2 5 6 M B  shared 

m e m o r y

S a m s u n g Z 1 4 0 v

E 3 3 5

6 4 0  x  48 0  

6 4 0  x  4 8 0

5 0 M B  shared 

d y n a m i c  m e m o r y  

3 M B  shared m e m o r y

Logitech Q u i c k c a m  

Pro 5 0 0 0

6 4 0  x  48 0  

6 4 0  x  48 0

w e b c a m  

w e b  c a m 1

Creative several 6 4 0  x  48 0 w e b c a m

Table 5.1: I m a g e  sizes f rom a sample of currently available, c a m e r a p h o n e s  an d  w e b c a m s .

In the experiments undertaken in this section, a “Canon PowerShot G2” c a m e r a  is used to 
capture the images used in the reconstruction process. T h e  option to use the r a w  format w a s  not 

availed of because, in the majority of off-the-shelf cameras, this is not a standard option an d  thus 

it w o u l d  not b e  generally applicable. A  selection of the c a m e r a’s attributes is presented in table 

5.2. T h e  i mages that are used in the creation of the m o d e l s  are in the J P E G  format2, as this is the 

m o s t  c o m m o n  format used to store the captured images. This format is not i m m u n e  to noise and 

the compression process used can introduce blocking effects to the images.

T h e  size of the images that are used for testing is based o n  k n o w l e d g e  that w a s  available at the 

c o m m e n c e m e n t  of this research. This k n o w l e d g e  w a s  gained b y  examining the specification of 

the then available c a m e r a  e n hanced mobile phones, w e b  c a m s  and digital cameras. Additionally, 

the size of the images used b y  Hilton et al. (1999) provided a guideline for the size of images 

required. Hilton et al. (1999) used 7 5 6  x  5 8 2  pixels images . This provided a facial resolution of 

approximately 4 0  x  4 0  pixels. I m a g e s  of this size are not available o n  the majority of off-the-shelf 

digital cameras and in the specifications for c a m e r a  phones. T h e  then next generation cam e r a  

enh a n c e d  mobile phones specification included specification for images with 6 4 0  x  4 8 0  pixels. 

This im p r o v e d  on the exiting c o m m o n  i m a g e  size of 32 0  x  24 0  pixels. In addition to this, m ost

2Join t P ictures Expert G roup. T he JPEG  standardises the com pact representation o f  im age data. M ethods exist 
w ithin Java for reading  in JPE G  im age data, accessing the pixel level inform ation and rendering  it to the screen
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Resolution C o m p r e s s i o n

superfine fine normal

Large 2 2 7 2  x 1704 pixels 2 0 0 2  K B 1162 K B 5 5 6  K B

M e d i u m  1 1 600 x 1200 pixels 1002 K B 5 5 8  K B 27 8  K B

M e d i u m  2 1 0 2 4  x 786 pixels 5 7 0  K B 3 2 0  K B 170 K B

Small 6 4 0  x 4 8 0  pixels 2 4 9  K B 150 K B 84 K B

R a w 2 2 7 2  x 1 704 pixels 2 8 6 2  K B

Table 5.2: I m a g e  sizes an d  associated compression ratios for the C a n o n  P o w e r S h o t  G 2  camera. 

T h e  c a m e r a  has a fast f2.0 3x optical z o o m  lens (34-1 0 2 m m ) .

digital cameras an d  w e b  c a m s  e x a m i n e d  provided images with 6 4 0  x 4 8 0  pixels3. This i m a g e  

size w a s  adopted as the default i m a g e  size for the creation of virtual humans. T h e  i m a g e  size of 

3 2 0  x 2 4 0  pixels w a s  not considered, as it does not provide a suitable level of detail to reliably 
extract the shape of an individual.

In the approaches discussed in Chapter 4, the c a m e r a  position is a s s u m e d  to b e  fixed between 

each capture. T o  achieve this, the c a m e r a  is placed o n  a tripod to ensure that its position remains 

the s a m e  for each i m a g e  in a data set. This is not unrealistic, as in a h o m e  environment; an 

individual can place the c a m e r a  on a table or other item of furniture and capture the data, for 

e x a m p l e  using a w e b c a m .

In the described approaches, the individual stands approximately 3 m  from the camera. S p e c ­

ifying the distance b e t w e e n  the c a m e r a  and the individual is important for a set of images. This 

ensures that each of the images is created under approximately the s a m e  projection. This is illus­

trated in Figure 5.1. This takes account of the standard projection that is available with cameras 

an d  permits the capture of the individual in a single image. It is possible to change this distance 

depending o n  the particular individual that is being captured, for e x a m p l e  capturing the images of 

a child will result in a large area about the individual that is not important in the reconstruction 

process but the shape of the individual can be clearly seen within the captured images. If the dis­

tance f rom the c a m e r a  is c h a n g e d  it is possible that m o r e  accurate information will be extracted, 

although this will result in the individual appearing bigger in the virtual world, unless additional 

information such as the height of the individual is provided. This underpins the approach taken 

b y  Lee, G o t o  &  M a g n e n a t - T h a l m a n n  (2000). Moreover, if the captured data is used primarily 

to texture the m o d e l  of a character in a game, then the captured data can b e  scaled appropriately 

without requiring an additional distance measure.

3W eb cam s have not been used in the experim ents to date since the  use o f  the w ide-angle lens introduces distortion 
at the edges o f the im age. In addition, different projection m odels w ould be required.



(a)

(b)

Figure 5.1: (a) s h o w s  the essence of the capture process an d  h o w  the four views of the individual 

captured, although in reality the capture system consists of a single camera, as in (b) w h e r e  the 

images are captured against the s a m e  background.
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W o r k i n g  with images of 4 8 0  x  6 4 0  pixels presents s o m e  difficulties regarding the accurate 

extraction of the individual f r o m  the background because, in general, a large part of the i m a g e  

is occupied with backgr o u n d  a nd the boundaries b e t ween regions are not clearly defined. These  

effects at the boundaries result f r o m  s h a d o w s  or effects introduced b y  the i m a g e  compression 

algorithms, m a k i n g  it difficult to have a clean segmentation of the individual f rom the background. 

This can result in parts of the b a c k ground being textured to the individual. If higher resolution 

images are used, then the effects of this p r o blem are reduced. In addition, dealing with compressed 

images presents other problems, including the fact that s o m e  of the finer details are lost. A s  

previously mentioned, the size of the i m a g e  m a k e s  it difficult to extract an individual’s facial 

features as the size of the facial region is reduced b e l o w  that used b y  Hilton et al. (1999) and, 

unlike the approach of Lee, G o t o  &  M a g n e n a t - T h a l m a n n  (2000), an additional facial i m a g e  is not 

used to enhance the model.

T o  provide a flexible solution to the capture, the n u m b e r  of images required for the creation 

of a virtual h u m a n  w a s  reduced to a m i n i m u m .  T o  achieve this, it is necessary to capture the 

m a x i m u m  information f r o m  a limited n u m b e r  of views. T h e  priority information is the shape 

information an d  the texture. T h e  shape information is important to enable the creation of models  

that are unique to a particular individual an d  the texture information is important in creating a 

realistic h u m a n  model. In approaches 1 and 3 described in Chapter 4, the shape information is 

sacrificed in respect of the texture information because this is used to texture a generic h u m a n  

model. In the other approaches the active contours are used to reliably extract the individual’s 

shape. In the approach of Hilton et al. (1999), four views of the individual are captured. T h e  m o s t  

important view is the front image, as this contains the face. T h e  other images provide additional 

texture and shape information. In the approach of Lee, G o t o  &  M a g n e n a t - T h a l m a n n  (2000), three 

images are captured, the front, b a c k  an d  a side view for texturing the body. T h e  side v iew is used 

to texture both sides of the individual.

In Figure 5.2, the images that are throughout the remainder of this chapter are presented4 .

4It should be noted that o ther im ages will be introduced to illustrate particu lar aspects o f  an approach
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(q) (r) (s) (t)

Figure 5.2: T h e  images in this Figure constitute a core set that are used within the section.
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5.3 Extraction of an Individual from a Real Environment

T o  generalise the approach of Hilton et al. (1999) and facilitate the automatic creation of h u m a n  

mod e l s  in any environment it w a s  first necessary to e x a m i n e  h o w  the individual a nd the back­

ground can b e  separated a nd in w h a t  conditions an individual can b e  reliably extracted f rom the 

environment. This resulted in the classification of different backgrounds and the examination of 

the effects of different filters and pre-processing steps that can be incorporated to extend the a p ­

proach to m o r e  cluttered backgrounds.

T h e  extraction of an object fr o m  a cluttered b a c k g r o u n d  can be simplified if prior k n o w l e d g e  

is available (Sonka et al. 1999). T h e  prior k n o w l e d g e  that is considered important in this situation 

is that the individual is positioned at approximately the centre of the captured images a n d  adopts 

a standard pose. T h e  front pose is illustrated in Figure 4.9. E a c h  individual has characteristics 

that can be classified as c o m m o n  a nd features that are m o r e  specific an d  while these features m a y  

be used to distinguish o n e  individual f rom another an d  to locate facial an d  skin regions in images 

they, in general, cannot be used to reliably extract a complete individual f r o m  an image.

It is a s s u m e d  that the individual is positioned at the centre of the i m a g e  then it is valid to 

a s s u m e  that the information at the edge of the images can be classified as background. T h e  i m ­

portance of this information depends o n  the level of clutter in the background. If the background 

is primarily uniform then the information at the edge of the i m a g e  will share a high correlation 

with the remainder of the backgr o u n d  i m a g e  data. T h u s  in this situation it is possible to use simple 

ba c k g r o u n d  an d  foreground classification to reliably extract the individual f rom the background. 

A s  a first stage to classify the level of clutter in the i mages a Gaussian filter w a s  used to smoo t h  

the captured images a nd to enable a simple region g rowing algorithm to be implemented, see A l ­

gorithm 3. In particular, the smoothing of the i m a g e  ensured the effects of noise w e r e  reduced, 

thus reducing the n u m b e r  of small regions in the images.

Algorithm 3 Simple R e g i o n  growing Algorithm 
Convert the i m a g e  data to greyscale i m a g e  

A p p l y  Gaussian filter to s m o o t h  the i m a g e  

Represent the i m a g e  as a 2 D  matrix

regionCounter =  0 

for i =  1 to imagejwidth —  1 do 
for j  = 1 to imageJieight —  1 do 

if pixel (i, j) not part of region then 
regionCounter =  regionCounter + 1  

Call regionCreation function 

end if 
end for 

end for

O n e  m e asure to classify the clutter is assigned based on the n u m b e r  of region that are in a 

particular image. T h e  results for the images in 5.2 are s h o w n  in Figure 5.3. In comparison to 

the images used in Figure 4.4, in w h i c h  the n u m b e r  of regions is 37, the n u m b e r  of regions5 is

sT he colours o f  the regions should not taken as an indication o f  a properties o f  a particular region because the colour
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Algorithm 4 Simple R e g i o n  g r o wing Algorithm: regionCreation function
input data: pixel, regionCounter 

E x a m i n e  the 8 neighbours of this pixel

if neighbouring pixel has not been assigned a regionCounter then 
if neighbouring pixel has s a m e  value as current pixel then 

neighbouring pixel is assigned s a m e  regionCounter value 

Call regionCreation function 

end if 
end if

substantially higher in cases s h o w n  Figure 5.3. A s  the level of clutter increases this is n o  longer 

considered a valid approach to separate the individual f r o m  the background.

IW - Y

(c) (d) (e)

Figure 5.3: E x a m p l e  of individuals against backgrounds with different levels of clutter. In each 

case the n u m b e r  of regions also accounts for regions in the individual clothes. In (a) the n u m b e r  

of regions is 196, in (b) the n u m b e r  of regions is 348, in (c) the n u m b e r  of regions is 271, in (d) 

the n u m b e r  of regions is 4 1 8  a nd in (e) the n u m b e r  of regions is 280.

E v e n  in the simple realistic situations as s h o w n  in Figure 5.2 (a) to (1) the b a c k ground includes 

t w o  principal regions the floor an d  the wall. Other smaller regions exist such as the skirting board 

that is broken in to t wo or three smaller regions because of the pose adopted b y  the individual. All 

of these regions can be accounted for, if the boundary of the i m a g e  is traced a n d  the regions are 

allowed to grow. T h e  only exception is the parts of the b a c k ground that are b e t w e e n  the legs. This 

can be simply established b y  analysing the m e a n  colour of each region an d  grouping the regions 

is assigned randomly since the number of regions is not know prior to applying the algorithm.
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that have l o w  colour variation.

In the situation s h o w n  in Figure 4.4 applying a Gaussian filter to the i m a g e  provides a reliable 

approach to locate the individual in the image. A l though depending o n  the lighting conditions and 

the individual’s distance f r o m  the wall in the backgr o u n d  the effect of s h a d o w s  have a m o r e  or less 

noticeable effect o n  the extraction. In certain situations this results in parts of the backgr o u n d  being 

classified as being part of the foreground (individual). In addition, to this smoothing of the im a g e  

blurs the boundary b e t w e e n  the foreground a n d  background. A s  the level of clutter increased these 

effects are m o r e  evident a n d  other s h a d o w s  w e r e  introduced a n d  the n u m b e r  of regions increased 

and it b e c a m e  increasingly difficult to separate the individual f rom the background.

A n  alternative, automatic, classification of the ba c k g r o u n d  is achieved by analysing the i m a g e  

at different horizontal a n d  vertical locations. If the colour variation across a particular line is 

high then it is a s s u m e d  that the background in cluttered. Alternatively, if the colour variation is 

l ow then the b a c k g r o u n d  can b e  classified as uncluttered. Enabling the application of the simple 

b a c k ground segmentation algorithm, see Algorithm 3.

A n  m e asure of the level of clutter is illustrated in Figures 5.4 an d  5.5. T h e  i m a g e  variation 

w a s  extracted using the neatvision6 i m a g e  analysis software ( W h e l a n  &  M o l l o y  2000)

(a) (d)

Figure 5.4: (a) s h o w s  an i m a g e  with three measures of clutter m a d e  at three different height levels. 

In (b), (c) an d  (d) the level in variation of the colour c o m p o n e n t s  at a particular height are shown. 

In each case the three colours, red, green an d  blue represent the respective c o m p o n e n t s  a n d  the 

average value is also indicated using the black line.

T h e  approaches described in this section a i m  to provide a semi-automated approach to assess­

ing the level of clutter in the images. This is important to determine if it is possible to apply a 

simple region technique. T h e  n u m b e r  of regions in Figure 5.3 m a k e s  it impractical to extract the 

b a c k ground using the m e t h o d  in Algorithm 4. In Figures 5.4 a n d  5.5, a simpler technique to estab­

lish he level of clutter is s h o w n  and although it does not facilitate the use of the region algorithm, 

it can b e used to set the a parameter a nd T\ and T 2 for the C a n n y  e dge detector. If the level of 

clutter is high then the lower threshold T\ is raised and the a parameter is also increased.

6N eatV ision is an Im age A nalysis &  Softw are D evelopm ent Environm ent, nniiw.nco.tvision.cmn
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(a) (d)

Figure 5.5: (a) shows an image with three measures of clutter made at three different height levels. 
In (b), (c) and (d) the level in variation of the colour components at a particular height are shown. 
In each ease the three colours, red, green and blue represent the respective components and the 
average value is also indicated using the black line.

5.3.1 Background Subtraction

At this point the possibility of using background subtraction was considered. In this approach an 
additional image of the background is captured before the images of the individual were captured. 
The use of background subtraction is analogous to the use a blue screen background and depending 
on the lighting effects and shadows introduced when the individual stands in front of the camera 
and it makes it difficult to reliably extract the individual’s shape. This is illustrated in Figure 5.6. 
In addition, it required the user to capture an additional image and reduces the flexibility of the 
approach.

The use of background subtraction eliminates large parts of the background and makes it 
easier to locate the individual in the image. It does not provide accurate definition of boundaries 
and thus the data cannot be reliably used to describe the shape of the individual. Moreover, with 
the application of additional image processing tools it is a challenging task to identify the arms 
and other parts of the individual.

5.3.2 Application of Edge Detectors

Edges provide a powerful tool for examining the information that is contained in the images. 
Examining the edges within the image provides an alternative approach to extracting the shape 
information. The edges can be used to provide a coarse and generally disjointed view of the 
image. In particular, the edges within images generally constitute the boundary of one region with 
another. This edge information can be corrupted by noise and the strength of the edges can change 
depending on the difference in colour between one region and its neighbouring region.

In the uncluttered background the edges provide a detailed boundary description of the indi­
vidual. Although on close examination the edges are disjoint and in situations where the individual 
is wearing clothing that is similar in colour to the background the edges are non-existent. Areas
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(a) (b)

q>

(C) (d)

Figure 5.6: The results for background subtraction, (a) shows the background image (b) shows the 
individual against the same background (c) shows the result of a direct subtraction (inverted for 
clarity) and (d) shows the same image as (c) with the brightness and contract manually adjusted to 
try and improve the separation of the individual from the background.

around the head provide a large number of disjoint edges but these cannot be easily combined. In 
the situation of the cluttered background the number of images is dramatically increased and the 
edges defining the shape of the individual are not easily identifiable.

The edge maps generated for the front view for each set of images in Figure 5.2 are shown in 
Figure 5.7. In all cases shown some post processing of the edges is necessary to remove the edges 
in the background. The most appropriate approach is the application of a template to group the 
relevant edges and to provide a more complete boundary description. This is the subject of the 
next section.

5.3.3 Testing of the Activc Contour Implementation

The active contours as introduced in Chapter 2 provide an ideal method of combining the edges 
in Figure 5.7 to generate a boundary that describes an individual. The active contours were im­
plemented using a dynamic programming approach as described in Section 4.3.2. This section 

provides a description of the development and the testing that was undertaken to ensure that firstly 
the basic implementation of the active contours was working as expected. Then additional con­
straints that are essential for the template to reliably extract the individual from the background 

are tested.

131



(c) (d) (e)

Figure 5.7: The results of applying the Canny edge detector to the input images. In each case the 
parameters for the Canny are a  =  1, Ti =  100 and T2 -  255

The active contour is constructed as a series of nodes that are stored in a Java vector list 7. 
Each element in the vector list contains the 2D position of a control point, the alpha and beta 
weights associated with the internal energy, a control value that is used to indicate if there are 
any restriction on the directions that a particular control value can move. A schematic of this 

information is shown in Figure 5.8.
Within the general implementation, the values of alpha and beta in Equation 2.3 are set to be

0.5. The values are included within structure for a particular node to facilitate the incorporation of 
additional information such as the bending energy that can be used to determine a comer within a 
particular implementation (Lam & Yan 1994) where the value of the beta parameter is altered if 
the bending energy is above a set threshold. Within this implementation comers are not considered 
an important feature because the shape of the individual has in general, no right-angled or strong 

corners.

7 A  vector list is a way o f storing unformatted objects in a link-list like structure, only more carefully and in a 

more structured manner. The Vector class is used to replace stack operations that would possibly be required in other 

language implementations o f the algorithm The Vector Class has several methods that facilitate the updating o f the list 

including the ability to add and remove elements at particular locations when required.
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Figure 5.8: A schematic showing the information contained in the snake and the information 
associated with a control point.

The Internal Energy

To verify that the internal energy term in the implementation is operating correctly the active 
contour was constructed with the external energy at each location set to zero. Thus according to 
Kass et al. (1987), the internal energy should move to minimise the distance between each node. 
The initial position of a contour is shown in Figure 5.9. In this test the image data has no effect 

on the movement of the control points. The stages in Figure 5.9 show the initial contour and 
additional snapshots as the minimisation process progresses. Figure 5.9 (d) shows the image one 
of last views of the contour before it reaches the minimal position 8. This minimum is reached 
after 60 iterations.

Williams & Shah (1992) introduce a constraint to reduce the convergence of the active contour 
to a point in. This is achieved by including the average distance between each of the nodes within 
the internal energy term. This results in the internal energy reaching a minimum when the distance 
between each point is equal to the average distance. The effects of this constraint are shown in 
Figure 5.9 (e) to (g). In this Figure the control points firstly arrange into two lines, as this is the 
shortest distance between two points. Then the distance between the points approaches the average 
distance. Since only the internal effects are considered at this stage, the two lines converge to each 
other, although the contour does not converge to a point. The effects of this constraint are shown 
in Figure 5.14 where the control points are evenly distributed along the length of the contour.

The External Energy

The external energy tenn in the active contour combines the forces that attract the contour to 
particular intensity values in the image, to areas or points with high edge intensity values. The 
attraction to these features reduces or increases the minimising effects of the internal energy. In 
particular, the external energy is defined as having a high attraction to high intensity edges in the 

edge feature map. This is illustrated in Figure 5.10.

“The last view is not shown as all the control points have contracted to a single point.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 5.9: Demonstration on the effects of the internal energy, (a) to (d) show that if no constraints 
are included then the internal energy has the effect of collapsing the contour to a point (e) to (g) 
Show the effects of constraining the internal energy by encouraging an even spacing between the 
control points.

The expansion or balloon force introduced by Cohen (1991) is not directly incorporated into 
the external energy term because the template may be placed inside or outside the boundary con­
tour of the individual and minimises to the correct solution. By constructing the external energy 
to have strong attraction to the high intensity edges the active contour can expand if it is placed 
within the contour. This is illustrated in Figure 5.11.

To encourage a control point to move from one edge pixel to another pixel with a higher 
intensity value the value of the external value is weighted by the intensity value. Thus, if an edge 
pixel in the search area has a higher intensity value than the current value, the control point will 
move to this location. This ensures that the control point moves towards the edge with the strongest 

intensity.

(a) (b) (c) (d)

Figure 5.10: (a) shows the initial position of the contour, (b)and (c) show the progression of the 
contour and the effect of the external energy on the minimisation process. This minimisation took 
41 iterations.

134



Figure 5.11: (a) shows the initial position of the active contour inside the circle and (b), (c) and (d) 
show that the attraction to high intensity edges counteract against the internal energy constraints 
and it expands to find the boundary. This minimisation took 51 iterations.

In the original dynamic programming implementation of Amini et al. (1990) the edge infor­
mation was only examined within a n n x n  search space about a control point. This added an 
additional 0 (n 2) operations at each iteration. In addition, this procedure ensured that the contour 

converges slowly to the final state and that the control point can move along the length of the 
contour as opposed to perpendicular to the contour. To counteract against these effects our imple­
mentation of the active contour employs a linear search space to locate the nearest high intensity 

edge pixel. This ensures that the active contour is always moving to minimise the length of the 
contour and increases the convergence time of the snake. The search space is further reduced by 
the introduction of controls that reduces the direction that the contour can move. This is discussed 
in greater detail in Section 5.3.4. If at a particular iteration, no high intensity edge is found within 
the search space then the external energy term is set equal to zero and the internal energy term 
dominates the minimisation procedure. The directions that are searched at a particular control 
points are shown in Figure 5.12 (a). In Figure 5.12 parts (b), (c) and (d) show an instance of 
an active contour moving over weaker edges towards the strongest edges. In Figure 5.12 (a) the 
search space was extended to be 50 pixels for the purposes of illustration. The final position of the 

contour is achieved after 49 iterations.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 5.12: (a) shows the directions that are searched for high intensity edges (b), (c) and (d) 
show the progression of the active contour over weak edges to the strongest edges. The outer and 
middle rectangle has an edge intensity of 155 and 200 respectively.

Figure 5.13 shows the effects of moving a point from the equilibrium position. The points are 
at rest on the boundary of the square and when dragged away from this position they return to
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equilibrium after 32 iterations.

(a) (b) (c) (d)

Figure 5.13: (a) shows the active contour at rest on the boundary of the square, (b) shows four 
points dragged from the equilibrium position, (c) shows the position after 20 iterations and (d) 
shows the position after 32 iterations.

Combining The Internal and External Energies

The effects of combing the energy terms is shown in Figure 5.14. The effects of combining the 

internal and external energies are that when the external search is unable to find an edge in a 
particular location the internal energy will provide a new location to search for the energy and 

cause the length of the contour to reduce. This has the advantage that the external energy search 
space can be reduced. In addition, with the constraint forcing the distance between the control 
points towards the average, the structure of the active contour becomes more regular. This can be 
seen in Figure 5.14 (c) where the distance between the control points tends to be evenly spaced.

(a) (b) (c)

Figure 5.14: (a) shows the initial position of the contour which is distant from the edges, (b) shows 
the effects of the internal energy as it minimises a constant rate until the search space contains high 
intensity edges, in (c) the external forces start to dictate the minimisation process, (d) shows the 
final position of the snake and the approximately even spacing of the control points.

Addition and Removal of Control Points

In this section the control points of the active contour are examined to determine if it is necessary 
to introduce additional control points to improve the convergence of the active contour or to re­
move control points if the contour is representing a straight edge. Figure 5.15 shows the situation 
when the energy in the contour has reached a minimum but the active contour does not accurately
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describe the shape in the image. This is particularly evident at the corners of the square in Figure 
5.15. The principle that is applied in this situation can be applied in the situation that not all the 
control points are located on areas of high intensity edges.

The active contour is examined at each location. If a control point is located on a strong edge 
then the second order term of the internal energy is examined. If this value is above the average 
value for the contour then the interpolated positions of the contour are examined to ensure that 
they are located on a significant edge. This results in the insertion of four new control points that 
are marked yellow in Figure 5.15 parts (c) and (d), i.e. one in each comer of the square. The 
minimisation process is reactivated to improve the attraction to the boundary and the improved 
accuracy is shown in Figure 5.15 (d).

(a) (b) (c) (d)

Figure 5.15: A demonstration of how additional control points are inserted, (a) shows the initial 
position of the contour, (b) shows the final position of the contour, (c) shows the four inserted 
control points, marked yellow, (d) shows the results of the minimisation considering the new 
points. Note: in (d) the control point in the bottom right corner is located at the comer of the 
square but the B-spline does not interpolate this point.

The removal of control points is facilitated by the examination of the control point’s position. 
If a number of control points are located on an edge and have approximately9 the same x or 
y coordinate then it is possible to reduce the number of control points along a particular edge. 
Although this procedure has been implemented, it is generally not used within the final application 
because this situation rarely occurs. The removal of control points is shown in Figure 5.16. Figure 
5.16 (a) and (b) show the evolution of the contour and the final position of the contour is shown 
in part (c). Then between parts (c) and (d) the control points along the sides of the square are 
reduced. This technique can be extended to describe a line at any orientation by considering the 
slope through a number of consecutive control points.

To ensure that the contour does not kink during the evolution of the contour a procedure is 
implemented at each iteration to decide if two control points occupy the same location. If this is 
the case then one of the control points is removed to ensure that the contour does not kink. Before 
a control point can be removed it is necessary to check the index of the control points. If the 
control points are consecutive in the ordering of the contour then a control point can be removed. 
Otherwise the control points are permitted to occupy the same position, but in general, when this 
situation occurs the possibility exists to split the contour into two contours. However, in the simple 
shapes shown in this section the possibility of the contour splitting is not considered as the shapes

9A  difference o f one pixel is tolerated.
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extracted are not composed of multiple objects and when extracting the individual from the image 

a single object is sought.

(a) (b) (c) (d)

Figure 5.16: A demonstration of how particular control points are removed from the contour 
formation, (a) shows the initial position of the contour, (b) shows an intermediate position of the 
contour, (c) shows the final position of the contour and (d) shows the results of removing control 
points along the sides of the square.
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The pose that the individual adopts is important to reliably identify key features of the body. This 
provides the possibility of defining a template that incorporates general shape information about 
the individual. This template has to be flexible to adjust to the shape of different individuals and 
to adapt to the different environments. The template needs to reliably extract an individual’s shape 
and to overcome information that is missing, for example faint edges that occur when part of the 
individual’s clothing has a similar colour to the background.

The pose that the individual adopts is shown in Figure 4.9 in Chapter 4. The template is 
generated by interactively fitting aB-spline curve around the individual in sample images. This is 
achieved by specifying the control point locations on either the original image or on the associated 
edge map. Table 5.3 shows examples of the images captured to create the template. The middle 
column in Table 5.3 contains the points that are interactively fitted to the captured data. During 
the fitting process the user has the option to toggle between the edge map and the original image. 
This enables the user to match the control points on the exact edge. Once the points are placed a 
B-spline curve interpolates the control points. To ensure that the control points are on the highest 
edge in the region in which they are placed the energy in the active contour is minimised to 

accurately locate the boundary.
The active contour is converted to a boundary map and it is analysed to find the key features 

such as those in the third column of Table 5.3. A full list of key values are shown in Figure 4.11. 
These values are combined with the centroid of the contour to provide the scaling values that are 
used to define the mean template. All scaling and positioning of the control points is done relative 
to the centroid of the template. Not all the key features are used to fit the template but they are 

used to separate the individual’s silhouette into different parts for the texturing.
In Sections 4.3.1 and 4.3.2, the rational for restricting the pose of the individual are discussed. 

Restricting the pose significantly reduces the variations in poses adopted and thus enables the 
initialisation of the template by simply scaling the default template. The exception to this is the 
initialisation of the arms, which are initialised separately. In (Cootes et al. 1992), each of the 
models that constitute the training set are first aligned and then normalised to generate the mean 
template. This is not necessary for the generation of the mean template since in each case the 
individual is directly in front of the camera. Furthermore, in (Cootes et al. 1992) and (Baumberg & 
Hogg 1994), the fine detail is not extracted, and only the position of landmark points are considered 

suitable for the generation of the mean shape.
During the initial fitting of the template to the images data, different ratios were experimented 

with, to enable both the manual and automated fitting of the template to the image data. As 

described in Section 4.3.3 using the manual initialisation the horizontal scaling factor can be ex­
tracted using six points. However, with the automated approach the same information is not avail­
able. The height of the bounding box provide the vertical scaling factor and width of the bounding 
box provides the location of the hands but this is not sufficient to provide an accurate horizontal 
scaling factor as the position of the arms varies between individuals.

A selection of ratios that were experimented with to determine appropriate scaling values of 

the template are presented next. The mean of the max-vertical l e f t  and max ̂ vertical-right

5.3.4 Template Generation and the Testing of the Constraints
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is combined with the minjvertical to provide a vertical scaling of the template. The horizontal 
scaling is initially calculated using the max-horizontal and minJiorizontal values which cor­
respond to the left and right most position of the arms but since the relative distance between these 
two points and the width of the upper body can vary substantially from one individual to the next 
this measure was not considered reliable.

------

■ I

min vertical = (214, 193) 
max left vertical = (270, 595) 
max right vertical = (142, 593) 
min horizontal = (348, 384) 
max horizontal = (94, 391) 
lelt armpit = (262, 328) 
right armpit = (175, 329) 
crotch = (209, 438)

min vertical = (231, 176) 
max left vertical = (282, 597) 
max right vertical = (166, 593) 
min horizontal = (353, 384) 
max horizontal = (122, 393) 
lelt armpit = (280, 313) 
right armpit = (188, 314) 
crotch = (232, 427)

min vertical = (239, 164) 
max left vertical = (319, 604) 
max right vertical = (183, 600) 
min horizontal = (371, 383) 
max horizontal = (110, 405) 
lelt armpit = (293, 309) 
right armpit = (190, 303) 
crotch = (244, 428)

Table 5.3: This table shows some of the images used to generate the template.
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To scale the template using the automated initialisation technique, it is necessary to extract 
information that can be used to automatically scale the template to fit the captured data. Significant 
data is available from the bounding box that is discussed in Section 4.3.3. This bounding box 
enables the location of the head, the feet and the arms. As stated above, the location of the arms 
is not sufficient to determine a suitable horizontal scaling factor. Thus different ratios are used to 
determine a horizontal scaling factor for the template. This is illustrated with the ratios for the 
three examples shown in Table 5.3.

mm-horizontal, x  — max -horizontal, x 
h o r iz o n ta L ra t io  =  -------------------- ;------------------ --------------- -

Larmpit.x — r-armpit.x
348 - 9 4  

X1 ~  262 -  175
=  3 5 3 -  122 

2 262 -  188

E x 3 =  ^  ~  =  2.533 (5.1)
293 -  190

where the .x notation indicates the x coordinate of a particular feature point. This is one way in 
indicating the variation of the position of the hands and the effect that they have on the horizontal 
scaling. If the same ratios are used in the creation of the horizontal to vertical ratios then the 
following results:

ra tio
mean(max-left-vertical.y, max-right-vertical.y) — min-vertical.y 

Larmpit.x — r-armpit.x
= 0̂ 5(595 + 593) -  193 =

9fi9 — 1 7^

=  0 .5 (604+  6 0 0 ) -  164 
d 293 -  190

where the .y notation indicates the x coordinate of a particular feature point.
The two ratios above indicate that extremes of the model are not suitable in determining a 

horizontal scaling factor that can be universally applied to the templates. If the distance between 
the armpits is considered separately then it is observed that the distance is nearly independent of 
the height of the individual. In effect, the average distance between the armpits of the individuals is 
94 pixels in the examples shown in Table 5.3. Additionally, the average distance between the feet 
can be easily calculated from the bounding box because it expands to encompass the individual 
and the position of the feet can be determined during the initialisation procedure described in 
Section 4.3.3. The average distance between the feet for the three examples shown in Table 5.3 is 
127 pixels. This provides the following ratio:
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mean(left-armpit.x, right -armpit, x) 
mean(max-left-vertical.x — max .right -vertical, x)
94

=  127 -  ° '74 (5'3)

Using this ratio an estimate of the distance between the armpits can be automatically extracted. 
The corresponding distance between the armpits is used to horizontally scale the default template. 
The position of the armpits is important in the fitting process because of the significant variation 
of the arms. This is possibly because different individuals are more comfortable with their hands 
at different levels. In particular the position of the armpit provides an axis for rotating the arms to 
better approximate the captured data. Ideally the greater the separation between the position of the 
hands and the side of the body the more accurately the location of the armpits can be determined.

The positions of the armpit and the max-horizontal and min-horizontal are used to position 
the arms independently of the rest of the template. In particular, a line from the armpit to the 
either extreme defines an axis about which the points defining the arm can be rotated to better 
fit the captured data. The distance between the two points is used to scale the template. This is 
illustrated in Figure 5.17.

(a) (b)

(c) (d)

Figure 5.17: In (a) and (c) the default position of the arms is shown. Then in (b)and (d) the position 
of the arms after they have rotated about the y-axis is shown then scaled rotated back through the 
angle provided from the bounding box or from user initialisation .
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Inclusion of Constraints

This section illustrates the testing of the constraints that are described in Section 4.3.4. The con­
straints are introduced to stop the contours from converging to the wrong edges. The first approach 
to solving this problem involved the use of constraint forces between two points that could con­
verge to the same edge as illustrated in Figure 5.18. The main difficulties that are associated with 
this implementation are firstly that the positions of the points on each side are not uniquely de­
fined and they change between each individual and as the snake energy is minimised. Secondly, 
the force that is calculated includes a strong directional element that may cause the control point 
to move towards a neighbouring control point as opposed to the direction of the correct edge. The 
effects of the constrains are illustrated in Figure 5.18. Figure 5.18 (a) shows the initial position of 
the springs is shown and it can be seen that the springs are not completely horizontal and in part 
(b) the effects of the directional component of the force is illustrated as the control points move 
towards each other along the inside leg.

(a) (b)

Figure 5.18: (a) shows the position of the springs between the legs of an individual. In this 
situation the and also illustrates that the forces associated will have both a horizontal and vertical 
element that is not suitable for constraining the position of the control points, (b) illustrates the 
directional effects of the controls introduced

To overcome such difficulties a second approach is considered that involves imposing restric­
tions on the direction that a particular point can move. There are four restrictions that can be 

used:

• slopping the control point moving up,

• stopping the control point moving down,

• stopping the control point moving right,

•  stopping the control point moving left,

This approach reduces the directional element of the constraint forces and also means that 
no additional forces are introduced in the minimisation process. The effects of these forces were 
tested on simple images and then on real images. The results proved inconclusive, because in 
particular, when the template is initialised the location of the key features, namely the armpits and 
the crotch cannot be guaranteed to be in the correct location. Thus they may have to move in any 
direction to find the their correct position. Moreover, when the template is initialised it cannot be 
guaranteed that the location of the control points along the legs or under the arms will all lie on
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the same side of the edges. Thus the control points may have to move towards the opposite edge 
to find the minimum position.

Consequently, in the final implementation the direction restrictions are not imposed but the 
concept of the volcano, as introduced in (Kass et al. 1987) is used to move restrict the movement 
of control points. This improves the minimisation by permitting the control points to move in 
any direction while actively discouraging the movement towards the wrong edges. The Volcano is 
initialised using the bounding box dimension in the automatic initialisation. A line is plotted from 
the centre of the bounding box to the bottom of the box. This line provides the centre latitude for 
the volcano between the legs. Under the arms the initialisation is more difficult the first point that 
is used is the arm pit location and then a point between the inside of hand and the left or right 
crotch equivalent. This provides the necessary constraint to prevent the contour from moving to 
the wrong edge.

5.3.5 Tem plate In itia lisation and M in im isation

In Section 5.3.1 background subtraction involving the capture of an additional image was ruled out 
as a possible automatic method of separating the individual from the background because of the 
effects of lighting and shadow meant that the boundary of the individual is not easily identified and 
requires further processing for correct identification and the fact that it required the capture of an 
additional image. In Section 4.3.3 a method for the initialisation of the contour was presented for 
the front and back templates and the side templates. The front and back templates are initialised, by 
subtracting the front and back images from each other. The subtraction process that is undertaken 
does not try to accurately describe the boundary of the individual, but provides an approximation 
of the individual’s location within the images. The results of this subtraction applied to the images 
in Figure 5.2 are shown in Figure 5.19. It can be seen that the subtraction removes a large part 
of the background and isolates the region where the individual is located. In Figure 5.19 (c), due 
to movement of the camera between two captures the background subtraction contains part of the 
background. Thus, to enable the correct initialisation the front and back views are subtracted from 
a side view to initialise the template. The results of this are shown in Figure 5.19 (d).

The results of this subtraction process are further improved by applying the Canny edge de­
tector to the difference images (Canny 1986). The location of the individual is localised in Figure 
5.20. In parts (a), (b), (d) and (e) the difference in the individual corresponds to the individual’s 
position. In (c) parts of the background are also contained in the image. This occurred because 
the camera moved slightly between the capture of the front and back images. Figure 5.20 (f) to (j) 

show the same results for the side views in Figure 5.2.
The results in Figure 5.20 enable the generation of a bounding box. The bounding box is used 

to scale the default template and to position it correctly. All control points are not positioned edges 
but the positions are sufficient to enable the active contours to be attracted to the edges in each 
view. The bounding box is shown in Figure 5.21 with the position of the template. The arms are 
adjusted for each in the cases using the technique described in Figure 5.17.
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Figure 5.19: The results of the subtraction process applied to the front and back images in Figure 
5.2. (a) corresponds to the subtraction of Figure 5.2 (a) and (c). (b) corresponds to the subtraction 
of Figure 5.2 (e) and (g). (c) corresponds to the subtraction of Figure 5.2 (i) and (k). (d) corre­
sponds to the subtraction of Figure 5.2 (i) and (j). (e) corresponds to the subtraction of Figure 5.2 
(m) and (o). (f) corresponds to the subtraction of Figure 5.2 (q) and (s).
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Figure 5.20: (a) to (e) show the results of applying the Canny edge detector to the difference map 
generated using the front and back images in Figure 5.2. (f) to (i) show the results for the side 
images.
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(i) 0)

Figure 5.21: The bounding box and the correctly initialised templates, (a) to (e) show the bounding 
boxes generated for the front views in Figure 5.20. (f) to (i) show the results for the side images 
in 5.20.
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The minimisation procedure is initiated in each case and the then different stages of evolution 
are shown after 20 iterations and 40 iterations and then the final initialisation of contours before 
the constraints are used to make sure that the final position matches as closely as possible the pre­
defined constraints. The first phase of testing involves determining if the points are approximately 
linear. These points are selected using the key features that are extracted by tracing the final con­
tour. The crotch point is chosen as the first point and then a control point with an index less than 
the index of the crotch is chosen.

The first example of the minimisation process is shown in Figure 5.22. In this Figure the initial 
position of the templates are shown in parts (a) to (d) on the images resulting from applying the 
Canny edge detector to images. In parts (e) to (h) the position of the contour at an intermediate 
stage shown, in parts (e) and (f) the contour is shown after 30 iterations and in (g) and (h) the 
contour is shown after 40 and 35 iterations respectively. In parts (i) to (1) the final position of the 
contour is shown for parts (i), (k) and (1) the final position is reached after 50 iterations and for 
part (j) the final position is reached after 65 iterations.

The second example using the template shows the situation when the level of clutter is in­

creased. This has the effect of increasing the number of edges that are present in the background 
thus making it increasingly difficult for the active contour to converge to the correct solution. The 
evolution of the contour over 40 iterations for the image in Figure 5.2 (q) is shown in Figure 5.23.

In this situation when the edges defining the shape of the individual are not easily distinguish­
able from the edges in the background, an alternative approach to encourage the correct conver­
gence was attempted using the difference map. This did not have a significant effect on the overall 
minimisation process to justify its general use. This is because although the individual occupies 
the centre of the image the left to right variation of the person can change substantially between 
the front and back or between the side views.

In this particular example and that of Figure 5.2 (m) to (p) required user assistance to move 
particular control points to reach the correct solution. This reduces the generality of the template 
extraction process. The automated initialisation is important as it reduces the amount of interaction 
that a home-user has to undertake. Although to reduce the effects of clutter the individual is 
advised to stand against a relatively clutter free background.
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Figure 5.22: The initial position of the contour is shown in parts (a) to (d). The intermediate 
position of the contour is shown in images (e) to (h) and the final position of the contour is shown 
in parts (i) to (1).
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(C) (d)

Figure 5.23: (a) shows the initial position of the contour on the edge map, (b) shows the position 
of the contour after 10 iterations, (c) shows the position of the contour after 20 iterations and (d) 
shows the position of the contour after 40 iterations.
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5.3.6 Assessment of the Template Fitting

This section describes analytically how accurately the final position of the templates describes the 
actual shape of the captured individual. To get a true measure of accuracy it is important that the 
measure is free of subjectivity. The subjectivity can be introduced in the manual generation of 
ground truth measures. In the case of manually segmenting the individual from the background 
a person carries out the segmentation and makes decisions regarding each pixel on the boundary,

i.e. which pixel forms part of the background and which is part of the foreground object.
To reduce the subjectivity in determining this measure it is necessary to operate in a noise-free 

environment. To achieve this the underlying H-Anim model 4.2 is projected to an image plane 
using the scaled projection matrix in Equation 4.1, producing four silhouettes of the model in a 
noise free environment. These silhouettes are used as a ground truth from which the accuracy of 
the fitting procedure can be measured. An edge map for each silhouette is produced using the 
Canny edge detector (Canny 1986). The front and side templates are fitted to the image data. The

MSE evaluated fo r the fron t view
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(a) Evaluation of the the contour fitting in the front view.

MSE evaluated fo r the side view

Number of Control Points

(b) Evaluation of the contour fitting in the side view.

Figure 5.24: Graphs illustrating the mean square error (MSE) calculated in the template fitting 
procedure.

front template is defined initially with 126 control points and the side template has 48 pixels. Each
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of these templates are manually initialised. In each graph illustrated in Figure 5.24, the mean 
square error (MSE) decreases as the number of control points increases. The MSE calculated 
at each control point is lower than that calculated at the intermediate points between the control 
points. However, as the number of control points increases this difference decreases, this is in 
line with expectation. In the coarsest fitting of the front template using only the default number 
of control points, the MSE is below 1 pixel for errors calculated at the control points and at the 
intermediate points.

This test highlights that it is possible to accurately extract the silhouette of an individual using 
the constrained B-spline template. However, since the (photo-)realism of the final model is central 
to the application, the accuracy of the template fitting can be sacrificed and still achieve the same 
level of realism. However, in respect of the final application the realism of the human model is 
more important than the accuracy of the final model. Thus, it is possible to create a realistic human 
model even with a coarse fitting of the template.

5.4 Texturing of the Underlying Model

In approaches 1, 2 and 3 discussed in Chapter 4 the automatic texturing of the underlying model is 
achieved in two stages. Firstly, the individual’s texture information that was extracted is mapped 
inside the silhouette of the underlying model. This information is then back projected, using nor­
mal vectors, to the underlying model. In this section, the process is initially tested on simple 
primitive objects; it is then applied to the underlying model. In particular, the texturing results 
highlight the importance of texturing the underlying model on a part-by-part basis and the im­
portant role that the normal vectors play in selecting which image should be used to texture a 
particular part of the objects when multiple views are available.

5.4.1 2D  to 2D  Texture M a p p in g

The 2D to 2D texture mapping is designed to permit any shaped texture map to be mapped to 
any shaped object while maintaining as accurately as possible the original information, including 
scale. On simple objects this can be achieved by generating a single mapping of all the information 
on to the shape but with more complex shapes and textures, particularly, when the objects have 
multiple boundaries or have holes within the complex hull10, the texturing is best achieved on a 
part by part basis.

An example of simple texture mapping is shown in Figure 5.25. In this figure, the information 
contained in the square is mapped to the circle. In Figure 5.25 (c) the information appears to 
be stretched across the horizontal dimension of circle. This occurs because the texture mapping 
at each vertical level is scaled using a constant vertical scale factor and a horizontal scale factor 
based on the relative widths of the circle and the square. When the vertical information is scaled 
appropriately as in Figure 5.25 (d) the texture map appears to take on the shape of the object being 
textured. The example of the mapping from a square to a circle was chosen as it illustrates the need 
to incorporate both the appropriate horizontal and vertical scaling. If on the other hand the texture

l0The convex hull is the smallest convex region which contains the object such that any two points o f the region can 

be connected by a straight line all points o f which belong to the region.
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mapping is carried out on objects that are similar in structure then scaling in a single dimension is
sufficient.

(a) (b)

(c) (d)

Figure 5.25: Example of simple 2D to 2D texturing. (a) shows the region to be textured with the 
texture map in (b). (c) shows the effects of texturing if the image is only scaled horizontally and 
(d) shows the correct fitting of the texture map.

It was not possible to apply this process to the body as a whole because of the pose that the 
individual adopts means that the convex hull of the individual contains gaps that do not form part 
of the shape of the individual. Thus as proposed in the approach of Hilton et al. (1999) the body 
was broken into different parts to ensure that the texture is mapped correctly. The key features that 
are automatically extracted are illustrated in Figure 4.11 are used to split the underlying model and 

the captured data into the different body parts.
The line from the armpit to the shoulder is used to separate the arms from the upper body; 

similarly the line joining the two shoulder points separates the head from the upper body. A line 
drawn horizontally through the crotch separates the legs from the upper body. This results in the 
body being split into six parts. This is illustrated in Figure 5.26 (a) and (b). In (Hilton et al. 1999) 
the body is split into seven parts where the upper body is separated into two parts separated at the 
armpits, see Figure 5.26 (d) and (e). In Figure 5.26 parts (b) and (e) the texture maps contain parts 

of the background and other parts of the body that are not related to the particular part. This is 
not significant since the silhouettes in parts (a) and (d) are the primary input data for the texturing 
method, In Figure 5.27 the same procedure of splitting the front view into six parts and the side 

view into four parts is shown for another individual.
In the left hand side views shown in Figure 5.26 (c) and (f) are split into four parts. Although 

the side view of the individual does not contain any holes if it is examined by plotting a vertical 
line through the silhouette at different positions, it can be seen that the line passes from inside
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Figure 5.26: This Figure illustrates how the individual’s silhouettes are separated into different 
parts for texturing. Parts (a) and (d) show the silhouette of the front of the individual split into six 
parts and seven parts. Parts (b) and (e) show the original image split into six and seven parts. Parts
(c) and (f) show the side view of the individual split into four parts.

the silhouette through the background and into the silhouette again. This is particularly evident 
under the chin and at the small of the back depending on the individual’s posture and clothing 
they are wearing. Thus the model is split into four parts to achieve the desired texturing. The side 
view is split into four parts by examining the contour. The width of each segment is the same and 
corresponds to the maximum and minimum horizontal coordinates that are extracted by tracing 
around the contour. The contour is further examined to find the centroid. Control points at the 
equivalent height on the left and right of the contour are automatically identified and the upper 
part of the contour is then examined to find the nose that is the extreme maximum or minimum 
above the centroid depending on the view. The throat is identified as the deepest valley between 
the nose and the centroid equivalent. It is also necessary to separate the legs from the upper body 
because depending on the build of an individual their stomach may cause a similar problem like 
when texturing under the chin because all points below the centroid inside the visual hull of the 

individual are not part of the individual. Thus the final division is at the small of the back or if 
that cannot be identified then centroid is used to separate the lower body. Additionally, it was 
considered to use information that was extracted in the front view to aid the segmentation of the
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side view, for example and estimate of the height of the throat could be obtained from the height 
of the shoulder in the front or back view.
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(a) (b)

Figure 5.27: (a) and (c) contain the front and side silhouettes of the individual shown in Figure 5.2 
(e) to (h), (b) and (d) show the equivalent silhouettes extracted using the template.

A separate mapping procedure is applied for the back view since in general the individual does 
not have the exact same silhouette from the front and behind. The same procedure for breaking 

the body into different parts can be applied to the back view of the individual and the results are 
shown in Figure 5,28.

(a) (b) (C)

Figure 5.28: (a) contains the silhouette of model produced by projecting the model through the 
back camera centre, parts (b) and (c) show the equivalent silhouette and textured image.

The corresponding silhouette for the model is generated by projecting the 3D coordinates of 
the model to a plane 3m  from the model in the virtual environment. This process is repeated 
for each view corresponding to the captured data. This ensures that the scale of the model is 

proportional to the data captured. This can be seen in Figure 5.29 by examining the vertical and 

horizontal dimensions of the model’s projection.
On close examination of the upper body it is not necessary to split it into two parts because 

in general the texture is similar across the two parts of the body and in some cases splitting the
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(b) (c)

Figure 5.29: This Figure illustrates how the model’s silhouette is separated into different parts for 
texturing. In part (b) the model’s silhouette is split into seven parts and in part (c) the model’s 
silhouette is split into six parts.

upper body into two parts can distort the design when the parts are recombined as they are scaled 

by different amounts.
Having separated the model and the captured data into different parts it is possible to imple­

ment the texture mapping procedure. The texturing method takes in three images; the first is the 
silhouette of the model which is split into the different body parts using the key features illustrated 
in Figure 4.11. The second image is generated using the B-spline contour of the individual that 
is separated into different parts using the key features and the third image is the captured image 
of the individual. The results of this texture mapping are shown in Figure 5.30. The information 
in each of the parts of the individual are mapped to the underlying model on a part-by-part basis 
using the corresponding key features on the model and the captured individual. This ensures that 
the texture map is continuous. It can be seen that the information captured in the images of the 
individual is accurately mapped inside the boundaries of the model. This ensures that all the data 
can be mapped to the underlying model in Section 5.4.2.

A new texture map is created by combining the sub-images in Figure 5.30 (a) and (b)11. The 
individual parts are combined using the key feature on the underlying model’s silhouette. This 
results in the combined images in Figure 5.30 (c). More results are shown in Figure 5.32.

5.4.2 2D  to 3D  Textu rin g  o f the U n derly in g  M o d e l

This section provides a detailed description of the testing that was undertaken to ensure that the 
underlying model is textured accurately using the information in the available views. The com­
bined images that are generated in Section 5.4.1 are used to texture the model. As stated in Section
4.2.3 VRML texture nodes only accept a single image for the texturing of any primitive or com­
plex object (VRML 1997). Thus it was first necessary that the four images that are generated are 
combined into a single image file. The texture coordinates must reflect this.

" in  general, the images for each body part are not generated because the textured image data is mapped to its position 

inside the silhouette o f the model
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Figure 5.30: (a) and (b) show mapping of the captured data in Figure 5.26 to the silhouettes in 
Figure 5.29. (c) contains the result of the 2D to 2D texturing process for Figures 5.2 (a) to (d).

The texture coordinates range from 0 to 1 in the x direction and 0 to 1 in the y direction and the 
combined image has dimensions 640 x 1920 pixels as the four images are placed side by side. It is 
possible to reduce the dimensions of this image by using the maximum and minimum values that 
are identified as key features in each view. This is not necessary and makes the generation of the 
texture coordinates more difficult because the projection of the 3D coordinates using the projection 
matrix in Section 4.2.1 projects the points to an image frame with dimensions 640 x 480 pixels.

Before the final texture coordinates are generated it is necessary to establish which parts of 
the model should be texturcd with a particular part of the image. This is established using the 
normal vectors that project from each tri-face of the model and comparing them to the various 
centres of projection using the Equation 4.2 in Section 4.2.3. This technique enables the model 

to be textured using any number of views. To ensure that the maximum information was textured 
different criteria were used to make sure that the texture is not stretched by trying to texture to 
much of the model with a single image. This is of particular importance on the face and resulted 
in the following limits for the selection of the appropriate image to texture a tri-face. The results of 
this are shown in Figure 5.31 where the head of the model is textured using four different colours 
to represent the different images that are used to texture a particular tri-face.

Figure 5.31: Example of how the head is textured. The parts of the head that are textured red are 
textured using the front view, the parts of the head that are textured green are textured using the 
back view and the blue and magenta represent the side views.

157



Algorithm 5 Texture Selection Algorithm
if angle between camera centre[0] and normal from a face is less that 60° then 

Texture with front view 
Generate appropriate texture coordinates 

else if angle between camera centre[l] and normal from a face is less that 60° then 
Texture with back view 
Generate appropriate texture coordinates 

else if angle between camera centre[2] and normal from a face is less that 30° then 
Texture with left view 
Generate appropriate texture coordinates 

else
Texture with right view 
Generate appropriate texture coordinates 

end if

Once the appropriate camera has been selected it is then necessary to generate the appropriate 
texture coordinates. In this situation with four views the images are arranged from left to right: 
front, left, back and right view. Thus if a tri-face is to be textured with an image from the front 
view then the coordinates are generated by taking the vertices of the face that are projected to the 
image frame in the creation of the model’s silhouette. This provides coordinates in the range of 0 
to 480 pixels in the horizontal direction and 0 to 640 pixels in the vertical direction. The horizontal 
values are divided by 1920 to convert the coordinates to a values in the range 0 to 1 and the vertical 
values are divided by 640 to convert them to a value between 0 and 1. If the right image is used the 
projected horizontal values are shifted by 1440 pixels before they are divided by 1920 to ensure 
that the correct part of the combined image is used to texture the model. The textured 3D models 
are shown in Figure 5.34 to 5.38.

5.4.3 En hancem en t o f the m odel using facial features

In this section the results are presented for the improvement of the texturing process using the 

extracted facial features. The features are first identified and then the scaling of the images is 
achieved relative to the distance between the eyes (for horizontal scaling) and the distance between 
the eyes and the mouth (for vertical scaling). The images are then positioned using the location 
of the eyes and the mouth in the front view. In figures 5.34 to 5.38 the results are presented. The 
coordinates of the key facial features in the front images are listed in the Table 5.4. The image 
dimensions are based on the size of the head images extracted using the feature extraction process.

The results that are presented to allow a comparison between the enhanced model and the 
model that is simple textured. In each case four views of the models are presented. The situations 
are chosen to represent possible views of the model within a virtual environment. The idea behind 
this method of presentation is to enable a direct examination of the realism of the model at two 
depths i.e. when the model close to the viewing location and when the model is far from the 
viewpoint. In addition, the models are examined with two additional views in which the models 

are not parallel to the viewpoint.
In Figures 5.37 and 5.38 the quality of the texturing of the face is reduced due to the effects of 

natural light that illuminates one side of the face more than the other. This is particularly prevalent
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(C) (d)

Figure 5.32: the results of the 2D to 2D texturing process for the images in Figure 5.2, part (a) 
shows the results of the texturing with parts (e) to (h), part (b) shows the results of the texturing 
with parts (i) to (1), part (c) shows the results of the texturing with parts (m) to(p) and part (d) 
shows the results of the texturing with parts (q) to (t).

Images left eye (x,y) right eye (x,y) mouth (x,y) Image Dimension
set 1 (37,24) (54,24) (46,40) 95 x  77 pixels
set 2 (33,35) (51,33) (44,52) 105 x 100 pixels
set 3 (39,29) (55,28) (47,44) 90 x 76 pixels
set 4 (39,32) (58,31) (49,48) 109 x 98 pixels
set 5 (60,33) (78,33) (96,51) 142 x 93 pixels

Table 5.4: The location of the key facial features in the images shown in Figure 5.2. The image 
dimension referes to the size of the head image that results from applying the body seperation 
algorithm.

in 5.38 where one side of the face appears to be paler than the other. In the other Figures a stronger 
resemblance between the enhanced models and the captured data at both distances can be seen. 
However this is a very subjective measure. Figure 5.37 was split into a left and right image for 
analysis, the right image being closest to the source of natural light. The average pixel intensity 
and the standard deviation for each part of the image are determined. For the right-hand side 
image the average pixel intensity is 127 and the standard deviation is 51.90 and for the left-hand 
side image the average pixel intensity is 119 and the standard deviation is 56.87. In Figure 5.38 in 
the left hand image, which is closest to the natural light source, the average pixel intensity is 167 
and the standard deviation is 56.71 and in the right hand image the average pixel intensity is 160 
and the standard deviation is 52.22. If  the images are examined in HSI12 colour, it is possible to

l2HSI: Hue Saturation and Intensity. Hue refers to the perceived colour (the dominant wavelength), saturation refers 

to the dilution by white light.
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see the contrast in the hue between different parts of the image, see Figure 5.33. In Figure 5.33 (b) 
the area circled, the hue shows a high local variation on the face.

(a) (b)

Figure 5.33: Four views of the model. In each case the model on the left is the model that is 
textured using the facial features, (a) shows the models close to the viewpoint and (b) shows the 
models far from the viewpoint, (c) and (d) show the models at an angle to the viewpoint and at 
two distances from the viewpoint.

In each situation the boundary of the 2D textures contains parts of the background. This 
accounts for the fact that at the edge of the model that the texture appears to be disjoint. In the 
texturing algorithm proposed for the texturing of the model as described in Section 5.4.2 the angles 

used to determine which image is used aims to minimise these effects by trying to select parts of 
the image that are not at the boundary of the 2D texture.
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(C) (d)

Figure 5.34: Four views of the model. In each case the model on the left is the model that is 
textured using the facial features, (a) shows the models close to the viewpoint and (b) shows the 
models far from the viewpoint, (c) and (d) show the models at an angle to the viewpoint and at 
two distances from the viewpoint.

(c) (d)

Figure 5.35: Four views of the model. In each case the model on the left is the model that is 
textured using the facial features, (a) shows the models close to the viewpoint and (b) shows the 
models far from the viewpoint, (c) and (d) show the models at an angle to the viewpoint and at 
two distances from the viewpoint.
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(C) (d)

Figure 5.36: Four views of the model. In each case the model on the left is the model that is 
textured using the facial features, (a) shows the models close to the viewpoint and (b) shows the 
models far from the viewpoint, (c) and (d) show the models at an angle to the viewpoint and at 
two distances from the viewpoint.

(c) (d)

Figure 5.37: Four views of the model. In each case the model on the left is the model that is 
textured using the facial features, (a) shows the models close to the viewpoint and (b) shows the 
models far from the viewpoint, (c) and (d) show the models at an angle to the viewpoint and at 
two distances from the viewpoint.
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(a) (b)

(c) (d)

Figure 5.38: Four views of the model. In each case the model on the left is the model that is 
textured using the facial features, (a) shows the models close to the viewpoint and (b) shows the 
models far from the viewpoint, (c) and (d) show the models at an angle to the viewpoint and at 
two distances from the viewpoint.
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5.5 Generation of the Bounding Volume

The generation of the bounding volume is an important element in the personalisation of the final 
model. In the results displayed in Figure 5.39 to 5.43 the bounding volumes incorporate specific 
shape information associated with the captured individual. In each case two views of the bounding 
volume are provided: one from the front and one from a location between the front and the back. 

Three views of each textured volume are shown as well. In both the front and the side the silhouette 
of the individual is well defined but in the third view the particular features of the individual are 
not easily distinguished.

(a) (b)

(c) (d) (e)

Figure 5.39: Bounding volumes for the images (a) to (d) in Figure 5.2. (a) and (b) show the 
generated mesh structure for the indivdual and (c), (d) and (e) show three views of the textured 
model.

When generating the bounding volume the most important element is to automatically provide 
a model that incorporates the shape information that is essential for the generation of personalised 
models. The models are created using the front and one of the side views of the model. This 
created the maximal visual hull of the individual and thus the fine details of the individual cannot 
be reconstructed. The models that are shown in Figures 5.39 to 5.43 are created using simple 
ellipses13 that interpolate the silhouettes at different vertical levels, This limits the personalisation 
that is possible, since the individuals are not perfectly elliptical. In addition, if more extensive

l3The ellipses are generated by a B-spline that interpolates the control points at a vertical level.
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modelling of the individual was considered then it reduces the flexibility of the approach and 
would require a certain amount of interaction form the home user to identify particular features that 
should be enhanced. The back of the models appear to be more rectangular instead of elliptical to 
match the general shape of an individual’s upper body. This is achieved by introducing additional 
control points and reducing the continuity of the B-spline curve by having multiple knots.

(a) (b)

(c) (d) (e)

Figure 5.40: Bounding volumes for the images (e) to (h) in Figure 5.2. (a) and (b) show the 
generated mesh structure for the indivdual and (c), (d) and (e) show three views of the textured 
model.

The texturing of the bounding volume is a first attempt to use the bounding volume for repre­
senting the individual in low-cost applications. The texturing of the model is carried out using the 
front and back views. The front of the model is directly textured without scaling by projecting the 
front view on to the bounding volume. The back of the bounding volume is textured by mapping 
the information inside the back silhouette on to the front silhouette in a similar manner to that 
described in Section 5.4.1 for the mapping of the captured data into the model’s silhouette. This 
introduces a small amount of scaling of the image data. This is necessary because in general, the 

size of the front and back silhouette are not the same.
In each case the number of vertices that are used to create the model are presented in Table

5.5, The maximum value is 2956 vertices for the creation of the bounding volume in Figure 5.40. 

This is in contrast to 11103 vertices in the Hiro H-Anim model (H-Anim 1997).
In each case the number o f polygons that are used to generate the model are listed in Table
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(a) (b)

(c) (d) (e)

Figure 5.41: Bounding volumes for the images (i) to (1) in Figure 5.2. (a) and (b) show the 
generated mesh structure for the individual and (c), (d) and (e) show three views of the textured 
model.

5.6. The maximum value is 5732 polygons for the creation of the bounding volume in Figure 5.40. 

This is in contrast to 21422 in the Hiro H-Anim model (H-Anim 1997).
When the bounding volumes are textured there shape show a greater resemblance to that of 

the captured individuals than the models created by texturing an underlying model. The texturing 
of the bounding volume has the advantage that the front image is not scaled and can be directly 
textured to the surface. This improves the realism of the individual model when viewed from the 
front. The significant limitation of this method is that the joint positions cannot be reliably located 
and thus existing animation data cannot be applied to this model. This reduces the generality of 
this model in virtual environments.

Images Head Upper body Left leg Right leg Left arm Right arm Total
Figure 5.39 419 524 541 473 371 388 2716
Figure 5.40 524 608 558 541 337 388 2956
Figure 5.41 398 524 490 473 337 337 2559
Figure 5.42 482 545 609 541 371 315 2863
Figure 5.43 503 524 534 473 337 371 2742

Table 5.5: Details of the number of vertices that are used to create the bounding volumes.
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(a) (b)

(c) (d) (e)

Figure 5.42: Bounding volumes for the images (m) to (p) in Figure 5.2. (a) and (b) show the 
generated mesh structure for the indivdual and (c), (d) and (e) show three views of the textured 
model.

Using the skeletal information extracted in 2D from the knowledge of the key features in 
Figure 4.11 it is possible to position a skeleton within the bounding volume. This skeleton provides 
possible locations for the bones but does not facilitate the extraction of joints, such as elbows or 
knees. This lack of specific joint information makes it difficult to animate the bounding volume 

making it difficult to use it in real world applications since an estimate of some joints is not 
sufficient to give the model a realistic movement. Although, in comparison to impostors that are 
used in certain mobile application to provide low-cost models of distant objects the animation 
of the personalised models is not considered (Boyle et al. 2004). The lack of 3D information 
associated with the impostors means that their range is limited. However, the use of a bounding 
volume has a relatively low number of polygons that can provide a 3D model with low overhead

Images Head Upper body Left leg Right leg Left arm Right arm Total
Figure 5.39 796 1006 1048 908 708 742 5207
Figure 5.40 1006 1216 1082 1046 640 742 5732
Figure 5.41 754 1006 946 910 640 640 4896
Figure 5.42 964 1048 1182 1046 708 606 5554
Figure 5.43 964 1006 1048 916 640 708 5282

Table 5.6: The number of polygons that are used to create the bounding volumes.
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(a) (b)

(c) (d) (e)

Figure 5.43: Textured bounding volumes for the images (q) to (t) in Figure 5.2. (a) and (b) show 
the generated mesh structure for the indivdual and (c), (d) and (e) show three views of the textured 
model.

than can be used to represent the individual in certain applications and provide more personalised 
models for 3D applications.

Trying to ensure that the front image is well matched to the face make it difficult to incorporate 
the side views. Thus at close distances it is necessary that the orientation of the model is kept 

constant with respect to a view point.
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5.6 Testing of the 3D Active-Mesh Implementation

This section illustrates the procedures that were undertaken to verify the active-mesh implemen­
tation and to illustrate how active-meshes can be applied to the modelling of 3D shapes and in 
particular, how this can be extended to model 3D virtual humans. The testing starts with a single 
object being deformed to approximate another. A number of different scenarios are presented to 

see how the objects deform. This is then extended to permit multiple objects to be deformed by a 
single object or a group of objects. This is important extension for the modelling of human models 
since the internal (underlying) model is specified as the constitute body parts which are combined 
to form the human model.

5.6.1 Testing the Internal Constraints in 3D

In active-meshes the internal constraints are important in determining how the mesh deforms. If 
the internal constrains are strong then the mesh will attempt to retain its original shape at each 
iteration, but if the internal constraints are weak the mesh is free to deform under the influence of 
the external constraints. The internal forces can be applied uniformly across a particular mesh or at 
individual points depending on how the mesh is to be deformed. The following tests are designed 
to show how the model deforms under the influence of the internal constraints. In the first set of 
tests a point on the surface is pulled a significant distance from the surface in the direction of its 
normal. This has the effect of changing the length of the mesh-lines connected to this point, see 
Equation 4.4. In each case, only the internal constraints determine how the point is pulled back to 
the surface of the sphere.

In Figure 5.44 the original position of the sphere is shown with a point pulled from its surface. 
This point is pulled a significant distance from the surface. This results in a large internal force at 
the point of intersection and smaller internal forces acting on the connecting points. This permits 
the sphere to deform and at these points only because all other mesh-lines have the same length 
and thus the internal constraint at the other mesh elements is equal to zero, thus their position 
remains unchanged. In this situation, the internal constraint — 0.01 and a* =  0.01.

At each iteration, the subsequent point is pulled to the same point location and thus the internal 
constraint still affects the same point and the connected mesh points. In Figure 5.44 (d) the position 
is shown after 40 iterations and the point of intersection has moved and the set length of the lines 
joining the mesh points connected to this point have changed. The points connected to this have 
also been pulled in the same direction. If the surface is examined closely, then it is observed that 
the remainder of the mesh elements do not move. The reason for this is that at the end of each 
iteration the set position and the current position of the mesh points are set to be the equilibrium 
position at each iteration. This results in the set and current positions being the same at the start 
of the next iteration and thus the range of the internal constraints is limited.

In the second situation, shown in Figure 5.45, the same force is applied to the sphere and at 

the point of intersection the point is pulled from the surface. Observing the shape of the sphere 
after the first iteration the point of intersection and the connected points have been pulled from 

the surface. After the subsequent iterations, the effects of the initial deformation at a single point 
are seen rippling across the surface of the sphere. After a certain number of iterations, the effects
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Figure 5.44: Application of internal constraints at a single point on the spheres surface, (a) shows 
the point of intersection on the surface and the effect this has on the current length of the mesh 
lines connected to the point, (b) shows the position after three iterations, (c) and (d) show the 
position after 20 iterations and 40 iterations respectively.

of this are reduced and the points on the surface that are further from the point of intersection are 
less severely effected. It can be also observed that the effects do not influence the whole surface 
of the sphere for small a* values. In Figure 5.45, (a) the initial sphere, and (b), (c) and (d) the a* 
and the oil values are set at 0.01 the effects of the internal forces are not observed far from the 
point of intersection. In Figure 5.45 (e), (f) and (g) the a* and the ax  values are set at 0.3 and the 
effects of the internal constraints have a ripple effect along the surface of the sphere and in (g) the 
surface of the sphere has returned to a nearly smooth surface but it has been pulled in the direction 
of vertex that was moved. Smaller values for a* and the al are not shown because the effects are 
not observed on the surface unless examined very closely or over a large number of iterations.

5.6.2 Testing w ith  P rim itive  Shapes

The first set of tests show how the active-mesh approach to modelling can be used to mould one 
object to take on the characteristics of another. In particular, the case shown is a sphere being 
moulded into a cube to illustrate the complexities involved. The sphere is characterised as having 
no edges or corners and all points in the surface of the sphere are equidistant from the centre of 
the sphere, while the cube has twelve edges and eight comers and the points on the surface are at 
varying distances from the centre of the cube. Thus it is difficult to find similarities between the 
two shapes. In the Figures shown in this section, different views of the evolving scene are taken to 
firstly illustrate the 3D nature of the scenes and secondly to show particular attributes of the active 

mesh implementation.
One of the initial tests is illustrated in Figure 5.46. In this situation the sphere and the cube 

are centred at the origin, thus the sphere is at the centre of the cube. The external forces acting



Figure 5.45: The application of internal constraints on a sphere, (a) shows the initial sphere (b),
(c) and (d) show the effects of strong internal constraints on the sphere, and (f), (g) and (h) show 
the effects of weaker internal forces on the structure of the sphere.

on a vertex of the sphere are generated using the normal vector14 from a vertex on the sphere to 
its point of intersection on the surface of the cube. The point of intersection is calculated using 
Equation A.33 in Appendix A. In initial tests the external energy was calculated using the absolute 
distance from a point on the surface of the sphere to where it intersects the cube. This resulted 
in the situation that the external energy progressively got smaller as the sphere was deformed to 
approximate the cube. Thus to provide a consistent external force the decision was taken to find 
the centroid of the object and then the distance from the centroid of the sphere to the point of 
intersection on the cube is used to provide the external force.

The calculation of the internal energy resulted in a significant modification of the concept 
of internal energy as defined in (Molloy & Whelan 2000) because the internal energy provided

l4The normal for each face is determined such that it projects away from the surface o f the object and the normal per 

vertex is calculated using formula A .32 in Appendix A



a method of incorporating the elastic and rigid properties of mesh-lines15. The elastic properties 
provide the mesh with its flexibility to deform and the rigid constraints gives the mesh its structure. 
In addition, the rigid properties of the mesh-lines cause the lines to attempt to return to their 

reference length. In 3D, the elasticity of the mesh is essential to allow one shape to deform to 
approximate another and the rigidity is important to ensure that the structure is maintained and to 
preserve the characteristics of the shape that is being deformed. In contrast to the initial concept of 
the external energy, as the sphere is modelled the distance between the vertices on the sphere will 
increase at each iteration as they are pulled towards the cube. Thus at each successive iteration, 
the calculation of the internal energy will have a greater effect in the energy Equation and will 
reduce the significance of the external energy and ultimately stopping the minimisation process. 
To provide a constant internal force, the concept of relative internal energy is introduced, i.e. the 
significance of the internal energy is relative to the average distance between the vertices of the 
sphere.

The effects of the internal and external energies are fully investigated in this section using the 
following tests where the sphere is actively deformed to approximate the cube:

• The sphere and the cube centred at the origin with the sphere completely enclosed by the 

cube,

•  The sphere completely enclosed in the cube but offset from the origin.

•  The sphere offset from the origin but not completely enclosed within the cube.

•  The sphere with different vertices having different rigidity

•  The sphere completely enclosing the cube.

In Figure 5.46 the sphere and the cube are centred at the origin and the cube completely encom­
passes the sphere. The rigidity of each vertex of the sphere is the same and is set to be 255 (see 
Chapter 4) permitting significant deformation at each iteration. In addition, the value of oti is 0.1. 
This corresponds to the step size at each iteration. It should be noted that in each Figure shown 
in this section that the shape being deformed has the faces of each polygon shaded and the shape 
that it is being approximated is represented as a mesh. In Figure 5.46 (a) the initial position of the 
sphere and the cube are illustrated then the position after 2, 10 and 46 iterations are shown. It is 
observed in Figure 5.46 (b) that the effects of the deformation process are not uniform. The reason 
for this is that the normal vector calculated at a vertex on the surface of the sphere will intersect 
the cube at different angles resulting in different calculations for the external energy resulting in 
a non-uniform deformation of the sphere. After 10 iterations the sphere has started to take on the 
properties of a cube although no clearly defined comers exist and its size does not closely approx­
imate the cube. The final position of the deformed sphere is shown in Figure 5.46 (d). The process 
is halted when the distance between the vertices on the surface of the sphere and cube is reduced 

to zero or approximately zero.
Analysing the results it is seen that the comers and the edges of the cube are not well approxi­

mated. The reason for this can be found in general nature of the modelling tool, i.e. that in certain

i5A  mesh-line is defined as the line that connects two vertices in the mesh
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(a) (b)

(c) (d)

Figure 5.46: The results for the first active-mesh trial involving a sphere placed inside and at the 
centre of a cube, (a) shows the initial shapes, (b) shows the evolution after 2 iterations, (c) shows 
the iterations after 10 iterations and (d) shows the final shape of the sphere after 46 iterations.

instances the shapes that is being deformed will not have any edges and if the nearest vertex to the 
point of intersection on the cube was chosen this would result in multiple vertices being pulled to 
the same point. In the results generated, the vertex of the object being deformed is pulled to its 
point of intersection on the surface of the bounding object. This was deemed appropriate, because 
for example, in the situation that the cube is defined using six planes one for each side16 , all the 
points on the sides of the cube would be pulled to the eight comers. If the accurate approximation 
of the cube is required this could be achieved by having an additional processing stage applied 
when all the vertices are located on the surface requiring the vertices to move to the nearest vertex 

on the bounding surface.
The second test procedure is illustrated in Figure 5.47. In this situation the sphere is completely 

contained within the cube although offset from the origin. The rigidity of each vertex of the sphere 
is the same and is set to be 255, see Section 4.6.1. This permits significant deformation at each 
iteration. In addition, the value of a* is 0.1. This corresponds to the step size at each iteration. 
In this situation, the modelling terminates after 58 iterations. Again in this situation the effects 
of the external forces result in a non-uniform deformation of the sphere. In particular after 10 
iterations as illustrated in Figure 5.47 (c), the external forces have pulled the vertices of the sphere 
down towards the cube surface at a faster rate than the upper part of the sphere. This is because 
the update at each iteration controlled by the oti parameter is relative to the difference between the 
current and the set length of the mesh-lines, see Equation 4.10 in Chapter 4.

l6In this section, the same cube and the sphere are used for the generation o f the results shown in Figures 5.46 to 

5.51. These can be achieved with a cube defined with fewer vertices. This is to make it easier to visualise the results
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(a) (b)

(c) (d)

Figure 5.47: The results for the second active-mesh trial involving a sphere placed inside a cube 
and offset from the origin in the x and y direction, (a) shows the initial shapes, (b) shows the 
evolution after 2 iterations, (c) shows the iterations after 10 iterations and (d) shows the final 
shape of the sphere after 58 iterations.

The final surface is not the same as in Figure 5.46 although it shares similar characteristics, 
including the fact that all the points of the sphere rest on the surface of the cube and that the points 
on the surface do not attract to edges or comers and the point of intersection on the surface of the 

cube is different than in Figure 5.46.
The third set of results illustrates the situation when the sphere is not completely enclosed by 

the cube. In analysing this situation it was necessary to modify calculation of the external energy 
because as described above the normal to a vertex on the sphere is projected away from the surface 
to intersect the cube and thus when a vertex of the sphere is outside the cube no intersection can be 
determined, reducing the external energy to zero at a vertex. If no intersection can be determined 
using the normal vector to a vertex then the normal vector is inverted. The intersection of the 
inverted normal vector and the cube is then determined. In this situation the determination of the 
correct intersection has the added complexity that the normal vector will in general intersect the 
cube at more than a single location, i.e. it will pass through one side of the cube and out the other 
side. Thus a distance measure is necessary to determine the closest point of intersection. The 
Equation to calculate the distance between a 3D point and a plane, see Equation A.33 in appendix 
A, is used to establish the closest point of intersection.

The results for this are shown in Figure 5.48. The situation is shown after 10, 20 and 64 
iterations. Here the sphere approximates the shape of the cube although it does not clearly take on 

the true shape of the cube all the vertices of the sphere lie on the surface of the cube.

and to show in Figure 5.51 how the cube is moulded into a sphere
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(a) (b)

(c) (d)

Figure 5.48: The results for the third aetive-mesh trial involving a sphere placed partially inside 
and outside the cube, (a) shows the initial shapes, (b) shows the evolution after 10 iterations, 
(c) shows the iterations after 20 iterations and (d) shows the final shape of the sphere after 64 
iterations.

Figure 5.49 illustrates an alternative approach towards the calculation of the external energies. 
In this situation it was proposed that rather than using the normal vectors to determine the point 
of intersection with the cube that the vector projecting from the centroid of the sphere through the 
vertex would be used to establish the external force acting on a vertex. This provided equally good 
results for the situations shown in Figures 5.46 and 5.47 but when applied to the situation when the 
sphere was not completely bounded by the cube the sphere did not provide a close approximation 

of the cube. In Figure 5.49 the initial position is shown in part (a) and then after 2, 10 and the 
final position are shown in parts (b), (c) and (d) respectively. It is clear that the sphere does not 
approximate the cube. In Figure 5.49 (e) the position of the vertices of the sphere are shown and 
it can be seen that a high concentration of vertices are found on the side where the sphere was 

initially placed.
In each of the tests illustrated in Figures 5.46 to 5.49, each mesh element had the same rigidity. 

This permitted the mesh to be moulded to take on the shape of the bounding volume. In each of 
these cases the termination of the moulding process occurred when all of the mesh vertices on the 
sphere coincided with the bounding surface. However, when the rigidity varies across the surface 
of the object being deformed, all of the vertices will not reach the surface of the bounding shape. 
The reason behind this is that if the number of iteration is permitted to run indefinitely, even the 
highly rigid parts of the object being deformed would coincide with the bounding surface. If this 

happens then the internal structure of the mesh is not preserved. Thus in Figure 5.50, where the 
sphere is defined with varying rigidity, and in subsequent tests with varying rigidity, the moulding

175



(a) (b)

(c) (d) (e)

Figure 5.49: The results obtained with an alternative method for calculating the external energy.
(a) shows the initial shapes, (b) shows the evolution after 10 iterations, (c) shows the iterations 
after 20 iterations, (d) shows the final shape of the sphere after 51 iterations and (e) shows the 
uneven distribution of the vertices of the deformed sphere.

process is terminated when the most elastic points are on the surface of the bounding surface. This 
ensures that the shape approximates the bounding volume but importantly that the structure of the 

highly rigid parts of the mesh are preserved.
Changing the value of the /3l parameter in Equation 4.4 in Section 4.6 has the effect of chang­

ing the rigidity of the surface of the sphere and limits the effects of the external forces acting on 
a vertex. In Figure 5.50 half the sphere has its a j, parameter in Equation 4.4 set to 0.001 which 
is one hundred times smaller than that used in the previous examples. The initial position of the 
sphere is shown in Figure 5.50 with the red part of the sphere representing the part that is free to 
deform and the blue part representing the part that is highly constrained to keep its original shape. 
In Figure 5.50 (a) the initial position of the sphere inside the cube is shown. In Figure 5.50 parts
(b), (c) and (d) subsequent iterations are shown and in part (e) and the final position is shown and 
in part (f) the structure of the moulded sphere is shown.

In the active-mesh implementation of Molloy & Whelan (2000) setting the /3l parameter to 
0.001 would result in a very small movement of the mesh elements and a small change in the length 
of the mesh-lines because the effects of the internal forces are significantly strong in comparison 
to the external forces. However in 3D using relative internal energies results in the fact that the 
internal energies can find equilibrium at different distances from the centroid of the shape. Thus 
as the external forces pull vertices towards the bounding shape the effects of the strong internal 
forces will result in the shape maintaining its original structure while expanding or contracting 

towards the bounding shape.
In the following set of tests the cube is deformed to take on the shape of the sphere. Firstly
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Figure 5.50: The modelling of a sphere with half the vertices having strong rigidity and half having 
high elasticity (a) shows the initial shapes, (b) shows the evolution after 10 iterations, (c) shows 
the iterations after 20 iterations, (d) shows the iterations after 30 iterations, (e) shows the final 
shape after 37 iterations and shows (f) shows the structure of the moulded sphere.

the sphere and the cube have been scaled to be approximately the same size, resulting in parts of 
the cube being inside the sphere. Different stages of the modelling process are shown in Figure 
5.51. In Figure 5.51 (a) the initial positions of the sphere and the cube are shown, in part (b) the 
positions are shown after 10 iterations and after 30 iterations in part (c) and final position is shown 

in part (d).
The results of the deformation show that the cube can be deformed to take on the shape of the 

sphere and that with such a shape it is possible to gel a good approximation. In particular, with no 
edges and comers the sphere is well approximated by the deformed cube which has less vertices 

than the sphere17.
In Figure 5.52 an example of how a primitive shape can be moulded to take on a complex shape 

is shown. In particular, this example shows how a sphere can be deformed to take on the shape of 
the head of the underlying model. In Figure 5.52 (a) the initial geometry of the sphere and the head 
are shown. In parts (b), (c) and (d) the objects are shown after 5 ,10 and 20 iterations respectively. 
The sphere has high elasticity and low rigidity allowing significant surface deformation.

Assessment of the 3D Fitting

The moulding of the sphere to take on the shape of the cube is assessed from two perspectives. The 
first measure, quantifies the difference in volume of the sphere and the cube. The second measure 
determines the distance from each tri-face on the sphere to the nearest point on the surface of

l7The sphere has 946 vertices and 1890 polygons while the cube has 295 vertices and 588 polygons.

(d) (e) (f)
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(a) (b)

(c) (d)

Figure 5.51: The modelling of a sphere starting with a cube (a) shows the initial shapes, (b) shows 
the evolution after 10 iterations, (c) shows the iterations after 30 iterations, (d) shows the final 
shape.

the cube. The accuracy of the fitting can be determined by the values in Table 5.7. In each case 
the difference in volume is less than 10%. The 10% difference corresponds to the fitting of the 
constrained sphere to the cube. In this case part of the sphere is constrained to preserve its shape. 
In Figure 5.46 the difference is 7% this is accounted for because the sphere can not completely 
deform to the corners of the cube. In the other examples, the fitting is closer to the bounding 
volume. In particular, in Figure 5.52. The difference has reduced to 2%, which indicates a highly 
accurate fitting of the sphere to the head. This is important because it provides the flexibility of 
the active-mesh technique to mould to approximate a particular shape even when starting with a 

geometric primitive. In Table 5.7 the

initial sphere 
volume /voxels

cube volume 
/voxels

final sphere 
volume /voxels

difference

Figure 5.46 5.57 (radius = 1.15) 13.52 12.53 7%
Figure 5.47 5.57 (radius = 1.15) 13.52 13.12 3%
Figure 5.48 5.57 (radius = 1.15) 13.52 12.15 10%
Figure 5.50 5.57 (radius = 1.15) 13.52 10.81 2%

initial cube volume sphere volume final cube volume difference
Figure 5.51 13.52 11.84 11.52 3%

initial sphere volume sphere volume final head volume difference
Figure 5.52 7.05(radius = 1.29) 11.84 6.95 2%

Table 5.7: The difference in the shapes volume before and after fitting process. In each case the 
dimensions of the cube are 2.382 x 2.382 x 2.382.
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(a) (b) (c)

(d) (e) (f)

Figure 5.52: The modelling of a sphere to approximate the head of the underlying model. The 
initial position of the sphere and the head arc shown in (a) and the moulding at 5, 10 and 20 
iterations is shown in (b), (c) and (d). (e) and (f) show two additional views of the moulded sphere 
after 20 iterations.

In Table 5.8, the difference between the centre of each tri-face on the underlying model is 
presented. The centre of each tri-face is chosen because in the highly elastic cases the vertices 
are located on the surface of the bounding shape and thus a zero difference measure would result. 
The results in Table 5.8 provide a measure of this distance. In particular, these results highlight 
that the final distance between the centre of each tri-face and the bounding volume is less than 
one pixel in each case, illustrating an accurate fitting to the bounding volume and in particular, the 
difference between the model and the bounding volume in Figure 5.52 is 0.0097 which indicates a 
very accurate fitting. This illustrates that it is possible for the sphere to be deformed to accurately 
represent the head which concave and non-concave surfaces.

average distance at 0 iterations average distance at final iteration
Figure 5.46 0.5316 pixels 0.0123 pixels
Figure 5.47 0.5316 pixels 0.0137 pixels
Figure 5.48 0.7316 pixels 0.1837 pixels
Figure 5.50 0.4374 pixels 0.1207 pixels

0.0208 pixels(for red part of sphere) 
0.2413 pixels(for blue part of sphere)

Figure 5.51 0.6023 pixels 0.0120 pixels
Figure 5.52 0.3786 pixels 0.0097 pixels

Table 5.8: The average distance, measured in pixels, from the surface of the underlying shape to 
the bounding volume, measured before and after the moulding process.
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The overall result of the fitting shows that it is possible for one shape to moulded to take on 
the shape of another and that the accuracy of the approximation is determined by the user defined 
parameters a ,  and a^. This particularly evident in Figure 5.50 where the highly constrained part of 
the sphere with at set to 0.001 and a i  set to 0.03 which gives a larger error than the unconstrained 
part of the sphere.

5.6.3 A pp lica tio n  o f Active-M eshes to H u m a n  M o de llin g

This section provides a description of how the active-meshes are applied to the modelling of hu­
mans. This describes how the constraints are included and how the shape deforms under the 
influence of multiple objects. This occurs because the bounding volume can either be a continu­
ous surface or can be formed using a number of sub-surfaces, and also each of the body parts of 
the underlying model is a separate object. Thus, it was first necessary to define a super-mesh class 
that can group several sub-objects that combine to form some overall object. An illustration of the 

class structure is shown in Figure 5.53.
The super-mesh contains three variables that are used for scaling and positioning of all the 

objects relative to each other. In particular the maxjuals and minjuals contain the maximum 
and minimum coordinates for all the coordinates that make up the sub-objects in the group. This 

is used to establish scale-factors for the object. The centroid is used for the positioning of the 
objects. The super-mesh also contains a set of vectors that contain information for a sub-mesh, 
which is important in establishing the forces and maintaining the structure of the meshes. This 
is not directly incorporated in the mesh structure, as it is shared by each of the vertices that form 
an object. The mesh class structure contains the information associated with a single mesh el­
ement (or vertex). The position coordinates contain the set and current positions of the vertex 
and the oldset position is used when the set position is updated in the following iteration. The 
index ̂ pointer is a reference list to the index of the vertices connected to the current vertex.

The effects of this are shown in Figure 5.54 where the underlying model which consists of 16 
separate meshes and the bounding surface which consists of six different elements are aligned in 
3D. The underlying model is first vertically scaled to be approximately the same size as the bound­
ing volume. Then, if necessary, it is scaled horizontally and then the depth is scaled. This ensures 
that the bounding volume and the underlying model approximate each other. The alignment of the 
four other bounding volumes and the underlying model are shown in Figure 5.55.

In the back and front view in Figure 5.54 the model and the bounding volume the arms are not 
perfectly aligned with the arms of the model. The alignment of the arms is important, because if 
the arms are badly aligned then the external forces will pull all points to one side of the arm on the 
bounding volume. The alignment is performed by rotating the arm about the z —axis. The angles of 
rotation are determined from key features that are illustrated in Figure 4.11 in Chapter 4. The same 
parameters are available for the underlying model. The angle of rotation is the angle between the 
vertical line passing through the left or right shoulder and the line joining the shoulder and either 
the max-horizontal or min-horizontal points. An example of how the angles are calculated 
is shown in Figure 5.56 parts (a) and (b). The vertices of the model are transformed under the 
transformation that maps the model’s shoulder’s highest vertex to the origin. The vertices are 

first rotated through the angle obtained for the model and then rotated back through the angle
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Figure 5.53: The class structure for the super-mesh class and the associated mesh class. The 
vectors in the super-mesh class contain lists of data that is important for each mesh but is not 
directly incorporated in the mesh class structure.

established from the individual’s silhouette. The results of the rotation are shown in Figure 5.56 
part (d). The angles between the vertical for each of the arms on the model and the five silhouettes 

are detailed in Table 5.9;

Bounding volume left arm (degrees) right arm (degrees)
model Figure 5.56 (a) 38° 38°
Figure 5.56 (c) 16° 18°
Figure 5.55 (a) & (b) 24° 18°
Figure 5.55 (c) & (d) 18° 20°
Figure 5.55 (e) & (f) 24° 28°
Figure 5.55 (g) & (h) 63° 59°

Table 5.9: The angles between the vertical and each of the arms for the bounding volumes gener­
ated in Section 5.5.

Furthermore, the width of the arms is not clearly identifiable in the side views thus, there is 
an uncertainty in the shape of the arm consequently the arms must have a strong rigidity to ensure 
that the shape of the arms is preserved. The a x  for the arms is set to 0.3 and indicated in Figure 
5.58 by the parts of the model shaded green.

The first test to see how the underlying model deforms to the bounding volume produced the 
result in Figure 5.57 (a). In this situation, the values of oti and ax  are set to 0.1 for each mesh 
element. To try and improve the results and to ensure that the mesh vertices moved towards the 
correct surface the idea of constraint planes are introduced through which a vector normal to a 

vertex cannot pass. If the normal vector passes through the plane before it intersects a mesh face, 
then it is not considered as a valid intersection. The planes are shown in Figure 5.57 (b). The

181

Scaling Variable 
max_vals 
min_vals 
centroid

Mesh and associated vectors 
Vector Mesh 
Vector normals 
Vector indexjist 
Vector norm aljndexjist 
Vector planes

Super Mesh



(a) (b) (c)

Figure 5.54: Three views of the aligned underlying model and the bounding volume generated in 
Figure 5.39.

planes are introduced using the key feature points illustrated in Figure 4.11 in Chapter 4. In Figure 
5.57 (c) the result of the deformation are shown when the planes are included.

The application of the internal constraints to determine how the model can deform is important 
to preserve the realism of the model while deforming to the shape of the bounding volume. The 
user has the option to specify the strength of the internal and external constraints that act on 
particular section of the object being deformed or else the defaults can be used (Defaults are used 
for the modelling of particular shapes and are preserve highly irregular parts of the underlying 
mesh e.g. the face attempts to retain the same structure counteracting the effects of the external 

forces attempting to pull the vertices towards the bounding surface.).
Two methods are proposed to enable the specification of the internal constraints. The first, 

involves projecting the mesh to a 2D plane and the user clicks on the regions that are to have 
particular rigid and elastic properties. The user also has the option to specify how many lev­
els18 should be effected by this change. This results in the changing of the colour of that vertex. 
Projecting the mesh to a 2D plane is important, because when navigating around a 3D structure 
some parts are occluded. The second approach, enables the user to specify the internal parameters 

directly on the mesh in 3D.
The specification of the constraints is made using an interface that is provides the user with 

the ability to select certain vertices and assign it a particular value of a d  and ad. Two examples 
of how the constraints are assigned are shown in Figure 5.58.

I8A  level in this context relates to the vertices connect to the selected vertex. For example, i f  the level is zero then 

the selected vertex has its values o f a ;  and (xl set, i f  the level is one then the vertex selected and the vertices connected 

to it are set, etc.
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Figure 5.55: (a) and (b) show two views of the aligned bounding volume and the underlying model 
for the bounding volume in Figure 5.40. (c) and (d) show two views of the aligned bounding 
volume and the underlying model for the bounding volume in Figure 5.41 (e) and (f) show two 
views of the aligned bounding volume and the underlying model for the bounding volume in 
Figure 5.42 (g) and (h) show two views of the aligned bounding volume and the underlying model 
for the bounding volume in Figure 5.43.
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1 1
(a)

(c) (d)

Figure 5.56: (a) shows an example of how the angle of rotation is calculated on the model, (b) 
shows the equivalent angles on the captured individual, (c) shows the original position of the arms 
before their position has been corrected and (d) shows the corrected arm position.

(a) (b) (c)

Figure 5.57: (a) shows the effects of modelling the human without constraints, (b) shows the 
constraints introduced as planes and (c) shows the effects of the planes when only the external 
energy is used to deform the underlying model.
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(a) (b)

Figure 5.58: (a) shows the default initialisation of the constraints on the human model, (b) shows 
an alternative set of internal constraints. In (a) the areas highlighted in red have strong rigidity and 
the areas in white are free to deform. In (b) the areas highlighted in blue have strong rigidity, in 
greed have strong rigidity and strong elasticity and the areas highlighted in red have weak rigidity 
and strong elasticity.
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In Figure 5.54 (c) it is clear that the head requires strong constraints to maintain the internal 
structure. Different combinations of internal forces have been applied to the face to maintain 
the structure. Initially, the area around the eyes nose and mouth had strong rigid parameters but 
the parts of the face surrounding the features deformed to make the face unrecognisable, Thus, 
the entire face is strongly bound together with strong internal constraints. Examples of the head 
deforming to take on the shape of a cube and a sphere are shown in Figure 5.59. In both situations, 
the initial head is shown in Figure 5.59 (a) and the internal constraints are ai and a* are set to 
0.001 for the face, and qj is set to 0.01 and a ,  is set to 0.01 for the rest of the head.

Modelling of the Head

(a) (b) (c)

(d) (e) (f)

Figure 5.59: The application of active-meshes to moulding the head into a cube and a sphere 
while maintaining the internal structure of the face, (a) shows the initial head. The blue region is 
highly constrained and maintains it structure, (b) and (c) show two views of the final shape that 
approximates the square. In (d) the shape of the head deformed partially to the sphere and in (e) 
and (f) show two views of head deformed to the sphere.

Table 5.10 contains the results of moulding the head to take on the shape of a cube and a 
sphere. The first set of results measures the difference in volume between the head and the cube 
and the sphere. This provides a measure of how the head has been moulded. The second set of 
test provides an error measure based on the distance from the centre of each tri-face on the head 
to the bounding surface. This second measure permits the average error across the surface to be 
measured. The distance measure shows that while the vertices, shaded in red, on the head are on 
the surface of the cube and sphere respectively, the blue parts are not on the surface. This results in 
a larger average difference in volume than in Table 5.8. The tri-faces generated using the vertices 
are not on the surface although in both cases illustrated in Table 5.10 the average difference is 
small, at sub pixel level. In both cases, the average distance from each tri-face is greater for the
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blue parts of the head because the internal constraints preserve the internal structure. Examining 
the distance from each tri-face the distance is substantially less than one pixel.

initial head 
volume /voxel

bounding volume 
/voxel

final head 
volume /voxel

difference

head to cube 7.18 13.52 11.87 12%
head to sphere 7.18 10.55 9.5 10%

average distance at 
0 iterations

average distance 
final iteration

average distance 
for blue part

average distance 
for red part

head to cube 0.419 0.196 0.2893 0.2269
head to sphere 0.688 0.141 0.2569 0.1293

Table 5.10: The difference in the shapes volume before and after fitting process and the distance 
between each tri-face on the head and the bounding volume. The dimensions of the cube are 
2.382 x 2.382 x 2.382. and the sphere has radius of 1.58

Modelling of Body

The modelling of the human is carried out as a single iterative task. The only requirements before 
the models can be moulded is that the models are aligned in 3D and that the internal constraints 
have been assigned to highly detailed parts of the mesh and any additional constraints that are re­
quired to limit the deformation of the model have been defined. If the above-mentioned constraints 
are not satisfied then the deformation of the model cannot be predicted.

In Figure 5.61, the internal constraints are set according to Table 5.11. In this situation, the 
face has strong rigidity and the arms have weaker value of rigidity where as the rest of the body 
is highly elastic. The corresponding values are detailed in Table 5.11. In 5.61 (a), the initial 
model and its bounding volume are shown, in (b) an intermediate stage in the deformation of the 
underlying model is shown and in (c) the final position of the underlying model is shown with its 

bounding volume.

body part a; Oti body part Cii Oti
head 0.1 0.1 face 0.01 0.01
left upper arm 0.05 0.03 upper body 0.1 0.1
left fore arm 0.05 0.03 pelvis 0.1 0.1
left hand 0.05 0.03 thighs 0.1 0.1
right upper arm 0.05 0.03 calf 0.1 0.1
right fore arm 0.05 0.03 feet 0.1 0.1
right hand 0.05 0.03j neck 0.05 0.03

Table 5.11: The constraints that are applied to the different body parts of the underlying model.

The deformation of the underlying model can be assessed from a number of perspectives. The 
parts of the model that have high elasticity deform to adopt the shape of the bounding volume. 
These correspond to the parts of the models that are shaded in red. The parts of the model that are 
shaded in green have adopted the shape defined by the bounding volume, but do not converge to 
the bounding volume. The primary reason for this is that the process of moulding the underlying
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model is terminated after a certain number of iterations. The user can determine this or it can be 
determined when the parts of the model that are highly elastic have been moulded to adopt the 
shape of the bounding volume. If the moulding process is permitted to run till all control points 
are positioned on the bounding volume, the influence of the internal constraints would be reduced. 
In the results shown for the modelling of the underlying model in this section the results are shown 
after 10 iterations. The parts of the model that are shaded blue have high rigidity it can be seen 
that features on the face are preserved while closely approximating the bounding volume.

To enable the face to be successfully deformed to approximate the individual’s bounding vol­
ume the head is realigned independently of the rest of the body. This is necessary, because of 
the fine detail of the face. Initial tests highlighted that because of the strong rigidity between the 
mesh elements of the face that more than 40 iteration were required for the head to approximate 
the mould of the bounding volume.

The realignment is achieved automatically by using the key features in the side view of the 
individual’s silhouette. In particular the position of the nose is used to set the depth and height at 
which the head of the underlying model is placed. This alignment ensures that the deformation of 
the underlying model’s head will be consistent with the bounding volume and that the number of 
iterations required to have convergence will be reduced.

Observing the deformation of the hands and feet, using the active-mesh implementation, it can 
be seen that with the rigidity parameter set to 0.05 and the elasticity a t set to 0.03 the hands 
and feet are free to deform to the bounding volume, but still retain characteristics of the underlying 
model, i.e. the fingers and toes can still be recognised. If the elasticity is reduced then the hands 

can retain more closely the shape of the underlying models hands.
Examining the structure of each of the body parts, to see how they deform under the influ­

ence of the bounding volume it is noticed, that the internal constraint that bind the mesh elements 
together, stop individual mesh elements from deforming sporadically to distant parts of the bound­
ing volume. This reduced the need to use more constraint planes across at each of the joints to 
preserve each of the body parts. On a static model the importance of this may be overlooked but 
when the model are to be animated this is particularly important. Examples of this are shown in 
Figure 5.60.

The results of the application of active meshes to human models created corresponding to the 
images in Figure 5.2 are shown in Figures 5.62 to 5.65. In these figures parts of the model are not 
equally well preserved, for instance, around the crotch in Figure 5.62 the surface is not continuous. 
The constraint planes are the primary reason for this because if the nearest point on the surface of 
the bounding volume is at the behind of the plane then the line normal to a vertex will not locate 
the nearest point and the next nearest point on the back of the bounding volume. This can result in 
a cavity in the surface. This illustrates the importance of accurately positioning the planes.

188



(a) (b)

Figure 5.60: Illustration of how the shape of the individual body parts are well preserved in the 
active-mesh implementation, (a) shows the left upper leg the lower leg and the foot and (b) shows 
the upper arm, the forearm and the hand.
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Figure 5.61: An example o f the deformation o f the model to approximate the bounding volume in
Figure 5.39.
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Figure 5.62: An example of the deformation of the model to approximate the bounding volume 
Figure 5.40.



(d) (e) (f)

Figure 5.63: An example o f the deformation of the model to approximate the bounding volume in
Figure 5.41,
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Figure 5.64: An example o f the deformation o f the model to approximate the bounding volume in
Figure 5.42.
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This section describes how the underlying model is deformed to take on the shape of the bounding 

volume. The use o f  the volume measure in Section 5.6.2 cannot be reliably used to determine 

how close the model approximates the bounding volume because the structure of the underlying 

model has a certain amount of overlap where the body parts are connected. Thus, the combined 

volume for each o f the parts would be greater than the volume of the underlying model. Therefore 

this section presents the accuracy of the moulding process using the distance from the centre of 

each tri-face on the underlying model to the bounding volume. Figure 5.66 (a) and (b) show the 

bounding volume that is produced when the silhouettes of the underlying model are recombincd. 

Figure 5.66 (c) shows the underlying model aligned with the bounding volume and Figure 5.66 

(d) shows the final model after 20  iterations.

Accuracy o f Active Meshes Applied to Human models

(a) (b) (c) (d)

Figure 5.66: The modelling of the underlying model, (a) shows the front view o f the bounding 
volume created for the model, (b) shows a side view of the models bounding volume, (c) shows 
the initial model aligned with the bounding volume and (d) shows the moulded underlying model 
after 20 iterations. From the 2D silhouettes of the model, the height o f the model is 615 pixels, the 
width from left hand to right hand is 220 pixels and the depth of the model 80 pixels.

Figure 5.67 depicts the decrease in error over 20 iterations. The figure shows the combined 

error for each of the body parts at each iteration. The light blue line shows the total MSE error at 

each iteration. The pink line shows the MSE error related to the parts o f the model that are shaded 

in green. The MSE error associated with the red parts of the model are illustrated with yellow line 

and the dark blue line shows the MSE error associated blue parts o f the model. The total MSE 

error is generated by adding each of the MSE error for the red, green and blue parts o f the model. 

At each iteration the error progressively decreases by a smaller amount. This occurs because the 

movement o f each point is related to its distance from the bounding surface.

The errors illustrate that the MSE error decreases at each iteration and the role o f the user
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Figure 5.67: Illustration of how the MSE error decreases over 20 iterations.

defined constants dictate how this decrease proceeds. For example, the error associated with the 

red parts o f the model is calculated with oil set to 0 .1  and a* set to 0 .1  providing significant 

deformation and thus the MSE error decreases faster than that for the green19 and blue20 parts of 

the model. In the results shown in Figure 5.67. The variance at each iteration was calculated. The 

variance for the parts of the model shaded in red decreased from 1.70 pixels 1.57 pixels over the 

20 iterations. For the blue part of the model the variance decreased from 1.30 pixels to 0.98 pixels 

and the parts the model shaded in green the variance decreased from 0.86  pixels to 0.82 pixels.

5.7 Discussion on Results

The approaches described in Chapter 4 have been fully implemented and the testing was completed 

at each stage using real-world images. In addition, a core set of images has been selected to 

highlight the creation of the models. Using these images allows a comparison to be made between 

each o f the models that are created. The results presented in this chapter show an evolution from 

the texturing of a default model using the captured data through to an implementation of the active- 

meshes that enables the moulding of an underlying model to take on the shape of the bounding 

volume that is generated using two of the captured views.

The results at each stage provide a greater personalisation of the underlying models using the 

captured data. In the first approach, the personalisation of the final model is achieved using the 

captured images to texture the underlying model. This is suitable for use in virtual worlds and in 

computer games where the characters in the game can be personalised to take on the appearance 

of the individual. In the approach, these results were enhanced using the localisation of facial 

features to improve the texturing on the face. The improvement of the texturing of the face was

19The green parts of the model shaded green have chl set to 0.5 and on set to 0.3
20The blue parts of the model shaded green have uj, set to 0.1 and a, set to 0.1

—* - blue part of model 
•  - green part Df model 

red part of model 
- tota for model
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chosen, as the face contains significant detail that can be used to identify the individual in a virtual 

world. While the use of the facial features improves the texturing o f the underlying model, it does 

not use the shape information that is extracted using the active template.

A first approach to incorporate the shape information is achieved through the creation of a 

bounding volume using the extracted silhouettes. The bounding volume lacks the fine detail that 

is necessary to provide true personalisation of the model. The texturing of the bounding volume 

improves its quality and in certain applications, it can provide a suitable representation of an 

individual. Apart from the texturing of the bounding volume, the main element that is associated 

with this method is that the shape of the individual is strongly incorporated in the model.

Finally, to improve the quality o f the model and to incorporate the shape information, the 

application of the active-meshes is used to mould the underlying model to take on the shape of 

the bounding volume. A series of tests are detailed that show how the internal, external energy 

and combination o f the energies effect the deformation of the objects. The strength of the internal 

forces have been varied to preserve parts of the model that have strong rigidity. This is an important 

procedure that enables the reconstruction of fine features that are not present in the bounding 

volume. Furthermore, the use of the underlying model ensures that joint positions, which are 

essential for animating the model, can be located and thus, the final model can be animated with 

existing animation streams.

Animation of the models

In each case, the animation of the models was considered. This is important for the integration 

of the model into a virtual environment. With the exception of approach 4, the models can be 

animated using existing animation streams. This is possible because the joint locations on the 

underlying models are known. In Figure 5.68 (a), (b) and (c), different views of the animated 

models produced in approach 3 are shown. In each case, the models are seen undergoing a series 

of movements. In Figure 5.68 (d), (e), (f) and (g), different views of the animated models produced 

in approach 5 are shown. In each case, the models are seen walking across the screen in different 

directions.

Template Minimisation Issues

The role of the template minimisation described in Section 5.3.5 illustrates that, although the ini­

tialisation of the template is successful even in cluttered backgrounds, the correct minimisation 

cannot always be automatically obtained. Against simpler backgrounds, the minimisation proce­

dure performs very well. This is particularly important because the final position of the template 

provides the input for the 3D reconstruction of the individual. Thus to ensure that the template 

can accurately extract an individual from the environment, it is realised that a high contrast back­

ground is best suited to the use of the template if limited set of images are used for the extraction 

of the individual. Since the extraction of the individual from a highly cluttered environment is a 

challenging task, the template fitting procedure facilitates user interaction if certain control points 

get trapped in local minima. In Section 5.3.6, the fitting of the 2D template to the silhouette of the 

model was tested. The results indicated that the template can accurately define the booundary of

197



» •

M

(d) (e)

Figure 5.68: Animation of the models, (a) to (c) show the animation of the models created in 
approaches 2 and 3. (d) to (g) show the animation the active mesh models.

the an individual. The accuracy increases as the number of control points increses.

Texturing of the Models

The texturing of the underlying model using the normal vectors to determine which of the captured 

images should be used to texture a particular part of the model proved successful in approaches 

1 —4. The limitations o f the texturing procedure are evident in approach 5 when the direction of the 

normals on the underlying model can undergo significant variation from the original orientation, 

and in certain situations texturing using the normals will result in the front o f the model being 

textured with image information in the back image if  the normal is not calculated correctly.

As highlighted in approach 3, the effects of natural light on the images can cause significant 

variation in the quality o f the final models. This is particularly evident on the faces in Figure 

5.64 and 5.65. Thus, the use o f image blending as used in (Lee, Goto & Magnenat-Thalmann 

2000) would improve the quality of the final models. This is particularly evident on the side of the 

models.
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Active-Meshes

The implementation of active-meshes, developed in Chapter 4 were tested for the moulding of 

different shaped objects. In particular, it was shown that it is possible to rebuild fine detail that 

is not possible to reconstruct from a limited number of views. To determine the accuracy of the 

moulding process, two measures were devised, based on a volume measure and distance measure. 

The volume measure was used in modelling simple objects, where a comparison between the 

volume of the deformed object and the volume of bounding object were made. These results 

illustrated that the internal constraints determined how close the deformed object approximates 

the bounding volume. In certain situations when the internal constraints are weak, the moulded 

object volume was within 2% of the bounding volume. However, when the two objects were 

not correctly aligned this difference in volume grew to 10%. The distance measure provides 

a means to show how close the underlying model approximates the bounding volume. In the 

simple cases illustrated in Figures 5.46 to 5.51 the difference is below 1 pixel. However when 

the sample measure is applied to the human model as a whole the difference increases because 

the model has fine detail around the face, hands and feet, thus there are significant model vertices 

needed to describe these parts of the model. Thus the difference between each of these parts of the 

body and the bounding volume increases. Furthermore, the error increases because the model has 

overlapping body parts and some of the vertices are not on the surface, thus the distance between 

these vertices and the bounding volume surface is greater.

Comparison with other Techniques

The results presented provide a selection of models that can be incorporated in different virtual 

worlds and improve an individual’s virtual experience. The key elements that can be used to assess 

the quality of the model are:

•  The complexity of the reconstruction and capture process

•  The photo-realism of the final models,

•  How accurately the shape of the model approximates that o f the individual,

•  The number of polygons used21,

•  The animation of the model and how realistic the animation is.

In the procedures described, the complexity o f the reconstruction process is reduced to what is 

believed is a minimum. In particular, the reconstruction of the model is achieved from two views. 

The resulting bounding volume can be combined with an underlying model to incorporate the an­

imation information. Alternative approaches have been presented for improving the photorealism 

of the models through the use of facial features. This provides a low-cost method to texturing the 

face of the model. This is in comparison to the techniques o f Hilton et al. (1999) and Lee, Goto 

& Magnenat-Thalmann (2000), where a complete 3D image of the head is created. In (Lee, Goto 

& Magnenat-Thalmann 2000), a separate facial reconstruction is used to improve the quality of

2lThis is not possible since other approaches reviewed do not discuss the number of polygons used.
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the model. This requires the capture of additional images and makes it unsuitable for a home-user 

to create an accurate head model, and in (Lee & Magnenat-Thalmann 2000), a semi-automated 

feature localisation process is required to identify the key features on the face. In Section 5.4.3, a 

method using facial features is presented to improve the reconstruction of the face of the model. 

This is a technique that can be simple and reliably carried out.

Hilton el al. (1999) discuss some limitations of the low-cost reconstruction process. These 

limitations include the fact that fingers cannot be localised in either the side or front views, and 

with the size o f the images the width o f the hand is only measures a few pixels. Thus, in the final 

reconstruction, the hands of the underlying models are preserved. A similar issue exists with the 

reconstruction of the feet. These concerns are evident in the work of Lee, Goto & Magnenat- 

Thalmann (2000), and in (Wingbcrmhle et al. 1997, Weik et al. 2000), the reconstruction of the 

hands is not attempted, and in certain situations the created models have no hands. In the ap­

proaches developed in this thesis, it is not possible to automatically extract the arms in the side 

views because they are within the visual hull of the silhouette generated from the side view, but 

an accurate approximation o f the arms achieved. If the user permits the hands to deform, it is pos­

sible that they can approximate the hand of the captured individual. Moreover, additional shape 

information is extracted to attempt a better reconstruction of the feet.

In (Hilton et al. 1999), the capture process is simplified to enable the automated creation 

of human models and in (Lee, Goto & Magnenat-Thalmann 2000), the process is extended to 

real environments but requires user assisted identification of key features, and in (Lee, Gu & 

Magnenat-Thalmann 2000), it is stated that only simple environments are considered. Both of 

these approaches have simpler capture set up than those proposed in (Weik et al. 2000) and (Kaka- 

diaris & Metaxas 1998). In the capture process presented in this thesis this is further simplified 

permitting the use of a standard digital camera in any environment without the use o f any special 

lighting requirements. In (Lee, Goto & Magnenat-Thalmann 2000), the possibility of using energy 

minimisation techniques are ruled out because of the time to convergence to the correct solution. 

However, it is shown in Section 5.3.3 that when the individual is localised in the image and the 

active contour is expressed in the form of a template, active contours provide a suitable method 

for extracting the individual from the background, and in highly cluttered environments, the use 

of the template significantly reduces the user interaction for feature identification.

A summary o f other aspects that can be compared between the existing methods and the cur­

rent implementation are shown in Table 5.12
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Boyle Hilton et al. 
(1999)

Lee et al. 
(2 000)
Lee et al. 
(2 000a)

Villa-Uriol
et al. (2003)

Wingbermuhli 
et al. (1997) 
Weik et 
al.(1998)

Number 
of views 
required

4 4 3 video cap­
ture

video cap­
ture

size o f im­
ages

640 x  480 756 x  582 N/A N/A N/A

Segmentation 
from back­
ground

Automatic
Template
Fitting

chroma­
keying

heuristic 
based edge 
growing

frame differ­
ence

background
subtraction

Method of 
segmenta­
tion

automatic automatic manual automatic automatic

Environmenta
constraints

indoor lighting blue 
screen

none turntables
multiple
cameras
studio

turntables
multiple
cameras
studio

Feature
identifica­
tion

Automatic Automatic Manual N/A Manual

Method of 
reconstruc­
tion

silhouette 
based with 
3D active- 
meshes

deforming 
model using 
captured 
data

deforming 
model using 
captured 
data

silhouette
based

silhouette
based

Animation 
of the final 
model

default
streams

default
streams

default
streams

N/A N/A

Intended ap­
plication

Virtual Hu­
man

Virtual Hu­
man

3D Avatar 3D Avatar video con­
ferencing

Table 5.12: Further aspects of comparison between various approaches.
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Conclusions

Chapter v 7 _____

The creation of virtual human models for the population of virtual worlds and the enhancement 

of a user’s virtual experiences is a challenge that has been met with the provision of an array of 

techniques that facilitate the creation o f numerous models. The quality of the model depends on 

the quality of the captured data, which is influenced by the capture equipment and the environment 

in which the data is captured. This is one of the key innovations o f this research, as none of the 

reviewed literature attempts to enable a home-user to create their own models in unconstrained 

environments. This is realised in a system that imposes no environmental or equipment constraints 

on the capture of the data and no pre-required level of computational competency to complete the 

creation or modification of the 3D model.

Two main themes are present and interspersed within the bounds of this research. The first 

is the extraction of the individual from real environments, This resulted in the creation of a tem­

plate that can be automatically used to extract an individual from a real environment. Alternative 

approaches, using a combination of filters and imposing restrictions on the environment were con­

sidered, but ultimately rejected, as they were not deemed robust enough to extract an individual 

from more complex backgrounds.

The second major theme that is fundamental to this research, is the personalisation of the 

human model from the extraction of sufficient data from a limited set of images, to create a realistic 

3D model that can be integrated into any environment. This was initially achieved by the texturing 

of an underlying model and expanded to provide greater personalisation o f the model by providing 

a silhouette based reconstruction of the individual using the extracted silhouettes of Lhe individual 

in two views. This provided a bounding surface that is unique to the individual. This bounding 

surface was considered as an active surface that was used to actively mould an underlying model 

to take on the shape of the individual. The approach developed incorporated both external and 

internal constraints, appropriately weighted and combined in an energy minimisation framework 

that provides the home-user with a modelling tool that can be uniformly applied to the modelling 

of any object with extensive control over the deformation of the model.
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6.1 A Brief Review

In chapter two, active contour models are described as a method for extracting the boundaries of 

arbitrarily shaped objects from complex backgrounds. The review focused on the development of 

the active contour models, as a method of incorporating both high-level notions of object segmen­

tation and low-level aspects of feature detection to generate a sophisticated method that is active in 

nature. The review also identified alternative formulations o f the active contour model that incor­

porate additional energy functionals or alternative solutions to the energy minimisation equations. 

This review concludes with an investigation of templates that incorporate the active framework 

and a description of active-meshes that are applied to tracking objects.

Chapter three describes a range of techniques, that have been applied to the 3D reconstruction 

of objects. The techniques described have contrasting requirements facilitating the creation of high 

quality models with the incorporation of LoD information and photo-realistic models that are gen­

erally lower quality models, but can be enhanced using photographic information available from 

captured images. It is stated that no unified approach exists for the reconstruction of an individual 

and that technology and applications are the major factors that influence the quality of the final 

model. In this chapter, the minimum requirements necessary to enable a home-user to capture 

sufficient data to create a photorealistic model are presented. These requirements impose strict 

limitation in terms o f the capture device (number of cameras, and image size) and reconstruction 

techniques that can be used while generalising the capture environment.

Chapter four sets out the approaches developed to generate human models in real environ­

ments. The approaches detail the progression from the capture and extraction of individuals from 

simple environments to the more complex backgrounds with a high level o f clutter. In addition, 

the personalisation of the final models is continually increased starting with a simple texturing of 

an underlying model and progressing to incorporate an individual’s shape into the modelling of 

the final model. Each of the approaches developed is automated to facilitate a home-user to simply 

create a photo- realistic model. Within this chapter the major contributions of this research are set 

forth, and it is clearly outlined how the objective of providing a generally accessible system for 

the creation of photo-realistic human models in any environment is achieved.

The texturing method developed in the first approach enables the simple texturing of the under­

lying model to take on photo-realistic appearance of the individual, using the data captured from 

either two or four views. This extraction of the image data is enhanced in the second approach 

to enable the extraction of the individual from real cluttered environments by the introduction of 

an innovative whole body constrained template, automatically initialised close to the individual in 

any environment and that can adjust to the pose the individual adopts. The personal data that is 

extracted using this template is textured to the underlying model using the previously developed 

texturing approach. This approach improves the quality of the models generated, although the 

models generated have the same body. Thus, an approach that enables the greater personalisation 

of the final model is required.

This is first achieved in approach three, where the facial features of the individual are consid­

ered to improve the quality of the texturing of the face. This was considered important, as it is 

the most detailed part of the model and contains significant detail, most importantly to humans, to
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allow the recognition or distinction of the individual.

The personalisation of the model is extended in approach four, by providing a silhouette- 

based reconstruction of the individual, using the silhouettes that are extracted in each view. This 

approach facilitates the incorporation of the shape information that is extracted using the human 

template in approach two. This shape information is sufficient to create the maximum silhouette 

equivalent of the individual, and when textured, exhibits the photo-realistic appearance of the 

individual, facilitating the creation o f models that are specific to an individual.

In approach five, the task of animating the bounding volume is considered in conjunction 

with the reconstruction of the non-convex surfaces that cannot be recovered using silhouette based 

reconstruction techniques. This manifested in a novel implementation of active-meshes and their 

extension to 3D to deform an underlying model in an active framework. The net result of the 

active-mesh moulding of the underlying model facilitates the reconstruction of the non-convex 

parts of the model and the incorporation of joint information that cannot be reliably extracted 

from the silhouettes1.

In chapter five, the approaches are verified through extensive testing of each part of the ap­

proaches developed in chapter four. The first phase of the testing involved the capture of the im­

ages to create the personalised models of the individual. In particular, this involved an examination 

of the images to determine a level of clutter and the application of filters and other segmentation 

techniques to the extraction of the individual from different environments. This was preceded by 

the testing of the human template. This involved firstly determining that the underlying active con­

tour model exhibited the properties o f general active contour models. Then the incorporation of 

specific constraints to enable the generation of the template were verified. The initialisation of the 

template and the minimisation of the energy within were examined to show how the individuals 

were extracted from their environment. The fitting of the template was then compared to ground 

truth measures, by fitting the template to the silhouette of the underlying model. This provided 

a consistent method to verify that the templates can accurately extract the individual from their 

environment.

Subsequently, the texturing process developed in approach one was tested and a selection of 

models were created. These models were enhanced using the facial feature information. Follow­

ing this, validation of silhouette-based reconstruction of an individual was provided, by generating 

and texturing of personalised bounding volumes. The generation of active-mesh models was con­

sidered and different scenarios were examined to see how the model could be deformed to take 

on the appearance of the bounding volume. The active-mesh implementation incorporates both 

large and small-scale deformations and the framework permits parts of the mesh to preserve the 

internal structure and parts of the mesh to deform to approximate the bounding volume. This ap­

proach provided a uniform way for modelling the underlying model to take on the appearance of 

the bounding volume but it was also demonstrated that it could be used to mould any shape to take 

on the appearance of another. This was extensively tested and the results are analysed to determine 

how accurately the bounding volume is approximated.

In particular, the quality o f  the models was considered by placing images of the individual in 

3D space to examine the success of the reconstruction process.

'More generally, the active-meshes framework can be applied to mould any surface to approximate another.
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6.2 M ajor Contributions

There are five key contributions central to this research and a number o f associated contributions.

The major contributions are:

•  The provision of an automatic system for the creation of photo-realistic human models using 

images captured in real environments. This system does not require specialised equipment 

and does not require the images to be capture in a studio. Equally, the system does not 

require expert knowledge to create the models. This system is a flexible approach that 

can overcome possible errors in the capture process and provides a simplified approach to 

reconstructing the individual’s model.

•  The creation of a constrained human template that can be used to accurately extract an 

individual from any environment. This is not described or presented in any of the literature 

reviewed. This template incorporates the energy minimisation framework of active contours 

and uses dynamic programming to include constraints to control how it deformed to the local 

image data. The rate of convergence is improved by using a search space perpendicular to 

the contour. In addition, the template is automatically scaled, adjusted and initialised within 

the image using a novel subtraction technique to enable its automatic application in the 

captured images.

•  A silhouette-based reconstruction of the individual from two views was achieved, thus val­

idating it as technique for human model creation. This was achieved in approach four, in 

which the silhouettes are combined using simple elliptical contours to approximate the non- 

convex data of the individual, while remaining within the visual-hull. This ensures that the 

shape information that is contained in the captured images is used to personalise the shape 

o f the model.

•  The implementation of active-meshes in 3D provides a tool that can be generically and uni­

formly applied to the deformation of any object. In particular, defining the underlying model 

as an active surface facilitates greater personalisation of the individual’s model, through the 

provision of internal constraints, that control how rigidly the internal structure is connected, 

and external forces that work to mould the underlying model to the bounding volume. The 

balance of the constraints is shown in its uniform application to the human model with 

different parts of the body having different constraints. This ensures that the fine features 

on the face can be remoulded to approximate those of the captured individual. In general 

terms, this technique can be applied to the deformation of any shape to approximate any 

other shape. It facilitates the incorporation of constraints that can be simply defined to set 

the rigidity and elastic parameters at a particular mesh point. The internal and external 

constraints were fully tested on a range of shapes.

6.2.1 Associated contribu tions

Some of the minor contributions associated with this research are:
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•  An extensive review of active contours as a method for the extraction of both known and 

unknown objects from any environment and a review of techniques that have been success­

fully applied to the creation of human models. The template developed defined criteria for 

the automatic insertion or removal o f control points to improve the extraction o f data from 

a real environment.

•  A review of existing techniques for the reconstruction of objects from a limited set of views 

and an examination of existing techniques for the creation of photo-realistic human models. 

This resulted in the identification o f the key elements that are essential for the development 

of a flexible low-cost human modelling technique.

•  The use of the B-spline contour as a method for the definition of the silhouettes provides a 

convenient method for storing 3D shape information.

•  The texturing of the underlying model and the final models in the different approach is 

achieved using the normal vectors to determine which image should be used for the texturing 

of a particular mesh-face. This provides a simplified method for the texturing of the final 

models without requiring the generation of a 3D image.
%

•  The active-mesh implementation provides a technique that is used to mould one shape to 

approximate another and can be used as a technique for reducing the number of polygons 

required to represent a particular object.

•  The use of a 2D view of the object in the active-mesh approach to modelling provides a 

simplified method for the assignment of constraints to the object being deformed.

6.2.2 L im itations Identified In  This Research

The quality of the models is relative to the clothing that the individual is wearing. If the individual 

is wearing loose fitting clothes, then it is difficult to accurately extract the key features that are 

essential for the texturing of the models in the initial approaches and the creation of the bounding 

volume in approaches four and five.

The creation o f a photorealistic human model is important for the enhancement o f a home- 

users experience in a virtual environment, but from a limited set of views captured with a single 

camera, it is not possible to accurately reconstruct an individual. In particular, it was identified in 

Laurentini (1997) that is not possible to reconstruct a concave surface from a finite set of views. 

Additionally, the individual is wearing clothes that define the shape of the model, and thus if the 

clothes of the individual are changed then the model has to be modelled appropriately to account 

for the change of clothing.

The creation of the models is only one aspect that is important in the personalisation of a 

human model. Capturing the animation data associated with an individual is vital in personalising 

the individual’s model and to give true realism to the model. This is not possible from a limited 

set of views.
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6.3 Publications associated with this research

The following publications stem directly from this research. Each publication describes a particu­

lar aspect of this research:

Adaptive Active Human Model Reconstruction E. Boyle and D. Molloy, IADAT Journal of 

Advanced Technology on Imaging and Graphics, Vol. 1(1), September 2005, pp. 16-18, ISSN 

1885-6411.

Flexible Extraction of Human Shape in Real-Time Using Motion-Tuned Active-Contour 
Based Segmentation O. Bompis, M. Sorin, E. Boyle, D. Molloy, In Proc. IMVIP2005 - Irish 

Machine Vision & Image Processing Conference, pp. 243-244, 30-31 August 2005.

Flexible Silhouette Based Creation of Virtual Humans E. Boyle and D. Molloy, In Proc. 

IMVIP2005 - Irish Machine Vision & Image Processing Conference, pp. 143-150, 30-31 Au­

gust 2005.

Automatic Construction of 3D Human Models from Only Two Orthographic Projections P.
Moore, E. Boyle, D. Molloy, In Proc. Eurographics Workshop (Ireland), Institute of Technology 

Blanchardstown (ITB), Dublin, pp. 33-40, 3rd June 2005.

A Review of Techniques for the Extraction of Shape Information for the Creation of Virtual 
Humans E. Boyle and D. Molloy, In Proc. Eurographics Workshop (Ireland) , Institute of Tech­

nology Blanchardstown (ITB), pp, 25-32, Dublin, 3rd June 2005.

Definition of B-Spline Templates for the Automatic Extraction of Human Shape Information
E. Boyle and D. Molloy, In Proc. IADAT-micv2005, Madrid, Spain, pp. 123-127, March 30 - 

April 1 2005.

Using Facial Feature Extraction to Enhance the Creation of 3D Human Models E. Boyle, B. 

Uscilowski, D. Molloy, N. Murphy, In Proc. WIAMIS05 - 6th International Workshop on Image 

Analysis for Multimedia Interactive Services, Montreux, Switzerland, 13-15 April 2005.

Framework and Applications for Mobile Networks Using Synthetic Multimedia E. Boyle, F. 
Brisc, S. Cooray, B. Uscilowski, A. Brosnan, R. Sadleir, C. O’Sullivan, In Proc. 3G2004, London, 

UK, pp. 644-648, 18-20 October 2004.

Generation and Animation of Virtual Humans E. Boyle, In Proc. IWSSIP04, Poznan, Poland, 

pp.143-146, 13-15 September 2004.
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An Adaptive Model Based Approach to the Creation of Virtual Humans In RINCE Research 

Seminar Series, Dublin, Ireland, November 2004.

6.4 Future Directions for Research

In this final section, a number of natural extensions to this research are considered that could be 

used to enhance the usefulness of the methodology. In conception, this thesis focused on utilising 

aspects from a wide range of image processing and computer vision techniques and thus the future 

work described in this chapter is varied relating to improvements in both domains.

Firstly, an alternative implementation of the 3D active meshes is considered that uses NURBS, 

introduced in Chapter 2 and appendix A. In particular, this approach is discussed as a possibility 

to improve the shape o f the bounding volume and integrating the weighting factors into the cal­

culation of the external forces in the 3D active meshes. Secondly, the possibility to use different 

templates that are generated based on the information used to initialise the template. This could, 

in turn, be used to provide a method for automatic selection of the underlying model that closely 

approximates the individual. Thirdly, in Chapter 4, the possibility o f using different initialisation 

techniques was discussed. Motion tuned active contours provides an interesting alternative for ini­

tialising the contour and are discussed in greater detail. Another further possibility is examining 

the shape of the bounding contours that are extracted and combined in 3D. This opens the possi­

bility of using the shape information in medical applications as a first stage diagnosis in weight 

related and posture analysis. Finally, another extension to this research is to investigate the pos­

sibility of animating the skin or the clothing of the model using the control points that define the 

surface of the model.

6.4.1 Incorporation of NURBS into the Active-Mesh Formulation

To enable the extension of the active mesh formulation to 3D, the external surface was expressed 

in terms o f B-spline control points interpolated with a cubic polynomial curve. In Mcegama & 

Rajapakse (2003), the advantages o f using NURBS representations were highlighted. In particular, 

the use of the weighting factor enables the curve to interpolate certain control points and to ensure 

that the B-spline curve can be used to accurately progress into cavities in the models.

The introduction o f the weighting factors in the active-mesh formulation could be used to 

increase or decrease the effects of an external force at a point. In particular, the current system 

used the Euclidean distance to determine the external force that is exerted on the underlying model. 

This could be extended to exert a greater force to pull the shape being deformed into deep cavities 

on the object to be approximated.

In addition, the re-formulation of the underlying model as a B-spline or NURBS surface could 

be attempted to allow for greater deformation of the underlying model. This also presents the 

possibility o f introducing additional control points when the surface is strongly deformed under 

the influence of the bounding surface.

Auxilia ry Presentations
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6.4.2 Automatic Selection of Templates

Apart from the initial scaling of the template, the bounding body gives additional positional in­

formation that can be used in the choice of template that is used. When the minimisation process 

is terminated, the relative positions of the key control points can be used as an indication to the 

best template to use. In particular, if an individual is wearing a dress then the position of the key 

point representing the crotch will be considerably lower than the centroid and this could be used 

to select a model that wears a dress.

Alternatively, the information in the side views could be used to select the best template based 

on side profiles of the models. This could be used improve the fit of the individual to the model 

and to improve the convergence time in the active mesh approach.

6.4.3 Template Initialisation Possibilities

With the advances in the consumer technology market, the possibility exists that an individual will 

take advantage of video camera and the new video enabled mobile phones, and this provides an 

ideal cost effective method to implement the motion tuned active contours discussed in Chapter 

4 and Bompis et al. (2005). The information that is extracted provides an ideal method for the 

initialisation of the template and then to apply the templates created within this thesis to accurately 

locate the boundary of the individual in the images.

In addition, the requirement for a fixed viewing position could be removed and gradient based 

or block-matching method utilised to align the different views. This would still require that the 

distance between the individual and the camera remains approximately constant between captures 

or else some scaling information should be included to ensure that the correct shape information 

is extracted.

6.4.4 Skin Animation using B-spline Control Points

In this thesis one of the goals was to produce a human model that could be realistically animated 

within a virtual environment. While this has been achieved with a model that can be predefined 

animation streams, the fact is that to provide realistic animation, it is necessary to animate the skin 

or clothing of the model. This is a time consuming procedure that involves the calculation of the 

movement of each element of the model’s surface. Determining this could be improved by firstly 

generating the 3D model that approximates the individual and then using this in conjunction with 

a real-time active contour tracker to feed the information about the moving control points to the 

surface model. This could be used to detail how the individuals skin moves. This approach to 

modelling has influence beyond the scope of human modelling and could be used to model how a 

piece o f fabric moves.
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Appendix

Splines and the Representing of Curves 
and Surfaces

A.l Introduction

This appendix provides a description o f the existing methods for the representing of curves and 

surfaces. It also describes how the different curves are used in different applications. There 

is no single representation that is appropriate for all classes o f  shapes. Consequently, multiple 

representations have been used to describe different shapes efficiently (Koivunen & Bajcsy 1995). 

Unless the curves or surfaces being approximated are piecewise linear, large numbers of endpoint 

coordinates must be created and stored to achieve reasonable accuracy. In general, the idea is 

to use functions that are of higher degree than linear functions for representing (approximating) 

curves (Foley et al. 1990).

Any curve can be described as an array of points although this is not the most efficient means 

of storing the information about the curve and it is difficult to determine the exact shape of the 

curve and finding integral properties. Analytic equations when possible are generally used and 

provide the designer with better control over the shape and behaviour of the curves.

A polynomial function is an example of a function that is popular because they are convenient 

for computational purposes. Its general form is:

71

p (x )  =  a nx n +  an_ ix n_1 +  .. +  a \ x l +  a0 =  ^  a ix 1 (A .l)
¿=o

where n  is a nonnegative integer and ao, a i, . . ,a n are real numbers. The polynomial p (x )  is 

said to be of degree n  if it has this representation and an ^  0 .

Additionally, curves can be expressed either explicitly1 or implicitly2. These methods are suit­

able for representing certain types o f curves and surfaces but they are not applicable for describing 

all types of curves. In particular, the use of explicit functions do not permit the multiple values of 

y  for a single value of x. The functions are not rotationally invariant. Implicit representations can

'Explicit functions express y and « as functions of x, i.e. y = f(x) and 2 = g(z) 
im p lic it functions are expressed in the form f(x, y, z) = 0

A
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give rise to several solutions for a single value and additional constraints are needed to control the 

curve and these cannot be incorporated into the implicit equation(Koivunen & Bajcsy 1995, Foley 

et al. 1990).

A.2 Parametric Curves

Curves arc in general represented in parametric or implicit form. In the parametric form points 

on a 3D  curve are defined by using three polynomials in a parameter, t, one for each of x, y 

and 2 . The coefficients of the curve are selected such that the curve follows the desired path. 

Various degrees of polynomials can be used and at present the most practical are cubic polyno­

mials although in certain applications it is necessary to use higher degree polynomials. Implicit 

representation of curves is not as computationally convenient a representation but it is sometimes 

required and there exist methods for converting from parametric representation to implicit repre­

sentation (Anand 1993). The additional smoothness is achieved by approximating the curve by 

a piecewise polynomial curve instead of piecewise linear curve used in the implicit and explicit 

representations.

A.2.1 Parametric Cubic Curves

Cubic polynomials are most frequently used because lower degree polynomials do not offer suffi­

cient flexibility in controlling the shape of the curve, and higher-degree polynomials can introduce 

unwanted wiggles and also require more computation. No Lower-degree representation allows a 

curve segment to interpolate (pass through) two specified end points with specified derivatives at 

each endpoint.

A parametric cubic curve is defined as

3

P (t)  =  ^ a iti (A.2)
i= 0

where P ( i)  is a point on the curve as shown in Figure A .l

Given a polynomial with its four coefficients, four known values are used to solve for the 

unknown coefficients. The four known coefficients may be the two end points and the derivative 

at the endpoints. This allows the creation o f four independent equations that can be solved to find 

the correct solutions.
Parametric cubic polynomials that define a curve segment P (t)  =  [rc(t), y ( t) , z(t)] are of the 

form:
x ( t)  =  ax t 3 +  bxt 2 +  bxt 2 +  dx

y (t)  =  ayt 3 +  byt2 + byt 2 +  dy 0 <  t < 1 (A.3)

z ( t)  =  az t 3 +  bzt 2 +  bzt 2 +  dz

To deal with finite segments of the curve, without loss of generality, we restrict the parameter

t  to the [0,1] interval. This can be expressed in matrix format, P (t)  =  T .C ,  where C  is a 4 x 3

coefficient matrix. Another important reason for using parametric cubic polynomials is that they 

are the lowest-degree curves that are non planer in 3D . The derivative of P (t)  is a parametric
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Figure A. 1: point on a parametric cubic curve.

tangent vector of the curve.

Continuity in Param etric Curves at the Joints

There are two type of continuity discussed in relation to parametric curves. The first is geometric 

continuity which exists if  the directions of the two segments tangent vectors are equal at a joint 

point, For geometric continuity it is not necessary that the magnitudes of the tangent vectors are 

the same. If the tangent vectors of two vectors are equal in magnitude and direction a joint point 

the curves are said to have first-degree continuity, C 1 in t  and similarly if n th  derivative are equal 

at a joint the curve is C n continuous. In general, C 1 implies geometric continuity G 1 (Foley et al. 

1990).

Types of Param etric Curves

There are three main types o f curves that are created using parametric cubic polynomials, these

•  Hermite curves are defined using two endpoints and two endpoint tangent vectors. Each 

curve segment is defined from 0 to 1. This is to ensure that the end point correspond to the 

parametric variable t. This can be expressed compactly in matrix form.

•  Splines are piecewise parametric representation of geometry with a specified level of para­

metric continuity. The cubic spline is represented by a piecewise cubic polynomial with 

second order derivative continuity at the common joints between segments and is defined 

by four control points. Splines have C 1 and C 2 continuity at the join points and come close 

to their control points but generally do not interpolate the points.

•  Bezier curves are defined by two endpoints and two other points that control the endpoint 

tangent vectors. Unlike Hermite curves and splines which interpolate the control points 

Bezier curves provide an approximate curve that closely matches the control points.

2 2 2



Splines are long flexible strips of metal used by draftsmen to layout the surfaces of airplanes 

etc. They are particularly useful, if the focus is on describing of geometry of manufactured parts 

or free-form shapes (Koivunen & Bajcsy 1995). They have second order continuity. The math­

ematical equivalent of theses strips, the natural cubic splines, is a C °, C 1, C 2 continuous cubic 

polynomial that interpolates (passes through) the control points. This is one more degree of con­

tinuity than in either Bezier or Hermite curves thus splines are smoother than either o f these.

If the segments o f cubic spline are parameterised separately, so that the parameter t  varies 

between 0 and 1 for all segments. This is termed a normalised cubic spline and is in fact a particular 

case of Hermite interpolation.

A.3 B-Splines Curves

Splines are ideal for defining the shape of an object because unless they are severely stressed 

they can maintain second order continuity. Splines can be defined mathematically as continuous 

cubic polynomials that interpolate a number of control points. The polynomial coefficients for 

natural splines are dependent on all n  control points. Thus changing the position of one of the 

control points affects the entire curve and involves operating on an n  +  1 by n  +  1 matrix (Foley 

et al. 1990, Piegl & Tiller 1997, Koivunen & Bajcsy 1995). An alternative to the general spline 

representation is that of B-splines which consist of curve segments that are only dependent on a 

few of the control points. This offers an enhancement over the use of splines as the movement 

of an individual point does not require the modification of the complete curve and thus greater 

local control is achieved over how a contour deforms and moving a control point affects only a 

small portion of the curve. In addition to this it makes the B-spline contours suitable for real-time 

applications (Blake & Isard 1998). B-splines have the same continuity as natural splines, but do 

not interpolate the control points. The two continuity conditions on a segment come from the 

adjacent segments. This is achieved by sharing control points between segments.

When using splines to describe shapes it is possible to increase the polynomial order d but it 

is preferable to increase the number of spans (segments) used. Usually the polynomial order is 

fixed at quadratic (d  =  3) or cubic (d  =  4). This is important and leads to computational stability. 

B-splines are essentially piecewise polynomial curves. In Figure A.2 a curve C (u )  consists of 

m (=  3) nth-degree polynomial segments. C (u) is defined on u  €  [0,1]. The parameter values 

are called break points.

B-splines are constructed as a weighted sum of N b  basis functions B n (s), n  — 0 ,1 , . . .  N b - i- 

In the simplest case each basis function consists of d polynomials each defined over a span of the 

s axis. Spans can be taken to have unit length and they are joined at knots see Figure A.3.

The constructed spline function is of the form:

N i-i
^ 2  x n B n {s) (A.4)
n=0

where x n arc the weights applied to the respective basis functions B n (s). This can be expressed 

compactly in matrix notation as x (s )  =  B ( s ) T Q 3;

223



Figure A.2: Piecewise polynomial curve with three segments. 

Where B (s )  =  (B q (s), -B i ( s ) ,  B n b _1 ( s ) ) t  and vector weights

Q æ = (A.5)

XNB-l
By convention B-spline basis functions are constructed in such a way that they sum to 1 at all 

points:

Ni-
B n (s ) =  1 for all s (A. 6)

n=0

In the simple case of a quadratic B-spline with knots spaced regularly at unit intervals the first 

B-spline basis function has the form

f
2

f - ( s - | ) 2 i f l < s < 2

i î r â Ü  
2

0 otherwise

if 0 <  s  <  1 

if 1 <  s  < 2 

if 2 <  s <  3
B 0(s) =

and the others are simply translated copies B n (s) =  B q(s -  n ) (Blake & Isard 1998).

(A.7)

Uniform Periodic B-Splines

A uniform periodic B-spline is the simplest form o f the B-spline curve. In general it provides a 

good approximation o f the curve based on the control points. A uniform cubic B-spline, N i( t)  is 

a cubic C 2 basis function as shown in Figure A.3.

The parametric intervals or knots, t, within which the basis function is defined are equal. Thus 

the name uniform B-splines. The knots form a vector o f real numbers called the knot vector, in 

non decreasing order. The function is centred at U +  2 and has a zero value t  < ti  and t  >  ¿¿+4- 

The non zero part of the function is composed o f four polynomials, N 0i3, N i ^ ,  N 2 ,a, ^ 3,3 . A
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Figure A.3: A  uniform cubic B-spline, basis functions iVj(i).

B-spline curve is obtained by multiplying this approximation function by a subset of four control 

points in the vicinity o f the curve and can be represented by the following equation:

P i(t)  =  N o^V i +  N 1>3Vi+1 +  N 2tsVi+2 +  Ns,sVi+3 (A.8)

where Vi are the control points defining the B-spline curve.

For B-splines the control points are not actually interpolated but approximated and thus the 

curve does not always pass through the individual control points, see Figure A.4. This can be 

forced by changing the continuity at the control points and gives a situation where the control 

points are doubled at each point and then the B-spline curve passes through each point. Although 

like the other curves the possibility to reuse the same blending function at each interval ensures 

that the curves can be rapidly calculated (Piegl & Tiller 1997).

Each of the four cubic polynomials has the form

Â -i3 — CLj -j- bjt c \ t 2 d j t3 (A.9)

This results in sixteen unknowns that are solved using equations that are generated using the fact

the derivatives exist and imposing continuity constraints at the joint points. This results in the

following B-spline basis functions.

No,3 =  g i3

N i s  =  ^ ( - 3 i 3 +  3t2 +  3i +  l )  (A. 10)
6

N 2i3 -  \ ( 3 t 3 -  612 +  4)
o

^3,3 -  ^ M 3 +  3 i2 —3i +  l )  
b

General B-spline Representation

The constructed spline function is
Nn

P(t) = J 2 N^Vi (A -11)
i=0
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Figure A.4: A  uniform cubic B-spline shown with control points and control polygon.

where Vi is the set o f control points and represents the appropriate blending functions of

degree (k -  1). A  .spline is said to be o f order k or degree (k — L) when delined mathematically as 

a piecewise (k -  l ) s i  degree polynomial that is C k~1 continuous. In other words, the degree o f the 

polynomial does notcxceed (A: - 1) inside each interval and the position and [1 to (fc-2)]

derivatives are continuous.

Thus for the case o f the cubic B-spline k =  4, the degree = (k -  1) =  3 and second degree 

continuity is satisfied In general the i f,‘ blending function is defined by the follow ing

recursive equation

A M * )  =
1 for i j  < t <  ij+ i

0 otherwise

(A. 12)

(t  — tj) 

(ti+k—l ~ î)

{ti+k -  0  
{¿i+k ~  ¿ i+ l)

A W - i ( 0

where the knot vector is [ i j ,__¿i+t- The only constraint on the knot vector is that it must be non-

descending, i.e the values o f  the elements o f f, must satisfy the relationship U <  tx+\ and the same 

value should not appear more than k times (higher than the order o f the spline.

In any B-Spline curve, the degree (k -  1), the number o f control points and the number of



knots are related to each other by the following formula

(m  +  1) 

!

( n + l )  +

I

no. control points

k

I

order of curve

(A. 13)
no. knots

or

(A .14)

the knot vector is therefore [to ,......... , t n+k] and there are three types o f knot vectors

Periodic/Uniform B-Splines

These B-splines are characterised by equal spaced knot values. This equal spacing is implicit in 

the definition in Equation A. 10. Uniform knot vectors are all periodic and each segment of the B- 

splinc function is a translated copy of the first. The uniform B-spline curves do not interpolate the 

control points and if the curve is open ended then the uniform B-spline curves do not interpolate 

the first and last points except in the linear case.

Non-Periodic B-Splines

A non-periodic basis on a finite interval is more complex than the periodic basis and permits the 

inclusion of multiple knots3 at its ends to reduce the continuity at the endpoints and force the 

B-Spline curve to interpolated the endpoints. Each knot that coincides reduces the continuity at a 

point by one degree. When the continuity decreases to C °  discontinuities are introduced in (Blake 

& Isard 1998).
In (Anand 1993) the non-periodic knot vector has repeated knot values at its ends with multi­

plicity equal to the order of the parametric function thus with a control polygon consisting of four 

control points the knot vector has the following form:

and in general, these conditions must be satisfied for a knot t i  in a non-periodic knot vector starting 

at i 0 :

order No. of knots Nonperiodic 

k m  =  n  +  k  knot vector

2 6 [001233]

3 7 [0001222]

4 8 [0000111]

(A.15)

U — 0 —» i < k 

ti =  i  — fc +  l —> f c < i < r i  

U — n  — fc +  2 —» ¿ > n

(A. 16)

3A  multiple knot is classified as two knots that approach one another or coincide

227



L i n e a r  ( k - 2 )

Figure A .5: Nonperiodic B-splines with varying degrees: from linear to cubic. 

Non-Uniform B-splines

A non-uniform knot sequence can be obtained by introducing multiple knots at interior knot values 

and thus reducing the continuity. Additionally, the spacing between the knots may be unequal, for 

example the knot sequence [0 1 2 4 5 ] .  Non-uniform spacing has certain advantages over uniform 

spacing, these include:

•  greater control over the shape of the curve

•  overcomes the possible oscillations that may occur in uniform B-Spline curves as a result of 

unevenly spaced control points

Figure A .6: Nonuniform cubic B-spline with knot vector[0,1 ,1 ,2 ,3 ,3 ,4 ,5 ,  5 ,6]. 

Non-Uniform Rational B-Splines (NURBS)

NURBS have become one of the most important geometric elements in design and are standard 

within most cad and animation packages (Koivunen & Bajcsy 1995, Qin & Trezopoulos 1996). 

NURBS include Bezier and B-Splines as special cases. NURBS are characterised by the intro­

duction of weights in the non-uniform representation of B-spline. This is the most general form
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of B-spline curve and provides the greatest variety of shapes and has the potential to pull the B-

spline curve close to or push away from the control points by the introduction of multiple knots, 

non uniform spacing of the knots or the use of the weights.

The weights are incorporated in the B-Spline representation by using homogeneous coordi­

nates (X i,y i,Z i) ,W i

A.3.1 B-Spline Surfaces

It is often desirable to represent shapes using surfaces. B-Spline curves are a desirable means of 

representing surfaces because they provide high quality surface approximation and in addition to 

the continuity property they process local control so changes are limited to a small region which 

makes then suitable in animation applications (Koivunen & Bajcsy 1995). The surfaces lie within 

the convex hull of the control point mesh.

The 3D  B-spline surface is generated by considering the control points as a bidirectional web 

of control points. This is expressed as:

where P a r e  the 3D  control points and U — { 0 ,... ,  0, u p+1 , ..., u r- p- i ,  1, ...1} and V  =  

{ 0 ,... ,  0, Vq+i, . . . ,v s- q- i ,  1, ...1} are two knot vectors that determine how closely the B-spline 

curve approximates the control points. U  has p  +  r  knots and V  has s + q knots.

A.3.2 NURBS Surfaces

The NURBS surface is generated by considering the control points as a bidirectional web of con­

trol points. This is expressed as:

where B j1- are the homogeneous coordinates of the control points and

U =  {0, ....O .iip+i, 1, ...1} and V  =  {0 ,... ,  0, vq+u vs_ 9_ i ,  1, ...1} are two knot

vectors that determine how closely the B-spline curve approximates the control points. U has p + r  

knots and V  has s + q knots. The basis functions are defined recursively and the spacing of the

(A. 18)

(A. 17)

where

(A. 19)

n  m
(A.20)

i=0 j=0

n m
(A.21)

i=o j=0
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knots can be non-uniform and to introduce discontinuities multiple knots have to be introduced in 

the same location.

Polygon Meshes: a polygon mesh is a set of connected polygon bounded planar surfaces. 

Polygon meshes can easily represent open boxes, cabinets and building exteriors.

Some properties of B-Spline and NURBS surfaces include:

p+l p+l q+ 1 <J+1
•  if  U — P ,  and if V  — [6 7 ^ 0 , 7l] then the surface interpolates the four

corners.

•  Affine invariance: is maintained if the affine transform is applied to the control points

•  the surface is completely contained within the convex hull o f the control points

•  if a control point B^- is moved it affects the part of the surface bounded by the rectangle

[ l i j ,  X 1)

A.4 Lines, Planes and Intersections in 3-Space

This section contains a description of geometric entities that are used for representing lines and 

planes in 3D . The equations in this section are based on those in (Anton 1994).

Parametric Equation of a Line

If a line, I, in 3-space passes through the point P 0 =  (x 0, y 0, z 0) and parallel to the non-zero 

vector v  =  (a, b, c) then I consists precisely of those points P (x , y , z )  for which the vector P0P  

is parallel to v  i.e for the scalar t  such that

PoP  =  tv  (A.22)

This can be rewritten in parametric form as:

x  =  x 0 4- ta , y  =  y0 +  tb, z  =  z0 +  tc  (—oo <  t  <  + oo) (A.23)

Param etric Equation of a plane

The equation of a plane is calculated in one of two ways. Firstly, if  to find the equation o f a plane 

passing through a point P a =  ( x a, ya, z0) with a non-zero vector n  =  (a, b, c) as its normal. Then 

the plane consists precisely of those points P (x , y , z) for which the vector P aP  is orthogonal to n

n  ■ PoP =  0 (A.24)
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where ■ represents the dot product4 o f two vectors.

Since PQP  — (x — x0, y — ya, z  — z0), Equation A.24 can be written as

a(x -  x0) + b(y -  y0) + c(z -  zQ) =  0 (A.25)

This is called the point normal form o f the equation o f a plane and is illustrated in Figure A.8.

A  second method for calculating the equation o f the plane when the coordinates o f three points 

are known is as follows. G iven three point Pi  =  (Pox , Pqv, Pqz), P i  — (P tx, Piy,Piz),  and 

Pi =  (P 2z, P2y, P^z) • The three points lie  in a plane and the vectors Pa Pi and P 0P 2 are parallel 

to the plane. Thus PqP\ x P 0P 2 =  (n x , ny, nz) is normal to the plane as it is perpendicular to 

both PqP\ and P0P2, where x  is the cross product5. This defines the normal to the plane at point 

Po and the equation is framed as

nx(x P)x) Poy) ^z(^ Pqz) ~  0 (A .26)

Generation of the Vector Normal to a Plane

The normal vector is a vector orthogonal to a point, a line or a plane. Two vectors are considered to 

orthogonal i f  their dot product is zero. In computer Graphics a normal vector can be used to define

4The dot product or inner product of two vectors is expressed mathematically as

f ||u||||v||co»fl
u ■ v  = < 0

5if  u = (uo, ui, (¿2) and v  = (vo,vi,V2) are vectors in 3-space, then the cross product u x v  is the vector defined
b y  U  X  V  =  ( U 2 V 3 — U 3 V 2 , U 3 V l  — U l V 3 , U l V 2  — U 2 V 1 )
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Figure A .8: Illustration of the point normal form o f the equation o f a plane.

how a surface responds to lighting. The amount o f light reflected by a surface is proportional to 

the angle between the lights direction and the normal.

To calculate a normal for a plane or surface defined by three points, 11, ta, ¿3 - It is then possible 

to define two vectors V\ — t2 -  <1 and v% =  ¿3 — 11. See Figure A.9(a). W ith these two vectors, it 

is possible to compute the cross product between them to find a perpendicular vector to the face. 

The resulting vector is then normalised

Normalisation is calculated by first calculating the length o f the vector and dividing each 

component o f the vector by the vectors length.

This results in the normal vector n  which is defined as

71 — [p'xi Hyi Hz) (A.27)

where

Hz — C jj/L/
n y =  Cy/L

nz =  c jL

(A .28) 

(A.29) 

(A .30)

where c is the vector resulting from the cross product o f vectors i;i and V2 and L is the length of 

the vector, defined as

L — \̂ /Cx x  Cx "I" Cy X Cy I" ('-z X C* (A .31)
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Figure A.9: (a) the vectors used to calculate the cross product for a triangle face and (b) the vector 
normal that results from the cross product o f the vectors V\ and v?-

The Vector N orm a l to a Point o r Vertex

A  problem with assigning a normal per face is ihat the surfaces looks faceted, i.e. the brightness 

o f each face is constant, and there is a clear difference between faces with different orientations. 

Computing a normal per vertex, and not per face provides a smoother surface. An example of this 

is shown in Figure A . 10. Each vertex (excluding the corner and border vertices), is shared by four 

triangle faces. The normal at a vertex should be computed as the normalised sum o f all the unit 

length normal (breach face the vertex shares. This is expressed mathematically

v =  normalised(sum(i;i2 + V23 + W34 + t-Mi)) (A.32)

where Vij is the normalised cross product o f vt and Vj

Distance from a point to a  Plane

The distance D  between a point P0{x0, y0, zQ) and the plane ax + b y  +  cz +  d =  0 is



Figure A. 10: Illustration o f the calculation of the normal per vertex
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