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Abstract 
 

A real-time low-cost vision sensor for robotic bin picking 

Ovidiu Ghita 

Under the supervision of Dr. Paul Whelan 

Dublin City University 

 

Submitted in partial fulfilment of the requirements for the degree  

of Doctor of Philosophy at Dublin City University, 2001 

 
 
      This thesis presents an integrated approach of a vision sensor for bin picking. The 

vision system that has been devised consists of three major components. The first 

addresses the implementation of a bifocal range sensor which estimates the depth by 

measuring the relative blurring between two images captured with different focal 

settings. A key element in the success of this approach is that it overcomes some of 

the limitations that were associated with other related implementations and the 

experimental results indicate that the precision offered by the sensor discussed in this 

thesis is precise enough for a large variety of industrial applications. The second 

component deals with the implementation of an edge-based segmentation technique 

which is applied in order to detect the boundaries of the objects that define the scene. 

An important issue related to this segmentation technique consists of minimising the 

errors in the edge detected output, an operation that is carried out by analysing the 

information associated with the singular edge points. The last component addresses 

the object recognition and pose estimation using the information resulting from the 

application of the segmentation algorithm. The recognition stage consists of matching 

the primitives derived from the scene regions, while the pose estimation is addressed 

using an appearance-based approach augmented with a range data analysis. The 

developed system is suitable for real-time operation and in order to demonstrate the 

validity of the proposed approach it has been examined under varying real-world 

scenes.                                                                    
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      “And the strength of the mental image which impresses and moves them comes 

either from the magnitude or the number of the preceding perceptions. For often a 

strong impression produces all at once the same effect as a long-formed habit, or as 

many and oft-repeated ordinary perceptions…and supposing there were a machine, so 

constructed as to think, feel and have perception, it might be conceived as increased in 

size, while keeping the same proportions, so that one might go into it as into a mill.” 

                                                                                                  The Monadology, 

                                                                                     Gottfried Wilhelm Leibniz, 1714 
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Chapter 1 - Introduction 
 
      The objective of this chapter is to introduce the motivation for the investigation of 

a vision system that provides sufficient information for a bin picking robot to locate, 

recognise and manipulate industrial objects. The background to this research will be 

outlined and the problems that are related to current approaches will be discussed. 

This chapter concludes by presenting an overview of the thesis.  

 

1.1 The problem and motivation 

      In recent times the presence of vision and robotic systems in industry has become 

commonplace, but in spite of many achievements, a large range of industrial tasks still 

remain unsolved due to a lack of flexibility of vision systems when dealing with the 

manufacture of products in small batches (Whelan and Batchelor, 1996). 

      Robots are used to deliver a wide range of products and services in an integrated 

manufacturing environment. In such an environment, the workpieces to be processed 

or inspected are commonly supplied in bins and before these workpieces are 

manipulated it is necessary to have full knowledge of their identity, location, size, 

shape and orientation. Prior to the availability of flexible robotic systems, human 

labour was employed to perform material handling, but in today’s competitive market 

the use of robots for such industrial tasks is playing a more important role than ever 

before. This issue was specifically addressed by Porter et al (1985) when they clearly 

demonstrate that the use of human labour for such tasks has no economical or social 

justification while “the development of robot technologies will require technicians, 

programmers, maintenance workers, and operators”, jobs that offer better work 

conditions but require higher skills1. Thus, the incorporation of robots in 

manufacturing industry is not necessarily about the displacement of labour, but more 

as an answer to the expectation of an increasingly educated labour force and the 

compliance to the recent realities of the world economy.  

                                                           
1 There are important social issues addressed by this paper.  However, a discussion on this topic is 
beyond the scope of this thesis.  
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      The task of locating, recognising and evaluating the position of the objects 

jumbled in a bin is referred in the vision literature as automatic bin picking. Over the 

last two decades vision engineers have tried to address this problem, their efforts 

being concentrated in the development of an adaptable system capable of handling a 

wide range of products.         

      Historically, this problem was tackled using mechanical vibratory feeders where 

vision feedback was unavailable. This solution has certain problems especially with 

parts jamming. Very often, workpieces have shapes that make them impossible to 

orient or can tangle with one another (Kelley et al, 1982). Some parts can be damaged 

or scratched against each other or the orienting device. Furthermore, the mechanical 

feeders are very noisy and the vibrations can be a problem for other parts of the 

system. Another important disadvantage is the fact that these machines are highly 

dedicated. If a design change is made in how the product is manufactured, the 

changeover may include an extensive re-tooling and a total revision of the system 

control strategy. Due to the aforementioned disadvantages, robotic2 vision systems 

represent a cost effective solution (Yoshimi and Allen, 1994).  

      The ability to manipulate objects under visual control is one of the key issues 

required by an automatic bin picking system. With the incorporation of vision 

systems, some information about the scene can be obtained by analysing the images 

taken from the working environment and as a result a robot can be used to perform the 

operations previously performed by mechanical vibratory feeders, while avoiding the 

inconveniencies associated with them. This solution represents a clear step forward 

because due to its increased adaptability it is better suited for batch applications. 

      The bin picking problem has been the subject of research for quite a few years and 

reviewing the existing systems, none of them so far indicates a solution to solve this 

classic vision problem in its generality. While there are many possible ways to explain 

this circumstance, the main facts that hamper the implementation of a generic bin 

picking system are:    

 

• An image is a two-dimensional (2-D) projection of the three-dimensional (3-

D) scene.  

                                                           
2 According to the Robot Institute of America an industrial robot is a “re-programmable 
multifunctional manipulator design to move materials, parts, tools or specialised devices through 
variable programmed motion for the performance of a variety tasks”.   
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• Dealing with clutter and occlusions generated by the randomly placed 

objects in the scene (see Figure 1.1). 

• Recovering the depth (3-D) information of the scene. 

• A meaningful 2-D or 3-D scene interpretation. 

• An invariant to translation, rotation and scaling scheme able to recognise 

and estimate the 3-D pose for general objects.  

• The reflections generated by the object’s surfaces are material and viewpoint 

dependent. 

• Various technical limitations imposed by the precision of sensorial 

information or mechanical constraints introduced to the system by the 

gripper. 

 

 

 
Figure 1.1 A typical scene for a bin picking application. 

 

      The abovementioned problems clearly emphasize that the bin picking task is 

extremely complex. In addition to scene interpretation, the task of dealing with object 

occlusion and the generation of precise 3-D estimation of the scene represent the key 

issues for a bin picking implementation.  

 



Chapter 1. Introduction 

 4 

1.2 Human and robotic bin picking  

      One question that constantly arises is how the human operator can adapt to a 

variety of situations that include bin picking?  It is well known that humans have the 

ability to recognise and manipulate objects that are partially occluded. In this process 

the human operator uses a large amount of perceptual information under normal 

operating conditions3. Depending on the technology, a robotic system would be 

expected to perform better than the human operator at some relatively uncomplicated 

quantitative tasks. While for human labour the efficiency decreases as the time passes, 

a robotic vision system can theoretically work for 24 hours a day, 7 days a week. Also 

it is important to note that the manufacturing environment is often unhealthy if not 

even dangerous, a situation that makes the presence of robots mandatory. 

     To implement a bin picking system with a human-like flexibility is not a realistic 

approach. While some analogies may be useful in the implementation of a robotic 

system, the danger in relying on such human driven approaches is that simpler and 

possibly more efficient solutions can be overlooked (Whelan and Batchelor, 1996). 

This does not mean that vision researchers should abandon the goal of developing 

human-like vision systems. However, no bin picking system in the foreseeable future 

can approach the perceptual and decisional abilities of a human operator and this issue 

will be emphasised in the literature survey that will be presented in the next section. 
 

1.3 Bin picking literature survey 

      Many vision researchers have tried to solve the bin picking problem for a specific 

application. Thus, Kelley et al (1983) proposed a heuristic approach to workpiece 

acquisition without any visual information. A “blind” robot with only tactile-type 

sensorial information could acquire a workpiece by scanning a bin until a contact with 

a workpiece is sensed. Although simple, this technique is inadequate due to the 

amount of time required to find a graspable object. Also, the risk of damaging the 

workpiece or the gripper is significant. Some improvements were obtained by using 

visual feedback. Birk et al (1981) developed a bin picking system able to locate a 

                                                           
3 It is acknowledged that the performance of the human operator is not constant and is highly 
influenced by the external factors. Try to imagine an exhausted, ill or drunk person that attempts to 
perform a bin picking task. 
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graspable surface with good reflecting characteristics. The developed robotic system 

was able to manipulate a single-class of plastic boxes. The key component of their 

system is a simple shrinking algorithm which is applied in order to locate a graspable 

surface situated near the top of the bin. This approach does not use any 3-D 

information to compute the position and orientation of the object in question while it 

is “realistic to compute the pose of a piece in the hand after the workpiece is 

acquired”. This observation might be true as long as during the acquisition the 

workpiece may shift relative to the gripper. Because the workpieces have a simple 

configuration, the pose is estimated when the object is grasped by using one or two 

images. The system can manipulate objects that can be grasped only on planar 

surfaces using a vacuum gripper. Two years later, Kelley et al (1983) extended the 

shrinking algorithm to grey-scale image processing in order to increase its robustness. 

In the same paper they propose an alternative solution to decompose the scene in parts 

by employing an algorithm based on edge propagation.  

      A similar approach was employed by Kelley et al (1982) in the implementation of 

a bin picking system for acquiring cylindrical objects. The key part of the system is 

the jaw gripper which is able to handle a family of objects such as cylinders and 

pieces obtained in the subsequent stages of the manufacturing process. This 

implementation can handle a wider range of applications than the systems equipped 

with vacuum grippers. 

      Dessimoz et al (1984) developed a conceptually related system based on matched 

filtering technique. The principle of this method is straightforward and consists of 

matching local patterns p(i,j) defined on the original image f(i,j). To accomplish this 

goal, a filter h(i,j) is applied and a match with p(i,j) occurs if it produces a peak in the 

output image where p(i,j) is located. The main problem associated with this approach 

is the fact that the pattern to be matched varies with the viewing angle and object 

rotation. Therefore, this technique is practical only when dealing with objects with 

simple shapes, a case when the number of filters necessary to sample the object’s 

appearance is relatively low. 

      The main drawback of the systems described above is that they rely on simple 

algorithms restricted to their applications and consequently their solutions are over-

constrained. Since the systems do not perform the recognition task, the objects 

contained in the bin have to be similar. Also, 3-D information is not available and 
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consequently the position of the graspable region is only approximately known. Thus, 

these systems can only be applied to rigid objects with simple shapes that cannot be 

damaged when they are manipulated. While these assumptions may be acceptable for 

a small range of applications, in most practical cases a flexible system must deal with 

more than one type of object with a wide scale of shapes.  

      Other areas of related research include the work of Rechsteiner et al (1992) in 

which they discuss the implementation of a system for sorting postal parcels. The 

proposed system performs very well for cluttered scenes when the objects are in 

contact but fails when they are occluded. The contour of parcels is identified by using 

the edge structure returned by the Kirsch-compass operators. The 3-D information 

(provided by a range sensor based on optical triangulation) is employed to select a 

suitable parcel for manipulation. If there are no graspable parcels the robot rearranges 

the scene in order to obtain a better configuration. 

      In the paper by Rahardja and Kosaka (1996) a bin picking system for handling 

alternator covers is discussed. Since the alternator covers have a very complex shape, 

it would be difficult to analyse them as independent entities. To cope with this 

situation, the authors highlight the importance of simple entities such as circular and 

polygonal surface patches called landmark features. Therefore, they define the 

recognition and pose estimation of the target objects as those of their landmark 

features. To carry out this concept they developed a scheme for region extraction 

using a split and merge algorithm. Nevertheless, the landmark recognition process has 

to accommodate the anticipated appearance distortion due to viewpoint changes. For 

the purpose of simplifying this process, the algorithm selects a list of landmark 

features that fulfil an aspect criterion. The pose estimation for the selected feature is 

determined using the depth information supplied by a stereo range sensor. Although 

the system is designed for a particular application it is a good example which 

demonstrates the effectiveness of combining heuristic vision algorithms and sensor 

equipped robots to handle a range of robotic applications.   

 

1.3.1 2-D object recognition approaches 

      As noted earlier, a bin picking system has to address three difficult problems: 

scene interpretation, object recognition and pose estimation. These problems were 

found to be more difficult than originally anticipated and despite many attempts still 
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represent a challenge for vision researchers. Henderson (1983) highlighted the object 

representation as an important step in solving many problems in scene analysis. As 

might be expected, the choice of object representation will determine the method 

required for surface extraction. The vision literature indicates that shapes can be 

represented in various ways, but ultimately they can be divided into two main 

categories: 2-D and 3-D representations.  

      2-D surface representations describe the contour or the periphery of a planar shape 

while the 3-D representations describe the objects using various volumetric 

primitives. In this regard, Wechsler and Zimmerman (1988) proposed to use 

distributed associative memory (DAM) as a 2-D recognition component for a bin 

picking system. Their implementation consists of two subsystems. The first 

component derives an invariant representation based on the use of complex-log 

mapping in order to transform an image from cartesian coordinates into polar 

exponential coordinates. This representation is very convenient as long as the 

rotations and changes in scale are transformed into translation in the complex-log 

domain. The second component builds and interprets the DAM by projecting the 

stimulus vector onto the memory space. For this approach, the object under 

investigation has to be placed in the middle of the image while small shifts from the 

centre cause severe distortions in the complex-log mapped image. This issue can be a 

serious problem especially when the objects are overlapped. 

      After a number of years, Tsang and Yuen (1993) suggested the use of difference 

chain code (DCC) for recognising partially occluded objects. When dealing with 

object occlusion the boundaries associated with the scene objects are not completely 

described. To handle this problem, the authors proposed to search only for segments 

of the object’s contour instead of searching for a complete boundary. Because the 

variations in viewing angles determine distortions, a solution to overcome this 

problem relies on using a non-linear elastic matching algorithm based on dynamic 

programming. The results were found to be encouraging but the difficulty in selecting 

relevant contour segments and the computational overhead are the main limitations of 

this approach.  

      The paper by Forsyth et al (1991) investigates different aspects of the application 

of invariant theory to model-based vision. They proposed a recognition scheme using 

the shape invariants (i.e. conics) which are not affected by the transformation between 



Chapter 1. Introduction 

 8 

the object and the image plane. In order to be useful, these invariants must be accurate 

and stable. The authors decomposed the task into two sub-problems. The first 

component consists of conic extraction using the information returned by an edge 

detector. Usually, due to occlusion the curves contained in the image are not 

completely described. If algebraic invariants are used it may be possible to overcome 

this problem by fitting a conic to an image curve. The remaining problem deals with 

matching a model from the database. A problem associated with this approach is the 

large number of hypotheses created which restrict the efficiency of the proposed 

scheme. To cope with this issue, a mechanism for grouping and indexing was 

proposed. Using this mechanism, the number of hypotheses is drastically reduced and 

the experimental results demonstrate the potential of this approach to recognise planar 

objects in cluttered scenes.  

      Bose et al (1996) investigated the use of affine invariant moments to recognise 

rigid flat objects. Since the recognition of partially occluded objects is investigated, 

the authors allocate a higher importance to the local features while the global features 

are used only in the verification stage. In this regard, the boundary points resulting 

after the application of the Canny edge detector are employed as local features. Then, 

from the edge information the shape is approximated with polygons and the invariant 

moments are computed. This approach was shown to be reliable for recognising 

simple planar objects but it is not applicable when dealing with 3-D objects.  

      A different approach was proposed by Kriegman and Ponce (1990) where they 

employed the shape of image contours for recognising real objects and estimate their 

pose. The elimination theory was employed to determine the implicit equations of the 

image contours formed by the projections of edges and occluding contours. This 

approach was applied only to objects with a surface of revolution and the edges were 

hand selected. The authors acknowledged that computing the implicit equations for 

generic objects remains a long term goal. Some years later, Vijayakumar et al (1998) 

tried to find local invariants such as contour bi-tangents associated with the projection 

of the object’s surface taken under different viewpoints. A bi-tangent should be seen 

as a line which touches the surface of the object at two distinct points that belong to 

the same tangent plane. These invariants can be computed from a single 2-D image 

and the recognition process consists of matching the scene bi-tangents with those 

contained in the database. In contrast with the implementation suggested by Kriegman 
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and Ponce (1990) this scheme works for objects which have a complex shape and the 

authors suggested that it should be considered as a component of a complete 

recognition system.  

      Dickinson et al (1992) proposed a solution to represent 3-D objects from a single 

2-D image. They suggested a set of ten volumetric primitives called geons which are 

considered flexible enough to model a large number of objects. These primitives are 

the projections of the following 3-D models: block, truncated pyramid, pyramid, bent 

block, cylinder, truncated cone, cone, truncated ellipsoid, ellipsoid and bent cylinder. 

Nevertheless, these primitives cannot directly represent the object under investigation 

due to self and mutual occlusions. To tackle this problem, they developed a 

hierarchical representation called aspect hierarchy. In other words, a primitive is 

decomposed in subcomponents in a hierarchical fashion. Aspects which describe a 

distinct primitive are placed at the top level of this hierarchy. Each aspect consists of a 

set of 2-D faces. Due to occlusion some of the faces contained by an aspect can be 

partially or completely missing. This introduces the motivation of the second level of 

the hierarchy, a level where faces which are closed 2-D contours are situated. Again 

due to occlusion a face can be only partially recovered. Therefore, the lowest level of 

hierarchy is represented by boundary groups. This representation is appropriate 

because the resulting graph which describes the object of interest is independent of 

translation, rotation and scaling. The major problem posed by this approach is the 

bottom-up primitive extraction and the verification of possible groupings in order to 

match a model contained in the database. The strength of this approach is given by the 

hierarchical representation and the use of relatively complex primitives which 

drastically reduce the number of possible groupings.   

      Bergevin and Levine (1993) addressed the generic recognition of unexpected 3-D 

objects from single 2-D views. The developed system called PARVO is closely 

related to the implementation suggested by Dickinson et al (1992). Instead of dealing 

directly with volumetric primitives or with the subcomponents that are hierarchically 

derived from them, PARVO extracts pairs of line segments that have close endpoints 

and grouping them into junctions such as arrow, fork, peak, T type and tree. The next 

stage of the algorithm (hypothesis generation and validation) determines the geons 

that can be compatible with the extracted junctions. The set of geons utilised in their 

experiments is very similar with that proposed by Dickinson et al (1992). The final 
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object description consists of a graph of geons augmented with a qualitative aspect 

ratio for each extracted part. The aspect criterion assigns a symbolic value in 

agreement with the shape of the geon in question which can be elongated, flat or 

bloblike. Despite its increased robustness, this formulation shares the same merits and 

limitations as the previous implementation.  

      A common problem related to the aforementioned approaches is the difficulty 

associated with extracting the scene primitives which usually consists of analysing the 

edge structures. If the objects contained in the scene are highly textured, the effort to 

extract meaningful primitives is cumbersome. Consequently, the recognition problem 

can be formulated as one of matching appearance rather than shape.  

      In this regard, Turk and Pentland (1991a) developed a face recognition system that 

uses principal component analysis (PCA) to learn and recognise images of human 

faces. Then, Murase and Nayar (1995) extended this approach by developing an 

appearance-based system suitable to learn, recognise and estimate the position of 

complex objects using 2-D images. This approach is suitable for the recognition of 

multiple objects but cannot handle occlusions.  

      To cope with this problem, Ohba and Ikeuchi (1997) proposed to divide the 

appearance into small windows and to apply eigenspace analysis to each window. 

Because the number of windows that are necessary to be stored is extremely large, a 

framework using criteria such as detectability, uniqueness and reliability was 

developed in order to select only relevant windows. This approach is effective if the 

objects present pronounced textural characteristics.  

      An alternative approach using colour histograms was suggested by Swain and 

Ballard (1991). Their implementation consists of a colour-indexing scheme where 

recognition is achieved by histogram matching. Nevertheless, representing the 

histogram using the entire colour space makes this approach computationally 

inefficient. To address this issue, they proposed to reduce the histogram’s resolution 

by using a restricted colour space. As long as this approach uses only global 

properties which are sensitive to partial occlusion, the proposed implementation can 

handle the recognition of a single object within the image. The results proved to be 

encouraging when the objects to be analysed have a complex appearance and the 

illumination conditions are maintained at constant level.  
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      Schiele and Crowley (1996) extended this approach by using multidimensional 

receptive field histograms. Their implementation consists of a general statistical 

object representation framework, where the multidimensional histograms are used to 

approximate the probability density function for local appearance. The authors 

outlined some of the concerns associated with the sensitivity of local features such as 

invariant, equivariant and robust properties. Most of the invariant local properties are 

based on the calculation of higher order derivatives. Because these derivatives 

amplify the high frequencies, this issue can create problems related to instability due 

to sampling and digitising noise. Consequently, the authors found it necessary to 

“weaken” the requirement of invariance. Because the equivariant properties are a 

function of some transformations such as scaling and rotation, their use is restricted to 

certain classes of objects. Therefore, the robust local properties such as those derived 

from the local appearance are more appropriate because they change slowly and in a 

predictable manner with respect to viewpoint transformations. For this purpose the 

authors employed Gaussian derivatives because they are robust to image plane 

rotations. This scheme proved to be relatively robust to viewpoint changes. Although 

the proposed system can handle only the recognition of objects with different textural 

characteristics, the reported results are impressive. 

 

1.3.2 3-D object recognition approaches 

      An inherent problem derived from 2-D object representation is the fact that the 

primitives used in the recognition stage are directly derived from the information 

contained in a grey-scale (or colour) image. As mentioned earlier, the 2-D geometric 

features contained in the image represent the projection of 3-D objects. This is a 

serious issue as long as these features are viewpoint dependent. In addition, when 

dealing with textured objects, the 2-D representation may be inappropriate in some 

application areas. Many of the problems outlined above have been successfully 

addressed by techniques that employ range images to recognise objects and estimate 

their spatial locations.  

      Bolles and Horaud (1987) developed a system known as 3DPO for recognising 

and locating 3-D objects from the range data. Their system is a two-part recognition 

model: a low-level analysis of range data followed by a recognition scheme based on 

model matching. The first component of the recognition system locates edges from 
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the range data and classifies them into circular arcs and straight lines. Resulting edges 

are partitioned and classified in a multi-step process. In this way, a circular edge is 

expected to have one planar surface and one cylindrical surface adjacent to it while a 

straight edge may be the intersection of two planes. After the edge classification 

process is completed, the low-level analysis continues with indexing the visible 

surfaces that are adjacent to these edge features.  The second component of the system 

recognises an unknown object by searching the model database for features that match 

those that are associated with the object to be recognised. The proposed system works 

well for complex scenes containing clutter and occlusion but with very few models. 

Furthermore, the system is better suited for recognition of curved objects. 

      Horn’s (1979) paper introduces the Extended Gaussian Image (EGI) 

representation to recognise 3-D objects. The EGI model is obtained by mapping the 

normals of the object’s surface onto a unit sphere called the Gaussian sphere. If a unit 

mass is attached to each point where a normal is erected, the result will be a 

distribution of mass over the Gaussian sphere. This distribution represents the EGI of 

a 3-D object.  In other words, the EGI representation is a histogram which records the 

variation of surface area with surface orientation information. This approach assumes 

that the object’s surface is divided into a fixed number of faces per surface unit and a 

normal is erected on each face. Obviously, the bigger the number of faces the more 

accurate the object representation. The recognition process consists of comparing the 

EGI of the unknown object with those contained in the model database. There are a 

few problems associated with this model such as its sensitivity to occlusion and the 

fact that it assures a unique representation only for convex objects (for more details 

refer to Appendix C).  

      Using the same concept, Ikeuchi (1983) employed the needle map to determine 

the attitude of an object. To achieve this goal by searching the entire space is not a 

realistic approach since all the possible combinations have to be verified in order to 

match a model from the database. Therefore, it is necessary to reduce the degrees of 

freedom for a plausible attitude by constraining the search space. Because matching 

an observed EGI with a model EGI involves three degrees of freedom, the author 

considered that two constraints are sufficient to solve the problem. The first is the EGI 

mass centre position while the second deals with the least EGI mass inertia direction. 

The application of these constraints greatly reduces the number of possible attitudes 
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and the model that maximises the fitting measure is selected as the observed attitude 

of the object. A number of years later, Distante et al (1988) used the previous 

approach in the implementation of a model–based bin picking system.  

      As mentioned earlier, the EGI concept is not applicable in the representation of 

non-convex 3-D objects. To address this restriction, Kang and Ikeuchi (1990) 

proposed the Complex EGI (CEGI) concept that extends the conventional EGI 

representation. As in the conventional case, the CEGI of an object is a spatial 

histogram in which a weight value (which is in this case a complex number) is 

associated with each normal to the surface. In this way, the normal distance from a 

predefined origin to the face to be analysed represents the phase while the magnitude 

is the area of the face. This scheme overcomes some of the problems associated with 

the conventional EGI representation.  

      Krishnapuram and Casasent (1989) attempted to determine the location and 

orientation of general 3-D objects using an approach based on the 3-D Hough 

transform. The authors discuss the effects of translation, rotation and scaling on the  

3-D Hough space. Since the translation and rotation effects are separable, they 

implemented a hierarchical algorithm to compute the object distortion parameters. 

The developed system was applied to scenes containing a single object and the 

reported results were reliable only for objects with a simple configuration.  

      An alternative approach was developed by Kim and Kak (1991) and consists of a 

novel discrete relaxation and bipartite matching algorithm. The first stage of this 

algorithm involves range data segmentation, primitive classification and generation of 

a scene graph. The primitives (features) resulting from the segmentation process are 

classified to reduce the complexity of matching, since the recognition of primitive 

blocks can be used to eliminate inapplicable model objects. The problem of 

recognition is addressed using a bipartite matching algorithm. Initially, bipartite 

matching is employed to establish the existence of at least one complete matching.  In 

other words, the matching process attempts to identify a plausible group of primitives 

that possibly match a model from the database using bipartite graphs. The next phase 

is represented by a fine-tuning feature correspondence that verifies the entire set of 

features that are adjacent in order to recover a complete matching. The last stage of 

the algorithm deals with pose estimation. To reduce the computational burden only a 

small number of extracted features are used to form a set of pose transformations. 
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This method provides robustness and was successfully implemented for a single-

object scene. When the algorithm was applied to a multi-object scene, the task to find 

a plausible complete matching becomes increasingly difficult in relation to the 

number of different objects contained in the scene.  

      Kak and Edwards (1995) proposed an object representation scheme that 

incorporates three concepts such as feature sphere, local feature set and multi-

attribute hash table. The purpose of this representational scheme is to reduce the 

complexity of scene-to-model hypothesis generation and verification. As in the 

previous case, this system performs well when dealing with a single-object scene but 

the reported results are unsatisfactory for scenes containing a large number of objects. 

      Stein and Medioni (1992) introduced a novel approach for recognising 3-D free-

form objects in presence of clutter and occlusion. Their system employs two different 

primitives for matching. The first primitive consists of small surface patches where 

differential properties can be reliably computed (splashes) while the second primitive 

employs 3-D curves. For some objects such as polyhedra, the depth discontinuities 

represented by edges from the range data (3-D curves) are the natural primitives to 

represent the object. When dealing with flat highly textured objects this scheme is 

inappropriate and a better representation relies on the use of splashes.  The proposed 

representation is a very convenient scheme to represent a large range of real 3-D 

objects. The main problem associated with this approach is the difficulty to extract 

relevant viewpoint independent splashes.  

      Many researchers have suggested a structural shape description by using high-

level volumetric primitives such as polyhedra, generalised cones or cylinders and 

super-quadrics. Brooks (1981) developed an image understanding system called 

ACRONYM. This system employs a surface representational scheme using 

generalised cones where the model objects are described in terms of primitives such 

as ribbons and ellipses. These structural primitives are indexed into a hierarchical 

graph constructed by the user. The user intervention is inopportune because restricts 

the possibility of automatic model building. Furthermore, since both models and 

scenes are modelled using only generalised cones, this scheme can represent only 

objects with simple shapes.   

      Some of these limitations were addressed in the paper by Terzopoulos and 

Metaxas (1991) where a new family of adaptable volumetric primitives called 
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deformable super-quadrics was introduced. A deformable super-quadric is a dynamic 

model that encapsulates local and global properties inherited from membrane splines 

and super-quadric ellipsoids. This formulation is useful to model and recognise 3-D 

objects or parts of the objects with irregular shapes from the range data. The authors 

suggested an improved model able to accommodate with other global deformations 

such as bends, shears and tapers.   

      Recently, Johnson and Hebert (1999) proposed a framework for simultaneous 

recognition of multiple objects in scenes containing clutter and occlusion. The 

recognition method is based on matching surfaces by matching points using the spin 

image representation. The spin image is a 3-D shape descriptor which depends on the 

object surface curvature. Since the spin images are associated with the 3-D 

information, in order to be efficient, this approach requires a precise range sensor. The 

developed recognition system demonstrates reliability when the objects of interest 

present complex 3-D shapes. 

 

1.4 Conclusions drawn from the literature review 

    Vision research has a long tradition in trying to find a solution to the generic bin 

picking problem. From the literature survey, it can be concluded that despite a number 

of partially successful implementations an optimal generic solution to this classical 

vision problem has not been found. However, there are many algorithmic and 

technological issues that hamper the implementation of a generic bin picking system 

and some were already mentioned in Section 1.1. 

     Early research has tried to solve the bin picking problem strictly related to a 

specific application. The implementations derived from this approach involves little or 

no visual information and are suitable only for simple applications where there is no 

need to recognise the objects contained in the scene. Therefore, these approaches 

constrain the problem and can deal only with scenes containing similar objects.  

     A flexible bin picking system has to address some issues such as scene 

understanding, object recognition and pose estimation. A key element in the design of 

the system is the choice of shape description. As seen from the literature review, some 

approaches employ a 2-D shape representation while others approached the problem 

using methods based on range images. The choice of object representation scheme 

will determine the method required to compute the pose of the object of interest. 



Chapter 1. Introduction 

 16 

      A key aspect in the implementation of a bin picking system is its ability to cope 

with environmental changes. In line with environmental changes such as illumination 

conditions, level of dust, etc, the constraints introduced by the gripper and other 

mechanical limitations should all be considered. Very often the specific (or context) 

of the application may give invaluable clues in the design of industrial vision systems 

      The aim of this survey was to introduce the bin picking problem by presenting a 

large number of approaches relevant to this area of research. The review also 

indicated that the likely area where a bin picking system should be used is a batch 

manufacturing environment which deals with a relative small numbers of different 

components. This is mainly motivated by the fact that 98% of products are made of 

fewer than 25 parts (Delchambre, 1992). 

 

1.5 Overview of the present implementation 

      This thesis presents the theoretical framework and describes the development of a 

real-time integrated low cost vision sensor for bin picking. The literature survey 

stressed that even for a well defined problem the implementation of a bin picking 

system is difficult. In this sense, the main objective of this research is to develop a 

theoretical framework suitable to be used in the implementation of an integrated 

system that provides sufficient information for a bin picking robot to manipulate 

various polyhedral objects that are randomly placed in the scene.      

      The approach presented in this thesis consists of three major components. The 

first component deals with theoretical and practical issues related to the 

implementation of a bifocal range sensor based on defocusing techniques. A key 

element in the success of this approach is that it removes some limitations that were 

associated with other related implementations. Furthermore, the developed range 

sensor is mechanically robust which is a key requirement for a robotic application.  

      The second component is concerned with scene segmentation. The aim of the 

segmentation process is to decompose the image into disjointed meaningful regions 

that are used in the recognition process.  

      The last component deals with object recognition and pose estimation. The 

proposed implementation introduces a novel scheme that addresses the recognition 

and pose estimation at different stages. Thus, the recognition scheme employs an 

approach based on the use of global geometrical primitives while the pose estimation 
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is addressed using a PCA technique augmented with a range data analysis. The 

proposed formulation is feasible to operate in real-time and an intuitive graphical user 

interface (GUI) is provided.  

 

1.6 Organisation of the thesis 

      The aim of first chapter is to assess the role of a vision system in an integrated 

sorting/packing industrial environment. This discussion introduces the bin picking 

problem and a review of the related work. The main conclusions drawn from the 

literature survey are discussed. Finally, an overview of the thesis is presented. 

      Chapter 2 details the theoretical and practical aspects related to the 

implementation of a bifocal range sensor. The main issues associated with this 

approach such as active illumination, inverse filtering and the calibration procedure 

are then discussed in detail. Real-time implementation issues and some experimental 

results are also examined. 

      In Chapter 3 the image segmentation problem is introduced. Several techniques 

are presented and the problems that are associated with them are discussed. The 

discussion continues with the edge-based segmentation approach followed by a 

detailed presentation of some popular edge detection operators. An important issue 

related to this segmentation technique consists of minimising the errors in the edge 

detected output. In this regard, a method to close the gaps in edges using the 

information derived from endpoints is discussed.  Finally, an extensive set of results 

are presented and analysed. 

      Chapter 4 begins with a review of some popular methods for object recognition. A 

discussion that includes the practical issues that must be considered for the successful 

development of a robust object recognition system is presented. This section outlines 

the current implementation where each component of the proposed algorithm is 

discussed and analysed. In the last section of this chapter, a number of experimental 

results are presented and analysed.   

      In Chapter 5 the implementation of the entire system is described. For each 

component a block diagram is presented and its role in the system is explained. The 

features provided by the graphical user interface are also highlighted.    
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      Finally, Chapter 6 summarises this work and outlines the research contributions 

that can be drawn from this investigation. This chapter also highlights the parts of the 

study that require further development and a number of suggestions are presented. 
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Chapter 2 - Range sensing 
 

2.1 Introduction 

      It has generally been accepted that a versatile bin picking system cannot be 

implemented without resorting to 3-D information. For example, the grasping and 

manipulation of an object implies an understanding of the spatial relationship between 

the gripper and the relevant object. It is important to note that this relationship 

involves 3-D scene understanding, i.e. the spatial relationship between the objects that 

defines the scene. To support 3-D scene understanding, various methods to 

reconstruct the shapes of complex 3-D objects have been investigated in recent years. 

Depending on the application, the choice of the range acquisition technique will rely 

on the task being performed. Each task will differ in terms of the range and the size of 

the object to be examined; hence, there is no single sensor that is capable of 

performing satisfactorily in all the necessary applications. 

      The range acquisition methods can be divided into two main categories: passive 

and active. Passive approaches do not interact with the object while active methods 

make contact with the object or project a structured light onto it. For passive ranging 

techniques such as stereo and depth from motion, the 3-D information is obtained by 

solving the correspondence between different features contained in a sequence of 

images. Other passive ranging techniques are represented by the depth from 

focus/defocus methods that use two or more images taken by modifying the focal 

settings in small steps. It should be noticed that the stereo and depth from defocus 

methods can be transformed into active techniques by projecting a special pattern of 

light onto the scene. Among active range sensing methods two major approaches can 

be identified: contact and non-contact 3-D sensors. The contact sensor consists of 

touch probes which follow the object’s contour with a pointer and usually are 

mounted on a robotic arm. In terms of precision, these sensors represent the best 

solution but are slow and very costly. Another drawback is the fact that they make 

contact with the object and this approach cannot be used when dealing with fragile or 

non-rigid objects. The non-contact approaches can be further divided into optical and 
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non-optical. The optical category includes approaches such as methods based on 

triangulation, active stereo, active depth from defocus, Moiré interferometry and 

infrared (IR) scanning. The non-optical category includes methods such as microwave 

radar and sonar.  

      The next section will describe the theoretical and practical aspects associated with 

the DFD range sensing technique. Sections 2.2.1 to 2.2.9 describe the actual 

implementation of a real-time active DFD range sensor and the main contributions of 

this work are detailed in Sections 2.3 and 6.1.1. Also, a number of popular range 

acquisition techniques are briefly discussed in Appendix A. 

 

2.2 A bifocal range sensor based on depth from defocus 

      The aim of this section is to outline an approach capable of extracting 3-D 

information from the scene by measuring the relative blurring between two images 

captured with different focal settings. Krotkov (1987), Pentland (1987) and Grossman 

(1987), independently investigated this method for the first time, attempting to make a 

connection with human vision. The depth from defocus (DFD) methods use the direct 

relationship between the depth of the scene, camera parameters and the degree of 

blurring in several images (in the current implementation only two images are used). 

In contrast with other techniques such as stereo or motion parallax where solving the 

correspondences between different local features represents a difficult problem, DFD 

relies only on simple local operators.  

      Historically, the DFD techniques have evolved as a passive sensing strategy. In 

this regard, Xiong and Shafer (1993) proposed a novel approach to determine dense 

and accurate depth structure using the maximal resemblance estimation. Subbarao and 

Surya (1994) reformulate the problem as a one of regularised deconvolution where the 

depth is obtained by analysing the local information contained in a sequence of 

images acquired under different camera parameters. Later, Watanabe and Nayar 

(1995b) argue that the use of focus operators such as the Laplacian of Gaussian results 

in poor depth estimation. In order to address this problem, they developed a set of 

broadband rational operators to produce accurate and dense depth estimation. 

However, if the scene under investigation has a weak texture or is textureless, the 

depth estimation achieved when passive DFD is employed is far from accurate.  
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      Fortunately, there is a solution to this problem and is offered by active DFD, when 

a structured light is projected on the scene. Consequently, a strong texture derived 

from the illumination pattern is forced on the imaged surfaces and as an immediate 

result the spectrum will contain a dominant frequency. The use of active illumination 

was initially suggested by Pentland et al (1994) where the apparent blurring of a 

pattern generated by a slide projector is measured to obtain the range information. 

Then, Nayar et al (1995) developed a symmetrical pattern organised as a rectangular 

grid which was optimised for a specific camera.  Active DFD is very attractive 

because it can be successfully applied to both textured and textureless objects. Also, it 

is worth mentioning that the problems associated with the scene shadows are 

considerably alleviated when structured light is employed. Obviously, the scene 

shadows are closely related to object occlusion and this issue is detailed in the paper 

by Asada et al (1998).  They proposed an effective solution to compensate for this 

problem by using the reversed projection blurring (RPB) model which is very 

common in ray tracing techniques. This approach employs the photometric properties 

of occluded edges when the surface behind the nearer object is partially observed. As 

expected, due to shadows the blurring model based on convolution becomes 

inconsistent around the occluding edges.  To overcome this limitation, they use the 

radiance of the near and far surfaces, followed by mapping the occluded region. In the 

implementation described in this thesis, the occluded region is assigned to be equal to 

that from the nearer side of the depth discontinuity, which in most of the situations 

(except cases where the radiance distribution is uniform around the occluded region) 

is a correct assumption. 

    

 2.2.1 Theoretical approach of depth from defocus 

        If the object to be imaged is placed in the focal plane, the image formed on the 

sensing element is sharp since every point P from the object plane is refracted by the 

lens into a point p on the sensor plane. Alternatively, if the object is shifted from the 

focal plane, the points situated in the object plane are distributed over a patch on the 

sensing element. As a consequence, the image formed on the sensing element is 

blurred. From this observation, the distance from sensor to each object point can be 

determined by the size of the patch formed on the sensing element. This can be 

observed in Figure 2.1 where the image formation process is illustrated.     
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Figure 2.1. The image formation process. The depth can be determined by measuring the 

level of blurring. 
 

      Thus, the diameter of the patch (blur circle) d is of interest and can be easily 

determined by the use of similar triangles: 
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where v is the focal distance, D is the aperture of the lens and s is the sensor distance. 

Because the parameter v can be expressed as a function of the focal length f and the 

object distance u (Gaussian lens law), Equation 2.1 becomes: 

 

            )
111

(
111

suf
Dsd

fvu
−−=⇒=+                                (2.2) 

 

      It is important to note that d can be positive or negative depending on whether the 

image plane is behind or in front of the focused image. Consequently for certain 

sensor displacements, the level of blurring and the resulting images are identical. To 

overcome this uncertainty, it is necessary to either constrain the sensor distance s to be 

always greater than the image distance v (Pentland, 1987) or to employ two images 

captured with different focal settings (Pentland et al, 1989; Turk et al, 1989; Nayar et 

al, 1995). It is worth noting that for the former case the depth can be determined 

accurately and uniquely only for places in the image with known characteristics (e.g. 

sharp edges). The latter is not hampered by this restriction and for the implementation 

described in this thesis a pair of images, i.e. the near and the far focused images, 

separated by a known distance b are employed to determine the blur circle. 

u 

I2

d 

I1 

P

p 

f 
D

A
If

v 

a 

b 

 P: Object point 
 p: Image point 
 I1: Image plane for camera 1 
 I2: Image plane for camera 2 
 If: Image in focal plane 
 D: Aperture of lens 
 f: Focal length 
 s: Sensor distance (camera1) 
 u: Object distance 
 v: Focal distance 
 d: Blur circle diameter 

s 



Chapter 2. Range sensing 

 23 

 2.2.2 Constant magnification. Telecentric lens 

      Unfortunately with the common lens, a variation of the defocus position (a or b) 

will produce a variation in image magnification. A solution to compensate for this 

problem resides in using a telecentric lens. In the image system shown in Figure 2.1, 

if the image location at point p moves parallel to the optical axis as the sensor plane is 

displaced, as a result a shift in the image co-ordinates of P will be produced. This is a 

problem as it produces a different magnification for images I1 and I2. In the telecentric 

case, the modification between the image system described in Figure 2.1 is an external 

aperture A’ placed in the front focal plane4. This addition (external aperture) solves 

the problem, because if a small aperture is placed in the front of the lens, the entire 

scene appears to be in perfect focus. A simple geometrical analysis (see Figure 2.2) 

reveals that a ray from any point passing through the centre of the lens’ aperture A’, 

emerges parallel to the optical axis on the image side of the lens (Watanabe and 

Nayar, 1995a). The result is that (ignoring the blurring) the effective co-ordinates of 

point P in both images (I1 and I2) are the same, with the co-ordinates of point p for the 

focused image If, proving the anterior observation. 

 

 

 

 

 

 

 

 

 

 

    

Figure 2.2. The image formation for telecentric case (from Watanabe and Nayar, 1995a). 

 

     Initially, for the current implementation a Computar 55mm telecentric lens (this 

lens is telecentric with respect to the view) was used, which eliminates the perspective 

distortions but the magnification errors were not significantly corrected. To overcome 

                                                           
4 The focal length in front of the principal point of the lens (the centre of the lens). 
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this, using the procedure detailed in Watanabe and Nayar (1995a) an AF MICRO 

NIKKOR lens (f = 60mm) was transformed into a telecentric lens. The magnification 

errors were greatly reduced but since the diameter of the external aperture has to be 

very small (approximately 3mm) also resulted in a severe reduction in brightness. To 

compensate for this problem a very powerful source of light has to be used. This 

solution was dismissed because it is costly and difficult to be applied to robotic 

applications due to the size of the light generator. Consequently, for this 

implementation the magnification errors are minimised by using image interpolation 

as will be shown in Section 2.2.7.  

 

2.2.3 The blur model 

      An image g(x,y) produced in a position other  than the focal plane can be thought 

of as a processed version of the image i(x,y) obtained in the focal plane. From this 

observation, the blurring effect can be modelled as a convolution between the focused 

image and the blurring function. 
 

                                          dudvvyuxhvuiyxg ),(),(),( −−∫ ∫=                                            (2.3) 

 

where i is the focused image and h is the blurring function.  

      The blurring function, also called the point spread function (PSF), gives an 

indication regarding the amount of defocusing. It is clear that this function depends on 

the diameter d of the patch of each pixel obtained in the sensor plane. If only paraxial 

geometric optics is used (Subbarao and Surya, 1994), the PSF can be approximated in 

the spatial domain by simple ray tracing as follows: 
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where hp is the pillbox function and can be seen as the cone of light transmitted from 

the lens at the focal point. It is important to note that the relationship illustrated in 

Equation 2.4 defines the ideal case when the optical equipment (lens and sensing 

element) does not produce any supplementary blur. This issue is explicitly addressed 
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in the paper by Nayar et al (1995) where the PSF is re-modelled by including some 

optical parameters in its expression.  In Figure 2.1, a photometric analysis reveals that 

the light energy radiated by the scene and collected by the lens is uniformly 

distributed over a circular patch with a radius of aD/f on the sensor plane, where a is 

the distance between the focal plane If and the sensor plane I1, D is the diameter of the 

aperture and f is the focal length. If these parameters are taken into account, the PSF 

becomes: 
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where Π(r) is a rectangular function which has a value 1 for 2
1<r , 0 otherwise. In 

the Fourier domain, the PSF is approximated by: 
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where J1 is the first-order Bessel function. As is evident from the above expression, 

the PSF implements a low pass filter where the bandwidth of the filter increases as a 

decreases, or in other words, when the sensor plane is closer to the focus plane. This 

can be observed in Figure 2.4 where the high frequencies derived from the scene’s 

texture are attenuated in accordance with the degree of blurring. 
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                                   (a)                                                                (b) 

 
Figure 2.3. The point spread function. (a) Representation in the spatial domain. (b) 

Representation in the frequency domain (from Nayar et al, 1995). 
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Figure 2.4. The blurring influence and the focus measure.  

 

      The blur model described above is valid only if the brightness is constant over the 

blur circle. As mentioned earlier this model defines the ideal case, but in practice due 

to the effects of diffraction, diffusion and other non-idealities such as polychromatic 

illumination and lens curvature (see also Pentland, 1987; Bhatia, 1996; Subbarao, 

1988; Subbarao, 1991), the image blurring is not uniform within the blur circle and is 

better modelled by a two dimensional Gaussian: 
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where σ is the standard deviation of the Gaussian. The function shown in Equation 

2.7 is rotationally symmetric and its expression in the Fourier domain is given by: 
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where (u,v) is the spatial frequency. The Gaussian is a low pass filter where the low 

frequencies are passed unaltered, whilst higher frequencies are reduced in amplitude 

(especially the frequencies above 1/σ). If σ increases, the result is an increased 

blurring as more of the higher frequencies are attenuated. Therefore, this parameter 

(also referred to as blur parameter) is of interest because it gives an indication about 

the amount of blurring contained in the image and can be estimated using the 

following relationship: 
 

      σ = >k d for k, 0                                     (2.9)    

 

where k is a constant of proportionality which is characteristic for each camera and in 

general can be determined by a calibration procedure (Subbarao, 1988).  
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      Except the situations when σ is very small (when diffraction effects dominate), 

Equation 2.9 represents the actual situation and as a consequence it can be assumed 

that the blur parameter σ is proportional with d.  

 

   
 

                                (a)                                                               (b) 
 

    
 

                               (c)                                                                (d) 
 

Figure 2.5. The blurring effect. (a) The near focused image. (b) The far focused image. (c) 

The Fourier spectrum of the near focused image. (d) The Fourier spectrum of the far focused 

image. 
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       To analyse the practical results associated with the blurring effect, let us consider 

the optical set-up described in Figure 2.1. When the sensor plane is moved with a we 

obtain the near focused image i1(x,y), which is the result of the convolution between 

the focused image i(x,y) and the point spread function h1(x,y). In the frequency 

domain it is the product of the Fourier spectrum of the focused image I(u,v) and the 

point spread function H1(u,v). When the sensor is placed at a distance b-a from the 

focal plane it can be observed that the Fourier spectrum of the far focused image 

I2(u,v) is altered to a greater extent. This result was expected because the distance b-a 

is greater than a. This can be observed in Figure 2.5. 

 

                    Spatial domain                         Fourier domain 

),(),(),( 11 yxhyxiyxi ο=     I u v I u v H u v1 1( , ) ( , ) ( , )=  

),(),(),( 22 yxhyxiyxi ο=     I u v I u v H u v2 2( , ) ( , ) ( , )=  
 

where i(x,y) is the focused image, ο defines the convolution operator and h1(x,y) and 

h2(x,y) are the point spread functions for distances out of focus a and b-a respectively. 

 

2.2.4 Active illumination 

      The high frequencies derived from the scene determine the accuracy of the depth 

estimation. If the scene has a weak texture or is textureless (like a blank sheet of plain 

paper) the depth recovery is far from accurate. Consequently, the applicability of 

passive DFD is restricted to scenes with high textural information.  

      To overcome this restriction, Pentland et al (1994) proposed to project a known 

pattern of light on the scene. As a result, an artificial texture is forced on the visible 

surfaces of the scene and the depth can be obtained by measuring the apparent 

blurring of the projected pattern. The illumination pattern was generated by a slide 

projector and selected in an arbitrary manner. In Figure 2.6-d it can be observed the 

textural frequency derived from an illumination pattern organised as a striped grid. 

      Later, Nayar et al (1995) developed a symmetrical pattern optimised for a specific 

camera. They used the assumption that the image sensor is organised as a rectangular 

grid. The optimisation procedure presented in the same paper, consists of a detailed 

Fourier analysis and the resulting model of illumination is a rectangular cell with 

uniform intensity which is repeated on a two dimensional grid to obtain a periodic 

pattern. The resulting pattern is very dense and difficult to fabricate and during 
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experimentation it was found that the problems caused by a sub-optimal pattern are 

significantly alleviated when image interpolation was applied. This will be presented 

later. 

 

      

(a) (b) 

 

    
                               (c)                                                                  (d) 

Figure 2.6.  Normal5 illumination versus active illumination. (a) Image captured using normal 

illumination. (b) Image captured when active illumination is employed. (c) The Fourier 

spectrum of image (a). (d) The Fourier spectrum of image (b). 

 

                                                           
5 Natural or ring type illumination. 
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2.2.5 The focus operator 

      Since the defocus function is a low pass filter, the effect is a suppression of high 

frequencies from the focused image. Therefore, to isolate the effect of blurring it is 

necessary to extract the high frequency information derived from the scene. Hence, 

the focus operator has to approximate a high pass filter. The goal of this operator is to 

estimate the blur parameter σ by inverse filtering the near and far focused images. 

Since the blur circle is uniform only for small regions, the kernel of the focus operator 

has to be small in order to preserve locality although the windowing operation 

introduces supplementary errors. To address this issue, Xiong and Shafer (1994) 

proposed a solution to select the window size for Gabor filters. They employed a 

simple criterion where the window size is selected to be as small as possible, while 

the error caused by noise and windowing is smaller than a preset value. Aside from 

window size, every focus operator must be rotationally symmetric and must not 

respond to any DC component (a DC component can be a change in image 

brightness).  This condition is satisfied if the sum of all elements of the focus operator 

is equal to zero.  Watanabe and Nayar (1995b) suggested an approach for passive 

DFD based on the use of rational filters. They proposed a method to compute a set of 

broadband rational operators. The first operator performs prefiltering (for removing 

DC components) and the remaining three operators are involved in depth estimation. 

Finally, the depth errors caused by spurious frequencies are minimised by applying a 

smoothing operator.  

      In the implementation described in this thesis, the experiments were conducted 

using the Laplacian operator. The kernels of the Laplacian operator are illustrated in 

Figure 2.7 (the 5 x 5 and 7 x 7 kernels are ad hoc approximations of the Laplacian 

operator and are constructed by analogy with the 3 x 3 kernel). It is well known that 

the Laplacian operator enhances the high frequency noise and this may cause 

significant errors when the depth is computed. In addition, supplementary errors are 

caused by quantisation and the misalignment between the cells of the sensing 

elements and the illumination pattern. To cope with these inconveniences, after the 

application of the focus operator, a 5 x 5 Gaussian is applied. Another aim of this 

operation is to minimise the error caused by local maxima which is due to surface 

reflections. The experimental data indicates that the resulting depth map is 

significantly smoother especially for scenes that contain specular objects.    
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Figure 2.7. The Laplacian operator. (a), (b) The 3 x 3 kernel (4 and 8 neigbourhood). (c), (d) 

The 5 x 5 kernel (4 and 8 neighbourhood). (e), (f) The 7 x 7 kernel (4 and 8 neighbourhood).  

 

2.2.6 Depth estimation from two images 

      The depth information can be estimated by taking a small number of images under 

different camera or optical settings. Since the PSF is a rotationally symmetric 

function, the relationship between the focused and defocused images is illustrated by 

the following expression (Subbarao and Surya, 1994). 

  

                                            f x y g x y g x y( , ) ( , ) ( , )= − ∇
σ 2

4
2                                 (2.10) 

 

where f is the focused image, g is the defocused image, σ is the standard deviation of 

the PSF and 2∇  is the Laplacian operator. Equation 2.10 represents the deconvolution 

formula. It expresses the focused image f in terms of the defocused image g, its 

derivatives and the blur parameter σ. If two images g1 and g2 are taken under different 
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camera settings and the term f(x,y) is substituted, the result is the expression 

illustrated in Equation 2.11. 
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      From Equation 2.11 it can be observed that no terms depend on scene’s textural 

information. Since σ is proportional with the blur circle, the depth can be estimated 

using the difference between the standard deviation of the near focused image g1 and 

the standard deviation of the far focused image g2. As mentioned earlier, to determine 

the blur parameters it is necessary to filter the near and far focused images with the 

focus operator which gives an indication of the focus level.  

      Once this operation is accomplished, the next step consists of determining the 

depth from two images. Pentland suggested to attempt the depth recovery process by 

using the edge information returned by the focus operator. In this way, if a strong 

edge is returned, the corresponding point must be in focus (or very close). Whilst the 

edge is weak the point is out of focus. This can be observed in Figure 2.8 where the 

relation between the outputs of the focus operator and the depth estimation is 

illustrated. 

 

Brightness

Defocused image Focused image

Range Depth
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Figure 2.8. Estimating the depth from two images captured under different camera settings. 
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      As Figure 2.8 illustrates, an effective solution to estimate the depth is to use the 

ratio between the ∇ 2g1 and ∇ 2g2. This ratio implements the defocus function and its 

profile is depicted in Figure 2.9. It is clear from this diagram that the defocus function 

is not bounded, but this fact is not a major drawback as long as the depth is 

investigated only for a restricted domain (see Figure 2.8). As this function has a linear 

profile, the ranging distance is estimated using the following relationship: 

2
2

2
1

2

1 χχ −
∇
∇

=
g

g
depth , where 1χ  performs the gain correction and 2χ  eliminates the 

offset.  These constants of proportionality are determined by calibration.  

 

 

  

 

 

 

 

 

 

Figure 2.9. The defocus function. 

 

2.2.7 Image interpolation 

      Since active illumination is employed, the depth estimation will have the same 

pattern as the structured light. Due to magnification changes between the near focused 

image and the far focused image, the stripes do not match perfectly together. As a 

consequence, the depth estimation is unreliable especially around the stripes borders. 

This can be observed in Figure 2.10 where the depth recovery is not continuous. Also, 

the errors caused by changes in magnification are evident. 

      To compensate for this problem, Watanabe and Nayar (1995a) proposed to use a 

telecentric lens. This solution is elegant and effective but since the telecentric lens 

requires a small external aperture, the illumination source necessary to image the 

scene has to be very powerful. To avoid this complication, for the present 

implementation the dark regions are mapped using image interpolation. Linear 

interpolation was found to be sufficient in the case where a dense (10 lines per mm) 

illumination pattern was used.  
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      The effect of image interpolation is depicted in Figure 2.11 where the quality of 

the depth estimation is significantly improved. 

 

    
  
                                  (a)                                                                (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 

 
Figure 2.10.  The near (a) and far (b) focused images resulting after the application of the 

focused operator. (c) The resulting depth map. 
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(c) 

 

Figure 2.11. (a,b) The effect of interpolation when this operation is applied to the images 

illustrated in Figure 2.10 (a,b). (c) The resulting depth map. 

       

2.2.8 Physical implementation 

      The aim of this implementation is to build a range sensor able to extract the depth 

information derived from dynamic scenes. Thus, the key issue is to capture the near 

and far focused images at the same time. For this purpose, two OFG VISIONplus – 
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AT frame grabbers were utilised. The scene is imaged using an AF MICRO NIKKOR 

60 mm F 2.8 (Nikon) lens. Between the NIKKOR lens and the sensing elements a 22 

mm beam splitter cube is placed. The sensing elements used for this implementation 

are two low cost 256 x 256 VVL 1011C (VLSI Vision Ltd.) CMOS sensors. 

Nevertheless, the beam splitter introduced a supplementary distance between the 

CMOS sensors and the lens that image the scene. Furthermore, the distances added by 

the C-mount adapters (are used to attach the cameras to the beam splitter case) and the 

lens’ mount further increase the distance between the CMOS sensors and the lens. As 

a result, the images projected on the sensors’ active surface will be significantly out of 

focus. To overcome this problem, the camera head was opened and the first sensor 

was set in contact with the beam splitter inside the case. The second sensor was 

positioned with a small gap (approximately 0.8 mm) from the beam splitter surface 

using a multi-axis translator. The distance between the lens and the beam splitter is 1 

mm. These settings offer a detectable ranging distance between 0 and 7 cm when the 

sensor is placed at a distance of 86 cm from the baseline of the workspace.  

      The structured light is projected on the scene using a MP-1000 Projector with a 

MGP-10 Moire gratings (stripes with density of 10 lines per mm). The lens attached 

to the light projector is the same type as that used to image the scene. Note that all 

equipment required by this implementation is low cost and furthermore the calibration 

procedure as outlined in Section 2.2.9 is relatively simple. The components required 

by this implementation and a diagram of the developed sensor are illustrated in 

Figures 2.12 and 2.13, while Figure 2.14 depicts the actual set-up.  
 

 

                                         
 

Figure 2.12. DFD system block diagram. 
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Figure 2.13. The diagram of the 3-D sensor.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14. The 3-D sensor and its principal components. 
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     The software is simple as long as it includes only local operators. The flowchart 

illustrated in Figure 2.15 describes the main operations required to compute the depth 

map of a 256 x 256 resolution. The depth map is computed in 95 ms on a Pentium 

133, 32 Mb RAM and running Windows 98.  
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Figure 2.15. Data flow during the computation process. 

 

2.2.9 Calibration procedure  

      Like for any other range sensor, the calibration procedure represents an important 

operation. This sensor requires a two-stage calibration procedure. The first stage 

involves obtaining a precise alignment between the near and the far focused sensing 

elements. To achieve this goal, the calibration is performed step by step using the 

multi-axis translator which is attached to one of the CMOS sensors. This procedure 

continues until the mis-registrations between the near and far focused images are 

smaller than the errors caused by changes in magnification due to different focal 

settings.  
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      Because even a sub-pixel mis-registration may cause errors when the depth is 

computed, for the purpose of obtaining a precise alignment between the CMOS 

sensors, a grey level rectangular grid pattern is proposed as calibration pattern. This 

pattern is illustrated in Figure 2.16.  

       

 
 

Figure 2.16. The calibration pattern. 

 

       The second step performs a pixel by pixel gain calibration in order to compensate 

for the errors caused by the imperfection of the optical equipment.  This operation 

consists of the following procedure: a planar target is perpendicularly placed to the 

optical axis of the sensor at precise known distances. Then, the depth map is 

computed and the differences between the resulting depth values and the real ones are 

recorded for each elevation. Then, these depth errors were averaged and recorded in a 

table which defines the gain offset map. The gain compensation was carried out by 

subtracting the depth offset values from the detected depth map.  

      Nevertheless, this procedure holds only if the errors introduced by the optical 

equipment are linear. The experimental results proved that most of the errors were 

caused by image curvature, errors that are constant and easy to correct. Therefore, the 

proposed pixel by pixel gain calibration is an adequate procedure for this current 

implementation.  
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2.2.10 Experiments and results 

      The major problem concerning the usefulness of focal gradient information is 

whether this information is sufficiently accurate. This information can be accurate 

only if the optical settings are well known and are used as parameters when the depth 

is computed. Due to the fact that active illumination is used, the following 

experiments were carried out exclusively on indoor scenes.  

      Initially, this sensor was evaluated using simple targets in order to verify the 

accuracy of the implemented range sensor. The accuracy and linearity is estimated 

when the sensor is placed at a distance of 86 cm from the baseline of the workspace.   

      The reported results were obtained for a planar textureless test object i.e. a plain 

sheet of paper. To determine the sensor’s accuracy, the test object was placed at 

several distances from the workspace baseline.  These distances were measured using 

a simple ruler and are marked in the graphs illustrated in Figures 2.17 and 2.18 as 

ideal values. The actual estimation for each elevation was obtained by averaging the 

depth values contained in a test area which was obtained by sub-sampling the depth 

map to a 32 x 32 pixels area. Finally, the actual estimations are plotted against the 

ideal values. It should be noted that the first point (marked with zero) in the graphs 

shown in Figures 2.17 and 2.18 represents the calibration plane.  

      The results depicted in Figures 2.17 and 2.18 need to be further discussed. During 

experimentation it was found that most of the errors were caused by the sensing 

elements. Apart from quantisation noise, the most difficult problems were generated 

by the image intensity offset. The level of offset is non-uniform and is dependent 

upon the brightness distribution contained in the image and furthermore is different 

from sensor to sensor. Nevertheless, the intensity offset generates significant errors 

when the depth is computed. On the other hand, the offset compensation causes loss 

of information that may also lead to imprecise depth estimation. As can be easily 

observed, an ideal solution to this problem is not possible and to address this problem 

efficiently a procedure similar to that utilised for gain calibration is employed. Thus, 

the offset errors were minimised as follows: a number of target objects with different 

colors were utilised and for each CMOS sensor the errors caused by the offset were 

averaged and recorded in a table. These tables implement the offset map for each 

sensor. The offset compensation was carried out by subtracting the offset map from 

the captured image according to the sensor in question. Although this procedure does 
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not completely eliminate the offset, the experimental results illustrated in Figures 2.17 

and 2.18 indicate that the accuracy of this proposed sensor compares well with that 

offered by other methods such as stereo and motion parallax.  
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Figure 2.17. The accuracy and linearity when the 3 x 3 Laplacian operator is applied.  (a) 4-

neighbourhood. (b) 8-neighbourhood. 
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Figure 2.18. The accuracy and linearity when the 5 x 5 Laplacian operator is applied. (a) 4-

neighbourhood. (b) 8-neighbourhood. 

 

      Next, the performance of the range sensor was evaluated using complex scenes. 

Figure 2.20 illustrates the depth recovery for two textured planar objects (see Figure 

2.19) situated at different distances from the sensor.  
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                                (a)                                                                 (b) 
 

Figure 2.19. The near (a) and far (b) focused images for a scene which contains two planar 

objects situated at different distances from the sensor. 

 

 
 

Figure 2.20. The depth estimation for the two planar objects illustrated in Figure 2.19 situated 

at different distances from the sensor. 

 

      Figure 2.22 illustrates the depth map for a slanted planar object and in Figure 2.24 

a more complex scene containing textureless objects with different shape is shown.  
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                                 (a)                                                                 (b) 
 

Figure 2.21. The near (a) and far (b) focused images for a scene which contains a slanted 

planar object. 

 

 

 

Figure 2.22. The depth estimation for the scene illustrated in Figure 2.21 which contains a 

slanted planar object. 
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                               (a)                                                                    (b) 
 

Figure 2.23. The near (a) and far (b) focused images for a scene which contains various 

textureless objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24. The depth estimation for the scene illustrated in Figure 2.23 which contains 

various textureless objects (a post-smoothing operation has been applied). 
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                                 (a)                                                                   (b) 
 

Figure 2.25. The near (a) and far (b) focused images for a scene which contains various 

LEGO  objects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.26. The depth estimation for the scene illustrated in Figure 2.25 which contains 

various LEGO  objects (a post-smoothing operation has been applied). 
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                                (a)                                                                 (b) 
 

Figure 2.27. The near (a) and far (b) focused images for a scene which contains objects with 

prominent specular characteristics.  

 

 

 

Figure 2.28. The depth estimation for the scene illustrated in Figure 2.27 which contains 

objects with prominent specular characteristics (a post-smoothing operation has been 

applied). 
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      Figure 2.26 depicts the depth map for a scene which contains mildly specular 

LEGO  objects with different shapes and a large scale of colours. Figure 2.28 shows 

the depth recovery for a scene which contains objects with pronounced specular 

characteristics. For the last scenes, in order to reduce the errors caused by the 

reflections associated with specular surfaces the depth map is smoothed by applying a 

5 x 5 Gaussian operator.  

      One of the aims of this section was to identify an optimal solution for the focus 

operator. As mentioned in Section 2.2.5, six focus operators were used. The best 

results with respect to the gain were obtained for a 7 x 7 (8 neighbourhood) Laplacian 

operator but the depth estimation was not very linear. The results were more linear 

when the 3 x 3 Laplacian operator was used as focus operator but the discontinuities 

in depth were not as well recovered. A trade-off between gain and linearity was given 

by the 5 x 5 Laplacian (8 neighbourhood) operator. 

      The relative accuracy and repeatability of the sensor are estimated relative to the 

overall ranging distance. Accuracy is measured by the standard deviation of the depth 

values contained in a 32 x 32 pixels area obtained by sub-sampling the depth map, 

while repeatability is determined by the standard deviation of the depth values 

measured at the same position at different times. The results depicted in Table 2.1 are 

reported for both textured and textureless planar objects when the 5 x 5 Laplacian 8-

neighbourhood was used as focus operator.  

 

Depth accuracy – max error (%) 3.4 

Depth accuracy – standard deviation  2.62 

Repeatability – standard deviation 1.46 

Depth map area (pixels) 256 x 256 

Test area (pixels) 32 x 32 

Number of cycles 50 

Delay between two successive cycles (sec) 5 

 

Table 2.1. The accuracy and repeatability parameters of the developed range sensor. 

 



Chapter 2. Range sensing 

 49 

      For scenes containing non-specular objects (with elevations ranging between 0.7 

and 2.5 cm) the error rate is 3.4% of the overall ranging distance from the sensor.  

When the scene contains objects with specular properties the accuracy is affected in 

relation to the degree of specularity. This can be observed in Figure 2.26 when some 

fine details such as the bumps on the LEGO blocks are not always accurately 

recovered. 

      The results were found to be very encouraging and the recovered shape is precise 

enough for a large variety of visual applications including object recognition and 

advanced inspection.  

 

2.3 Discussion 

      This thesis was authored with the specific intention of exploring active DFD and 

in order to expand this topic, Appendix A surveys a variety of range sensing 

techniques and presents the problems associated with them. From this survey, it can 

be concluded that all these techniques have problems and limitations. For instance, 

passive techniques such as stereo and motion parallax are mostly used for outdoor 

scenes where the depth discontinuities are significant. In contrast, active techniques 

such as depth from defocus or methods based on triangulation are employed when the 

objects are situated nearby.   

      This chapter has focused on describing the implementation of a real-time bifocal 

range sensor. Since the depth is estimated by measuring the relative blurring between 

two images captured with different focal settings, this approach in contrast with 

methods such as stereo and motion parallax is not restricted by problems such as 

detecting the correspondence between features contained in a sequence of images or 

missing parts. Also it is worth mentioning that DFD offers the possibility of obtaining 

real-time depth estimation at a low cost.   

      Active DFD is preferred in many applications because it can reliably estimate the 

depth even in cases when the scene is textureless. However, accurate depth estimation 

requires practical solutions to a variety of problems including active illumination 

which was identified to be the key issue for this approach, optical and sensing 

equipment and the physical implementation. 
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      In contrast with other implementations based on defocusing where the depth range 

is relatively large, the current implementation estimates the depth within a small range 

(between 0-7 cm). In addition, the current approach has another advantage over other 

implementations suggested by Pentland et al (1994) and Nayar et al (1995) because it 

does not contain any sensitive equipment to movements or vibrations, therefore it can 

be easily utilised in robotics applications. The consistency between theory and 

experimental results has indicated that the implementation outlined in this chapter is 

an attractive solution to estimate the depth quickly and accurately.  
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Chapter 3 - Image segmentation 
 

3.1 Introduction 

      Accurate image segmentation is one of the key issues in computer and machine 

vision. The aim of the segmentation process is to decompose the image into disjointed 

meaningful regions that have strong correlation with the objects from the real world. 

The segmentation is complete when the objects from the input image are completely 

described by computed regions, or partial when the objects cannot be directly 

represented by these regions. Achieving complete segmentation using only simple 

algorithms is difficult because the regions contained in the image are not 

homogenous. Sometimes, it is better to achieve partial segmentation and then using 

some properties such as brightness, colour, texture etc., the segmentation process can 

be improved by further processing. In other words, a reasonable way to obtain 

complete segmentation is to use the partial segmentation results as input to higher 

level processing.  

      The range of literature on image segmentation and clustering is extensive. Many 

authors consider that the segmentation techniques can be divided into different 

categories according to the feature in question. The segmentation techniques included 

in the first category use only local features that describe the image content (pixel 

intensities, histograms etc.). The second category is represented by edge-based 

segmentation techniques. For these methods the quality of segmentation is given by 

the precision of the edge detector involved. The third category includes region-based 

segmentation techniques and commonly these methods are based on region growing 

algorithms.  

      Depending on the availability of a priori information describing the image 

content, the segmentation techniques can be divided into supervised and 

unsupervised. In general, the segmentation process is unsupervised since no a priori 

information about the number or type of regions is available. The supervised 

segmentation is used when we have knowledge about the scene, a typical example is 

represented by inspection systems. 
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      Many segmentation techniques have been developed only for 2-D images. For 

some particular applications such as robotic bin picking where the 3-D information is 

required by the robot to identify the position and orientation of the objects (refer to 

Chapter 1), a practical approach is represented by edge-based segmentation. This 

approach is suggested by the observation that edges are determined in general by 

changes of the geometrical properties in the scene. The most relevant segmentation 

techniques will be briefly discussed, with emphasis on the edge–based approach that 

is the topic of the implementation outlined in this thesis.  

 

3.2 Region growing segmentation 

      The edge-based segmentation technique tries to exploit the dissimilarities between 

the regions existent in the image and consequently this approach is efficient if the 

borders between different regions are well defined. If the scene is highly textured or 

the image is affected by noise, the edge structures become very complex and it is very 

difficult to determine the boundaries of the objects contained in the scene.  

       Therefore, region growing techniques are usually better suited when the 

meaningful edges are difficult to detect. As opposed to edge-based approaches, these 

segmentation techniques try to identify the regions with the same properties. 

Generally, these techniques consist of two stages: the split and the merge. The first 

stage (the splitting stage) divides the image into initial regions with maximum 

homogeneity of properties. Then, two or more adjacent regions will join together if 

the conditions established by the merge criterion are upheld.  

      The simplest algorithm for region growing considers that each pixel contained by 

the input image represents an initial region. Next, the algorithm starts the merging 

stage using regions of 2 x 2, 4 x 4 and so on. The merging stage is finished when there 

are no changes between the computed regions. This segmentation algorithm known as 

single-linkage region growing (Haralick and Shapiro, 1992) is attractive due to its 

simplicity but is not very accurate (especially when the image is corrupted by noise).   

      More advanced segmentation techniques rely on split and merge algorithms. The 

algorithm starts with splitting the image sequentially into sub-regions.  Some resulted 

regions may be homogenous during this process and will not split any more. It is 

worth mentioning that the resulting output after the application of the splitting process 

does not represent a segmented image. This output represents the input for the 
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merging process that uses different criteria with respect to the region’s homogeneity. 

In general, the split and merge algorithms are organised as segmentation trees where 

the nodes represent regions while the leaves describe sub-regions. The quality of these 

algorithms is dictated by the homogeneity criteria employed. If the input image is 

reasonably simple, a split and merge approach can use only local properties. If the 

image is complex, an approach that uses only local information may not give 

acceptable results and more consistent properties have to be considered.   

       Along with the edge-base and region growing segmentation techniques that use 

only a single image as an input, for motion-based segmentation techniques the input 

data is represented by a sequence of images.  The aim of the motion segmentation is 

to separate the objects of differing velocity contained by the scene. Next, the surfaces 

resulting after motion segmentation can be further segmented into regions by other 

segmentation techniques. A prominent example of this approach is the ASSET-2 

system developed at Oxford University by Smith and Brady (1995).  

 

3.3 Edge-based segmentation 

      Edge-based segmentation uses the information returned by edge detecting 

operators. Typically, an edge can be seen as a discontinuity in grey (or colour) levels. 

Also, edges are determined by abrupt changes in depth structure, a situation where 

they are related to the geometrical properties of the scene. Therefore, depending on 

the representation of the input data, the segmentation process can be approached using 

2-D or 3-D primitives. For some applications the 3-D information is not available and 

consequently the segmentation algorithm deals with raw images (grey scale or 

colour). Other applications such as robotic bin picking or robot navigation and 

obstacle avoidance require 3-D analysis, thus a realistic way to approach the 

segmentation process relies on the use of range images. The accuracy of the range 

sensor and the geometrical properties of the scene will have a great influence on the 

overall segmentation results. There is no doubt that this approach will be highly 

successful if the relative depth between the objects is significant.  In contrast, if the 

scene contains planar objects which are in contact, hence situated at the same 

elevation, the range image will contain very little information and the results returned 

by the segmentation algorithm are in this case unreliable.  
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      Sometimes, better results are obtained if this problem is addressed using raw 

images and the 3-D analysis is employed only to estimate the object’s orientation (for 

more details refer to Section 3.6.3). 

      The key issue associated with the edge-based segmentation (independent of the 

representation of the input data) is the choice of edge operator. The precision of this 

segmentation technique is highly dependent on the quality of the edge operator used. 

Ideally, every object should be represented by a closed region, but unfortunately this 

situation is very difficult to achieve using only the edge information. Therefore, to 

obtain a meaningful segmentation further processing that takes into consideration the 

local information has to be performed.  

     The most common problems related to edge-based segmentation are caused by 

image noise and the small changes in the grey level distribution. Certainly, these 

issues may have a negative effect on segmentation results and an optimal solution that 

compensates for these problems can vary from case to case. 

 

3.3.1 Edge detectors 

      The successful detection of edge information in an image is an important 

precursor to many image processing and analysis operations. Since edges are 

determined by sharp changes in the grey level transitions, their extraction entails a 

two-stage process. Initially the edges are enhanced using partial derivatives, then, the 

edge detected output is analysed in order to decide whether a particular pixel is an 

edge or not. Based on this concept the following two types of detection operators are 

introduced. The first category includes the gradient operators and the second category 

evaluates the zero crossings of the image second derivative. The first derivative of an 

image f(x,y) is defined by the expression illustrated in Equation 3.1. 
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       The abruptness of the edge is given by the magnitude of the gradient which is 

illustrated in Equation 3.2 and the direction of maximal grey-level change can be 

evaluated using the relationship presented in Equation 3.3. 
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      It can be noticed that the edge operators that use the first derivatives do not 

present the same properties in all directions. Usually, these operators consist of a pair 

of masks which measure the gradient in two orthogonal directions. In contrast, the 

second derivative operator (also known as Laplacian) presents the same properties for 

all directions (rotationally invariant) and is defined by the relationship illustrated in 

Equation 3.4. 
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      An analysis of Equations 3.2 and 3.4 reveals that the magnitude of the first 

derivative and the profile of the second derivative are given by the profile of the edge.  
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Figure 3.1. A 1-D edge and its derivative profiles (from Sonka et al, 1993). 
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      To support this observation, Figure 3.1 depicts the edge profiles for the original 

image, first derivative and second derivative in two situations: the first for a step-like 

edge and the second for a smoother edge profile. As can be easily observed, the 

maximum values for first and second derivatives are obtained for a step-like edge 

profile. The next section will introduce some operators based on the evaluation of the 

first and the second derivatives. 

 

3.3.2 Gradient operators 

      For a discrete image, the gradient can be calculated by simply computing the 

difference of grey values between adjacent pixels. The edge operators are described 

by a collection of masks (kernels) which measure the gradient for certain directions.    

      The simplest gradient edge detector is the Roberts cross operator. It has a pair of 2 

x 2 neighbourhood masks which compute the first derivatives in two orthogonal 

directions. The convolution masks of the Roberts operator are: 
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The gradient’s magnitude and orientation are given by next expressions: 
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where f(x,y) is the input image and  ο  represents the convolution operator. 

      This operator is very convenient to be used because it is simple and fast. The main 

disadvantage is the sensitivity to noise because the masks use only few pixels to 

compute the first derivative. The Prewitt operator gives a 3 x 3 approximation to 

gradient and its convolution masks for x and y directions are: 
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      The Sobel operator is a version of Prewitt operator and its convolution masks are 

illustrated below. 
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      The Prewitt and Sobel operators determine the vertical and horizontal edge 

components. Another popular gradient operator is the Frei-Chen edge detector.  The 

convolution masks for this edge operator are defined as follows: 
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     Because 3 x 3 neighbourhood masks are used, the gradient can be approximated 

for eight possible directions (very often called compass operators). Other common 

compass operators include Robinson and Kirsch (Haralick and Shapiro, 1992).    

 

3.3.3 Second order derivative operator 

      The Laplacian ( ∇ 2 ) is an edge detector that approximates the second derivative in 

the same way that the gradient is an approximation to the first partial derivatives. The 

Laplacian is a rotationally symmetric operator and usually is approximated by a 3 x 3 

mask (for 4 and 8 neighbourhood).   
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      The Laplacian presents some disadvantages. 

 

• Estimates only the magnitude, is not given any directional information. 

• It responds doubly to some edges in the image. 

• Since it is an approximation of the second derivative, it enhances the high 

frequency noise from the input image even more than the gradient operators. 
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3.3.4 The Marr-Hildreth edge detector 

      The main disadvantage of the aforementioned operators is their dependence on the 

size of the object (because the masks perform convolution only for a small area of the 

image) and sensitivity to noise.  A popular method based on the zero crossings of the 

second derivative is the Marr-Hildreth edge detector (Marr and Hildreth, 1980). This 

approach is based on the observation that a step edge corresponds to an abrupt change 

in the image grey levels. Therefore, the first derivatives have the extreme values 

where the edges are positioned in the image and consequently the second derivative 

should be zero at the same position. Thus, it is easier to search for the zero crossings 

of the image that is first smoothed with a Gaussian mask in order to reduce the noise 

and then the second derivative is computed by applying the Laplacian. In other words, 

the image is convolved with the Laplacian of the Gaussian also known as the LoG 

operator ( ∇ 2 ( ( , ))G f x yο , where G is the two-dimensional Gaussian and f(x,y) is the 

input image). The two-dimensional Gaussian  has the following expression: 
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where x, y are the image co-ordinates and σ is the standard deviation. The practical 

implication of using Gaussian filtering is that edges are recovered reliably even in the 

presence of noise. It is worth mentioning, that the standard deviation plays an 

important role because it will determine the shape of the Gaussian filter and ultimately 

the scale of the operator. To choose the correct scale for this operator is difficult 

because it depends on the size of the objects contained in the image, information that 

is usually unavailable. If only strong edges are required, the standard deviation has to 

be increased accordingly with the edge significance. As a result, the less evident edges 

are suppressed, a situation that may cause a significant loss of useful information. A 

solution to this problem is to use multiple scales and aggregate the information 

between them. Unfortunately, this approach is computationally intensive since the 

convolution masks become larger when σ increases.   

      Although a powerful edge detector, the Marr-Hildreth operator has some 

disadvantages such as the fact that it smoothes the shape significantly and due to the 

Laplacian operator creates closed loops of edges.  
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3.3.5 The Canny edge detector 

      Due to its performance, the Canny edge detector (Canny, 1986) is considered by 

many vision researchers as an optimal approach for step edges corrupted by noise.  

      This edge detector was developed to meet several constraints: 

 

• To maximise the signal to noise ratio. This criterion expresses the fact that 

important edges should not be missed and the spurious responses have to be 

suppressed.   

• The distance between the actual and located position of the edge should be 

minimal. 

• Minimise multiple responses to a single edge. This criterion is very important 

especially when the input image is corrupted by noise.   

  

      The Canny edge detector in contrast with the Marr-Hildreth operator returns not 

only the magnitude but also the direction of the gradient. Canny developed an 

exponential function that is very similar to the first derivative of a Gaussian. The 

normal to an edge n can be expressed as: 
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G f x y
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                                                 (3.8) 

 

where ∇ is the gradient operator, f(x,y) is the input image and G is a two dimensional 

Gaussian. The edge is located at the maximum in the direction n of the first derivative 

of G in the same direction.  
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      Equation 3.9 highlights the operations required by the Canny edge detector. The 

first operation convolves the input image with a Gaussian, then the partial derivatives 

are computed and the magnitude and orientation results are recorded. The output of 

the edge detector is thresholded in order to select only significant edges. Canny 

(1986) proposed to remove the spurious responses by thresholding with hysteresis. 

This technique evaluates the output of the edge detector using two threshold values 
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(referred to as low and high thresholds) and works as follows: if an edge response is 

greater than the higher threshold it is considered as a valid edge point. Any candidate 

edge pixels that are connected to valid edge points and are above the lower threshold 

are also considered as edge points. The low and high thresholds are chosen according 

to an estimated signal to noise ratio.  Also, an important issue is to choose the correct 

scale and since the input image is initially smoothed with a Gaussian operator, the 

problems discussed for the Marr-Hildreth operator (see Section 3.3.4) are valid for the 

Canny edge detector as well.    

 

3.3.6 The Shen-Castan (ISEF) edge detector 

      The Infinite Symmetric Exponential Filter (ISEF) detects the edges from maxima 

of the gradient (or equivalently, to a zero crossing of the second derivative in the 

gradient direction) by using differential operators based on exponential filters (Shen 

and Castan, 1992). The ISEF filter for the 1-D case is implemented as a cascade of 

two recursive filters h1(x) and h2(x). 
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, d(x) is the Dirac function and u(x) is the Heaviside 

function. The first derivative of the function h(x) is given by: 
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      Using Equations 3.10 and 3.11, the first derivative can be rewritten as follows: 
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      Figure 3.2 illustrates the ISEF function and the profile of its first derivative. As 

could be easily observed from Equation 3.14, the profile of the second derivative is 

very similar with the profile of the ISEF function. 
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Figure 3.2. The ISEF function and its first derivative.  

 

      The second derivative is given by the following expression: 
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      The generalisation to 2-D is straightforward since the exponential function is 

separable. Thus, the 2-D exponential filter can be written as follows: 

 

)()(),( yhxhyxh =                                          (3.15) 
 

      The horizontal and vertical partial derivatives of the input image f(x,y) are given 

by the following relations: 
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where ο represents a two-dimensional convolution, Hο  denotes the convolution in the 

horizontal direction and Vο  defines the convolution in the vertical direction. These 

equations implement the Gradient Exponential Filter (GEF). Shen and Castan (1992) 

proposed another implementation that examines the zero crossings of the second 
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derivative (also known as Second Derivative Exponential Filter (SDEF)). The 

equations that implement the SDEF operator are shown below. 
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      It is important to note that the computational burden required by the edge 

detectors based on ISEF (GEF and SDEF) is significantly lower than the burden 

associated with the Canny edge detector. The qualitative results depicted in Figures 

3.6 to 3.9 show that the ISEF-based operators represent an attractive solution to 

recover step-like edges quickly and accurately.   

 

3.3.7 The SUSAN edge detector           

      The Smallest Univalue Segment Assimilating Nucleus (SUSAN) algorithm 

developed by Smith (1992) uses a circular mask and in correlation with a set of rules 

determines the edges in the image.  The principle of this algorithm is illustrated in the 

next figure. 

 

 

 

Figure 3.3. Description of SUSAN edge detector algorithm. 

 

      The mask is placed at each point in the input image and the brightness for every 

pixel inside the mask is compared with the one given by the nucleus (the centre of the 

mask).  

A 
B C

E                 D 

Nucleus of the mask Boundary of the mask 
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      The comparison function is implemented by the relationship illustrated in 

Equation 3.18.   
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where 
ρ
ro  is the position of the nucleus, 

ρ
r  is the position of any other pixel within the 

mask, I r( )
ρ

is the brightness of corresponding pixel, t is the brightness difference 

threshold and c is the output of the comparison. If the input image is corrupted by 

noise, better results may be obtained if the expression illustrated in Equation 3.19 is 

employed as comparison function. 
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      The next operation consists of counting the pixels values inside USAN area.  
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      The resulting value is compared with a geometric threshold which is set to 
3

4

nmax , 

nmax being the maximum value that n can take (if only step edges are considered this 

value should be set to 
nmax

2
). This comparison is carried out by a simple function 

which gives the edgeness of the nucleus (see Equation 3.21).  
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where g is the geometric threshold and )( 0rn
ρ

is the number of pixels of the USAN 

area. In order to eliminate false responses, an aspect constraint with respect to the 

USAN area is applied. As can be seen in Figure 3.4, for a step edge the inflection 

point where the second derivative is equal to zero is the right position for the edge 

point. This result was expected, because for that point the USAN area has the 

minimum value. 
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Mask

Threshold

USAN area
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Figure 3.4. The aspect criteria (the minimum area of USAN determines the place of the edge 

point) Smith (1992).    

 

      For some applications the information related to edge direction may be of interest. 

The direction of the edge point is given by the vector which lies between the nucleus 

of the mask and the centre of gravity of the USAN.    

 

 

 

 

Figure 3.5. The edge direction for two different situations. 

 

3.4 Comparison of edge detectors performances 

      The aim of this section consists of testing the performances of the edge operators 

presented previously. This task is more difficult than it appears because a qualitative 

Nucleus of mask Nucleus of mask Centre of gravity of USAN Centre of gravity of USAN 

Edge direction Edge direction 
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estimation involves different criteria that are not always convergent. Therefore, it is 

difficult to establish an analytical expression that gives a competent evaluation and a 

common practice to compare the edge detectors relies on presenting visual results side 

by side. Nevertheless, this approach is subjective as long as it implies the human 

perception that is different from subject to subject. Heath et al (1997) agreed that the 

performance of the edge detectors has to be evaluated in the context of a visual task 

because an “objective evaluation of an early vision algorithm is difficult without 

specifying the purpose of a total system which includes the algorithm…”.  

      One possible way to attempt the rating of edge detectors was suggested in Ramesh 

and Haralick’s (1992) paper when they consider edge detection related to object 

recognition. This approach stems from the assumption that object boundaries are 

described by changes of the geometrical properties in the scene, an observation that is 

closely related to the human perception6. Unfortunately, the scenes do not always 

provide such convenient clues when the objects are separable and in this case the 

evaluation among the edge detectors has to be approached more systematically. 

However, an experimental study based on visual evaluation has to address some 

problems such as: 

 

• To evaluate how the quality of the edge detection is affected when the images are 

artificially corrupted with noise. 

• To verify how much the edge detection results associated with an operator are 

influenced by the choice of its parameters. 

 

      Typical quantitative measures that have to be employed by a visual evaluation are: 

 

• Missing edges. 

• Localisation errors. 

• Various distortions (problems around corners and junctions, errors in the 

estimation of the edges orientation, gaps in edges, etc…). 

                                                           
6 Commonly, humans judge the performance of the edge detectors based on how well they are able to 
capture the salient features of real objects.    
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      Figures 3.6 to 3.9 illustrate a comparison between edge detectors when the image 

is not corrupted by noise. The parameters t for SUSAN, σ for Canny, a0 for GEF and 

SDEF are selected to give optimal7 results.  

 

                  

                                    (a)                                                           (b) 

Figure 3.6.  The application of the Roberts edge operator to a noiseless image. (a) Original 

noiseless image. (b) The resulting image when the Roberts operator is applied to image (a). 

 

               

                                     (a)                                                           (b) 

Figure 3.7. Other edge detection results. (a) The resulting image when the Sobel operator is 

applied to Figure 3.6-a. (b) The resulting image when the Laplace operator is applied to 

Figure 3.6-a. 

                                                           
7 Heath et al (1997) demonstrated that an optimal set of parameters for an edge detector always exists. 
But in practice, the optimal parameters are unlikely to be found due to the amount of experiments 
necessary to achieve this goal. Very often “optimal “ is referred to as the best solution to a problem 
obtained in a reasonable amount of time. 
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                                      (a)                                                             (b) 

 

Figure 3.8. Other edge detection results. (a) The resulting image when the SUSAN edge 

detector (t = 10) is applied to Figure 3.6-a. (b) The resulting image when the Canny edge 

detector (σ = 1.0) is applied to Figure 3.6-a. 

 

                    

                                      (a)                                                            (b)    

 

Figure 3.9. Other edge detection results. (a) The resulting image when the GEF edge detector 

(a0  = 0.45) is applied to Figure 3.6-a. (b) The resulting image when the SDEF edge detector 

(a0  = 0.55) is applied to Figure 3.6-a. 

 

      Figures 3.10 to 3.13 illustrate the behaviour of different edge detectors when the 

image is corrupted with Gaussian noise (mean = 0, variance = 50). 
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(a) (b) 
 

 

Figure 3.10. The application of the Roberts operator to an image corrupted with noise. (a) 

Original image corrupted with noise. (b) The resulting image when the Roberts operator is 

applied to image (a).  

 

             

(a) (b) 
 

 

Figure 3.11. Other edge detection results. (a) The resulting image when the Sobel operator is 

applied to Figure 3.10-a. (b) The resulting image when the Laplace operator is applied to 

Figure 3.10-a. 
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                               (a)                                                                  (b) 

 

Figure 3.12. Other edge detection results. (a) The resulting image when the SUSAN Edge 

Detector (t = 20) is applied to Figure 3.10-a. (b) The resulting image when the Canny edge 

detector (σ = 1.5) is applied to Figure 3.10-a. 

 
 

        

                               (a)                                                                  (b) 

 
Figure 3.13. Other edge detection results. (a) The resulting image when the GEF edge 

detector (a0  = 0.45) is applied to Figure 3.10-a. (b) The resulting image when the SDEF edge 

detector (a0  = 0.55) is applied to Figure 3.10-a. 
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Edge 
Operator 

Edge 
Localisation 

Edge 
Recovering 

Noise 
Distortion 

Computation8 

(ms) 
Personal 
Ranking 

Roberts Poor Poor Very poor 9 6 
Sobel Good Poor Poor 12 5 

Laplace Poor Very poor Very poor 7 7 
SUSAN Very good Good Poor 710 4 
Canny Very good Very good Very good 4922 1 
GEF Very good Very good Good 545 2 
SDEF Very good Very good Good 610 3 

 

Table 3.1. The rating of the edge operators based on the results depicted in Figures 3.6 to 

3.13.  

 

      The evaluation of the performance of the edge detectors illustrated in Table 3.1 is 

obtained based on the visual estimation. This evaluation may be subjective, as a 

statistical approach to evaluate the performance of the edge detectors based on the 

observation of more than one subject is beyond the scope of this thesis. One of the 

aims of this research is to identify the edge detector that maximises the ratio quality in 

edge detection versus computational load. To rate the edge detectors included in this 

experimental framework some measures such as edge localisation errors, missing 

edges and immunity to noise were employed.  The Canny edge detector despite its 

problems associated with connectivity (especially for junctions) appears to be the best 

option. Unfortunately, this edge detector is complex and computationally inefficient. 

The edge operators that use only simple kernels such as Roberts, Sobel and Laplace 

perform only modestly and furthermore are very sensitive to noise. A better approach 

is represented by the SUSAN edge detector but it is outperformed by edge detectors 

based on ISEF (GEF and SDEF). These operators represent an attractive alternative 

because they are fast and the edge estimation is qualitatively close to one returned by 

the Canny edge detector. In addition, their insensitivity to noise is impressive. From 

aforementioned observations for the implementation outlined in this thesis the edge 

operators based on ISEF represent the optimal solution. Also, it may be advantageous 

to apply some post-processing, for example to close the gaps between edges, a 

situation when the quality of the overall edge detection is notably improved. A 

relatively simple and efficient algorithm that addresses this issue will be discussed in 

the next section. 

                                                           
8 These measurements were performed on a Pentium 133MHz, 32 MB RAM and running Windows 98. 
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3.5 Post-processing the edge detection output 

      The segmentation process is highly influenced by the quality of the edge detector 

used. Although robust edge detection has been a goal of computer vision for many 

decades, the current range of edge operators fail to correctly recover the entire edge 

structure associated with a given image9. This is due to the presence of image noise 

and to the small variations in the grey level (or colour) distribution. Thus, the image 

noise will generate extraneous edges while a small variation of the image intensity 

distribution will contribute to gaps in edges. As an immediate result, the segmentation 

process will fail to identify the meaningful regions derived from the image under 

analysis. Therefore to achieve meaningful segmentation, further processing that takes 

into account the local information revealed in the edge detection output has to be 

considered.  

      There are various techniques which address the problem of improving the quality 

of the edge detection. Approaches that have been used include morphological 

methods (Casadei and Mitter, 1996; Snyder et al, 1992; Vincent, 1993), Hough 

transform (Gupta et al, 1993), probabilistic relaxation techniques (Hancock and 

Kittler, 1990), multiresolution methods (Bergholm, 1987; Eichel and Delp, 1985; 

Lindeberg, 1993; Vincken et al, 1996) and the use of extra information such as colour 

(Saber et al, 1997).  In general, morphological approaches offer a fast solution and 

they attempt to maximally exploit the local information, which unfortunately is not 

always sufficient. In contrast, multiresolution and multiscale methods try to enhance 

the edge structure by aggregating the information contained in a stack of images with 

different spatial resolutions. These methods also referred to as pyramidal techniques 

usually outperform morphological techniques, but this is obtained at a high 

computational cost.  

     The implementation outlined in this thesis uses a morphological-based algorithm 

for edge thinning and linking that consists of two phases. The first phase deals with 

integration of the edge structure by aggregating in a hierarchical manner the edge 

information contained in a relatively small collection of edge images of different 

resolutions. The second phase performs edge thinning and linking using the 

                                                           
9 It is worth noting that what is not detected by the edge operators does not represent an edge as a 
discontinuity in the optical signal and it is rather part of an inferred “perceptual” edge associated with 
geometrical properties of the scene.  
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information associated with the singular points (also referred to as endpoints or edge 

terminators). 

 

3.5.1 Sequential edge reconstruction 

      A general problem related to morphological approaches is the choice of optimal 

parameters for an advanced edge operator. In order to reduce the spurious responses 

generated by image noise, the input image is usually smoothed by applying a 

Gaussian filter (Marr and Hildreth, 1980). Consequently the first parameter is the 

standard deviation σ, a parameter that determines the scale of the Gaussian operator. 

As mentioned in Section 3.3.5, to further improve the edge detection output, Canny 

proposed a method based on thresholding with hysteresis using two threshold levels 

(referred to as low and high thresholds). A similar approach was employed by Shen 

and Castan when they developed the ISEF edge operators. Since the optimal set of 

these parameters is dependent on the input image, it will be difficult to apply simple 

criteria to consistently determine these parameters. As most developed systems have 

been designed to perform a specific task, it makes it difficult to use them in other 

applications.  

      To address this problem, many researchers have tried to tackle this on a global 

basis by building a stack of images in which the scale parameter is varied. However it 

makes sense to improve the edge structure by aggregating the edge information 

starting from images with low resolutions towards those with higher resolutions, but 

this entails a high computational cost since the convolution masks become larger 

when σ increases. Also choosing the right scale parameters is not a simple issue 

(Lindeberg, 1993; Vincken et al, 1996). In addition, the appearance and the 

localisation of edges within the image are increasingly disturbed when σ increases 

and this complication may cause a real problem when edges are reconstructed.  

      To avoid such problems and to maintain a low computational overhead, the 

threshold parameters are varied while the standard deviation is kept constant to the 

default value (for example σ = 1.0 for Canny and a0 = 0.45 for the ISEF-based GEF 

edge detector). This approach has the advantage that the edge operator has to be 

applied only once while the hysteresis threshold is sequentially applied to obtain the 

stack of images of different resolutions10. At this stage, a key problem consists of 

                                                           
10 The term resolution is not used in the normal accepted scale-space sense. Here, the term resolution 
defines the level of edge detail presented in the images generated at different cut-off thresholds. 
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selecting the optimal range for the threshold parameters. Obviously, the aim is to have 

the edge segments presented in the output image as large as possible. Smaller 

segments (less than 4 pixels) are generally due to noise.  In this regard, the lower 

threshold is selected by analysing the level of small edge segments that are present in 

the edge detection output.  

 

    

                               (a)                                                                 (b) 
 

    

                               (c)                                                                  (d) 

 

Figure 3.14. The image stack. (a) Input image. (b) The low resolution image. (c) The medium 

resolution image. (d) The high resolution image. 
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      The algorithm is initialised with the minimal value for the lower threshold (during 

this stage, the higher threshold is set at the same value as the lower threshold) and it is 

incrementally increased until the ratio between the number of edge pixels derived 

from small segments and the number of edge pixels derived from large segments is 

smaller than a preset value. When this criterion is upheld, the lower threshold value is 

fixed and by increasing the value of the higher threshold the images with a coarser 

resolution are obtained. The maximum value of the higher threshold is dependent 

upon the edge detector used (for example it takes a value of 20 for the GEF edge 

operator). To increase robustness to noise at least 2 stack images are required, but to 

better combine the edge structure an image stack which contains three images 

(referred to as low resolution image, medium resolution image and high resolution 

image) of different resolutions are considered. This solution is advantageous as long 

as it allows the removal of noise at each iteration. Also, the scene may contain objects 

that have a low contrast against the background; consequently they will not be present 

in the image with the lowest resolution. Once the stack of images are processed (see 

Figure 3.14). The algorithm attempts to combine the edge information between them 

by using the following procedure: 

 

1 Initially the image with lowest resolution is subtracted from the medium 

resolution image.  

2 The resulting image is labelled using a graph-based algorithm (refer to Section 

3.6.2) and the length of each edge segment is computed.  

3 The next step involves analysing the edge structure contained in both images, 

namely the image with the lowest resolution and the labelled image. If any edge 

pixel is connected with an edge segment from the labelled image, the edge 

segment is added to the edge structure in the image with lower resolution. 

4 The remaining edge segments from the labelled image are analysed in order to 

decide if they are valid edge segments. If the labelled segments under 

examination contain more than 4 edge pixels, they are added to the edge 

structure. 

5 The remaining pixels are assigned as edge segments only if there is a valid edge 

segment with a length greater than 4 pixels in their 3 x 3 vicinity. The aim of 

this operation is to remove the isolated and the small undesirable edge responses 

that are caused by noise. 
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      When this process is completed, the image resulting from the first step is 

subtracted from the high resolution image. Then, the edges are aggregated by using 

the same procedure outlined above.  

 

     

                              (a)                                                                   (b) 
 

     

                               (c)                                                                  (d)       
   

Figure 3.15. The edge reconstruction process for images illustrated in Figure 3.14. (a) The 

subtraction of the lowest resolution image from the medium resolution image. (b) The 

resulting image after the first iteration. (c) The subtraction of the resulting image from the 

highest resolution image. (d) The output image. 
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      Figure 3.15-d shows the result obtained after the application of the proposed 

reconstruction scheme. 

 

3.5.2 Iterative edge thinning 

      Multiple edge replications represent another typical error associated with edge 

detecting operators. Thus, there are cases when the edge responses are several pixels 

wide. Since the goal of this approach consists of reconnecting the interrupted edges 

using only the local information, multiple edge responses may generate incorrect 

linking decisions. Therefore to use the local information more efficiently, a thinning 

algorithm has to be applied to remove the unnecessary edge responses. In this regard, 

an iterative morphological thinning algorithm based on the use of L-type structuring 

elements was implemented (Sonka et al, 1993). This algorithm is defined as follows: 

 
)( SIISI ⊗−=∅  

 

where I is the image containing the edge information, S is the structuring element, ∅  

denotes the thinning operation and ⊗  defines the binary hit-or-miss transformation. 

The thinning process is convergent and stops when two successive images in the 

sequence are identical.   

 

3.5.3 Recovering the endpoints and edge normalisation 

      Although the proposed scheme significantly improves the edge structure, there are 

situations where gaps in edges exist in the output image. To correct this problem, a 

method to bridge the gaps by analysing the endpoints has been developed. Extracting 

the endpoints entails a simple morphological analysis and consists of a set of 3 x 3 

masks that are applied to the resultant image after the application of the edge 

reconstruction process.  
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Figure 3.16. The masks used to detect the endpoints. 
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      Figure 3.16 illustrates the masks used to detect the endpoints, where the pixel 

under investigation is highlighted and mask entries indicated by ‘x’ can take any value 

(0 or 1) but at least one of them has the value 1. This ensures that the single edge 

pixels are not marked as endpoints. 
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Figure 3.17. (a) The chain of endpoints. (b) The normalised edge structure. 

 

      As can be easily observed, there is the possibility to have “chains of endpoints”. 

This situation is illustrated in Figure 3.17 where each edge pixel would be assigned as 

an endpoint. This is a common problem and is caused by the edge localisation errors 

that are generally due to noise. Since for each endpoint the algorithm evaluates its 

direction and analyses the possible connections with other edge points, the chains of 

endpoints will only increase the computational load as long as they are linked. 

Fortunately, the localisation errors are easy to detect. This situation occurs when more 

than 2 endpoints are connected and the algorithm shifts the pixels in order to obtain 

the linear configuration illustrated by Figure 3.17-b. 

 

3.5.4 Endpoints labelling 

      To efficiently close the gaps in edges, the local knowledge has to be maximally 

exploited. Thus, it is necessary to determine the scanning direction for each endpoint 

by evaluating the linked edge pixels that generate it. It can be noticed that the masks 

illustrated by Figure 3.16 contain some information that gives a useful clue regarding 

the endpoint direction. Unfortunately, this gives only 4 scanning directions which is 

not sufficient to always find the correct result. To avoid such limitation, the search for 

edge links was extended to 8 directions, a situation when supplementary information 

has to be evaluated. As Figure 3.18 illustrates, there are cases when the endpoint is 

generated by a straight edge, a situation where the scanning direction can be easily 

established. 
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Figure 3.18. Situations where the edge direction (indicated with an arrow) is derived from 

straight edges. 

 

      This may not be the case for curved edges, when the edge direction is not as well 

defined. A typical situation is illustrated in Figure 3.19 where the endpoint direction is 

evaluated by analysing the local information for a larger neighbourhood. In Figure 

3.19 only the first 3 directions are analysed, while the remaining directions can be 

obtained by rotating the masks.   
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Figure 3.19. The edge direction derived from curved edges. 

 

3.5.5 Edge linking 

       The next step of the algorithm deals with searching for possible edge paths by 

using the information derived from the endpoints. The scanning process is iterative 

and starts at the endpoint under investigation. This process is defined as follows: 

 

1 Initially the algorithm evaluates the 3 x 3 neighbourhood at the side given by 

the endpoint direction. In order to avoid closed loops of edges, the pixels 
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situated in the endpoint’s neighbourhood are evaluated in a strict order. Thus, 

the pixels which lie on the endpoint direction are evaluated first. If there are no 

edge pixels detected, the scanning continues by evaluating the remaining pixels, 

starting with those closer to the endpoint.  

2 If no connections are detected, the algorithm evaluates the 5 x 5 neighbourhood 

while ignoring the 3 x 3 area which was already assessed.  

3 If the scanning process fails to find an edge pixel, the algorithm analyses the 7 x 

7 neighbourhood by using the same procedure outlined above.   

4 If a connection is detected, a path is established between the endpoint and the 

detected edge point by using the Bresenham algorithm (Bresenham, 1965). In 

other words a line is drawn between the endpoint and the edge pixel.  

5 There exists the possibility that the detected edge point to be also an endpoint. If 

the path given by the detected endpoint is the same like that given by the first 

endpoint, as a result the Bresenham algorithm will be applied twice. To avoid 

such situations, the co-ordinates of the path are stored into a table and each time 

a new path is found, the algorithm verifies if there is not another entry with the 

same co-ordinates. 

6 If the scanning process fails to find any edge pixels, no entry is generated. 
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Figure 3.20. The edge linking process. (a) The edge structure around an endpoint. (b) 

Scanning the 3 x 3 neighbourhood (the pixels are evaluated in alphabetic order). (c) Scanning 

the 5 x 5 neighbourhood (the previous area is not taken into account). (d) The result after the 

Bresenham algorithm is applied.  
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      Figure 3.20 illustrates the edge linking process described above. The mask entries 

marked with ‘∗ ’ indicate that they were already verified.  To evaluate the performance 

of the proposed edge linking scheme it was tested on several images.  Initially, the 

algorithm was tested on noiseless images and results of the complete process can be 

seen in Figure 3.21. 

 

 

 

Figure 3.21. The edge linking results when the algorithm is applied to the image illustrated in 

Figure 3.15-d. The linking pixels are shaded and for clarity some details are magnified. 
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      As Figure 3.21 illustrates, the algorithm was able to handle even difficult 

situations such as edge bifurcation. This can be observed in the last two image details.  

      To verify the algorithm’s robustness to noise, the input image was corrupted with 

additive Gaussian noise (mean = 0, variance = 30). In Figure 3.22 the result of the 

edge reconstruction process is illustrated.  

 

   

                                (a)                                                                  (b) 
 

Figure 3.22. The edge reconstruction process. (a) The input image corrupted with Gaussian 

noise. (b) The result after edge reconstruction. 

 

      It can be noticed that the edge segments caused by noise are removed except in the 

case they make contact with the edge structure presented in the lower resolution 

images. Figure 3.23 illustrates the output after the edge linking algorithm is applied. 

As expected, errors such as loops of edges occur due to extraneous edges caused by 

image noise. However, in practical applications this is not a major disadvantage as 

long as they generate small regions that can be easily removed or relabelled.    

      The experimental results indicate the ability of the proposed algorithm to 

reconnect edges even in cases when they are closely spaced. Also some limitations of 

this approach can be noticed. The first is derived from the fact that the algorithm is 

not able to cope with gaps larger than 7 pixels. The scanning process can be extended 

to search until a connection is found but this leads to incorrect linking decisions 
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especially when dealing with complex scenes. Furthermore, since the gaps are bridged 

using the Bresenham algorithm the edge geometry for larger gaps is not preserved. 

However, large gaps cannot be efficiently closed using only the local edge 

information and to address this problem robustly supplementary knowledge has to be 

considered.  

 

 

 

Figure 3.23. The edge linking results when the algorithm is applied to the image illustrated in 

Figure 3.22-d.  
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      An important issue is the computational efficiency. Achieving reasonable timing 

using a complex edge operator such as Canny is difficult, since the computational 

time required to extract the edge structure derived from a 256 x 256 / 256 greyscale 

image is 4922 ms when running on a PC with a Pentium 133 processor. As mentioned 

in Section 3.4, the ISEF-based GEF operator represents an attractive solution since the 

processing time is 545 ms. Also, it is worth mentioning that this advantage is obtained 

without reducing significantly the edge recovering performance. The processing time 

associated with the edge reconstruction, thinning and linking algorithm depends on 

the complexity of the edge structure. Timings for images involved in the 

aforementioned experiments are depicted in Table 3.2. 

 
Input image Edge detection 

[ms] 
Edge reconstruction 

[ms] 
Edge thinning and linking 

[ms] 
Figure 3.14-a Table 3.1 450 100 
Figure 3.22-a Table 3.1 495 115 
 

Table 3.2. Performance of the edge linking algorithm. 

 

3.6 Image segmentation 

      The image is segmented using the result returned from the edge linking algorithm. 

This stage is very important because the resulted image after segmentation is used as 

input information for the object recognition algorithm. The operations required to 

disconnect the regions contained in the input image are: 

 

1 To remove the small regions created by shadows, a morphological binary 

dilation with a square 3 x 3 structuring element is applied twice to the edge-

linked image. 

2 The resulting image is analysed in order to identify the regions’ boundaries. If 

an edge point is present, its position is marked in the input image as a point of 

discontinuity.  

3 The image obtained from step 2 is thresholded against the background.  The 

background is assumed to be the darkest region contained by the image. The 

threshold value is set just above this value.  

4 The labelling algorithm (see Section 3.6.1) is applied to the image resulted from 

step 3. This assigns a unique label to each disjointed region.     
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3.6.1 The labelling process 

      The aim of the labelling process is to assign a unique index (label) to each region 

in a binary image and consists of connecting the pixels that have a value other than 

zero (which describes the background). The connectivity between pixels depends on 

the type of neighbourhood used. 

      When only the north, south, east, and west directions are considered, the 

connectivity in this case is based on a 4-connected neighbourhood. When the 

northeast, northwest, southeast, and southwest are also considered, the connectivity in 

this case consists of 8-connected neighbourhood.  Figure 3.24 illustrates the pixel 

connectivity when the 4 and 8-connected neighbourhood are employed.            
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Figure 3.24. The labelling process. (a) The binary image. (b) Labelling the pixels using 4-

connectivity. (c) Labelling the pixels using 8-connectivity. 

 
      As can be seen in Figure 3.24, 4-connectivity for certain situations fails in 

assigning a correct label for pixels which are grouped together. Therefore, most of the 

labelling algorithms use 8-connectivity.  

 

3.6.2 The iterative labelling algorithm  

      This algorithm analyses the input image in a raster scan mode and assigns a new 

label each time an unconnected pixel is found. When two regions that are connected 

but have different labels are found, an iterative label propagation sequence will 

reassign both regions with the minimum label. Figure 3.25 illustrates how this 

algorithm works.    
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Figure 3.25. The iterative labelling algorithm. (a) The original binary image. (b) The results 

before label propagation. (c) The results after label propagation. 

 

      This algorithm is simple but unfortunately is slow especially when the image 

contains many objects with U type shape. A more efficient algorithm (Haralick and 

Shapiro, 1992) uses a table that records the equivalencies between assigned labels. 

Whenever a situation where two connected regions which have different labels is 

found, a new entry in the table of equivalencies is inserted.  
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Figure 3.26. The efficient labelling algorithm. (a) The original binary image. (b) The results 

after first step. (c) The table of equivalencies. (d) The results after solving the equivalencies 

between labels.  
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      The last stage consists of reassigning the labels using a graph searching technique 

(depth first search). This process is illustrated in Figure 3.26. 

      There is a significant difference in computation cost between these approaches. 

For example, a complex 256 by 256 binary image is labelled by the iterative 

algorithm in 3.4 seconds (this time is highly dependent on the shape of the objects 

contained in the image) while for the algorithm that uses the table of equivalencies the 

required time is about 0.5 seconds.  

 

3.6.3 Input data representation  

      The choice of input data representation must be correlated with the edge 

interpretation. As mentioned previously, an edge can be seen as a discontinuity in the 

intensity function or alternatively, can be associated with the changes in the scene’s 

depth structure. The approaches discussed above suggest the input data required to be 

analysed. Thus, in the first situation the edge information is detected from the raw 

images while in the second case the range images are used as input. A natural 

question can be formulated as: which approach gives better results? A realistic answer 

was suggested by Sonka et al (1993) when they tied the problem of input data 

representation with the context of the application where this information is analysed. 

For some applications such as that outlined in this thesis where the 3-D information is 

available, a practical way to approach the segmentation process relies on the use of 

range images. The main problem is whether the edge information detected from the 

range images is precise enough to obtain a meaningful segmentation. Obviously, the 

precision of the segmentation process is strictly correlated with the resolution of the 

range sensor. Rahardja and Kosaka (1996) acknowledged in their paper the difficulty 

of obtaining a precise segmentation if the range sensor is low resolution or the depth 

discontinuities revealed in the range image are not significant. If this is the case, better 

results may be obtained if the edge-based segmentation scheme is applied to raw 

images. Because the implementation described in this thesis deals with a set of small 

polyhedral textureless objects, a realistic way to conduct the research is to investigate 

which approach returns better results. To carry out this investigation, it is necessary to 

evaluate the edge information associated with raw and range images that describe the 

same scene.  The results are evaluated side by side using the same visual framework 

employed to rate the edge detectors (refer to Section 3.4). In these experiments only 
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the top three edge detectors (Canny, GEF and SDEF11) resulted from the visual 

evaluation carried out in Section 3.4 were utilised.  

 

    
 

(a)    (b) 
 

    
 

                              (c)                                                                  (d) 
 

Figure 3.27. Edge estimation when the input is a raw image. (a) The input image. (b) The 

output from the Canny edge detector (σ = 1.0). (c) The output from the GEF edge detector (a0 

= 0.45). (d) The output from the SDEF edge detector (a0 = 0.55). 

                                                           
11The parameters for these edge detectors were selected for optimal results. 
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(a) (b) 

 

    
    

                               (c)                                                                  (d) 
 

Figure 3.28. Edge estimation when the input is a range image. (a) The range image of the 

scene illustrated in Figure 3.21-a. (b) The output from the Canny edge detector (σ = 1.0). (c) 

The output from the GEF edge detector (a0 = 0.5). (d) The output from the SDEF edge 

detector (a0 = 0.6). 
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      Figure 3.27 illustrates the edge estimation results when a raw image is analysed. 

These results can be compared with those depicted in Figure 3.28 when the range 

image is obtained from the scene described by the raw image. A simple visual 

comparison indicates that the edge detection is significantly better in the case when 

the raw image is analysed. In addition, Figure 3.27 illustrates the fact that the quality 

of edge detection is almost independent of the edge detector employed. In contrast, 

when the range image is investigated there is a significant difference between the 

results returned by the Canny and the ISEF edge detectors. There are many rationales 

that explain these results. As might be expected, the most important one is derived 

from the fact that the depth discontinuities between objects are not very significant. A 

different source of errors is generated by the imperfections that are associated with the 

range sensor, the most important problems being caused by shadows (which can be 

observed at the bottom of the square object) and a limited resolution of the range 

sensor. 

      Analysing the edge information returned in both cases, the visual evaluation of the 

results suggests that the optimal solution relies on the use of raw images as inputs for 

the segmentation framework outlined in this chapter12. Thus, the analysis of the 

segmentation results that will be presented in the next section will be carried out only 

on raw images. 

 

3.7 Segmentation results 

      To evaluate the performance of the proposed segmentation algorithm, it was tested 

on several images which contain textureless objects. Initially, the algorithm was tested 

on noiseless images to verify the validity of the proposed segmentation scheme. The 

next test uses input images which are artificially corrupted with noise for the purpose 

of evaluating the robustness of the algorithm when dealing with real-world non-

idealities.  

      For these experiments the Canny, GEF and SDEF edge detectors were employed. 

Figures 3.29 to 3.31 depict the segmentation results when the input of the algorithm is 

a noiseless image. 

                                                           
12 This does not mean that is always the case. For example, other similar implementations which 
involve a higher resolution range sensor or deal with objects with a larger size, more consistent results 
may be given if the range images are analysed. 
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                               (a)                                                                  (b) 

          

         
 
                               (c)                                                                  (d) 
 
Figure 3.29. Segmentation results using the Canny edge detector. (a) The input noiseless 

image. (b) The output from the edge detector. (c) The output after edge linking operation. (d) 

The centroids of the computed regions. Note that a morphological binary dilation with a 3 x 3 

square structured element is applied twice to the edge linked image illustrated in image (c). 
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                         (a)                                                                  (b)     

 

     
  

        (c)                                                                  (d) 

 
Figure 3.30. Segmentation results using the GEF edge detector. (a) The input noiseless 

image. (b) The output from the edge detector. (c) The output after edge linking operation. (d) 

The centroids of the computed regions. 
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                                  (a)                                                                          (b) 
 

     
 

                                  (c)                                                                          (d) 
 

Figure 3.31. Segmentation results using the SDEF edge detector. (a) The input noiseless 

image. (b) The output from the edge detector. (c) The output after edge linking operation. (d) 

The centroids of the computed regions. 

 

      It can be noted that the computed regions illustrated in Figures 3.29-d, 3.30-d and 

3.31-d are marked according to the number of pixels that are contained in each region. 

The regions are sorted with respect to the size. When the Canny edge detector is 
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applied to the input noiseless image, the result is a complete meaningful segmentation 

(all regions are correctly identified). When the ISEF (GEF or SDEF) edge detector is 

applied, the regions marked with 1 and 5 disappeared because they are not closed by 

the edge structure. 

 

          
                               
                                (a)                                                                  (b) 

 

      
 

                                (c)                                                                  (d) 
 
Figure 3.32. Segmentation results using the Canny edge detector. (a) The input image 

corrupted with Gaussian noise (variance = 30). (b) The output from the edge detector. (c) The 

output after edge linking operation. (d) The centroids of the computed regions. 
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      In addition, the regions marked with 2 and 8 in Figure 3.29-d are linked together 

in Figures 3.30-d and 3.31-d because they are not separated. Figures 3.32 to 3.37 

illustrate the behaviour of the algorithm when the input image is corrupted with 

Gaussian noise (mean = 0, variance = 30). 

 

    
 

                                 (a)                                                               (b) 

   
 

                                   (c)                                                              (d) 

Figure 3.33. Segmentation results using the GEF edge detector. (a) The input image 

corrupted with Gaussian noise (variance = 30). (b) The output image from the edge detector. 

(c) The output after edge linking operation. (d) The centroids of the computed regions. 
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                               (a)                                                                   (b) 

   
 

                               (c)                                                                   (d) 
 

Figure 3.34. Segmentation results using the SDEF edge detector. (a) The input image 

corrupted with Gaussian noise (variance = 30). (b) The output image from the edge detector. 

(c) The output after edge linking operation. (d) The centroids of the computed regions. 

 

      Figures 3.32-d, 3.33-d and 3.34-d show that the number of detected regions and 

their positions within the image returned by the segmentation algorithm is not 

modified when the input image is corrupted by noise. The next test was to verify the 
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stability of the algorithm when the input image was corrupted with noise to a larger 

extent (mean =0, variance = 50).  

 

   
 

                               (a)                                                                  (b) 

   
 

                                (c)                                                                  (d) 

 
Figure 3.35. Segmentation results using the Canny edge detector. (a) The input image 

corrupted with Gaussian noise (variance = 50). (b) The output image from the edge detector. 

(c) The output after edge linking operation. (d) The centroids of the computed regions. 
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                               (a)                                                                  (b) 

   
 

                               (c)                                                                  (d) 
 

Figure 3.36. Segmentation results using the GEF edge detector. (a) The input image 

corrupted with Gaussian noise (variance = 50). (b) The output image from the edge detector. 

(c) The output after edge linking operation. (d) The centroids of the computed regions. 
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                               (a)                                                                  (b) 

   
 
                               (c)                                                                  (d) 

 
Figure 3.37. Segmentation results using the SDEF edge detector. (a) The input image 

corrupted with Gaussian noise (variance = 50). (b) The output image from the edge detector. 

(c) The output image after edge linking operation. (d) The centroids of the computed regions. 
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      As can be noted from Figures 3.35-d, 3.36-d and 3.37-d the algorithm was well 

able to deal with this added complication, the number and the position of the 

computed regions being unchanged. As would be expected, the borders are not as well 

preserved (especially for the ISEF edge detectors) but the results are not significantly 

different from those depicted in the previous cases.  

 

3.8 Discussion  

      The segmentation process is accurate only if the meaningful regions that describe 

the different objects contained in the image are precisely separated. A key question is: 

which method will return better results? 

       If the scene is very complex and the objects are highly textured the resulting 

image is over-segmented if there an edge-based approach is employed. In this case, 

better results are given by region growing techniques. If the objects are textureless 

and have almost the same colour there is very little information for region growing 

techniques and the image describing the scene will be under-segmented. The best 

approach is represented in this case by edge–based segmentation techniques. Because 

the textureless objects are the topic of this current research, much of the effort has 

been devoted to identify the optimal edge detector. In terms of efficiency, the Canny 

edge detector appears to be the best option but unfortunately it is computationally 

complex. Thus, a trade-off between the quality in edge estimation and the 

computational efficiency is given by the ISEF edge operators (GEF and SDEF).  

However, the results returned by the ISEF edge detectors (even when the image was 

corrupted by noise) are qualitatively close to those returned by the Canny edge 

detector.  

      An important issue is reconnecting the gaps between interrupted edges and 

performing fine enhancements in order to remove the isolate edge pixels that are due 

to noise. The implementation outlined in this chapter is a morphological-based 

approach which has two key components. The first component globally maximises the 

edge detection by aggregating the information contained in a small collection of 

images. The second component attempts to correct the local imperfections by 

exploiting the information around the singular points. The experimental data 

demonstrates the validity of the proposed segmentation scheme. 
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Chapter 4 - Object recognition and description 

techniques 

 

4.1 Introduction 

      Image-based object recognition has been one of the key subjects of research for 

several decades. The motivation extends from the observation that the adaptive 

robotic applications cannot be developed without the help of recognition. In spite of 

the enormous effort that has been devoted to solve this problem, the field of computer 

vision has still not produced any clear understanding of how the generic recognition 

should be attempted. Nevertheless, there are many rationales to explain this 

circumstance and the most important is represented by the distortion of the object’s 

appearance due to occlusions and the fact that the primitives associated with the 

object’s shape are viewpoint dependent. Certainly, the first question that arises is: 

how does the human visual system accommodate these problems so well? It has 

generally been accepted that humans are able to recognise real objects contained in 

scenes with a complex scenario without difficulty. In addition, their ability to 

recognise 3-D surfaces from 2-D contours is extremely robust even in the case when 

the contours are incompletely described. Many psychological studies attempt to 

explain the human visual perception. In this sense, the excellent paper of Edelman 

(1995) details a psychological experiment in which the subjects were trained to 

discriminate between two classes of computer generated 3-D objects, the first 

resembling monkeys and the other dogs. Both classes were defined using an extensive 

set of parameters which encodes sizes, shapes and placement of limbs. One of the 

aims of this experiment was to evaluate how the recognition process is influenced 

when the parameters that describe the object (also called geons or parts) are randomly 

perturbed. A distinct area of interest was to investigate the subjects’ performance 

when the objects were viewed from an unfamiliar perspective.  
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      The results of this experiment were very surprising and can be summarised as 

follows: 

 

• A recognition model based on the investigation of the geon-structure 

difference between objects was not sufficient to achieve viewpoint invariance.  

• The rate of recognition of objects viewed from an unfamiliar perspective is 

relatively poor. 

• As expected, increasing the inter-objects similarities the overall performance 

decreased accordingly.  

 

      One year earlier, Cutzu and Edelman (1994) analysed the usefulness of canonical 

views in the recognition of 3-D objects. They emphasised that “perceiving the shape 

of an object irrespective of the viewing conditions such as its orientation in space and 

its distance from the observer frequently incurs a certain information-processing cost, 

over and above what it takes to recognise the same object in the most familiar 

appearance”.  It is well known that the human visual system has the ability to cope 

better with some kind of object transformations than others (Biederman and 

Gerhardstein, 1993). A typical example is represented by scaling when the size of the 

objects does not affect visibly the recognition rate. In contrast, rotation in depth may 

have a significant influence on recognition rate. These issues were addressed in their 

paper when the experiments were conducted on synthetic randomised wire-like 

objects. The conclusion of the experiment states that the recognition of irregular 

complex objects relies at least in part “on schematic 2-D objects representations and a 

image-plane shape matching process”.  

      A fundamental question is: what can be learnt from the human vision system? The 

most obvious answer is that no recognition is possible without knowledge (very often 

called as a-priori information). In this regard, Bergevin and Levine (1993) considered 

it useful to define the term generic recognition. In their assertion, the term generic 

emphasizes the fact that the recognition process is not based on accurately known 

object models, but rather on coarse, qualitative models representing classes of objects. 

This approach is closely related to the recognition by parts (RBC) theory developed 

by Biederman (1987), a theory that is based on the observation that humans can 

efficiently recognise objects from simple line drawings. 
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      In contrast with this formulation, the “classic” model-based approaches require a 

detailed description of the objects contained in the model database. Nevertheless, the 

generic approaches are conceptually very attractive but unfortunately they have a 

single proof of feasibility: human vision. Thus, this approach may be useful to those 

working in perception psychology and computer vision, but it is not as relevant to 

vision researchers trying to implement industrial systems.  

      Along with knowledge understanding, the issue of object representation plays a 

central role in object recognition. The importance and the necessity to describe 

precisely the shapes associated with real objects were highlighted in Henderson’s 

(1983) paper. Historically, the shape properties used in object recognition were 

computed in 2-D. Ideally, the shape would be described by viewpoint invariant 

primitives (features).  In some cases, invariants like circle transform into an ellipse 

when they are viewed from a non-perpendicular direction, a transformation that is 

relatively easy to evaluate. Also, other shape descriptors such as line segments, 

junctions or planar polygons show some projection invariant properties. These 

features are very suitable to describe planar objects when the distortions caused by the 

observer position or object occlusion are not considerably significant. Unfortunately, 

this assumption is very restrictive and not always the applications can be constrained 

to meet these conditions. In this regard, Kak and Edwards (1995) suggested to choose 

the shape descriptors after a detailed analysis of the shape recognition problem in the 

context of the given application and to decide whether or not the 2-D object 

representation provides sufficient information. For some real objects the 2-D 

representation may bear enough information for recognition while for other the 3-D 

representation should be considered. The main problem associated with the 2-D 

approaches is the fact that an image is a 2-D projection of a 3-D scene and there is a 

significant loss of information. There is no doubt that conceptually the 3-D object 

representation should remove the problems associated with the 2-D representation.  

Experience has demonstrated that in practice the problems related to the extraction of 

the 3-D volumetric primitives are more complex than initially believed. As mentioned 

in Section 3.6.3 the quality of the range sensor and the relative depth between objects 

will limit the applicability of this approach.  
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      Independent of object representation, the recognition process refers to the 

classification of the primitives (features) that describe the objects of interest.  

Formally, the object recognition process can be divided into two main operations. The 

first consists of extracting the primitives contained in a raw or a range image while the 

role of the second operation is to classify the objects in classes. 

      A typical recognition scheme is illustrated in Figure 4.1. The first block (“Extract 

object features”) implements the first stage of the algorithm and is closely related to 

the type of object representation employed, while the second block (“Classifier”) 

assigns the feature vector (or pattern) to a class.  

 

 

         Image                                          Feature vector                               Classification 

 

 
Figure 4.1. The block diagram for object recognition. 

 

      The classifier is the central part of the recognition scheme outlined in Figure 4.1 

and can be seen as a deterministic machine that assigns the feature vector in question 

to a specific class in agreement with the decisional rule employed. It is very important 

to note that the result of classification is not always correct and a natural aim is to 

minimise this state by choosing the optimal classification parameters.  

      The operation that adjusts the classifier parameters using a well-defined set of 

examples (training set) is very often referred in the literature to as classifier learning 

stage. The training set consists of a collection of feature vectors that describe the 

models contained in the database and each feature vector is accompanied by 

information about its proper classification. The operations required in the classifier 

learning stage are depicted in Figure 4.2 and basically consist of a trial of the training 

set where the results of classification are assessed by a supervisor which adjusts the 

classifier parameters accordingly. The quality of the learning process is highly 

dependent on the accuracy of the training set. Naturally, the training set should be 

fully representative for the classes that are represented. The learning process is 

finished when the criterion with respect to the classification precision is upheld. 
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Figure 4.2. The classifier learning stage. 

 

     At the end of the learning stage, the classifier is able to partition the feature space 

using so-called “discrimination” surfaces into disjointed regions. Figure 4.3 illustrates 

the pattern space for four separable classes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Feature space for four separable classes of objects. 
 
 
 
    Ideally, each resulting region will contain only feature vectors belonging to a single 

class but in some cases due to the difficulty associated with choosing the optimal 

training set, some regions will be incorrectly defined and therefore certain input 

feature vectors will be misclassified.   
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4.2 Analysis of the issues related to object recognition 

      The problems such as model acquisition and representation, feature extraction 

and matching represent the key issues related to object recognition. All of these issues 

are closely related, as the type of feature extraction employed depends directly on the 

object representation scheme adopted. As noted earlier, the problems associated with 

object representation play a central role in object recognition. In this regard, a number 

of object recognition schemes have been proposed to address this problem using 2-D 

views. Initially, as suggested in the paper by Lamdan et al (1988), the recognition 

scheme consists of analysing and matching simple 2-D features such as line segments, 

corners, junctions etc. The justification for using this approach is that these primitives 

are easy to determine and are fairly robust with respect to viewpoint invariance. 

Intuitively the main drawback is the large number of hypotheses created, a fact that 

makes the process of feature matching inefficient. An effective way to overcome this 

issue was presented in the paper by Forsyth et al (1991) and relies on grouping and 

indexing the features that are associated with an object model. The grouping and 

indexing mechanism is based on the observation that a number of features are 

extracted together when the model is analysed.  Nevertheless, this approach produces 

a clear improvement in terms of reliability and efficiency but some problems such as 

partial occlusion when some of the features are unavailable and an untrustworthy and 

expensive feature verification procedure restricts the applicability of this recognition 

scheme.  

      Much recent debate has focused around including high-level primitives in the 

recognition process. The early work on inferring the 3-D shape from 2-D views was 

focused on analysing the projections of volumetric primitives. Commonly used 

classes of volumetric primitives include polyhedra, generalised cylinders and super-

quadrics. The recognition schemes based on the use of these primitives were very 

successful when the scene was restricted to objects with simple geometrical 

properties. As we might anticipate, an inherent problem is the recovery of these 

primitives when dealing with occlusion. An efficient solution to compensate for this 

problem was proposed by Dickinson et al (1992). In their implementation they 

employed a set of ten primitives called geons which are augmented with a hierarchy 

of their component features (see Figure 4.3).  
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Figure 4.4. The set of volumetric primitives (from Dickinson et al, 1992). 

 

      The developed probabilistic framework (also called an aspect hierarchy), 

decompose the geons in subcomponents in a hierarchical manner with the purpose of 

increasing the formulation’s robustness when dealing with occlusion. This 

observation is correct because due to occlusion some of the subcomponents can be 

partially or completely missing. At this stage a careful analysis is required to select a 

limited number of qualitative subcomponents in order to maintain a computationally 

efficient verification process. Consequently, the authors concluded that an appropriate 

primitive representation should be organised on three hierarchical levels (see Figure 

4.5). At the top level of the aspect hierarchy reside aspects which completely describe 

a distinct primitive. As can be seen in Figure 4.4, the aspects consist of a collection of 

2-D faces. Due to occlusion some of the faces may be unavailable and this 

observation introduces the motivation of the second level of the hierarchy. Thus, faces 

which describe 2-D closed contours are placed at the second level of the aspect 

hierarchy.  Again due to occlusion some contours can be only partially recovered and 

therefore the aspect hierarchy has to be completed with the lowest level. Boundary 

groups represent the third and the last level of the hierarchy and consist of a collection 

of lines and curves that are parts of the closed contours.  
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Figure 4.5. Primitive representation using the aspect hierarchy (modified from Dickinson et 

al, 1992). 
 
 

      The primitive representation illustrated in Figure 4.5 is very appealing because the 

resulting graph that describes the links between subcomponents has great viewpoint 

independence. In addition, this approach is convenient because it supports the creation 

of probabilistic rules for inferring complex primitives from relatively simple features. 

However, this formulation is accompanied by some problems such as a complex 

bottom-up primitive extraction scheme. In addition, the ambiguities created by 

occlusions can generate some problems when the groupings are verified to match a 

model from the database. Also, an inherent disadvantage is the fact that the aspect 

hierarchy is derived from a rather small number of primitives, a fact that makes this 

approach particularly appropriate to recognise textureless objects with distinct faces. 

Unfortunately, the objects to be analysed do not always meet these conditions. If the 

objects are highly textured or their shapes contain many irregularities, the effort to 

extract the meaningful primitives is immense. Consequently, the scheme developed 

by Dickinson et al (1992) may not be appropriate to handle the recognition of such 

objects.  

      To overcome this problem the recognition process can be formulated as one of 

matching the appearance rather than the shape. In this regard, Murase and Nayar 

(1995) developed a PCA appearance-based recognition system suitable for 
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recognising and estimating the position of complex objects from 2-D images. This 

approach is suitable for the recognition of multiple objects but is not able to handle 

occlusion.  

      More recently, Ohba and Ikeuchi (1997) proposed to divide the appearance into 

small windows and to apply eigenimage analysis to each window. Nevertheless, for a 

large database the number of windows that are involved in the recognition process is 

very large and a framework using criteria such as detectability, uniqueness and 

reliability was developed in order to select only the relevant windows. The principle 

of this algorithm is illustrated in Figure 4.6.  

 

                             

 

 

                       

             

 

Figure 4.6. The principle of the recognition scheme based on matching the local appearance 
(modified from Ohba and Ikeuchi, 1997)13. 

 

      A conceptually related approach was proposed by Schiele and Crowley (1996) 

when they employed the multidimensional receptive field histograms to match the 

local appearance.  

 

                                                           
13 The scene is synthetically created with objects from Columbia Object Image Library (COIL-20). 
This database is available at: http://www.cs.columbia.edu/CAVE/research/softlib/coil-20.html 
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      In contrast with the formulation proposed by Dickinson et al (1992), the 

recognition schemes based on matching the appearance can handle only the 

recognition of objects with pronounced and different textural characteristics. For the 

purpose of reducing the disturbance effects, the appearance has to be divided into 

small windows. It should also be noted that these windows are viewpoint dependent 

and the recognition algorithm must search all possible positions in order to minimise 

the mismatch, a fact that restricts the application of this approach to real-time 

implementations. 

       During the last decade, many strategies have been developed to recognise 3-D 

objects using the information contained in range images. Nevertheless, using 3-D 

information in the recognition process was implied by the observation that the vision 

applications are geared specifically for dealing with the 3-D world. As for approaches 

based on 2-D object representations, one of the critical issues in designing a model-

based vision system is the selection of features to be employed in the recognition 

process. In the late 80’s, Bolles and Horaud (1987) developed the well-known 3DPO 

system for recognising 3-D objects from the range data. They proposed a recognition 

scheme based on analysing the edge information contained in the range image. The 

first component of the developed scheme performs a low-level analysis of the range 

data and classifies the resulting edges into two categories, straight and circular, 

followed by a characterisation of the surfaces that are adjacent to each edge. Using 

this strategy, a circular edge is expected to be the intersection between a planar 

surface and a cylindrical surface while a straight edge may be the intersection of two 

planes. This analysis is completed by indexing all the visible surfaces that are adjacent 

to these edge features. The high-level analysis is used in the matching and validation 

stage. In this sense, the hypotheses created by the resulting features associated with 

the objects to be recognised are verified if they match a model from the database.  

This system proved to be successful for recognising curved objects but the database is 

restricted to very few models.  

      Fan et al (1989) proposed an approach to recognise 3-D objects by using the 

visible surfaces and their topological relationships which resulted after the 

segmentation of the range image. The resulting surfaces are indexed into a graph, each 

node being assigned to a visible surface. If two surfaces share a common border the 

algorithm creates a link between the nodes that describe them. Figure 4.7 shows the 
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surfaces associated with an object in a random pose and the corresponding object 

model. 

 

 

 

 

 

 

 

 

 

 

 

                              (a)                                                                   (b) 

 

Figure 4.7. The surface indexing process. (a) Surfaces and the resulting graph associated with 

a scene object. (b) Surfaces and the resulting graph associated with the corresponding model 

from the database (modified from Fan et al, 1989). 

 

      As can be observed in Figure 4.7-b, all the surfaces that are associated with the 

object model are known while in the case of the scene object due to self-occlusion the 

region that is marked with 5 is not visible and therefore is not taken into account. In 

practice, the situation is even worse when in addition to self-occlusion the resulting 

graph is further disturbed as a result of an imperfect surface segmentation or more 

often due to occlusion caused by other objects from the scene. Consequently, the 

matching algorithm based on graph searching techniques has to handle such errors in 

description, a requirement that is not always easy to achieve. This approach proved to 

be very successful especially when the objects in question are polyhedral or have a 

sufficient number of distinct surfaces. Recently, Johnson and Hebert (1999) proposed 

a framework for simultaneous recognition of multiple objects. Their implementation 

is based on matching local 3-D features using so called spin images. The spin images 

are local 3-D descriptors which depend on the object surface curvature. This approach 

is very appealing because does not require any surface segmentation whilst only local 

features are employed. Nevertheless, the main problem associated with this approach 

is the large number of spin images that have to be analysed. In this sense, to reduce 

1 

2 

3 

4 

4 

3 
2 

1 

5 

1 2 3 4 1 2 3 4 5 



Chapter 4. Object recognition and description techniques  

 111 

the computational overhead associated with the matching algorithm, the authors 

employed PCA to compress the spin images contained in the model database. As 

opposed to the approach developed by Fan et al (1989), this technique is suitable to 

recognise objects with complex shapes. In addition, the rate of success is highly 

influenced by the quality of the range sensor.  

      In this section the most relevant techniques that are the basis of discussion for the 

present implementation were detailed. Also, a number of popular techniques for 

object recognition based on 2-D object representation will be discussed in Appendix 

B. This discussion is continued in Appendix C where some relevant techniques based 

on analysing the range images are presented.  

   

4.3 Current implementation for object recognition  
       The aim of the research outlined in this thesis is to develop a vision sensor for bin 

picking suitable for use in an integrated sorting/packing industrial environment. As 

noted by Batchelor (1991), more than 75% of industrial applications are in small to 

medium batches. This observation is further strengthened by the fact that 98% of 

products are made of fewer than 25 parts (Delchambre, 1992). However, in the design 

of an industrial vision system, criteria such as speed and precision has to be 

considered.  From the previous considerations, for a practical system an efficient 

solution to this problem is to recognise the object first because the number of objects 

contained in the database is relatively small. Then, the orientation can be addressed at 

a later stage. The proposed recognition framework consists of analysing the resulting 

regions obtained after the application of the segmentation algorithm while the pose is 

precisely estimated using eigenimage analysis. Conceptually, the approach described 

in this thesis is related to the work detailed in the paper by Dickinson et al (1992). As 

described in the previous section they employed a hierarchical primitive 

representation to address the recognition of objects in scenes containing clutter and 

occlusions. A natural question is: why only use surfaces as primitives for recognition? 

The answer is based on experimental results when the behaviour of each component 

contained by the hierarchical representation is analysed when the scene contains self 

and mutual occlusions. At the highest level of the hierarchy reside aspects which are 

very complex primitives but unfortunately they are very sensitive to occlusion. 

Furthermore, they are appropriate for describing objects with simple geometry. 
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Boundary groups are located at the lowest level of the hierarchy. These groups are 

very appealing to use when the scene is heavily occluded. Unfortunately, they are 

very ambiguous and the model-to-scene verification procedure is computationally 

intensive, a fact that restricts their use from real-time implementation. Therefore, the 

best solution is to use faces (referred to as regions in this thesis) as primitives in the 

recognition process.  

      Also, an important issue is related to object representation. As detailed in Section 

3.6.3 the objects of interest are small and consequently the relative depth revealed in 

the scene is not very significant. The analysis that was carried out on various scenes 

contributed to the conclusion that for this implementation the 2-D object 

representation may be the appropriate solution. Thus, the 3-D information is required 

only to select the most suitable regions and to estimate their pose.   

      In Section 4.3.1 the developed recognition scheme which analyses the regions 

resulting from the segmentation process is introduced. This discussion is continued in 

Section 4.3.2 where the pose estimation algorithm based on an eigenimage analysis 

approach is detailed. 

 

4.3.1 Region-based object recognition 

      The aim of this section is to analyse the benefits associated with the use of  

regions (surfaces) that are related to the shape of the object as primitives in the 

recognition process. In the approach developed by Fan et al (1989) (see Section 4.2) 

the objects are described in terms of their surfaces. The surfaces resulted after the 

range image is segmented are indexed and the recognition process consists of graph 

matching. Kim and Kak (1991) extended this approach when they associated an 

attribute to each region. For example, the attribute for a planar surface is its centroid, 

while for a cylindrical surface attributes such as radius, centroid and axis are 

employed. Nevertheless, this formulation is very efficient when the objects have many 

and regular faces. If the objects in question have only a small number of faces this 

approach becomes inefficient.  

       An alternative approach that can handle such situations, consists of analysing the 

features that can be derived from the geometrical characteristics of the regions. The 

choice of the types of the features that are used depends on the reliability of their 

measurement. The criterion employed to select the optimal subset of features has to 
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take into consideration factors such as consistency, accuracy and computation 

complexity. Another issue of interest is to analyse the immunity of the features in 

question when viewpoint changes occur. In this sense, the local features such as 

junctions, lines, strong corners, segments of the object’s contour appear to be better 

suited but as mentioned earlier, these features are very ambiguous and the number of 

hypothesis created in the verification stage is extremely large. Also, the effects of self 

and mutual occlusion hinder the applicability of this approach. In contrast, the global 

features derived from the scene’s regions offer good viewpoint invariance and the 

degree of ambiguity is drastically reduced. It should be noted that these features 

describe globally the regions and consequently this approach is efficient only if the 

region of interest is mildly occluded. Using the aforementioned criteria, for the 

present implementation features such as area, perimeter, the maximum and minimum 

distances from the region’s centroid to the region’s border are chosen. Figure 4.8 

depicts the features employed in the developed recognition scheme.  

 

    

(a) (b) 
 

Figure 4.8. The region-based recognition process. (a) The input image. (b) The resulting 

image containing the geometrical features employed (the first row’s figure represents the rank 

of the region with respect to the area, the second row contains the region’s area and perimeter 

while the remaining figures indicate the maximum and minimum distances from the region’s 

centroid to the region’s border). 
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       Because this implementation addresses a bin picking application where the scene 

changes each time an object is picked, at a certain time one object is of interest and 

this object has to be on the top of the object pile in order to allow easy manipulation. 

Certainly, at this stage an important role is played by the 3-D information that gives 

useful clues in determining the best placed object from the object pile. The initial 

stage consists of building the object database using the aforementioned features 

(region’s area and perimeter, the maximum and minimum distances from the region’s 

centroid to the region’s border) for every object of interest. The algorithm was 

developed to deal with a variable number of features, each feature being normalised in 

order to limit the influence of the dominant features. In order to avoid the situations 

where the features with the largest values overpower the remaining ones, a range 

normalisation scheme is performed in which the feature mean is subtracted from each 

feature followed by dividing it with the feature variance (as described in Appendix 

D). In this case each feature is standardised to zero mean and unit variance. The 

recognition stage consists of computing the Euclidean distance between the input 

region and the regions contained in the database (for more details regarding the 

Euclidean distance refer to Appendix D).  
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where i = 1,2,…, Nr (Nr being the number of regions contained in the database).       

The input region is in the database if the minimum distance that gives the best 

approximation is smaller than a threshold ϕ. The value of this threshold was set 

experimentally and defines the maximum allowable distance for a positive recognition 

state. 

 

                                                    ϕ≤)_min(
i

gdist                                               (4.4) 

 

      If ϕϕ 2)_min( << igdist  the region could be one of interest and the algorithm 

invokes a global search operation, a situation when the entire database is verified to 

find the best match (more details in Section 4.3.2.3). There is no doubt that the global 

search operation is computationally intensive and consequently an important goal is to 

minimise the cases where this operation is required. To achieve this goal, a framework 
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that deals with a variable number of regions which fulfil the 3-D criteria was 

implemented.  The developed algorithm can identify some regions which do not fulfil 

the selection criteria and are marked as Occ. This situation occurs when the scene 

reveals obvious occlusions as illustrated in Figure 4.9. 

 

     
 

                                (a)                                                                  (b)                              

Figure 4.9. Determining the occluded objects. (a) The input image. (b) The segmented image 

which highlights the object’s elevations. The occluded objects are marked with Occ. 

                   

      The number of remaining regions can be further decreased by applying other 

selection constraints. For this implementation the selected regions’ area have to be 

bigger than a preset value that is 80% of the smallest region contained in the database. 

Also, the gripper’s mechanical characteristics can impose further constraints such as 

the space between the object to be grasped and the objects situated in its 

neighbourhood. 

      Next, from the selected regions, the one that gives the best approximation with 

respect to the matching criteria is considered to be on the top of the object pile. If the 

minimum Euclidean distance for the selected region is higher than the threshold value 

the algorithm invokes the global search operation. Although this framework does not 

eliminate the need for the global search operation, the situations when this operation 

is required are greatly reduced. 
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      If the region is not contained in the database the algorithm provides two options, 

the first is to remove the object from the pile and the second is to rearrange the scene. 

An example that shows how the developed framework operates is illustrated in Figure 

4.10 

 

    

(a) (b) 

 

  

                               (c) 

 

Figure 4.10. Selecting the best-placed objects. (a) The input image. (b) The resulting image 

data. (c) The selected region considered to be on the top of the object pile. 
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4.3.2 Pose estimation using eigenimage analysis 

       The implementation outlined in this chapter uses an eigenimage analysis 

approach for pose estimation. This can be briefly described as a method, which 

computes the eigenspace determined by processing the eigenvalues and eigenvectors 

of the image set (see also Moghaddam and Pentland, 1994; Murakami and Kumar, 

1982; Sirovich and Kirby, 1987; Turk and Pentland, 1991b). For the current 

implementation, the image set is obtained by acquiring a collection of spatial 

positions by rotating the objects around a single axis and an eigenspace is computed 

for each object of interest. For the region resulted after recognition, the algorithm 

projects its image to the corresponding eigenspace and the object pose is estimated 

according to the number of images contained by the image set (Murase and Nayar, 

1995).  

      To make this approach computationally efficient the image set is obtained by 

varying pose whilst maintaining a constant level of illumination. A major aim is to 

minimise the problems associated with the position of the object within the image.  It 

is acknowledged that this approach is very sensitive to the location of the object, 

therefore to compensate for this problem the objects are centered within the image. 

Another key problem consists of eliminating the redundant information. In this 

regard, the image set is normalised in brightness and the background is discarded. For 

the sake of computational efficiency, the eigenspace for every image set can be 

constructed by computing only the larger eigenvalues (eigenvectors) of the covariance 

matrix. The next step involves projecting all the images contained in the image set 

onto the eigenspace and thereby obtain a set of points that characterise the object’s 

position in space. In order to increase the resolution, the resulting points are connected 

in eigenspace using a linear interpolation. In this case, intermediary positions situated 

between two consecutive positions contained in the image set are better approximated.  

      The procedure described above parameterises the pose by only one degree of 

freedom (DOF) with respect to the camera. To address the full three DOF pose 

estimation the image set must sample all possible spatial orientations. This approach 

is impractical since a very large number of images are required. In contrast, the 

present approach constrains one DOF using eigenimage analysis as described above, 

while the remaining two DOF are addressed by analysing the range data, namely by 

computing the normal to the surface as will be shown in Section 4.3.3.    
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4.3.2.1 Calculating eigenspace 

      In general, an image I(x,y) is represented by a two-dimensional 256 by 256 array 

of 8-bit intensity values. Alternatively, this image can be considered as a vector of 

dimension 65536 when the brightness values are evaluated in a raster scan manner. 

Whichever representation is used, this information is too large to be used directly for 

pose estimation. The main concept of the principal component analysis (PCA or 

Karhunen-Loeve expansion) is to find the vectors that can efficiently describe the 

entire image set. Many research studies concluded that the optimal representational 

space entails computing the eigenvectors of the covariance matrix associated with the 

image set. These vectors describe an orthonormal space and this property is illustrated 

in Equation 4.5. 
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where ui, uj are two eigenvectors and γ ij is the scalar product. 

      Let I be an image which describes a scene that contains a single object. As 

previously mentioned this image can be represented by the vector illustrated in 

Equation 4.6. 

                                                         I= [i1,i2,i3,…,iN]                                                (4.6) 

 

where i1, i2,…,iN  are the pixel values. The idea of PCA consists of matching the 

appearance of the object contained in the image rather than its structural description. 

It is worth mentioning that the appearance of the object is affected only by its spatial 

position if the illumination condition are maintained constant. In this sense, it is 

necessary to construct an image set that encodes the relevant spatial positions. As can 

be seen in Equation 4.7 the image set associated with an object is organised as a 

matrix of images. 
 

                 [I1,I2,I3,…,IP]T                                              (4.7) 

 

where P is the number of considered positions in space. For the purpose of 

minimising the effects caused by the variations in the intensity of illumination, each 

image is normalised so that the total energy contained in the image is unity (Murase 

and Nayar, 1995). To accomplish this goal, each pixel intensity is divided by B as 

shown in Equation 4.8.  
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      In Figure 4.11 is shown a part of the image set obtained by rotating the object 

manually in small increments. For each image, the object of interest is centered and 

the background is discarded. 
 

 

Figure 4.11. Part of the image set obtained by rotating the object around a single axis. 

 

      Before computing the eigenspace, it is necessary to compute the average image 

(A) of all the images from the image set: 

A
P

Ii
i

P

=
=
∑1

1

’                                                    (4.9)        

                                                    

 
 

Figure 4.12. The average image of the image set illustrated in Figure 4.11. 
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      The normalised image set will be obtained by subtracting the average image from 

each normalised image: 
 

                                                              S I A I A I A I AP
T= − − − −[ , , ,..., ]’ ’ ’ ’

1 2 3                                      (4.10) 

 

      Equation 4.10 indicates that the dimension of matrix S is P x N, where P is the 

number of positions (images) and N is the number of pixels.  The next step involves 

the computation of the covariance matrix. 

 

                                                              C S ST=                                                    (4.11) 

 

      The resulting matrix illustrated in Equation 4.11 is very large (65536 x 65536) and 

it will be extremely difficult to compute the eigenvalues and the corresponding 

eigenvectors. Alternatively, if the number of images P is smaller than N it is easier to 

construct the P x P matrix using Q = SST, but in this case the dimension of the space 

is maximum P. The eigenvalues and the corresponding eigenvectors associated with 

the reduced covariance matrix Q are computed by solving the following well known 

equation: 
 

                                                               Qu v ui i i=                                                               (4.12) 

 

where ui is the ith eigenvector and vi is the corresponding eigenvalue. It should be 

noted that the covariance matrix is symmetrical and this property considerably 

reduces the computational overhead when the eigenvalues are computed. Based on 

this observation, in the implementation described in this thesis, the eigenvalues and 

the eigenvectors are computed using the QL algorithm (see Appendix E). This 

algorithm is preceded by an application of the Householder transform with the aim of 

obtaining a simple tridiagonal form for the covariance matrix (for more details refer 

to Appendix E). The eigenspace is obtained by multiplying the matrix of eigenvectors 

(eigenmatrix) with the matrix S: 
 

   E US=                                                       (4.13) 
 

where U=[u1,u2,…,uP]T, U is P x P dimensional and E that represents the eigenspace 

is P x N dimensional. As an example, Figure 4.13 illustrates the first eight 

eigenvectors computed from the image set depicted in Figure 4.11. 
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Figure 4.13. Eight of the eigenvectors corresponding to the largest eigenvalues calculated for 

the input image set. 

 

    Using this approach, the number of calculations is significantly reduced, but in this 

case the number of eigenvectors is relatively small (up to P).  

 

4.3.2.2 Position estimation 

      Once the eigenspace is computed, the next step consists of projecting all images 

from the set on this subspace (E=[e1, e2,…,ep]
T). The result will be a collection of 

points which describe the object’s position. Before projecting the image set onto 

eigenspace, it is necessary to subtract the average image from each image as 

illustrated in Equation 4.14.  

 

h e e e I Ai P
T

i= −[ , ,..., ] ( )’
1 2                                        (4.14) 

 

where e1, e2, …, ep are the eigenspace vectors and are N dimensional. 

      As predicted, each point is P dimensional and for the purpose of pose estimation, 

this allows a fairly accurate method under the condition of maintaining a constant 

illumination. Moreover since consecutive images are strongly correlated, a method to 

estimate the intermediary spatial position of the objects contained in the image set can 

be developed. A simple algorithm was proposed by Nene et al (1994) and consists of 
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interpolating the points resulting after the projection of the input image set on the 

eigenspace. All the points from the PCA database are connected using a linear 

interpolation into a manifold by passing through the root node while the new points 

are added to the left child (the left child is the point derived from the root node). This 

process is applied from left to right until a spatial position is assigned to each point 

(projection). This continuous manifold depicted in Figure 4.14 allows the possibility 

to estimate with increased precision the spatial orientations of the object that are not 

included in the image set. 

 

 

 

 

 

 

 

 

Figure 4.14. The projected points connected together into a manifold using the first three 

dimensions of the eigenspace. 

 

      If an unknown input image is projected on the eigenspace (see Figure 4.15), a P 

dimensional point will result and this vector can be used in a standard estimation 

algorithm. The simplest method to match an unknown image with an image contained 

in the image set relies on computing the Euclidean distance using the relationship 

illustrated in Equation 4.15. 
 

d h h h h h h h h h hi i i
T

i
T

i
T

i
2 2

= − = − − = −( ) ( )                        (4.15) 

 

where  i=1,2,…,P and h is the projection of the input image onto the eigenspace. 

      The input image approximates an image contained in the image set if the 

minimum distance between its projection on the eigenspace and the points contained 

in the PCA database is smaller than a threshold value. As in the previous case, the 

value of this threshold was set experimentally and defines the maximum allowable 

distance for a positive estimation state. 

 

Root node

θ = 0 → 360 

θ 
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ζ≤−= ii hhd min                                           (4.16) 

 

     If the minimum distance is bigger than the threshold value, then the general search 

operation is invoked, this will be described later. 

 

                                                                                   

                                 

                            

                                                                                                                        

                                                                                                                      

                                                                                                                        

                                                                                                                       

                                        

                       

 

                

                                                                                                            

                                                                                                      

                                                     

 

Figure 4.15. The matching process (modified from Nene and Nayar, 1995). 

   

      In order to simplify the representation in Figure 4.15 where the matching process 

is illustrated, the space is partitioned only for the first three co-ordinates (x,y,z),  while 

the pose estimation algorithm uses a multi-dimensional space (up to P). In Figure 

4.15, the matching point is inside the cube of size 2ξ and the corresponding position 

in space is approximated by the point’s position in the hypercube. Generally the input 

point H (with rare exceptions when it matches perfectly a position from the PCA 

database) will lie between two consecutive points from the PCA database. In case if 

these points are not connected into a manifold, the input point will match the point 

from the database that is closest to it. Since the image set for each object contains 24 

spatial orientations, the maximum error rate is 7.5 degrees. This error rate is 

significantly reduced when the database is connected into a manifold. This can be 
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clearly observed in Figure 4.15 when the distance between the input point H and the 

nearest point situated on the manifold is smaller than the distance between the input 

point and the closest point contained in the database. In this case, the maximum error 

was reduced to 2.1 degrees when 24 orientations are used.    

 

4.3.2.3 Global search operation 

       The global search is invoked only if the geometrical constraints are not precise 

enough or the initial recognition failed. A solution is to compute the universal 

eigenspace determined by using all images contained in the database. Unfortunately, 

the universal eigenspace is difficult to compute as the number of images for a large 

collection of objects is significant. For this reason, the input image is projected onto 

every object’s eigenspace and if the minimum distance is smaller than ξ, the object is 

correctly recognised and its pose estimated within the algorithm error. Otherwise the 

object is not contained in the database. Certainly, this operation is slow as long as all 

possible situations are verified but the situation when the global search is required 

rarely occurs. 

 

4.3.3 Object pose from 1 DOF to 3 DOF 

      The eigenimage analysis detailed in Sections 4.3.2.1 to 4.3.2.3 constrains only 1 

DOF since the image set is generated by rotating the object around a single axis. In 

order to address the full 3 DOF object pose it is necessary to generate an image set 

that captures all possible orientations of the object under analysis. Nevertheless such 

approach is quite impractical since even at a coarse rate of object pose sampling, it 

would require a very large image set. Consequently, the 3 DOF object pose has to be 

reformulated in order to reduce the size of the image set. In this sense, for the present 

implementation 1 DOF is constrained using eigenimage analysis while the remaining 

2 DOF are addressed by computing the normal to the surface resulting after 

recognition. 

    

4.3.3.1 Computing the normal to a plane 

     The normal vector of a planar surface gives useful clues regarding the orientation 

in space of this surface. To compute the normal vector it is necessary to know the co-

ordinates of 3 non-collinear points A, B, C that that belong to the planar surface.  
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      These points will generate two independent vectors p, q (called vertex) and their 

vectorial product will generate a vector n perpendicular on the plane on which the two 

vectors lie.  

 

 

                                                                          

       

       

 

 

 

 

 

 

 

 

Figure 4.16. The normal vector to a plane. 

 

      The vectors p and q are obtained by subtracting the co-ordinates of point A from 

the co-ordinates of point B and C respectively. Once p and q are determined, the 

normal to the plane in point A is given by the vectorial product of the input vectors as 

illustrated in Equation 4.16. 

 

kxqypyqxpjzqxpxqzpiyqzpzqypn

zCzAzqyCyAyqxCxAxqCAq

zBzAzpyByAypxBxAxpBAp

ρρ
)....()....()....(

...;...;...);(

...;...;...);(

∗−∗+∗−∗+∗−∗=

−=−=−=−=
−=−=−=−=

    (4.16) 

 

where the symbol ∗  defines the arithmetic multiplication and kji
ρρρ

,,  are the standard 

unit vectors.  The resulting vector n has to be normalised in order to adjust its norm to 

unity. This operation is straightforward and is shown in Equation 4.17. 
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      Another common problem is to check which side of the plane the normal vector is 

on. If we are looking only for normals pointing outward the surface, then the z 

component of the normal must be positive. Otherwise we have to multiply the x, y and 

z components of the normal by –1 in order to obtain the orientation of the normal 

from the other side of the plane. 

        

 4.3.3.2 Computing the 3 DOF object pose 

      Generally, the grasping position is relative to well-defined stable points such as 

the centroid of the recognised face. Consequently, the normal to the surface where the 

centroid is situated has to be determined. While the co-ordinates of the centroid are 

known, in order to compute the normal vector at least other two independent points 

situated in the same plane with the centroid are required. For this purpose the points 

on the border derived from the maximum and minimum distance from the region’s 

centroid to the region’s border are very appealing to use since the measures associated 

with them were used for recognising the topmost object.  

      Unfortunately, determining the normal to the surface using only a vertex (3 non-

collinear points) is very sensitive to the errors in depth estimation. In addition it is 

worth noting that the highest error rate in depth estimation is around the objects 

borders. To compensate for this issue, four vertices v1, v2, v3, v4 adjacent to the 

centroid are chosen and the normal vector is obtained by averaging the vectors 

obtained for each vertex (see Figure 4.17).  

 

 

  

 

 

 

 

 

 

 

Figure 4.17. Computing the normal to a surface from 4 adjacent vertices. 
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      The vertices depicted in Figure 4.17 were chosen symmetrically relative to the 

centroid using only the minimum distance from the surface centroid to its border in 

order to avoid the situation when the selected points may fall outside the surface. 

Results of the developed pose estimation algorithm are depicted in Figure 4.18.  

 

     
 

(a) (b) 
 

 
 

(c) 
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                               (d)                                                                 (e) 

 

Figure 4.18. The 3 DOF pose estimation. (a) The input image. (b) PCA pose estimation. (c) 

Depth estimation. (d) The normals computed from the depth map illustrated in image (c). (e) 

3 DOF pose estimation for the topmost object. The model displayed in image (e) is 

synthetically generated using the parameters returned by the pose estimation algorithm (PCA 

and range data analysis). 

 

4.4 Analysis of recognition in cluttered and occluded scenes 

      The recognition system was tested in the presence of clutter and mild occlusions. 

In order to test the recognition system, a database containing 5 objects was created. 

The objects contained in the database are shown in Figure 4.19.   

      The cluttered scenes are created by arranging the objects contained in the database 

in various ways. In this regard, the system was initially tested on a simple scene 

illustrated in Figure 4.20-a in which several objects are situated in convenient 

positions. Then, it was tested on a complex scene depicted in Figure 4.21-a where the 

objects are either slanted or occluded.     
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Figure 4.19. The object set utilised in experimentation. 

 

        The next test was performed on a difficult scene where all objects are occluded 

(see Figure 4.22). 

 

     

                            

                                (a)                                                                    (b)  
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                               (c)                                                                   (d) 

 

     

 

                                (e)                                                                  (f) 

 

Figure 4.20. Results set 1. (a) The original image. (b) The image after the application of the 

GEF edge operator. (c) The image after edge linking operation. (d) The resulting image data 

(the first figure is the rank of the region with respect to the area, the second is the region’s 

maximum elevation, and the last two represent the dominant features). (e) The estimation 

returned by the algorithm using geometrical constraints. (f) The estimation returned by the 

algorithm using eigenimage analysis.  
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(a) (b) 

 

     

 

(c) (d) 

 



Chapter 4. Object recognition and description techniques  

 132 

             
 

                                (e)                                                                  (f) 

 
Figure 4.21. Results set 2. (a) The original image. (b) The image after the application 

of the GEF edge operator. (c) The image after edge linking operation. (d) The 

resulting image data (the first figure is the rank of the region with respect to the area, 

the second is the region’s maximum elevation, and the last two represent the dominant 

features). (e) The estimation returned by the algorithm using geometrical constraints. 

(f) The estimation returned by the algorithm using eigenimage analysis.  

 
 

          
                                          
                                (a)                                                                  (b) 
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                                (c)                                                                  (d) 
 

                                
                                
                                 (e)                                                                 (f) 
 
Figure 4.22. Results set 3. (a) The original image. (b) The image after the application 

of the GEF edge operator. (c) The image after edge linking operation. (d) The results 

(the first figure is the rank of the region with respect to the area, the second is the 

region’s maximum elevation, and the last two represent the dominant features). (e) 

The estimation returned by the algorithm using geometrical constraints. (f) The 

estimation returned by the algorithm using eigenimage analysis. 
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      A key problem is the dimension of the eigenspace. As noted earlier, the 

eigenspace dimension is limited to P, where P is the number of positions contained in 

the image set which is specific for each object. The experimental results indicated that 

this algorithm failed to return a precise estimation if the dimension is less than 8 (see 

Figure 4.19).  

      The eigenspace dimension was increased to 24 incrementally but the error rate 

was not affected visibly after 16, when the position is estimated within the algorithm 

error. For the present implementation the dimension used was 24, this generates the 

most precise results. 
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Figure 4.19. Estimation rate as a function of the dimension of eigenspace. 

 

      The algorithm was designed in order to minimise the false-positive recognition 

state when the object does not belong to the scene and the recognition algorithm 

concludes that the object exists. This situation appears when the segmentation 

algorithm does not decompose the input image into disjointed meaningful regions or 

the 3-D information is not precise enough in determining the object placed on the top 

of the object pile. These issues are minimised by using the global search operation 

which was described in Section 4.3.2.3. When the scene is affected only by clutter, the 

algorithm correctly recognises the object placed on the top of the pile. When the scene 
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is affected by clutter and occlusion the object is correctly recognised only if the 

occluded region is smaller than 15% of the object’s total area.   

 
4.5 Discussion 

      A recognition algorithm suitable for bin picking has to tackle some important 

issues such as clutter and occlusion, problems that were discussed and analysed in 

Section 4.2. Reviewing the existing systems, the conclusion is that all of them have 

merits and limitations. For example, the geon-based recognition scheme is 

conceptually appealing since the primitive representation can be approached in a 

hierarchical manner. In spite of this, the practical implementation is hindered by a 

complex primitive extraction procedure. This approach is extremely well suited for 

the recognition of textureless objects with distinct faces. If the objects of interest are 

textured this technique may not be appropriate and a possible solution relies on using 

appearance-based recognition approaches. To be efficient when dealing with 

occlusion, the appearance has to be divided and the resulting windows are analysed to 

match a model object. This scheme is particularly appropriate to recognise flat objects 

with different textural characteristics. Because the bin picking application is 

specifically geared to dealing with the 3-D world, using 3-D information in the 

recognition process appears to be the natural approach. The 3-D methods are very 

successful if the relative depth between the objects in the scene is significant. Also, it 

is important to note that the quality of the range sensor plays a crucial role. 

      Because the objects of interest are textureless and small the recognition scheme 

outlined in this thesis is conceptually related to the approach detailed in the paper by 

Dickinson et al (1992). As mentioned in Section 4.2, their implementation is based on 

graph matching when the applicability of this approach is restricted to objects with a 

relatively large number of faces with a simple geometry. In contrast with this 

implementation, the proposed formulation is a region-based approach where the 

recognition process consists of matching the features derived from the region in 

question. It also should be noted that this approach can handle objects with arbitrary 

shapes and furthermore the implementation is simple, fast and reliable. Because the 

present approach addresses a bin picking implementation it is very important to 

remember that the scene changes each time an object is picked, thus only the object 

placed on the top of the object pile is of interest, an object which is rarely occluded. 
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Nevertheless, there are situations when all the objects are heavily occluded or they are 

positioned in such way that their appearance is significantly disturbed. Figure 4.20 

shows an example where the resulting regions are not able to fulfil the matching 

criteria. In such cases the resulting regions after segmentation are too distorted and 

they will be either rejected or misclassified. Thus, a major aim was to minimise the 

occurrence of the false-positive recognition state when the object does not belong to 

the scene and the recognition algorithm concludes that the object exists. In this regard, 

a large number of features which are able to match the most relevant properties of the 

regions that describe the object were employed. Also in order to minimise the 

misclassification, the matching algorithm uses very strict selection criteria and this 

formulation is completed with a general search operation.  

 

   
 

                              (a)                                                                  (b) 

 

Figure 4.20. An example when the recognition algorithm fails to identify the objects 

contained in the scene. (a) The input image. (b) The resulting regions after segmentation. 

 

      The second stage of the algorithm deals with pose estimation and the current 

approach is based on eigenimage analysis augmented with an analysis in the range 

data. The pose estimation is traditionally achieved by analysing the transformation 

caused due to viewpoint changes on the visible surfaces that belong to the object. This 
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approach proved to be very efficient if the number of surfaces resulting after 

segmentation is significant. Because this research deals with objects with a small 

number of faces, the position of the object in question is estimated using an 

appearance-based approach applied to the region resulting after the application of the 

recognition algorithm. In conjunction with the appearance-based approach the 

proposed algorithm includes an analysis in the range data in order to obtain 3 DOF 

pose estimation. The experimental data demonstrates the effectiveness of the proposed 

strategy when dealing with polyhedral objects. 
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Chapter 5 - System implementation 

      This chapter describes the overall system. A detailed description of the block 

diagram is provided in order to clarify many aspects of the system implementation. 

This section begins with an introductory presentation of a bin picking system and is 

followed by the description of the current implementation. 

    

5.1 The block diagram for a bin picking system 

      The block diagram illustrated in Figure 5.1 represents the outline of a bin picking 

system, where components have been classified under seven main blocks. 

             

                        3-D sensor 
 

 

 
 
 
 
 
 
 

Figure 5.1. The block diagram of a bin picking system. 

 

      Starting on the left of Figure 5.1, the 3-D sensor is the point in the diagram where 

data enters. As noted in Chapter 2, the 3-D sensor can be divided into two different 

components. The first component i.e. the “Image acquisition block” consists of the 

image acquisition equipment (sensing elements, lens and frame grabbers) and 

depending on the range sensing strategy employed, two or more images are captured 

in order to recover the 3-D information. These captured images are passed to the “3-D 

depth map estimator” block. This block is a software or hardware component which 

computes the depth map using the information contained in the captured images 

according to the range sensing strategy in question. Also, for some sensors a 
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calibration procedure may be required and this is illustrated in Figure 5.1 by the loop 

between the “3-D depth map estimator” block and the “Robot controller” block. The 

output of the “3-D depth map estimator” block is the depth map of the scene and this 

information is passed to the next block.  

      The “Object recognition” block is the key component of an adaptive robotic 

application and deals with the recognition of similar or different objects contained in 

the scene. The recognition process consists of matching the input object with a model 

stored in the “Model database”. 

      The “Calculate grasping points” block computes the co-ordinates (x, y, z) of the 

graspable object. If the object is correctly matched, then it is graspable and the gripper 

will pick it up and perform manipulation operations. 

      The “Robot controller” block performs the communication between the host 

computer and the robot. This component will report all the errors that occur when the 

robot is running. 

 

5.2 Current implementation 

5.2.1 The image acquisition block 

       Intuitively, the image acquisition block contains the optical and sensing 

equipment (lens, beam splitter, CCD sensors and frame grabbers).  

 
 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.2. The image acquisition block diagram. 
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      Along with the optical and sensing equipment, it is widely acknowledged that the 

illumination conditions play a crucial role for any vision system. This observation is 

further strengthened by this particular application where the active illumination was 

identified as the key issue in the implementation of a range sensor based on a 

defocusing technique. The diagram of the image acquisition block is shown in Figure 

5.2. Initially, in the implementation of this sensor a single frame grabber was utilised, 

a situation when the near and far focused images were sequentially digitised. There is 

no doubt that this solution is restricted by a range of problems such as the differences 

between the near and far focused images when dealing with dynamic scenes. In 

addition, the time required to capture a pair of images sequentially is too long and 

hinders the implementation of a real-time range sensor. Due to the aforementioned 

problems, in the implementation of the current range sensor two frame grabbers were 

employed. Also, as mentioned in Section 2.2.4 a problem of interest consists of 

choosing the optimal pattern for structured light. Because a special pattern is difficult 

to manufacture and the achievements in terms of precision are not significant, for this 

sensor a simple striped grid used in Moiré contour detection was employed.  

 

5.2.2 The 3-D depth map estimator 

      The “3-D depth map estimator” is a complex software block and performs the 3-D 

estimation using the information contained in two images captured with different 

focal settings.  

 

 

 

 

 

 

 

 

 
 

 

Figure 5.3. The 3-D depth estimator block diagram. 
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      The principal operations required to compute the depth map are outlined in Figure 

5.3. The near and far focused images are stored in the computer’s memory after the 

image acquisition stage has been completed. The depth is estimated by isolating the 

blurring effect. To do this, it is necessary to extract the high frequency information 

derived from the scene by filtering the near and far focused images with a Laplacian 

operator. As mentioned in Section 2.2.5, the Laplacian operator enhances the high 

frequency noise and to compensate for this issue a smoothing Gaussian operator is 

applied. The image interpolation was discussed in Section 2.2.7 and its role consists 

of enhancing the quality of the depth map by interpolating the dark regions caused by 

the illumination pattern. The information resulted after image interpolation is used to 

determine the depth map. The gain correction compensates for the errors caused by 

the imperfection of the optical and sensing equipment. The calibration procedure was 

outlined in Section 2.2.9 and its goal is to align the sensing elements in order to 

minimise the mismatch between their spatial positions. 

 

5.2.3 The object recognition block 

      The object recognition block indicates whether the object under investigation is 

contained in the database or not. Also, another task deals with estimating the relative 

position in space for the recognised object in order to provide the information required 

in the manipulation stage. The complete diagram of the current implementation is 

illustrated in Figure 5.4.  

      Depending on the strategy involved, the recognition process may be preceded by 

segmentation. If the recognition scheme deals with local invariants the segmentation 

process is not necessary. Alternatively, if the recognition consists of analysing high-

level primitives, their extraction requires scene segmentation. Because textureless 

objects are the topic of this research, the segmentation process determines the 

meaningful regions by analysing the edge information provided by the input image.  

      As illustrated in Figure 5.4, the next operation attempts to select the object placed 

on the top of the object pile. This operation was described in detail in Section 4.3.1 

and involves a framework that deals with a variable number of regions which fulfil 

some 3-D criteria. The aim of this framework is to select only the best placed regions 

that will be used in the recognition process. From these regions, the one that gives the 

best approximation with respect to the matching criteria is considered to be on the top 
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of the pile. If the threshold conditions are upheld the region matches an object model 

from the database. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.4. The outline of the object recognition and pose estimation algorithm. 
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      The algorithm invokes a general search operation if the matching result exceeds 

the threshold but is smaller than a predefined value. If is not the case, the object is 

removed or the scene is rearranged. The complete list of operations required in the 

recognition stage is outlined in Figure 5.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5. The object recognition stage. 
 

      As can be seen in Figure 5.4, the recognition process is addressed in the first stage 

while the second stage deals with pose estimation. This scheme provides the ability to 

organise the model database required by the recognition algorithm independently. 

This independence is very convenient because it provides a great deal of flexibility 

where the user can easily add or remove any irrelevant views without affecting the 

database required by the pose estimation algorithm. In this regard, an intuitive 
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graphical interface is provided; the database management interface is illustrated in 

Figure 5.6. 

 

 
 

Figure 5.6. The graphical environment for the geometrical database. 
 

      The output of the object recognition algorithm represents the input for the next 

stage, which addresses the pose estimation using eigenimage analysis (PCA). Because 

this method is sensitive to the position of the region within the image, therefore the 

first operation involves centering the region. The resulting region is projected onto the 

object’s eigenspace and the output is a multi-dimensional point. The matching 

algorithm computes the Euclidean distance between this vector and the vectors from 

the model database. The minimum distance will represent the best estimation. 

      The operations required by the pose estimation algorithm are shown in Figure 5.7. 
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Figure 5.7. The position estimation stage. 
 
 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 5.8. The training stage procedure. 
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      Another key stage is the generation of the database, an operation that is 

implemented by the two-stage training procedure illustrated in Figure 5.8. The first 

stage deals with building and computing the object eigenspace and consists of 

following operations: determine the region for every image contained in the image set, 

compute the covariance matrix of the image set, compute the eigenvalues and the 

corresponding eigenvectors and select the eigenvectors that correspond to the biggest 

eigenvalues. The second stage computes the projections that are used in the estimation 

stage by projecting the image set on the object’s eigenspace. This procedure is 

directly related to the number of images contained in the image set. As mentioned 

earlier, the PCA database is independent of the geometrical database.  

 

 
 

Figure 5.9. The graphical environment for the PCA database. 

 

      While the geometrical database is very flexible by allowing the user to add and 

remove irrelevant spatial orientation, the PCA database is more rigid because the 
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entire image set is required to be processed in order to compute the object eigenspace. 

The user has two options to add or delete the object’s eigenspace. The window that 

provides the management of the PCA database is depicted in Figure 5.9. 

 

5.3 The system environment 

      The system was implemented using Visual C++ 5.0. The use of Visual C++ is 

very convenient because it supports a modular design, every module having its own 

graphical interface. 

 

 
 

Figure 5.10. The application window.                 

                         

 
Figure 5.11. The developed system environment. 
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      The application window is illustrated in Figure 5.10 while some windows 

associated with a working sequence are shown in Figure 5.11. 

 

5.4 Discussion 

      This section gives a detailed presentation of the system outline. In order to 

emphasise the implementation aspects, a block diagram was provided for each 

component which describes the main operations and its role in the overall system. 

One of the most important requirements for a bin picking system is real-time 

operation. Therefore, to accomplish this goal all the operations have to be 

computationally efficient. In this regard, the range sensor based on depth from 

defocus proved to be an appropriate solution due to its merits such as robustness, 

accuracy and speed. Prior to the object recognition stage, the segmentation algorithm 

must be applied. The current edge-based segmentation technique is particularly well 

suited for dealing with textureless objects which are the subject of this 

implementation.  

      There is no doubt that the recognition and pose estimation algorithm represents 

the most important component of the bin picking system. The two-stage adopted 

approach initially recognises the object using global geometrical constraints computed 

for the best placed region within the scene, while the position is estimated at a later 

stage using an appearance-based approach. An operation cycle varies between 3 to 10 

seconds depending on whether the system invokes the general search operation as 

described in Section 4.3.2.3. Although this approach has been designed to be as 

general as possible, the strength of the current implementation becomes more evident 

when the issues associated with a specific object set are considered.  

      Significant emphasis was placed on system testing and evaluation. Each module 

was tested under various conditions in order to verify its robustness prior to 

integration. Next, to demonstrate the validity of the current approach, a large number 

of tests were conducted after the integration of the entire system. The reported results 

were found to be very encouraging and highlight the potential of the adopted 

approach. It also should be noticed that all the equipment involved in the development 

of this system is inexpensive.  

      Special attention was also given to the implementation aspects. In this regard, the 

current implementation was designed in order to provide a great deal of flexibility, the 
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user can add or remove different objects easily using the tools provided by the 

graphical environment. In addition, the system was designed in a modular fashion, 

this assures the possibility of expanding the system’s functionality at a later stage. 
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Chapter 6 - Contributions and further 

directions of research 
 

6.1 Contributions 

6.1.1 Contributions to the 3-D recovery using depth from defocus 

      One of the aims of this research was to develop a cost effective range sensor 

suitable for a robotic application.  To be suitable for a robotic application, the depth 

estimator has to be mechanically robust and the 3-D information has to be estimated 

quickly and accurately. The approach outlined in this thesis is a bifocal range sensor 

based on depth from defocus. While it is acknowledged that passive DFD returns 

reliable depth estimation only when dealing with highly textured scenes, active DFD 

is preferred in many applications because it can accurately estimate the depth even in 

cases when the scene is textureless. However, some theoretical and implementation 

issues emerge when a range sensor based on active DFD is implemented. A difficult 

problem consists of choosing the illumination pattern. In this sense, Nayar et al 

(1995) developed a symmetrical pattern optimised for a specific camera. Their 

solution appears to be the best approach but several disadvantages can be mentioned: 

 

• To fabricate a precise pattern is a difficult task and specialised technology is 

required. 

• It requires a perfect registration between the illumination pattern and the 

sensors’ cells. 

• The changes in magnification between the near and far focused images 

determine unreliable depth estimation. 

 

     As a result, their implementation is costly and requires a sub-pixel sophisticated 

camera calibration. The problems caused by changes in magnification between images 

captured with different focal settings were alleviated by resorting to a telecentric lens. 

This solution is effective but in order to image the scene a very powerful source of 
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light has to be utilised (see Section 2.3.3). Also, another disadvantage is the lack of 

flexibility as any change in the optical and sensing equipment involves redesigning 

the system. In addition, it is not feasible to apply this range sensor to robotic 

applications since it contains equipment sensitive to vibrations.  

      In contrast with the previous implementation, for the current approach a simple 

striped grid MGP-10 (10 lines per mm) was used (Ghita and Whelan, 1999a).  

Nevertheless, due to magnification changes between the near and far focused images 

the stripes do not match perfectly together. As mentioned above, this problem can be 

corrected on an optical basis by using a telecentric lens, but to avoid the complications 

associated with the use of telecentric lens, for the current implementation, the 

problems caused by changes in magnifications due to different focal setting are 

corrected by using image interpolation (Ghita and Whelan, 1999b). The experimental 

data indicated that the depth estimation is significantly improved when image 

interpolation is applied.  

      As noted in Section 2.2.8, several problems occur when this sensor is 

implemented. Among others, to compensate for the increased distance between the 

lens and the CMOS sensors due to the beam splitter and aligning the two CMOS 

sensors proved to be the most challenging. In order to facilitate an easy calibration, a 

multi-axis translator was attached to one of the sensors. The experimental results have 

indicated that the developed range sensor produces precise and fast depth estimation 

at very low cost. 

 

6.1.2 Contributions to the segmentation algorithm 

       Because the resulting image (segmented image) represents the input of the 

recognition algorithm, the overall results are greatly influenced by the segmentation 

technique that is employed. Since the objects of interest are textureless, a natural way 

to approach the segmentation process is to rely on the information returned by an edge 

operator. Because the precision and the efficiency of this method is dependent on the 

edge detector, many efforts were dedicated to select the edge operator that maximise 

the ratio quality versus processing time. In this sense, a large variety of edge detectors 

were analysed under various conditions in order to evaluate their robustness.   

       Many similar implementations such as those suggested by Kak and Kosaka 

(1996) and Rahardja and Kosaka (1996) rely on the use of the Canny edge detector.  
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      The visual framework employed in the evaluation of the edge detectors proved 

that the Canny edge detector due to its performance appears to be the best choice, but 

at a very high computational cost. The experimental data revealed that a trade-off 

between the quality in edge estimation and the computational efficiency is given by 

the ISEF edge operators (see Section 3.3.6).  

      Another problem relates to reconnecting the gaps between unlinked edges and 

eliminating the small regions caused by spurious edges. An efficient solution to close 

the gaps between interrupted edges relies on analysing the information derived from 

the singular edge points (endpoints). The particular novelty of this approach lies in the 

labelling scheme which assigns the directionality of the endpoints based only on local 

knowledge. As a consequence, it relaxes the demand of a priori information and 

assures an accurate and efficient search for edge paths in the image under 

investigation. The last stage involves applying a labelling algorithm that assigns a 

unique label to each disjointed region.  

 

6.1.3 Contributions to the recognition algorithm 

        The immediate contribution of this work is the overall algorithm that provides an 

innovative approach which helps to solve the object recognition and pose estimation 

problem. To achieve this goal, the approach outlined in Chapter 4 deals with the 

recognition and pose estimation issues at different stages. The first stage addresses the 

object recognition and consists of the use of global geometrical features. Since this 

research deals with small polyhedral objects, only a small number of extracted faces 

are available. The global features derived from extracted faces are efficient only if 

object faces are mildly occluded, thus an important goal consists of detecting the 

topmost object. There are some rationales that motivate this approach and perhaps the 

most obvious being the observation that the object placed on top of the pile is rarely 

occluded. Because the developed system includes a range sensor, the algorithm selects 

the best placed object using 3-D information along with other selection criteria (see 

Section 4.3.1). Then, the recognition process consists of computing the Euclidean 

distance between the features that belong to the selected region and those contained in 

the database.  

      Nevertheless, this approach is appropriate if the selected object is only mildly 

occluded. Therefore, a main goal consists of minimising the occurrence of the false-
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positive recognition state. For this purpose, very strict threshold conditions were 

imposed on the system. If the threshold conditions are not upheld the algorithm 

invokes a global search operation (see Section 4.3.2.3).  

      The second stage estimates the position in space for the object placed on the top of 

the object pile. The algorithm outlined in Section 4.3.2 uses an approach based on 

eigenimage analysis which assures a compact and efficient representation for pose 

estimation. In contrast with other similar implementations, for the purpose of 

increasing the precision and flexibility, the present approach computes a low 

dimensional space (eigenspace) for every object contained in the database. This 

approach is very convenient because every object is individually considered while any 

modifications related to any object from the database will not affect the remaining 

ones.  

 

6.1.4 Implementation of the entire system and the real-time approach 

      The aim of this thesis was to describe the theoretical framework and the 

development of an integrated vision system suitable for a bin picking application. The 

implementation was designed in a modular fashion, hence providing the possibility to 

expand the system’s functionality at a later stage.    

      During the implementation a special attention was given to the real-time approach.  

There is no doubt that an industrial robotic application must always be as close to real 

time as is possible. In this sense, a hardware architecture gives the best results in 

terms of speed but offer very little flexibility and furthermore the overall 

implementation is expensive.  

       The aim of this research was to build a reliable and cost effective system. So, for 

the purpose of obtaining real-time depth estimation, a range sensor based on active 

depth from defocus was developed. A significant improvement was obtained when 

two frame grabbers were utilised to capture the near and far focused images. In 

addition, the segmentation algorithm is fast and all the computationally intensive 

operations required by the recognition and pose estimation algorithm are performed 

off-line.  
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6.2 Further directions and possible improvements 

6.2.1 Improvements to the 3-D depth estimator 

      Because this sensor estimates the depth within a small range, the initial question 

was, if this sensor would be precise enough for a vision application. Although during 

experimentation the results were found to be very encouraging, the precision and the 

resolution of this sensor are restricted by two factors. The first includes technical 

limitations due to imperfections related to the optical and sensing equipment. The 

second problem is associated with the difficulty of determining an optimal solution 

for the illumination pattern and the focus operator. In this regard, the potential further 

developments are identified as follows:  

 

• Using CCD elements with higher quality and resolution. This gives the 

possibility of using patterns of structured light with higher density.    

• Using a very dense structured light pattern correlated with the resolution of 

the CCD sensor. 

• Using a framework that allows a variable window for the focus operator in 

order to minimise the windowing errors. 

 

      The ideas outlined above are currently used in the implementation of a new sensor 

which is expected to provide better accuracy than that provided by the present bifocal 

range sensor. 

 

6.2.2 Improvements to the segmentation algorithm 

      This current approach was motivated by the fact that textureless objects are widely 

used in industry and consequently it was employed for the purpose of obtaining 

precise segmentation for a scene that contains such objects. 

       At a future stage, this approach will be extended to objects with various textures. 

The main problem will be to discriminate between edges returned by the borders and 

those returned by the texture. This complication is further increased because the scene 

is affected by occlusions and it will be difficult to achieve meaningful segmentation 

using only the edge information. In the author’s view, a possible solution is to 
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combine the developed approach with a range data segmentation technique which 

tries to identify the regions of different elevations.    

 

6.2.3 Improvements to the recognition and pose estimation algorithm 

      The proposed algorithm is based on the assumption that the object placed on the 

top of the object pile is rarely occluded. This assumption covers the practical cases 

very well, thus the algorithm performs the recognition task only for the object which 

is placed on the top of the object pile. 

      Nevertheless when all objects are highly occluded, the recognition algorithm fails 

in matching the correct object. The worst situation is the false-positive state when the 

object is not contained in the object pile and the recognition algorithm decided that it 

is present. To minimise the occurrence of this state, the developed algorithm uses very 

strict threshold conditions. If all selected regions do not fulfil the recognition 

conditions the scene is rearranged. Certainly, if the objects are not fragile or 

deformable this solution is effective. A clear disadvantage is the lack of efficiency 

because this operation is slow. A possible improvement relies on the use of local 

geometrical primitives or textural features. If the objects have different textures or 

colours the best approach relies on the use of textural features. In contrast, if the 

object set contains objects made from the same material (which is the topic of this 

research) the use of local geometrical primitives is a more appropriate approach. An 

immediate disadvantage is the fact that these features are highly influenced by the 

object’s orientation. To compensate for this problem a database which contains a large 

number of orientations is required.  

      Also, the current approach can be further developed by using multiple regions 

along with other geometrical primitives (junctions, vertices and curves), this gives a 

better representation for objects in the recognition process.  Clearly, the number of 

hypotheses in this case is extensive and the matching problem becomes increasingly 

difficult as long as the recognition of the primitives employed is dependent upon the 

viewing direction. It is strongly believed that a scheme that quickly rejects the non-

plausible combinations of detected primitives represents an effective solution to 

reduce the number of possible hypotheses. Then, from remaining hypotheses, the 

plausible ones are determined using rigid matching constraints.  
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      A typical example is illustrated in Figure 6.1 where the regions marked with 1 and 

2 may give a better representation of the object in question.  

 

   
 

(a) (b) 

 

Figure 6.1. A typical scene that is successfully handled by an algorithm that employs a 

multiple-region recognition scheme. (a) The input image. (b) The resulting data image. 

 

      An alternative approach relies on the use of 3-D models for every object contained 

in the database. This solution is effective if the object or a part of it can be precisely 

identified in the object pile. However, to be successful, this approach requires a high 

quality range sensor. 

      The second stage of the algorithm performs the pose estimation. This approach 

gives a precise estimation only if a large number of positions are used in the training 

stage. This issue does not have a great influence on the processing time in the 

estimation stage because it is performed off-line. A possible improvement consists of 

using a flexible framework that is able to eliminate the redundant or irrelevant 

positions.   
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6.4 Conclusions  

      This thesis describes the theoretical framework and the development of a vision 

sensor for bin picking. A bin picking system needs sensorial information in order to 

understand and evaluate the spatial representation of the objects that form the scene. 

A key issue associated with a bin picking system is 3-D information acquisition. 

Chapter 2 discusses the DFD technique which is the topic of this current research. The 

DFD approach is precise only if the scene is highly textured. If the objects contained 

in the scene are textureless the depth estimation is inaccurate. In order to compensate 

for this problem, a practical solution relies on the use of active illumination which 

was identified to be the key issue of this implementation. Numerous experiments 

demonstrated that the developed bifocal sensor proved to be an attractive solution to 

estimate the depth quickly and accurately.  

      Chapter 3 describes the implementation of an edge-based segmentation technique. 

The aim of the segmentation process is to decompose the image into disjointed 

meaningful regions which have a strong correlation with the objects that define the 

scene. Since the edge operator plays the central role in this approach, thus a large 

section was dedicated to describing the most common edge operator implementations. 

Significant emphasis was placed on choosing the optimal edge detector. The 

experimental results concluded that the best option involves the use of the ISEF edge 

operators which gives the best trade-off between the quality in edge estimation and 

the computation efficiency.  An important part of the segmentation algorithm consists 

of re-connecting the gaps between interrupted edges and eliminating the small regions 

created by false edges.  

      The next chapter describes a novel approach for object recognition and pose 

estimation. The developed algorithm addresses the recognition and the pose 

estimation tasks by using a two-stage implementation. The first stage performs the 

recognition task using the global geometrical parameters as features for matching. 

This approach can handle textureless objects with well-defined faces and proved to be 

efficient when the objects are not significantly occluded. Therefore, the algorithm 

attempts to perform the recognition task on the object placed on the top of the object 

pile. The second stage addresses the pose estimation and uses an approach based on 

eigenimage analysis.  This approach estimates the position of the recognised object by 

using its appearance in conjunction with a range data analysis. The practical 
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experiments have demonstrated that the proposed algorithm is a powerful and an 

efficient method for pose estimation.  

      In conclusion, the experimental data has reinforced the concepts presented in this 

thesis and has demonstrated that the proposed framework is a fast, accurate and 

inexpensive solution to the bin picking problem. 
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Appendix A – Popular range sensing techniques 

 
A.1 3-D dynamic laser scanning 

      Laser scanning is one of the most popular optical range acquisition approaches. 

This technique is also called light stripe sectioning, structured lighting or optical 

triangulation. The shape is recovered by translating or rotating the object while the 

laser beam (or structured light) is swept over the object under analysis. The number of 

images acquired during this stage determines the resolution of the resulting depth 

map. As would be expected for a high resolution 3-D estimation, a large numbers of 

images must be captured and consequently the scan period will be very long. In order 

to decrease the scanning time, more laser stripes with different frequencies can be 

used, but in this case the range sensor will be more sophisticated and costly.  

 

 

 

 

 

 

 

 

  

 

 

Figure A.1. The 3-D laser scanning principle.  

 

      Also, it is worth mentioning that due to self-occlusions some points may only be 

seen when observed from particular angles. To compensate for this problem, multiple 

range images acquired from different viewpoints are necessary to be examined in 

order to capture the entire shape of the object. A typical system configuration is 

illustrated in Figure A.1. To compensate for deficiencies caused by self-occlusions, 

the set-up must also include an additional camera which is marked with a dashed line.  

In Figure A.2 a simple geometrical analysis reveals that the elevation of the scanned 
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surface (which is in direct relation to the parameter D) can be easily computed  by 

appling the relationship illustarated in Equation A.1. 

 

                                                                       
DAS

ALD
H

+×
+×=

)tan(

))(tan1( 2

                                                                (A.1) 

 

where L, H, A, S, D are the geometrical parameters shown in Figure A.2. 
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Figure A.2. The ray geometry (from Batchelor and Whelan, 1997). 

 

      Figure A.3 illustrates the image captured by camera when the laser beam is 

projected over the object. Obviously, from this image only the depth information for a 

single line is recovered. 

 

 

 

 

 

                                                        
(a) (b) 

 

Figure A.3. The depth reconstruction process. (a) The real view. (b) The image captured by 

camera. 

 

      In order to recover a depth map of resolution 512 x 512 pixels, it is necessary to 

examine 512 images until the depth structure of the entire scene is completely 

determined. In this case, the depth map can be formed in 10.24 seconds if we consider 

that a typical frame scan period is 0.040 seconds (Batchelor and Whelan, 1997).   

D 
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      A number of techniques have been suggested for the purpose of reducing the 

scanning time. An elegant way to address this problem relies on the use of a space 

encoding method. This approach was employed by Sato et al (1999) in the 

implementation of a rangefinder system called Cubicscope14. They proposed an 

effective solution to generate the spatial stripe patterns using a laser diode and a 

polygonal mirror with 12 faces which is attached to a servomotor (see Figure A.4). 

This implementation needs 200 ms to generate a range image with a resolution of 512 

x 242 pixels. A disadvantage of this technique is that it requires a complex hardware 

set-up to synchronise the rotational speed of the mirror with the video signal, a 

solution that makes this implementation expensive. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4. Generation of spatial stripe patterns by scanning15.  

 

      A different approach for improving the scanning time is to use a multicoloured 

band light projector while it is easier to solve the problem with line connectivity.  

      As opposed to the implementation proposed by Sato et al (1999), this approach 

does not require specialised hardware, but a dense illumination pattern has to be 

employed for high resolution range estimation. Also, the correlation between any two 

segments of a consecutive sequence of light stripes should be as small as possible in 

order to minimise the mismatch (Chen et al, 1997). Nevertheless, a dense illumination 

                                                           
14 The Cubiscope range finder was developed at Nagoya Institute of Technology.   
15 This image was modified from http://hilbert.elcom.nitech.ac.jp/CubicscopeHP/principle/index.html. 
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pattern that fulfils the abovementioned conditions is costly and furthermore several 

problems related to the object’s reflections hinder the precision of this ranging 

technique. In spite of this, optical triangulation offers a powerful method for precise 

3-D estimation and consequently this ranging technique is widely used in the 

implementation of various robotic applications. 

 

A.2 Depth from texture 

Cognitive scientists indicate that there is clear psycho-physical evidence that 

humans have the ability to extract depth from the views of image content in 

correlation with a priori information.  

 

 

      (a)                                                                 (b) 

 

Figure A.5. Depth from texture. (a) A simple example. (b) A complex scene16. 

 

      To support this observation, in the first image it is easy enough for a human 

observer to estimate the depth from the floor texture. The cells on the floor are bigger 

for nearer distances and smaller (and distorted) for longer distances. In the second 

image17, we can estimate the depth from the pavement as well, but we can also use the 

texture of buildings and the height of people on the street as an indication of depth. 

However, this example is more intuitive. In computer vision in order to evaluate the 

depth of the scene, it is necessary to extract the texture primitive (texel) which is 

usually recovered by applying low-level processing.  

                                                           
16 These images were obtained from Hanover College, Department of Psychology. 
http://psych.hanover.edu/Krantz/art/texture.html. 
17 Rue de Paris, temps de pluie (Paris street, a rainy day) by Gustave Caillebotte (1848-1894). 
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      The angle at which the surface is seen would cause a perspective distortion of the 

texel and the distance from the observer will change the size of the texel. This 

property is illustrated in Figure A.5-a where the floor pattern is distorted according to 

the distance from the observer. For the human observer there are three properties used 

in the depth recovery. The first is the distance from the observer, the second is the 

slant (the angle between the normal to the surface and the line of sight) and the third 

is the tilt (the direction in which the slant takes place).  

      To re-capture some of this information, one solution is to apply a texture gradient 

method in which the depth information is given by the direction of maximum rate of 

change of the perceived size of texel. Nevertheless, if the image under analysis has a 

simple texture, this ranging technique may give acceptable results. Alternatively, if 

the texture is complex (in this case it is difficult to extract the texel accurately), this 

approach will return unreliable depth estimation. In addition, it is important to note 

that for dynamic systems where objects appear and disappear in the scene, it is even 

more difficult to solve this problem. As a consequence, although psycho-physical 

studies proved that there is a close relationship between the depth and texture 

distortion, this ranging method due to its complexity and the fact that requires a large 

amount of a-priori information about the scene under analysis, it is rarely used in the 

implementation of current machine vision systems. 

  

A.3 Infrared scanning 

There are many types of non-contact proximity sensors that can be applied to 

surface following, but ultra-sonic (US) and infrared sensors (IR) are among the most 

popular. It is worth mentioning that due to the interference problems caused by 

industrial environment, the use of US sensors is restricted to some application areas. 

IR sensing devices contain a large array of 500 or more sensing elements and provide 

a relatively precise distance estimation.  

Figure A.6 depicts the principle of this sensor where the sensing elements are 

placed at the intersection of two perpendicular lines, each containing an IR emitter 

and detector pair. This range sensor works as follows: the emitter projects a ray of IR 

light. If the object’s surface is intersected by the ray (up to a certain distance from the 

sensor) the reflected light is detected by the corresponding IR detector. The intensity 

(energy) of the reflected light is in direct correlation with the distance to the object. 
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An important technological problem associated with this range sensor is the finite 

number of sensing elements. Therefore, the resolution of the depth map is limited and 

it is much smaller than the resolution offered by a standard CCD camera.  

 

 

 

 

 

 

 
 

 

Figure A.6. Infrared scanning principle. 
 

      The best way to overcome this problem is to scan the shape of the object in 

sections and then to merge the sections in order to obtain the depth map of the entire 

object. As mentioned earlier, IR scanning is a non-contact proximity method and 

during the shape detection a safe minimal distance between the arm of the robot and 

the object’s surface is maintained. After the depth map is computed, the object can be 

manipulated within the robot’s workspace.  

      This method is sensitive to the reflectance of the material, hence it is necessary to 

perform a pre-calibration in accordance with the material in question.  Pudney (1995) 

reported good results for shape recovery but he did not mention the computational 

time involved. For the purpose of minimising the processing time, a hardware 

implementation for a real time range sensor can be developed.  

 

A.4 Depth from motion  

This approach is based on the idea of recovering the depth information from a 

sequence of images using the relative motion between camera and the scene. 

Consequently, this method is based on analysing the optical flow and in this sense 

various techniques have been developed to solve this problem. The most popular 

techniques are: the local-based approach, gradient-based methods, energy-based 

techniques and extended Kalman filtering (EKF).  
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Usually, these methods are based on a two-stage implementation.  The aim of the 

first stage is to extract the features from the images that may be useful in describing 

the optical flow, while the goal of the second stage is to compute the 3-D structure. 

The motion discontinuities in the optical flow are determined by analysing the 

correspondence between the features contained in a sequence of images. Brady and 

Wang (1992) developed an algorithm for scene reconstruction based on analysing the 

optical flow. They also presented an interesting approach to calculate 3-D structure 

using stereo disparity (stereopsis) in correlation with corner detection.  

Molloy and Whelan (1997) present a novel approach based on corner detection, 

but their aim is to implement a navigation system detecting the image motion from the 

corners correspondence.  

An interesting method based on EKF was developed by Xiong and Shafer (1995). 

The EKF is applied to update the 3-D structure using the information from the 

previous iteration until the output (depth map) is stable. The block diagram for this 

approach is shown in Figure A.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.7. The block diagram of the system described in Xiong and Shafer (1995).              
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The block details depicted in Figure A.7 are outlined below: 

 

• Initial motion estimation: This block uses the current information from the 

optical flow and predicted 3-D structure to compute the motion information 

for the current frame. Once this information is estimated, the motion 

parameters are re-calculated so that they are equally sensitive to flow 

variations. 

• EKF-based update: This block uses the current flow information, predicted 

information and initial motion information to compute the posteriori motion 

information. 

• Interpolation and transformation: This block converts the structural 

information from the a priori co-ordinate system into the posteriori co-

ordinate system using geometrical transforms such as interpolations, rotations 

and translations. 

 

      The depth recovery using this method is precise (especially for objects with 

simple shapes), but the optical flow tends to contain a large number of frames. To 

solve this problem completely is computationally intensive and a real-time 

implementation still remains a challenge.  

 

A.5 Shape from stereo 

The key problem with this approach is that it must search for the correct match for 

a point within the image. This is called the correspondence problem and is the key 

problem in shape from stereo implementations. Differences between the left and right 

images of a stereo pair are used in computer vision for the purpose of recovering 3-D 

information of the scene. The algorithms employed are usually slow, restricted to a 

limited range of images and require a priori information. A simple diagram depicted 

in Figure A.8 demonstrates how the depth of the scene using two cameras separated 

by a known distance can be determined.  The set-up shown in Figure A.8 consists of 

two cameras separated by a distance 2h, where Pl and Pr represent the left and the 

right projection of a scene point P(x,y,z).  
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In the same figure, the variable x = 0 defines the position midway between the two 

cameras, the z-axis represents the distance to the object (y axis is into the page) and 

the variables xl and xr are the distances from the centre of images. From disparity 

between Pl and Pr in correlation with cameras positions, the z co-ordinate can be 

calculated using the relationship illustrated in Equation A.3.  

 

                                                          P(x,y,z) 

                                                  

 

 

  

                   z = 0     Cl                                                                      Cr 

                    

 

                       Pl                                                                                                                                               Pr 

                                   xl = 0                               x = 0                      xr = 0                             

 
Figure 2.8. The basics of stereo geometry (Sonka et al, 1993). 

 

      As expected, if Pr - Pl = 0 denotes that the point in question is placed at a infinite 

distance from cameras.  
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      Before performing any 3-D reconstruction of the scene it is necessary to solve the 

problems related to camera calibration. The calibration procedure involves precisely 

determining the settings of the cameras such as the focal distance of the lenses and 

their relative spatial positions. The only remaining problem is to determine the 

correspondence between features contained in a pair of stereo images. These features 

can be edges, corners or other primitives. After the feature detection stage is 

completed, a matching algorithm has to be applied in order to solve the feature 

correspondence problem.  

f 

h h 
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      A well known solution to this problem is given by the PMF algorithm, named 

after its inventors (Pollard et al, 1985), where the edges from both images (left and 

right) are used as primitives for the matching algorithm. To deduce the 

correspondence, three constrains are applied: the first being geometric (epipolar 

constraint), the second is intuitive (this states that a pixel from left image can 

correspond to only one pixel in the right image) and the third is based on the 

similarity with human vision (disparity gradient limit). The epipolar constraint is 

based on the detection of the epipolar line which is the intersection between the 

epipolar plane (the plane defined by the optical centres C1 and C2 and the scene point 

under investigation X) and image planes. As can be easily observed in Figure A.9, for 

a non-parallel camera alignment the search space required to match the features in the 

left and right images is 2-D. To reduce the dimensionality of the search space it is 

necessary to apply a geometric transformation that changes the non-parallel camera 

alignment into a parallel configuration. This transformation is very often referred to as 

image rectification. Unfortunately, this transformation implies re-sampling that 

induces loss of information and in addition increases significantly the computational 

load associated with the matching algorithm. To avoid this complication and to 

simplify the matching algorithm, a parallel camera alignment (illustrated in Figure 

A.8) is commonly used. It is important to note that in this case the epipolar lines are 

parallel and as a consequence the search space is reduced to 1-D. Once the 

correspondence problem is solved, the depth structure can be easily computed as 

mentioned earlier by applying the relationship illustrated in Equation A.3. 

 

 

 

 

 

 

 

 

                                               

                                                 

 

Figure A.9. The epipolar geometry. 
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      The PMF algorithm is not the only solution to the stereo correspondence. 

Faugeras (1993) proposed a method based on dynamic programming (DP) to solve the 

problem of matching primitives between a pair of stereo images. The matching 

problem is formulated as a problem of minimising a cost function. Because DP is a 

way of efficiently minimising functions of a large number of discrete variables, thus 

matching primitives using this approach may represent a natural solution. Yuille and 

Geiger (1990) proposed the Controlled Movement approach to solve the stereo 

correspondence using multiple frames. The proposed stereo matching scheme consists 

of two parts. First the features in the left and right images are detected and an initial 

stereo match is performed. Then, a rotation depth test is applied where a match is 

accepted only if the estimated range error is compatible. This operation is followed by 

operations such as a ratio test and a stereo test that verify the matching consistency. 

This method is the most precise in terms of depth recovery, but unfortunately it is 

slow and additionally requires a precise calibration procedure for both cameras.  

      There are two problems that limit the accuracy offered by systems which employ 

only two cameras. The first problem is caused by the repetition of a similar pattern 

over a large region of the scene, a situation when due to ambiguity in feature 

matching the resulting depth is imprecise. The second problem is associated with the 

choice of the length of the baseline. It is well known that in stereo processing a short 

baseline will reduce the precision because the disparity between the features contained 

in the stereo images is narrowed. On the other hand, a larger baseline increases the 

disparity but other issues such as missing parts in the left and right images and the 

difficulty to find a reliable match within a larger disparity range have to be 

considered. Therefore, a trade-off between precision and accuracy in matching has to 

be established.  

      These problems were initially addressed by Okutomi and Kanade (1993) when 

they proposed a stereo system that uses multiple stereo pairs with various baselines. In 

this implementation the set-up consists of a number of CCD cameras (more than two) 

that are precisely aligned in a linear manner. Later, using this idea Kanade et al (1995) 

developed a video-rate stereo machine able to generate accurate depth maps at a rate 

of 30 frames/second. In this implementation the authors used a set-up that employs up 

to 6 cameras disposed in an L-type configuration. The developed stereo machine 

generates dense disparity maps but the system is very expensive as long as it is built 
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on a hardware architecture. This system may be useful for a large scale of applications 

ranging from obstacle avoidance to robotic bin picking.  

    

A.6 Shape from shading 

      Human vision has adapted to make very good use of clues from shadows and 

shading in general. Images of 3-D objects often show variations in brightness or 

shading across object surfaces and these variations provide useful information for 

recovering the shape of the object.  Shape recovery using this approach is known as 

shape from shading. A good example is an artificially illuminated scene. Our brain 

can easily recover  “the shape” of an object from degree of illumination. Using this 

approach, the shape of objects can be reconstructed from a single greyscale image 

(Horn, 1977).  

      A key problem for this approach is to associate the reflectance map with the 

surface of the object to be analysed. The reflectance map describes the relation 

between the intensity (brightness) of a particular pixel and the orientation of the 

surface which is given by the normal vector to the surface at the point of interest. The 

brightness of the surface under investigation is directly related to parameters such as: 

surface gradient, position of the light source and reflectance of the surface. 

Nonetheless, the reflectance properties of the surface vary from image to image. Thus, 

for a specular surface the reflected light depends on the incident angle of the light 

source. Alternatively, for a matte surface the reflected light is equal for all directions 

and depends only on the incident angle of the source light. An example is presented in 

Figure A.10. 

 

                                                                     n 

                    Source of light 

                                                                                                   Observer 

                                                                           i          r                                                            

                                 

                                                                  Object’s surface 

 

 

Figure A.10. Depth from shading. The elementary geometry. 
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     Let us assume that the object’s surface is described by the function z(x,y). The 

surface gradient is given by the pair (p,q), where p = ∂z/∂x, q = ∂z/∂y. The surface 

gradient and the space orientation is expressed in Figure A.10 by the vector n which is 

the normal vector to the surface. The relationship between the image and the surface 

gradient is expressed by the image radiance equation I(x,y) = R(p,q), where I(x,y) is 

the intensity function derived from an image and R(p,q) is the reflectance function. 

Using this relationship the function z(x,y) can be determined, this describes the shape 

of the object when the reflectance function and the lighting model are known 

perfectly. A typical example is illustrated in Figure A.11, where the depth map is 

computed from a synthetic generated shaded image with the light source at an azimuth 

of 270 degrees and a zenith angle of 30 degrees. 

 

 

         
 

                                                (a)                                  (b) 

 
Figure A.11. A shape from shading example. (a) A synthetic shaded image. (b) The 

corresponding depth map18. 

 

      Jones and Taylor (1994) developed a gradient-based algorithm, which returns a 

relatively precise depth map even in the presence of noise, but unfortunately for a 

single image their approach requires 20 minutes on a Sparc workstation.   

      In conclusion, shape from shading is computationally intensive and also requires a 

priori information regarding the reflectance function and lighting model and this 

method performs only modestly in comparison to other 3-D techniques when it is 

applied to objects with complex shapes. In addition, its applicability is constrained to 

Lambertian surfaces19 with an albedo (defines the proportion of light radiated by the 

surface in question) similar over all the object and background.   

                                                           
18 These images were obtained from: http://www.psrw.com/~markc/Articles/SFS/sfs.html. 
19 This is a surface with no specular properties. 
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A.7 Depth from focus   

      Depth from focus (DFF) means estimating the depth of the scene by taking 

multiple images when the focal level is modified in small increments. Since a lens has 

finite depth of the field, as a result only the objects placed at the correct distance are 

in focus. Others are blurred in relation to the focal error. A number of researchers 

called this ranging technique auto-focus.  

      This method has evolved as both a passive and an active sensing strategy. For 

passive focus the focal information is directly employed to calculate the range, whilst 

in active focus it is used to maximise the sharpness of the image. The active method is 

used widely in compact auto-focusing cameras and compact video cameras.  

      In principle, active auto-focus applies range detection with infrared or sonar 

sensors and subsequently the lens position is computed in direct correspondence with 

the distance acquired from the sensor. Passive focusing methods are used in SLR 

cameras and some compact cameras and consists of a stereo matching or a split prism 

method. It has been found that the passive focusing method is more precise, but this 

solution is less cost effective and it is generally more appropriate for static images.  

A fundamental question is: how the focus level could be measured? To answer 

this, Tenenbaum (1970) proposed the Tenengrad criterion as a solution to estimate the 

focus level. This method will be briefly discussed in the next section. More details 

could be found in the papers by Horri (1992) and Xiong and Shafer (1993) where this 

technique was applied to both static and dynamic scenes.   

 

A.7.1 The Tenengrad value 

The Tenengrad criterion gives an estimation of the gradient ∇ I(x,y) at each point 

by summing all magnitudes greater than a threshold value. 
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     The best approximation for Ix and Iy is given by the Sobel operator with its specific 

kernels: 
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      The next operation consists of calculating the Tenengrad value (TN) using the 

relationship illustrated in Equation A.5. 
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where N is the dimension of the image and T is a threshold value set in direct 

correlation with the amount of noise in the image. The goal of the Tenengrad criterion 

is to maximise the TN values.  This approach is appropriate for static images. When 

dealing with dynamic scenes, a stabilisation technique has to be applied in order to 

avoid the errors caused by local maxima during the focusing process. Because this 

criterion maximises the high frequency content, consequently this method is sensitive 

to noise and the aim of stabilisation is to obtain a smooth focussing curve without 

prominent local maxima. A solution to this problem was suggested in the Xiong and 

Shafer’s (1993) paper where they proposed a technique to detect the peak of the focus 

profile accurately using the Fibonacci search method. This approach proved to be 

effective for systems that have motor-driven lens with high motor resolution. 

 

A.7.2 Grey level variance 

      Aside from the Tenengrad criterion, other approaches are possible such as grey 

level variance and sum of modulus difference. The grey level variance method is more 

intuitive where the level of focus is associated with the variance of the brightness in 

the image (i.e. grey level distribution). In this way, if the variance is high the image 

should be in focus, while the image is out of focus then the variance should be low. 

The variance σ is computed using the relationship presented in Equation A.6. 
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where µ is the average of the grey level distribution. The aim of this criterion is to 

maximise the value of σ. This method performs badly for passive systems and 

furthermore its results are non-linear. In spite of these problems, this approach can be 

used with good results for active systems. 

 

A.7.3 The sum of modulus difference 

      Jarvis (1983) proposed the sum of modulus difference (SMD) criterion. This 

method is based on the observation that if the image is in sharp focus, then the 

differences between neighbouring pixels are significant. When the image is blurred 

the value of pixels tends to be the same. The SMD value is computed for the x and y 

axes along a scan line. 
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      Considering the sum SMD = SMDx + SMDy, to focus an image it is necessary to 

maximise the value of the SMD. Although simple, this technique performs well for 

both active and passive systems.  
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Appendix B – Popular 2-D object description 

techniques 

 

B.1 Template matching 

      Template matching is a well known technique for shape recognition. This method 

involves moving a template across an image until a perfect match is found. The principle 

of template matching is shown in Figure B.1. 

  
 

 

 

 

 

 

 

 

Figure B.1. Template matching algorithm. 

 

     The recognition process is slow and consequently will not find a match on the image if 

the template being searched for is rotated or the size is different. This method performs a 

very crude recognition. Improvements such as the creation of a large database where a 

template has different sizes and positions are possible. Unfortunately, using large 

databases significantly increases the processing time required to perform the recognition 

process (Vernon, 1991). Also, due to its simplicity, this recognition technique is suitable 

only for certain applications where the size and the position of the objects in the scene are 

known precisely. 
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B.2 Chain coding 

     Chain coding (also called Freeman coding) is a very popular method used in shape 

recognition. The aim of this method is to split an image into contours as it is scanned 

from the top to bottom and left to right in a raster scan manner. The resulting chains are 

described by a sequence of symbols (codes) and can be employed as primitives in the 

recognition process. The contours associated with the image in question are extracted 

progressively using a two-step strategy. The first step involves finding the location of the 

next contour while the second consists of extracting the chain code. For this purpose, it is 

necessary to settle the neighbourhood connectivity. Four (a) or eight (b) possible 

neighbourhood directions can be used in the extraction of the chain codes; this is 

illustrated in Figure B.2. 

 

 

 

 

 

 

 

 

                                            (a)                                          (b)  

 

Figure B.2. Diagram showing the pixel neighbourhood. (a) 4 and (b) 8-connectivity.  
 
 
      Very often the chain codes are extracted from the image by following the edge 

structures (Freeman, 1961 and Gonzales and Wintz, 1987). In this case, the contour is 

defined by the co-ordinates of the starting point and the sequence of symbols that is 

obtained after following the edges that are associated with the objects in agreement with 

the adopted neighbourhood connectivity. The principle of the chain coding method is 

illustrated in Figure B.3. 
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Figure B.3. A simple example for chain coding.  

 

      Chain coding has the same disadvantages regarding rotations and scale modification 

for objects as template matching. A disadvantage is the fact that the perimeters for large 

objects in the image, for example in a 256 x 256 resolution, the chains can exceed 700 

pixels in length and this information is too large to be feasible in real-time object 

recognition. Furthermore, the resulting chain codes are dependent on the starting point 

and this uncertainty can arise as a major problem for recognition process. 

 

B.3 Boundary length 

      The boundary length is a more detailed version of the chain coding method. Vertical 

and horizontal steps of the boundary are unity in length, the length of the diagonal in 

eight-connectivity is 2  units in length. A closed boundary (perimeter) can be described 

by the curvature that is the angle between a fixed line and the tangent to the surface at 

that point.  The principle of this method is illustrated in Figure B.4.       

      For closed boundaries, the angle β is a function which can vary from 0 to 2π. The 

accuracy of this method is limited and the rotation and changes in scale for objects imply 

a complex algorithm that performs slowly. 
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Figure B.4. Boundary length principle. 

 

      A closely related method is bending energy; bending energy is seen as the energy 

necessary to bend a rod to the desired shape. This energy can be computed as a sum of 

squares of the border curvature c(i) over the border length.  
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      Both methods are feasible for object recognition but their applicability is restricted to 

non-occluded scenes where the contours can be precisely extracted. In addition as for 

previous method, for large objects the resulting information is not suitable for a real-time 

implementation. 

 

B.4 Hough Transform 

      Hough transform is a technique which can be used to isolate features of a particular 

shape within an image. Because it requires that the desired features to be specified in 

some parametric form (i.e. analytical equation), the Classical Hough Transform (CHT) is 

most commonly used for the detection of regular curves such as lines, circles, ellipses, 

etc.  For example, the analytical equation of a line is:  y= ax+b.  A unique straight line 

can be represented by the starting point A(x1, y1) accompanied with the parameters a and 

b. This problem can be viewed as a transformation from (x, y) space into (a, b) parameter 
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space. The algorithm that implements the Hough transform consists of a search for each 

point in the image in all possible direction by sampling a limited number of parameters a 

and b. In other words, each different line through the point A(x1, y1) correspond to one of 

the points on the line in the (a, b) space.  

 

 

 

 

 

                                         All possible                                 Line which  

                                          directions for A(x1, y1)                satisfies detected points 

 

 

Figure B.5. The process of line detection using the Hough transform. 

 

      Alternatively, all points which lie on the same line in (x, y) space are represented by 

lines which all pass through a single point in (a, b) space. This process is shown in Figure 

B.5.  

     A line can be also represented as s = x cos(α) + y sin(α), where s is the distance from 

the origin of x, y axes and α is the angle between abscise and the line that connects the 

origin with the test point (see Figure B.6). In this case, the space (x, y) is transformed into 

(s, α) space (also referred to as polar space).  
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  Figure B.6. Hough transform in (s,α) space. 

b = -ax1 + y1  
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      It should be noticed that the previous line representation has the limitation that a → 

∞, the same situation does not appear when the line is represented using polar co-

ordinates.  

      The Hough transform can be generalised to detect other features with an analytical 

description such as circles or ellipses (Ballard, 1981; Degunst, 1990; McDonald and 

Vernon, 1998). For instance, in the case of circles, the analytical equation is (x1-a)2 + (y1-

b)2 = r2, where (a, b) are the co-ordinates of the centre and r is the radius. Because the 

computational overhead is in line with the number of parameters contained in the 

analytical description (three for a circle), the processing time required by the algorithm to 

detect circles is significantly higher than that required for line extraction.  

     Arbitrary shapes can be rarely described using a parametric curve. In this case, the 

Generalised Hough Transform (GHT) can offer a solution to the problem. The GHT uses 

an internal representation when an arbitrary line is constructed by joining a predefined 

reference point (xref, yref) with each boundary point. 
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Figure B.7. Principle of the generalised Hough transform. 

 

      As illustrated in Figure B.7, the distance r, the orientation of the tangent line α and 

the angle β between the vector r and x axis are recorded for each boundary point.  The 

resulting table (R-Table) can be ordered according to the orientation of the tangent line. 

An example of an R-Table is depicted in Figure B.8. 
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Figure B.8. The GHT R-Table. 

 

      The pair (r, β) for each boundary point can be computed using the following 

equations: 
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      As can be seen in Figure B.8 there may be more than a pair (r, β) for each α, a typical 

example being the objects with ‘S’ type shapes. The Hough Transform is not invariant to 

rotation or scaling of the object. A solution to these problems is to extend the GHT from 

two to four parameters when the parameters for scale s and rotation φ are added. 

      The Hough transform is a very powerful tool in feature extraction. The vision 

literature indicates that many applications ranging from manufactured parts to medical 

imagery have been successfully approached using this technique. Its main advantage is 

that it is insensitive to gaps in the feature boundary description and is relatively 

unaffected by image noise. This approach is appealing especially in cases when the scene 

contains objects with a known shape and size. Nevertheless, this issue may hinder 
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somehow the attractiveness of this feature extraction technique. In addition, the algorithm 

that implements the Hough transform requires a lot of storage and extensive computation, 

a fact which restricts the applicability of this approach to real-time systems. 

 

B.5 Object recognition using invariant shape descriptors 

      As stated in Forsyth et al (1991), attempting object recognition using a single 

perspective view it is a difficult task and cannot be achieved without the use of shape 

descriptors derived from a geometrical description of the objects under various 

perspective directions. Thus, the object recognition relies on a model-driven approach in 

which a library of geometrical models is used to determine if the scene contains any 

objects of interest. Nevertheless, to be successful the information regarding object models 

has to be invariant to perspective projection. This observation introduced the necessity to 

use invariant shape descriptors in the recognition process because they are insensitive to 

perspective projection or object pose.   

      At this stage deciding which descriptors associated with the object’s shape are 

viewpoint independent presents a major problem. This is not a trivial problem and a 

discussion on this topic is detailed in the paper by Zisserman et al (1994).  

 

 

 

 

 

 

 

 

 

 

 

 

                                    (a)                                                                  (b)              

Figure B.9. Object recognition using shape invariants. (a) Input image containing simple planar 

objects and (b) the resulting image after the line and conic detection. 
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      After extensive investigation, they concluded that the lines and conics are very stable 

invariants suitable to describe a relatively large range of at least planar objects. Because 

these algebraic invariants are described by analytical equations, they can be easily 

detected using the edge information or the Hough transform. In addition, they can be 

robustly recovered even in cases when they are not completely described. Figure B.9 

illustrates the detection of the shape descriptors for a scene which contains only simple 

planar objects.  

      The remaining problem deals with matching the scene invariants with those 

associated with a model from the database. The resulting invariants derived from the 

scene are used to generate hypotheses required to match an object model. There is no 

doubt that for a complex scene the number of possible hypotheses is extremely large. 

Therefore, in order to reduce the computational burden only the hypotheses which are 

geometrically compatible are used. In other words, a hypothesis is created only if some 

rules concerning the type, the number and topology between invariants are upheld. For 

example, if an object consists of an elliptical plate with a circular hole in the middle, the 

only hypothesis that is accepted consists of two conics in which one is included in other. 

As a result, when this grouping mechanism is applied the number of plausible hypothesis 

is dramatically reduced. Once a model is matched, the last stage deals with pose 

determination using the back projection of a conic pair (for more details refer to Forsyth 

et al, 1991). 

      This formulation is extremely powerful when dealing with regular planar objects. If 

the objects of interest are described by non-algebraic curves, it is necessary to extract the 

local invariants which measure the curvature or the torsion derived from the shape. In 

addition, when this formulation was applied to 3-D objects the results were by far not as 

impressive as those reported when planar objects were considered. 
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Appendix C – Popular 3-D object description 

techniques 

 

C.1 3-D chain coding 

      The idea of this description technique is to represent the shape of an object using a 

sequence of symbols (codes) obtained by scanning the surfaces in a raster scan manner. 

For this approach the chain code extraction is performed on range images, in contrast 

with the 2-D case when a row image is analysed. Figure C.1 illustrates the resulting chain 

code after a simple spatial representation is analysed. 
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Figure C.1. An example for a 3-D connected chain code.  

 

      This method performs a very crude 3-D shape description and the main disadvantage 

is its sensitivity to rotations and scale modification of the object. Also, as for the 2-D 

case, the resulting chain codes are dependent on the starting point and for large objects 

the resulting information is too large to be feasible for real-time object recognition. 
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C.2 Extended Gaussian Image (EGI) representation 

      In contrast with the previous approach, the EGI is an example of the global 

representation of the 3-D space. This representation was proposed by Horn (1979) and 

consists of mapping the surface normals of an object onto the Gaussian sphere20. The 

surface normals for each point of the object are placed so that their tails lie at the centre 

of the Gaussian sphere while the heads lie on a point on the sphere according to the 

particular surface orientation.  

      This representation is further extended when a weight is attached to each point on the 

surface where a normal is erected. This weight value is proportional with the area of the 

surface given to the normal. The result is a distribution of weights over the Gaussian 

sphere and is called the Extended Gaussian Image (EGI). Alternatively, the EGI of an 

object can be thought as a spatial histogram of its surface normals. Figure C.2 illustrates 

the EGI of a cylindrical object. 

 

       

 

 

 

 

 

 

 

 

 

Figure C.2. The normals associated with a cylinder model and its corresponding EGI 

representation (modified from Ikeuchi, 1983). 

 

      Usually, the appearance of an object varies with the following factors: translation, 

size and rotation. It can be easily noticed that the EGI representation is independent of 

                                                 
20 A detailed presentation of this concept is also available in Horn’s (1983) paper. 
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translation and size of the object. Theoretically, the EGI rotates in the same way as the 

object. But due to self-occlusion the EGI can be defined only for the visible hemisphere 

where its pole corresponds to the line of sights. However, this is not a major drawback as 

long as a part of the model’s EGI can match the attitude of the object. Thus, this 

representation allows determination of the identity and orientation of the object at the 

same time. There is no doubt that a search for all possible attitudes is not a realistic 

approach (especially if the model database contains a large number of objects). In order 

to reduce the searching space Ikeuchi (1983) proposed to employ two constraints. The 

first is the EGI mass center which is used to constrain the line of sight. The use of this 

constraint is suggested by the obvious observation that the mass center is different for 

different visible hemisphere. The second constraint consists of minimising the EGI inertia 

direction in order to constrain the rotation around the line of sight when dealing with 

rotationally symmetric EGI distributions. The application of these constraints greatly 

reduces the search space and the model that maximises the fitting measure is chosen as 

the matched model. 

       Although very powerful this representation has some limitations such as its 

sensitivity to mutual occlusion when dealing with cluttered scenes and the fact that 

assures a unique representation only for convex objects. Figure C.3 illustrates three 

objects with the same EGI. 

 

 

 

 

 

 

 

Figure C.3. Example of three objects having an identical EGI. 

 

        In the early 90’s, Kang and Ikeuchi (1990) addressed the deficiency associated with 

the EGI representation, namely the inability to give a unique representation for non-

convex objects. In this sense, they proposed the Complex EGI (CEGI) concept in which 
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n2 

Predefined origin 

d1 

A1 

n2

n4

the weights associated with the points of the surfaces where the normals are erected are in 

this case complex numbers. As in the case of standard EGI, the magnitude is proportional 

to the area of the surface given to a normal vector while the phase is the distance from a 

predefined origin to the face to be analysed in the direction of the normal. The principle 

of this concept is illustrated in Figure C.4. 

  

 

 

 

 

 

 

 

 

 

Figure C.4. The CEGI representation for a cube (modified from Kang and Ikeuchi, 1990). For 

clarity, the weight is shown only for normal n1. 

 

      Because CEGI encodes the object’s faces positions, the objects with similar EGI 

depicted in Figure C3 have different CEGI representations. This representational scheme 

is very convenient when dealing with single-object scenes, but due to its sensitivity to 

occlusion its application to multi-object scenes would be difficult. 

     

C.3 Object representation using scene features 

       The goal of this approach is to extract a relatively small number of features in order 

to determine the possible model identities and poses for the scene object. In the paper by 

Kak and Edwards (1995) seven features are considered to be sufficient to represent a 

large range of objects. These features are: points, straight lines, elliptical curves, planar, 

cylindrical, conical and spherical surfaces. At this point a very important decision is how 

the resulting data is organised. From the literature survey presented in Chapter 1 it is 
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clear that a proper model and data representation are keys to designing a computationally 

efficient object recognition system. Among other representational schemes, the feature 

spheres are powerful data structures used to reduce the computational burden in the 

verification stage.  

      The main idea of this concept relies on using the principal direction associated with 

the feature set. Basically, the principal direction Φ represents the characteristic position 

or orientation of a feature (point, line and surface) and is expressed by a unit vector in 

space. For example, the principal feature of a planar is the normal to that surface; for a 

cylindrical surface, it is the axis direction; and for a point, it is the normalised vector at 

the position of that point. To exemplify this representation, the rendering of a model 

object with respect to the principal direction is illustrated in Figure C.5. It should be 

noticed that the principal direction is defined only with respect to an object centered co-

ordinates system. 
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Figure C.5. A model object and the principal directions of its surfaces (modified from Kak and 

Edwards, 1995). With e is represented the principal direction (normal) of a plane, v is the 

normalised position of a point and s is the axis direction of a cylinder.  
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       The next step consists of generating the pose transform hypotheses. In the same 

paper, two possible approaches suitable for organising the feature data for efficient 

hypotheses generation are presented.  

      The first approach uses local feature sets while the second relies on using multiple 

attribute hash tables21.  Both of these techniques generate the pose transforms using three 

scene features employed to match the model features. Nevertheless, an inherent problem 

is how to select the most relevant three features associated with a scene object. In their 

experiments it was found that the shape attributes are ineffective for constraining the 

hypotheses generation stage. The main rationale that explains this situation is the fact that 

the principal directions associated with the feature set offer very little information to 

distinguish between different pose transformations. Thus, in the authors’ opinion, the use 

of relational attributes between the scene features is more appropriate. To further restrict 

the computational burden associated with this stage only a set of adjacent scene features 

are used to generate pose hypotheses.  

      Once these hypotheses are formed, the recognition algorithm attempts to match the 

detected features with the model features. As would be expected, the precision of this 

technique is in line with the number of poses captured for the object model during the 

off-line model building procedure.   

      Although conceptually attractive, this approach raises many problems during its 

implementation. Kak and Edwards (1995) reported for their developed system a failure 

rate of 30 percent when the objects of interest contain only regular shapes. The main 

problems identified by the authors are associated with an improper surface segmentation 

scheme and an imprecise range sensor. In spite of these problems, the proposed 

formulation shows a lot of potential and at least in cases when dealing with simple 

geometrical objects with a homogenous surface appearance this approach is valid. 

 

                                                 
21 For more details regarding the implementational issues associated with these approaches the reader can 
consult the paper of Kak and Edwards (1995). 
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Appendix D – A note on metric and feature 

normalisation 

 

D.1 A discussion on distance metrics 

      Throughout our discussions, we must fix a space ℜ  of points in which to work. The 

space may be the plane 2ℜ  when described by two co-ordinates or any space nℜ the case 

when a distinct position in space is represented by an n-dimensional vector. Independent 

of space dimension, the distance is used in pattern recognition to evaluate the closeness 

between two patterns (vectors). Let’s supose that our aim is to estimate the proximity 

between two  n-dimensional patterns x and y, where n is the dimension of space. For this 

purpose, a metric which satisfies the conditions (often referred to as the triangle 

inequality) illustrated in Equation D.1 has to be settled. 

 

0),( =yxd     only if  yx =  

),(),(),( zydyxdzxd +≤     for all  (x,y,z)                               (D.1)           

 

      The proximity between these vectors can be estimated in several ways, but very often 

for this purpose the Minkovski metric is employed. The Minkovski metric is defined in 

Equation D.2. 

 

rn

i

r
iyixyxd

/1

1

][][),( 




 −= ∑

=

   where  1≥r                            (D.2) 

 

      It can be easily observed that the Minkovski metric obeys the metric conditions 

illustrated above independent of parameter r. Nevertheless, according to the relationship 

illustrated in Equation D.2 there are an infinite number of metrics but the most common 

are defined for r = 1 (Manhattan or taxicab distance), r = 2 (Euclidean distance) and         
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r = ∞ (Sup or Chessboard distance). The relationships for these metrics (distances) are 

depicted below. 
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 if  r = 2 (Euclidean distance)        ( )∑
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if  r = ∞ (Chessboard distance)       ( )][][max),( iyixyxd
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     A simple numerical example is illustrated in Figure D.1.  

 

 

 

 

 

 

 

 

 

 

 

Figure D.1. A numerical example for three Minkovski metrics (from Jain and Dubes, 1988). 

 

      It can be observed from this simple example that contours of constant Manhattan 

distance describe a square (or hypercube for multi-dimensional cases) while for the 

Euclidean distance the contours are described by circles (or spheres for multi-dimensional 

cases). This geometrical approach shows that the Manhattan distance is not invariant to 

rotation. This issue is very inconvenient for a range of applications and this is the reason 

why the Euclidean distance is commonly employed.  However, the Euclidean distance 
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has some limitations. The first is its inability to cope with the scaling of the co-ordinate 

axes. In addition, for a minimum Euclidean distance classifier the resulting boundaries 

after the partition of the feature space are linear, a situation that is not always satisfactory.     

      These limitations are significantly alleviated when the Mahalanobis metric is 

considered. This distance incorporates the correlation between the features contained in a 

class and standardises each feature to zero mean and unit variance. The expression of 

Mahalanobis distance is illustrated in Equation D.6. 

 

)()( 1
ii

T
i mxCmxd −−= −                                          (D.6) 

       

where x is the feature vector, mi is the mean vector of class i, T denotes the vector 

transpose and Ci
-1 is the inverse of the covariance matrix for class i. It has been shown 

that the contour in which d is constant describes an ellipse in the planar case or an 

ellipsoid when multi-dimensional vectors are considered. If the features are uncorrelated 

the covariance matrix is the identity matrix and as a result the Mahalanobis metric 

becomes the same as the Euclidean metric.  

      After these metrics are introduced a natural question is: which is better suited to our 

application? The answer is very simple and is dictated by the feature distribution on the 

feature space. If the features are uncorrelated and the discrimination surfaces are not very 

curved, there is no reason to use anything more than the Euclidean distance. In contrast, if 

the features are highly correlated the Euclidean metric may not be an appropriate solution 

and in this case the Mahalanobis distance is the best option. It is worth mentioning that 

the computational burden associated with Mahalanobis distance is much higher than the 

burden required by Euclidean distance. 

 

D.2 A note on feature normalisation 

      As mentioned in the previous section the Mahalanobis metric performs an implicit 

normalisation but is not widely used because it is computationally inefficient. Therefore, 

commonly the Euclidean metric is used to evaluate the level of similarity in pattern 

recognition.  
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      In practice, very often the features contained in the pattern vector have very different 

ranges. Let’s imagine a simple situation where a pattern vector has only two features 

where the first describes the perimeter of a region while the second represents the area. In 

contrast with the perimeter which grows linearly with scale, the area grows quadratically 

and as a result the small feature is overpowered by the large feature when the proximity 

between two patterns is evaluated. Therefore, it is necessary to apply a normalisation 

scheme in order to compensate for this issue. The literature on clustering indicates that 

this operation can be performed in various ways. For example, one type of normalisation 

includes only range scaling. Others take into account the feature mean and a simple 

normalisation consists of subtracting the mean from each feature as illustrated in 

Equation D.8.  
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where mi is the mean of the ith feature, xj is the unprocessed jth pattern, k is the number of 

patterns and Xj is the normalised jth pattern. This type of normalisation makes the features 

invariant to displacements of the co-ordinates. Commonly it is required that all features 

have zero mean and unit variance. To achieve this requirement it is necessary not only to 

subtract the mean from each feature but also to divide the result by the feature variance. 

The feature variance can be computed using the relationship presented in Equation D.9 

and the normalisation is illustrated in Equation D.10. 
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where si is the variance of the ith feature. 
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      As stated in Jain and Dubes (1988), it is very important to mention that the effect of 

normalisation is not always positive. For example, the normalisation illustrated in 

Equation D.8 can change the distances between patterns and at the same time can alter 

the separation between natural clusters. Therefore, the type of normalisation has to be 

carefully chosen and practice has demonstrated that a successful scheme must be closely 

related to the context of the problem being evaluated. 
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Appendix E – A note on eigensystems22 

 

E.1 Introduction 

      There are many instances in mathematics and physics in which only the vectors which 

are left essentially unchanged by the operation of the matrix are of interest. Specifically, 

we are interested in those vectors x for which xxA ⋅=⋅ λ  where A is a square n by n 

matrix and λ is a real number. A vector x (other than zero) for which this equation holds 

is called an eigenvector23 of the matrix A and the associated constant λ is called the 

eigenvalue (or characteristic value) of the vector x. Obviously, λ is an eigenvalue of A if:  

  

0det =− IA λ                                                 (E.1) 

 

where det denotes the determinant of a square matrix and I is the n by n identity matrix. If 

this expression is expanded, the result is an n-order polynomial (also called characteristic 

polynomial) in λ whose roots are the eigenvalues. Nevertheless, there are situations when 

an eigenvalue is listed more than once, that means it is a multiple root of the 

characteristic polynomial. In these cases, the eigenvalues are called degenerate. Next, 

using the relationship xxA ⋅=⋅ λ  the corresponding eigenvectors are computed.  

       This section is focused only on the computation of the eigenvalues and the 

corresponding eigenvectors derived from the real matrices. For these matrices (except in 

rare cases) the resulting eigenvectors do not form an orthonormal vector space. In 

addition, if the characteristic polynomial has multiple roots, the resulting eigenvectors are 

not complete and the vector space is said to be defective. Fortunately, there is a very 

important class of matrices, namely the symmetric matrices, that have some interesting 

properties which are listed as follows: 

 

                                                 
22 This section is mostly based on the book “Numerical Recipes in C” by Press et al (1992).  
23 Originally, eigen is a German word and means “self” or “own”. 
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• A symmetric matrix is identical to its transpose or aij = aji for all i and j. 

• The roots (eigenvalues) computed from the characteristic polynomial are all real. 

• The resulting eigenvectors are mutually orthogonal, thus determine an n 

dimensional linearly independent vector space even in cases when dealing with 

multiple roots. 

 

      Due to its convenient properties, for a symmetric matrix the computational burden 

associated with the calculation of the eigenvalues and eigenvectors is significantly lower 

than the burden associated with non-symmetric matrices. Essentially, as stated in Press et 

al (1992) all modern algorithms involve transforming the input matrix A into a simpler 

special form by using a sequence of similarity transformations. A similarity 

transformation of the matrix A is presented in Equation E.2. 

 

ZAZA ⋅⋅→ −1                                                  (E.2) 

 

where Z is the transformation matrix. These transformations play a crucial role in the 

computation of eigenvalues because they leave the eigenvalues unchanged. This property 

is illustrated in Equation E.3. 
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      When dealing with symmetric matrices which is the topic of this section, the 

eigenvectors are real and orthonormal, thus the transformation matrix is orthogonal. In 

this case the similarity transformation can be redefined as: 

 

ZAZA T ⋅⋅→                                                  (E.4) 

 

where T defines the vector transpose. 
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      At this stage, depending on the simplified form which is sought, there are two 

choices. The first requires transforming the symmetric matrix A into diagonal form which 

is the case of Jacobi reduction. The second possibility involves the transformation of the 

matrix A to tridiagonal form using the Householder reduction. Then, the eigenvalues are 

computed using the QL or the QR decomposition. In the remainder of this section the 

aforementioned techniques are detailed and some numerical examples are employed in 

order to evaluate their performance.  

       

E.2 Jacobi transformations of a symmetric matrix24 

      The Jacobi method consists of a sequence of similarity transformations in order to 

convert the symmetric matrix A to diagonal form, where the elements which form the 

diagonal represent the desired eigenvalues. The main idea of this technique is to use a 

plane rotation for the purpose of annihilating one of the off-diagonal elements. Although 

successive transformations undo the previously set zeros, there is no doubt that with each 

iteration the off-diagonal elements get smaller and smaller and this process stops when 

the matrix is diagonal to machine precision. The basic Jacobi rotation Ppq is a matrix of 

the following form: 
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where all the diagonal elements are unity except for the two elements marked with c and 

all off-diagonal elements are zero except the two elements marked with s and –s. The 
                                                 
24 For a more detailed treatment of the algorithms presented in this section the reader can refer to: 
http://noir.ovpit.indiana.edu/B673/node22.html 
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numbers c and s are given by the rotation angle ψ and are defined as: c = cos ψ and s = 

sin ψ. A similarity transformation of matrix A according to Equation E.4 can be rewritten 

as follows: 

 

      pq
T
pq PAPA ⋅⋅=’                                                   (E.5) 

     

      As can be easily verified T
pqP  changes only the rows marked with p and q from A 

while pqP  affects only the columns p and q. When the Equation E.5 is expanding out the 

elements affected by similarity transformation are: 
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where qmpm ≠≠ ,  and  aij are the elements of matrix A.  As mentioned earlier, the aim 

of this method is to annihilate the off-diagonal elements. Thus, to have apq
’ = 0, the last 

expression from Equation E.6 gives the expression for the rotation angle ψ. 
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      If the notation
c

s
z =  is employed, the Equation E.7 can be rewritten as follows: 

 

012cos22 =−⋅+ ψzz                                           (E.8) 
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      As stated in Press et al (1992) the smaller root of Equation E.8 corresponds to a 

rotation angle smaller than 
4

π
 and this choice at each stage assures a stable reduction. 

Therefore, the Equation E.9 can be rewritten as follows: 
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      Once we have z, the numerical values for c and s are obtained by substituting s = zc in 

c2 + s2 = 1.  
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      The only remaining problem is the strategy that should be adopted for the order in 

which the elements are annihilated. The simplest strategy consists of annihilating the 

largest off-diagonal elements at each stage. While this strategy is suitable for hand 

calculation, its algorithmical implementation is computationally inefficient with a 

complexity of N2 per iteration. A more efficient strategy is the cyclic Jacobi method, 

where the off-diagonal elements are annihilated in a strict order. Commonly, it proceeds 

by analysing the matrix in a raster scan manner (P12, P13,…,P1n, P23…).  The convergence 

associated with the cyclic Jacobi method is generally quadratic when dealing with non-

degenerate eigenvalues and can be easily evaluated by computing the sum of the squares 

of the off-diagonal elements.  

      The main advantage of this algorithm is its simplicity and it is recommended to be 

used when dealing with matrices of moderate order (usually smaller than 15). For larger 
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matrices the processing time is significantly larger and more efficient methods have to be 

considered.  

 

E.3 Reduction of a symmetric matrix to tridiagonal form 

      As mentioned earlier, the optimal strategy for computing the eigenvalues and 

eigenvectors relies on converting the input symmetric matrix to a simple form. One 

option was discussed in the previous section and requires converting the matrix in 

question to diagonal form. Another preferred form is tridiagonal, a situation where the 

processing time associated with the computation of the eigenvalues and the 

corresponding eigenvectors is significantly reduced.  

 

E.3.1 Givens method 

      The Givens reduction consists of a modification of the Jacobi method but instead of 

attempting to reduce the symmetric matrix to diagonal form, the process stops when the 

resulting matrix is tridiagonal. To achieve this goal, the rotation angle is chosen in order 

to zero an element that is not one of the four corners, i.e. app, apq, or aqq. For example, to 

annihilate a31 is chosen P23, to annihilate a41 is chosen P24 and so on. The sequence of 

similarity transformations required for reducing the matrix A to tridiagonal form is 

illustrated below. 

 

nnnn PPPPPP 133422423 ;,,;,,, −ΛΛΛ                                   (E.12) 

 

where Pmn annihilates anm-1. The implementation of this reduction technique is 

straightforward but bears the same disadvantage as the Jacobi method namely its 

computational inefficiency. A more efficient method is the Householder reduction which 

will be discussed in the next section. 

 

E.3.2 Householder method    

      The Householder reduction converts an n-order symmetric matrix into tridiagonal 

form by using n-2 orthogonal transformations. The idea of this method consists of 
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annihilating at each stage the required part of the whole column and whole corresponding 

row. The basic Householder transformation is a matrix P of the following form: 

 

TwwP ⋅−= 21                                                   (E.13) 

 

where w is a real vector with 1
2 =w . It can be easily demonstrated that the matrix P is 

orthogonal and this can be seen in Equation E.14. 
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      Then, P can be rewritten as follows: 
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where 1exxu ⋅= µ , x is the vector composed of the first column of A, e1 is the identity 

vector and H is a scalar defined as 
2

2

1
uH = . Multiplying out the matrix P with the 

vector x, as a result the following expression is obtained: 
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From the relationship illustrated in Equation E.16, it can be observed that all the elements 

of the vector x except the first one are set to zero. Therefore, to reduce a symmetric 

matrix A to tridiagonal form, the vector x is chosen to be the lower n-1 elements of the 

first column. As a result the lower n-2 element will be set to zero as can be seen in 

equation E.17. 
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where 1
1

−nP  is the n-1 by n-1 Householder matrix and k is the plus or minus magnitude of 

the vector [a21, …, an1]. The complete orthogonal transform is shown in Equation E.18. 
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      Then, the reduction process continue to Pn-2 where the vector x is composed by the 

bottom n-2 elements of the matrix A. It can be easily verified that this new transformation 

will not affect the results achieved in the first step. The reduction process continues by 

applying the remaining transformations: P3, …, Pn-2.  

 

E.4 The QL algorithm  

      Once the symmetric matrix has been reduced to tridiagonal form, the eigenvalues can 

be easily computed by applying the QL algorithm. The idea behind the QL algorithm is 

that any real matrix can be decomposed in the following form: 
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LQA ⋅=                                                        (E.19) 

 

where Q is an orthogonal matrix and L is lower triangular. As seen in the previous section 

this decomposition is realised by applying the Householder reduction to A. Once we have 

the tridiagonal matrix resulting after the application of Householder reduction, the QL 

algorithm attempts to convert it to diagonal form. The QL algorithm consists of a 

sequence of orthogonal transformations and works as follows: 

 

Μ
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=

                                    (E.20) 

 

      This sequence can be rewritten in a compact form as follows: 

 

ii
T
iiii

iii

QAQQLA

LQA

⋅⋅=⋅=

⋅=

+1

                                          (E.21) 

 

      As can be easily observed in Equation E.21, this process is iterative and continues 

until all off-diagonal elements are annihilated. This process is convergent (for more 

details refer to Press et al, 1992) and the elements placed on the diagonal are the sought 

eigenvalues. In contrast with Jacobi reduction where the workload is O(n2) per rotation, 

for the QL algorithm the computational complexity is O(n) per iteration when the input is 

a tridiagonal matrix. 

      In the next section, some numerical examples are provided in order to evaluate the 

performances of the Jacobi reduction and the combination Householder reduction  – QL 

algorithm.  
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E.5 The algorithms performance and evaluation 

      The purpose of this section is to investigate the performances of two popular 

methods employed for computing the eigenvalues associated with a real symmetric 

matrix. This includes a set of numerical examples utilised not only to evaluate the 

precision in extraction of the eigenvalues but also to assess the processing time required 

by both methods. In order to give relevant results, the precision is evaluated using 

matrices with small dimensions, a situation that allows the possibility to compute the 

ideal eigenvalues by hand. Then, the processing time is measured by using a set of test 

matrices with their dimensions incrementally increased. Table E.1 illustrates the precision 

in the calculation of the eigenvalues when 2 x 2, 3 x 3 and 4 x 425 matrices are considered 

as input. 

 

Matrix Ideal eigenvalues Jacobi reduction 
Householder 

reduction 
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
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

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
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Table E.1 An evaluation of the algorithms based on their results. 

                                                 
25 The characteristic polynomials for 2 x 2 and 3 x 3 matrices were obtained by directly computing the 
determinant illustrated in Equation E.1. For 4 x 4 case the determinant was expanded into minors which 
were computed individually. 



Appendix E. A note on eigensystems 

 220

      The results depicted in Table E.1 indicate that the precision offered by the 

combination Householder reduction - QL algorithm is superior to the precision associated 

with Jacobi reduction. In addition, it is worth mentioning that the results returned by 

Jacobi reduction are unreliable when it is applied to matrices with a dimension greater 

that 20. Fortunately, the results returned by the Householder – QL method proved to be 

reliable in all cases when the dimension was gradually increased to 100. 

      As mentioned earlier, another problem of interest consists of evaluating the 

computational efficiency between these two methods. To carry out this comparison, a set 

of symmetric matrices with a dimension ranging from 5 to 100 was utilised and the 

numerical results are illustrated in Figure E1.  
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Figure E.1. A comparison of the processing times associated with the algorithms that are 

investigated.26 

 

       As expected the Jacobi reduction is computationally intensive when it is applied to 

large matrices. Therefore, this method is appropriate when dealing with matrices of 

moderate order where the computational overhead is not a major problem. Moreover, the 

precision associated with this method is drastically reduced when large matrices are 

considered, thus in these cases the use of the Householder – QL algorithm is 

recommended. 

                                                 
26 These measurements were performed on a Pentium 133 MHz, 32 MB and running Windows 98. 
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