
Precise Radial Un-distortion of Images

Abstract

Radial image distortion is a frequently observed defect
when using wide angle, low focal length lenses. In this pa-
per a new method for its calibration and removal is pre-
sented. An inverse distortion model is derived that is accu-
rate to a sub-pixel level, over a broad range of distortion
levels. An iterative technique for estimating the models pa-
rameters from a single view is also detailed. Results on
simulated and real images clearly indicate significantly im-
proved performance compared to existing methods.

1. Introduction

Geometric image distortion is an inevitable result of
compound lenses. Lens manufacturers consider its compen-
sation subject to many other chromatic and monochromatic
aberrations. As a consequence, especially in wide angle
lenses, distortion is in evidence on the image surface. Its
presence results in a geometric shift of an image point from
that of the predicted gaussian optics. Its well known nature
is radial dependent about a principle point, producing barrel
or pin-cushion effects.

In contrast with the lens manufacturer, we are in a situa-
tion where the complete removal of distortion is feasible by
pre-calibrating the image array. Distortion removal has nu-
merous implications for single and multi-camera systems,
not least in their calibration. This is a consequence of vali-
dating the underlying perspective projection assumption.

Understandably, a large amount of effort has been di-
rected at the problem. Initially the photogrammetric com-
munity developed methods for modelling and removing dis-
tortion [11, 8, 1]. Notable here is the plum line technique
of Brown [4] where distortion is calibrated using a setup of
straight wires. The baton has been taken up by computer vi-
sion, where the same ideas are implemented using straight
edge segments [6, 14]. In the calibration realm its removal
is considered in conjunction with orientation and lens or in-
ternal estimation [19, 15, 18].

The above mentioned implementations use what we be-
lieve to be an approximation to the true mathematical model
of distortion. Considering alternate interpretations and

models [16], un-doubtably an air of confusion surrounds
distortion, illustrated for example by [13]. However, when
derived from the optics wave abberation equation [2], dis-
tortion is modelled as the mapping from ideal gaussian to
image plane co-ordinates, via a radial dependent odd order
polynomial. This rises the issue of finding an inverse func-
tion for distortion. However, it is not analytically invertible
and an approximation must be used. Finding such an ap-
proximation is the main aim of this paper.

Inverse approximations have been proposed, most no-
table by Heikkila [9] where an approximation of a taylor
expansion including first order derivatives is given. Wei
and Ma [18] and Heikkila and Silven [10] both investigated
using implicit rational polynomials to approximate the in-
verse, but are in general unstable and hence not appropriate.

In this paper we derive an inverse function for radial dis-
tortion based on a first order taylor expansion, followed by
a reformulation which allows the function converge to ap-
proximate the inverse to a typical Euclidean error band of
±0.5 pixels over a wide range of distortion levels.

In section 2, we briefly outline the notation used and
present the model of distortion. An inverse to this model
is derived in section 3, with experimental results in section
4.

2. Distortion model

The ideal projection of a three dimensional object point
is represented on the image plane as an undistorted point,
pu = (xu, yu)T . Its corresponding distorted point ispd =
(xd, yd)T . Radial distances are similarly represented by
ru =

√
x2

u + y2
u and rd =

√
x2

d + y2
d for ideal and dis-

torted points. Multivariate functions are represented in con-
cise form, for examplefu = (fx(xu, yu), fy(xu, yu))T .

There are two types of distortion affecting an image: ra-
dial and tangential. Tangential distortion stems from mis-
alignments of the lens optics, resulting in a geometric shift
of the image along, and tangential to, the radial direction
through the principle point. Its mathematical model was de-
rived by Conrady [5] as used by Brown [3], but has received
scant attention in optics texts. It is not readily observed on
images, especially in the presence of radial distortion. We
do not consider it in this paper for two reasons: it is unclear



as to it presence, and small levels can be somewhat reduced
by a variable principle point [12]. Secondly, it simplifies
the inverse distortion model in terms of complexity. Note
however, that it is also invertible in the manner presented in
this paper.

Radial distortion is the result of a tradeoff in the lens
between many abberations including spherical abberation,
coma, astigmatism and field curvature. It is present to a
visible level in wide angle or low focal length lenses. Its
mathematical model can be derived from the wave abbera-
tion function [2, 7], though for reasons of space we do not
present this here. Distorted points are related to undistorted
points by the infinite series:

pd = pu + k1r
3
u + k2r

5
u + k3r

7
u + ...,

wherekn are scaler coefficients. In our experience we have
found that in the noise affected image space, there is no
improvement in the modelling of distortion with more than
the fifth order relation:

pd = pu + fu, (1)

where

fx(xu, yu) = k1xur2
u + k2xur4

u,

fy(xu, yu) = k1yur2
u + k2yur4

u.

In generalk1 is dominant overk2. If k1 < 0 barrel distor-
tion is observed withk1 > 0 for pincushion distortion.

3. Inverse distortion model

Given distorted image coordinates, eq.(1) offers no route
to undistort the image array. Clearly an inverse function is
required. The model described by eq.(1) is not analytically
invertible, nor does it offer any obvious clues as to the likely
form the inverse might take. An approximation is required.

The most common approach to inverting the forward
model is equivalent to taking the first term in the tay-
lor expansion of eq.(1) and re-estimate the parameters
[6, 1, 19, 18, 14] as follows:

pu = pd − fd. (2)

This is sometimes assumed to be the actual model and
indeed suffices for small distortion levels. Heikkila and
Silven [10] and indirectly Wei and Ma [18] have used im-
plicit bivariate rational polynomials to approximate the in-
verse function given data vectors of distorted and undis-
torted points. Heikkila and Silven further refine the result-
ing polynomial to reduce the parameter space giving better
performance. We have found these techniques to become

unstable easily with a change in distortion level and in the-
ory are not suitable due to the lack of Weierstrass’s Polyno-
mial Theorem for such multivariate problems. Heikkila [9]
proposed an inverse approximation based on the inclusion
of a quantity of the first and second terms of the taylor ex-
pansion. Our results are compared to this model and that of
eq.(2).

Our inverse is based on the first and second terms of the
taylor expansion of the forward model i.e. eq.(1). Assuming
that the inverse function forfu is gd, they can be related by
the taylor expansion offu about pointspd as:

gd = fd +
∂fd

∂x
(xu − xd) +

∂fd

∂y
(yu − yd) + H.O.T.

Neglecting the higher order terms (due to complexity) the
approximate becomes:

xu = xd +

(−fx + fy
∂fx

∂y − fx
∂fy

∂y

1 + ∂fx

∂x + ∂fy

∂y

)
,

yu = yd +

(
−fy + fx

∂fy

∂x − fy
∂fx

∂x

1 + ∂fx

∂x + ∂fy

∂y

)
. (3)

For small values of distortion the following assumption can
be made:

pu = pd −
(

fd

1 + ∂fx

∂x + ∂fy

∂y

)
, (4)

which is equivalent to that proposed by Heikkila [9]. This
assumption is useful as it biases the approximation closer to
the actual inverse than that of eq.(3) after re-estimation of
the parameters. Evaluation of eq.(3) results in:

pu = pd − pd

(
k1r

2
d + k2r

4
d + k2

1r
4
d + k2

2r
8
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d

1 + 4k1r2
d + 6k2r4

d

)
.

We now refine this model in order that it may approximate
the inversegd better than eq.(3). In this respect the param-
eters of the denominator are allowed independence fromk1

andk2 in an effort to model the denominator of the higher
ordered expansion. This significantly improves the models
approximation of the inverse. Additionally, the numerator
is adjusted to be linear in parameters. (The latter modifica-
tion has a smaller impact in relation to the former and may
be omitted to reduce the parameter space). The resulting
formulation of the inverse approximation now becomes:

pu = pd + δd,

δd =
β

α
=

−pd

(
a1r

2
d + a2r

4
d + a3r

6
d + a4r

8
d

)

1 + 4a5r2
d + 6a6r4

d

. (5)



The performance of three inverse formulations described
by eq.(2), eq.(4) and eq.(5) on simulated noise free data is
shown in figure 1. The data is planer, normalised to−0.5 →
0.5 and distorted according to eq.(1). Distortion is stepped
through a range ofk1 = −0.5 → 0.5 andk2 = k1/2, where
the outer values represent severe distortion as present on fish
eye lenses.
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Figure 1. Normalised mean perimeter Eu-
clidean error on noise free data, for a range
of distortion levels.

3.1. Parameter estimation

Estimating the parameters of the inverse model described
in eq.(5) could be done linearly, only the undistorted data
is unobservable in an image. Because of this an iterative
estimation approach is taken to minimise an error quantity.
This quantity is based on a truism, for example, straight
lines project to straight lines [6, 4, 14]. In our experiments
we use planer surfaces whose projection in a image must
also be planer.

The image surface coordinates are converted to frame
buffer coordinates by:

xd =
xñ + xo

s
, yd = yñ + yo,

wherexñ and yñ are the frame coordinates, usually nor-
malised by the image width or height. The principle point
is denoted represented by(xo, yo). The iterative estimation
procedure is outlined as:

ek = hls(pk
d)− pk

d,

φk+1 = φk − λHk∇kek,

pk+1
d = pk

d + δd(φk+1), (6)

wherehls is a least squares plane to plane projective trans-
formation.φ = [a1, ..., a6, xo, yo, s]T is the parameter vec-
tor and H = [∇T∇]−1 is the Hessian, with∇ = ∂e

∂φ

as the gradient. A Gauss-Newton solution is shown but a
Levenberg-Marquardt adjustment is used in the experiments
[17]. The gradient∇ can be computed analytically but we
have found finite difference calculation to suffice.

4. Experimental results

The aim of these experiments is to evaluate the perfor-
mance of the proposed inverse function on real data. The
experiments are carried out on noise corrupted simulated
data and real images. Errors are based only on points at the
perimeter of the images since it is easier to undistort central
points and we wish to avoid their biasing influence. Quan-
tifiable results are available in two forms for simulated data:
perimeter Euclidean error based on the original undistorted
points and a perimeter Euclidean error based on the objec-
tive functionek in eq.(6). For real images only the objective
function error is available.

The accuracy of the inverse function in real situations
is limited by the noise level in the feature detection and in
turn the image. The noise variance found through repeated
sampling is used as noise variance in simulated data to eval-
uate the stability and performance of the proposed inverse
function in comparison to those of eq.(2) and eq.(4). Con-
sequently, Figure 2 demonstrates the behaviour in response
the expected noise level (±0.5 pixels), for both error quanti-
ties, with data normalised to 1. Only barrel distortion is con-
sidered as it is the commonest form. The proposed model
shows a significantly reduced error and is the only model to
exhibit error within the±0.5 pixel bound, in approximating
undistorted points over the entire distortion range.

Experiments on real images show similar behaviour.
Without the ability to control distortion levels, only sam-
ples can be taken. One such sample image is shown in fig-
ure 3. The corresponding normalised errorek is presented
in figure 4. The perimeter means for the three models on
this image are given in table 1. These values correspond to
behaviour as described in figure 2.

From these results it can be concluded that the proposed
inverse function significantly improves the removal of all
levels of distortion to an indistinguishable degree, in com-
parison with those in the literature.

Table 1. Perimeter means on real data.
Eq.2 Eq.4 Eq.5 (proposed)

Normalised 2× 10−3 1× 10−3 4× 10−4

Pixel 1 0.5 0.2

5. Conclusion

This paper deals with the precise removal of radial dis-
tortion from an image array. Initially, the distortion model
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Figure 2. Normalised mean perimeter Eu-
clidean errors for three methods. Simulated
data with a noise σ = 0.1 over a range of barrel
distortion levels.

Figure 3. Sample image with feature points.

is presented as a function of ideal or undistorted points.
Consequently, an inverse function is required in order to
undistort the image. A new inverse function is formed by
a rearrangement of a first order taylor expansion. Imple-
mentation details for parameter estimation are also given.
Theoretical and experimental results are compared to other
inverse models proposed in the literature. They clearly in-
dicate much improved performance, attaining sub-pixel ac-
curacy over a wide range of distortion levels.

References

[1] K. Atkinson. Close range photogrammetry and machine vi-
sion. Whittles Publishing, 1996.

[2] M. Born and E. Wolf. Principles of Optics. Permagon, 6
edition, 1980.

5 10 15 20 25 30 35 40 45 50

2

4

6

8

10

12

14

x 10
−4

Data points

E
rr

or
 (

ek )

Figure 4. Perimeter Euclidean residual ek on
real data.

[3] D. C. Brown. Decentering distortion of lenses.Photogram-
metric Engineering, 32(3):444–462, 1966.

[4] D. C. Brown. Close-range camera calibration.Photogram-
metric engineering, 37:855–866, 1971.

[5] A. Conrady. Decentering lens systems.Monthly notices
of the royal astronomical society of america, 79:951–954,
1919.

[6] F. Devernay and O. D. Faugeras. Straight lines have to be
straight. Machine Vision and Applications, 13(1):14–24,
2001.

[7] W. G. Driscoll and W. Vaughan. Handbook of optics.
McGraw-Hill, 1978.

[8] J. G. Fryer and D. C. Brown. Lens distortion for close-range
photogrametry. Photogrammetric engineering and remote
sensing, 52(1):51–58, 1986.

[9] J. Heikkila. Geometric camera calibration using circular
control points. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(10):1066–1077, 2000.

[10] J. Heikkila and O. Silven. A four-step camera calibration
procedure with implicit image correction. InCVPR97, 1997.

[11] C. C. Slama.Manual of photogrammetry. American society
of photogrammetry, 4 edition, 1980.

[12] G. P. Stein. Internal camera calibration using rotation and
geometric shapes. Master’s thesis, MIT, 1993.

[13] T. Tamaki, T. Yamamura, and N. Ohnishi. Unified approach
to image distortion. InICPR02, pages 584–587, 2002.

[14] T. Thormaehlen, H. Broszio, and I. Wassermann. Robust
line-based calibration of lens distortion from a single view.
In Mirage 2003, pages 105–112, 2003.

[15] R. Tsai. A versatile camera calibration technique for high
accuracy 3d machine vision metrology using off-the-shelf tv
cameras and lenses.IEEE Journal of Robotics and Automa-
tion, 3(4):323–344, 1987.

[16] K. Vijayan Asari, S. Kumar, and D. Radhakrishnan. A new
approach for nonlinear distortion correction in endoscopic
images based on least squares estimation.IEEE Transac-
tions on Medical Imaging, 18(4):345–354, April 1999.

[17] E. Walter and L. Pronzato.Identification of Parametric Mod-
els from Experimental data. Springer, 1997.

[18] G. Wei and S. Ma. Implicit and explicit camera calibra-
tion - theory and experiments.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 16(5):469–480, 1994.

[19] J. Weng, P. Cohen, and M. Herniou. Camera calibra-
tion with distortion models and accuracy evaluation.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
14(10):965–980, 1992.


