
A Note on Feature Selection for Polyp Detection in CT Colonography

Tarik A. Chowdhury, Ovidiu Ghita, Paul F. Whelan and Abhilash Miranda
Vision Systems Group

School of Electronic Engineering
Dublin City University, Dublin 9, Ireland

{tarik,ghitao,whelanp,abhilash}@eeng.dcu.ie

Abstract

In this paper we describe a computer aided detection
(CAD) algorithm for robust detection of polyps in com-
puted tomography (CT) colonography. The devised algo-
rithm identifies suspicious polyp candidate surfaces using
the surface normal intersection, Hough transform, 3D his-
togram analysis, region growing and a convexity test. From
these detected surfaces we extract statistical and morpho-
logical features in order to evaluate if the surface in ques-
tion is a polyp or fold. In order to devise the optimal classi-
fication scheme the performance of two different classifiers
are evaluated when the algorithm is applied to synthetic and
real patient data. The experimental results indicate that
the overall polyp detection performance shows sensitivity
higher than 92% for polyps larger than 5mm with an aver-
age of 4.7 to 6.0 false positives per dataset.

1. Introduction

Computed Tomography Colonography (CTC) [1,2] is a
rapidly evolving technique for early detection of colonic
polyps. It provides the interactive evaluation in two di-
mensional (2D) and three dimensional (3D) views of the
data acquired from modern CT scanners and many medi-
cal practitioners have considered the CTC as the optimal
mass screening technique for colorectal cancer [3]. Al-
though CTC is a relatively new medical investigation tech-
nique, a significant number of studies have been conducted
to evaluate its performance and as a result a large number of
different automated computer aided detection (CAD) tech-
niques have emerged. In this regard, Vinning et al. [4] em-
ployed curvature analysis to detect potential colonic polyps
and their method achieved 73% sensitivity with 9 to 90 false
positives (FP)/dataset. A related technique has been de-
veloped by Summers et al. [5] where the convexity of the
colonic wall was evaluated by calculating the partial deriva-
tives that are used in conjunction with some local shape

criteria. The sensitivity of their technique varied between
29% to 100% with 6 to 20 false positives per dataset. This
method has been advanced by Yoshida et al. [6] by devel-
oping a technique that uses features such as the shape index
and local curvature calculated from small volumes of inter-
est that were used as inputs for a fuzzy clustering in order to
discriminate between polyps and folds. They reported 89%
sensitivity with 2 false positives (FP) per dataset. Paik et al.
[7] proposed a different approach for polyp identification
where they evaluated the local convexity of the colonic wall
using the normal intersection. This method was efficient to
detect polyps but the level of false positives was high. To
address this issue Kiss et al. [8] augmented the normal inter-
section with sphere fitting to produce 85% polyp sensitivity
for polyps larger than 6mm with 2.82 FP/dataset.

In this paper we propose a method for polyp detection
where we try to maximally exploit the difference in mor-
phology between polyps and folds. In the development
of this technique we have used the knowledge that polyps
resemble spherical/ellipsoid structures whereas folds have
generally cylindrical shapes. It is worth noting that the
polyps and folds have almost an unbounded range of shapes
and the difference in their appearance is sometimes very
subtle. With this in mind, to evaluate the morphology of
polyps and folds we calculate the surface change behavior
(SCB) with respect to their centers. To determine the SCB,
the 3dB point, the standard deviation of the surface change,
maximum distance and surface normal concentration have
been calculated. These features were employed to deter-
mine whether a candidate surface is a polyp or not and two
classification schemes were evaluated in order to find which
classifier performs best in reducing the number of false pos-
itives.

2. Colon Lumen Segmentation

Initially the non-isotropic patient data was converted to
isotropic by using cubic interpolation. As the CTC images
offer a good contrast between the gaseous and lean tissue



the colon can be successfully segmented by using a standard
seeded region-growing algorithm [9]. Sometimes remain-
ing residual material and water can create collapses in the
colon and the region-growing algorithm may require mul-
tiple seed points to segment the entire colon. The thresh-
old value for segmentation was set to -800HU and the colon
wall (CW) is determined by the voxels situated on the vicin-
ity of the data segmented by the region-growing algorithm
that has an HU value higher than -800HU.

2.1. Initial candidate surface identification

The candidate surfaces were extracted based on the ob-
servation that the surfaces that define polyps are convex.
To evaluate the convexity index we developed a detection
method based on surface normal intersection, Hough trans-
form and 3D histogram analysis. The normal vector to each
colonic wall voxel was calculated using the partial deriva-
tives that are calculated in the x, y, z directions [10]. Once
the normal vectors are calculated for each CW voxel, the
intersections between normal vectors in 3D are evaluated.
In this way, each CW voxel generates 8 Hough points (HP)
along the normal direction starting from 2.0mm to 10.0 mm
and their intersections are recorded in a 3D histogram. If
the input surface is convex it has a large number of intersec-
tions in the 3D histogram for one point between 2.0mm and
10.0mm.

In our implementation we examined whether the 3D his-
togram of the Hough points has bins with more than 5 inter-
sections. If this is the case, the bin with highest number of
intersections will generate the initial candidate center point
(ICCP) for a polyp.

The center for each HP cluster that defines an initial can-
didate surface is calculated using the Gaussian distribution
illustrated in Eq. 1

GMi =

M
∑

k=1

e(−x
2/2.0×σ) (1)

were x is the distance between the Hough points, σ is the
standard deviation and is set to 1.0, M is the number of
Hough points in the cluster i and k takes values between
1 to M. The HP with the highest distribution is considered
to be the center of the clustered surface.

3. Features Extraction

Our objective is to extract features from the candidate
surfaces that offer the best discrimination between polyps
and folds. At this stage it is useful to recall that polyps and
folds have various shapes and in some situations the dif-
ference between them is subtle. Thus, the discriminative
features employed have to optimally exploit the difference

in morphology between polyps and folds in order to achieve
robust polyp identification and low level of false positives.
In this regard, we extracted the maximum distance from the
cluster center to the surface normal, the standard deviation
(SD) of the surface variation, the 3-decibel (dB) point on
the surface change curve and the surface number concentra-
tion. In the remainder of this section we will present these
features in detail.

3.1. Maximum distance calculation

The nominal shape for a polyp is spherical/ellipsoid and
cylindrical for folds. Thus, the maximum distance between
the center of the candidate surface and normal vectors of
the candidate surface shows a good discriminative power
in separating spherical surfaces from cylindrical surfaces.
In this regard the maximal distance should be significantly
higher if the candidate surface belongs to a fold than in
cases when they belong to polyps. This can be clearly ob-
served in Fig 1. where the maximum distance dmax is plot-
ted for different classes of polyps and folds. From Fig. 1
we can notice that this feature is effective in discriminating
small/medium polyps (< 10mm) when compared to folds.
The maximum distance dmax does not provide optimal dis-
crimination when the size of the polyp is higher than 10mm
(see the plot for class polyp 3).
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Figure 1. Maximum distance dmax for differ-
ent classes of polyps and folds (classes are
sorted in ascending order with respect to the
size of the polyps/ folds)

3.2. Standard deviation (SD) of the surface
variation

The aim of this feature is to evaluate the rate of surface
change. In order to evaluate the standard deviation (SD)
of the candidate surface we calculate the number of surface
voxels that are placed at each radius starting from dmax to-
wards the minimum radius that was set to 1mm. Our goal is



to determine how many voxels from the candidate surfaces
are situated at a particular distance with respect to the dis-
tance center, this will generate the surface number SN. The
equations required to calculate the surface number SNj for
each radius are illustrated in Eqns. 2 to 4, where N is the
number of steps required to sample the surface curvature.

Step = (dmax − 1.0)/N (2)

Rj = dmax − Step× j for j = 1, ..., N, (3)

SNj =
∑

Rj

V oxel (4)

Figs. 2 and 3 illustrate the voxel distribution with respect
to each radius Rj for different classes of polyps and folds.
From these images it can be observed that the number of

Surface analysis for polyp

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Radius R j

N
um

be
r o

f S
ur

fa
ce

 v
ox

el
 a

t R
j

Polyp_1

Polyp_2

Polyp_3

Polyp_4

Polyp_5

Polyp_6

Polyp_7

Polyp_8

Polyp_9

polyp_10

Polyp_11

Polyp_12

Polyp_13

Figure 2. Number of surface voxels for each
radius (Rj) for polyp classes.
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Figure 3. Number of surface voxels for each
radius (Rj) for fold classes.

voxels for folds decrease rapidly while for polyps it is al-
most constant. Thus the surface number can be used to de-
termine the change in curvature and this is best sampled by
the standard deviation (SD) that is calculated as illustrated

in Eqns. 5 to 7.

SNjmean =
1

N

N
∑

j=1

SNj (5)

SNjnorm =
SNj

SNjmean
for j = 1, ..., N, (6)

SNSD =

√

√

√

√

1

N

N
∑

j=1

(SNjnorm − SNjmean)2 (7)

The discrimination offered by the standard deviation (SD)
of the surface variation for different classes of polyps and
folds is depicted in Fig. 4. It can be observed that this
feature is quite effective in discriminating polyps from all
types of folds.

SD of the surface change curve of polyps and folds

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Polyps and Folds indices

St
an

da
rd

 d
ev

ia
tio

n

Polyp Class_1

Polyp Class_2

Polyp Class_3

Polyp Class_4

Fold Class_1

Fold Class_2

Fold Class_3

Fold Class_4

Figure 4. Standard deviation of the surface
variation for different classes of polyps and
folds (classes are sorted in ascending order
with respect to the size of the polyps/ folds)

3.3. 3dB point on surface change curve

The 3dB point refers to the number of steps required by
the SNj to reach the 3 dB (3dB =

∑N
j=1 SNj/

√
2) fall in

the total voxel count of the candidate surface The number
of steps required to reach the 3dB point is generally higher
for polyps than for folds and this is illustrated in Fig. 5.

3.4. Surface normal concentration

We recall that for each CW voxel we created 8 HP’s uni-
formly distributed along the normal direction from 2.0mm
to 10.0mm and the Gaussian distribution has been employed
to determine the surface center. The normal concentra-
tion is given by the number of surface points that generate
an intersection within 1.25mm from the calculated surface
center. As the shape of polyps resembles a spherical sur-
face is expected that the surface normal concentration to
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Figure 5. The number of steps required in
reaching the 3dB point on surface change for
different classes of polyps and folds.
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Figure 6. Surface normal concentration for
different classes of polyps and folds.

be higher than that calculated for folds (see Fig. 6). In
Fig. 6 it can be observed that the surface normal concen-
tration offers a good discrimination between large polyps
(>= 10mm) and all types of folds. This is very useful as
the features discussed before were able to discriminate ro-
bustly only small/medium polyps while the discrimination
for large polyps was less pronounced.

4. Classification

In order to assess the most robust classification scheme
we have evaluated the performance of two different classi-
fiers. The classifiers investigated are: the feature normal-
ized nearest neighbor (FNNN) classifier [11] and the proba-
bilistic neural network (PNN) classifier. We evaluated these
classification schemes in order to determine their contribu-
tion to the reduction of false positives. In this implemen-
tation we have developed the FNNN classifier and tested
its performance against established classification schemes,
namely the PNN classifier.

Our FNNN training data consists of five polyps and five
folds databases. During training we have segregated the
polyps into small spherical, medium spherical, large spher-

ical and elliptical. We also segregated the folds into small
folds, small convex surface, medium folds and large folds.
We have chosen to divide these databases by size in order to
alleviate as much as possible the class overlap in the training
stage. For training we have used 58 polyps and 247 folds.

5. Experiments and Results

In our tests we have used 57 patient datasets (prone and
supine views) with 121 polyps, five patient data with 33
synthetic polyps and a phantom data with 47 polyps of
various sizes. Overall sensitivities for real polyp detection
were 72.73% and 66.12% when the FNNN and PNN clas-
sifiers were employed (see also Table 1). The false positive
rates were 6.0, 4.7 for FNNN and PNN classifiers respec-
tively. Sensitivities for polyps larger than 10mm were 100%
(FNNN), 75% (PNN).

Table 1. Performance analysis for real polyp
data

Type Number FNNN PNN
TP Sen. TP Sen.

≥ 10mm 4 4 100% 3 75%
[5− 10)mm 25 23 92% 22 88%
< 5mm 79 52 65.82% 46 58.23%

Mass 11 7 63.67% 7 63.67%
Flat 2 2 100% 2 100%
Total 121 88 72.7% 80 66.16%
FP 6.0 4.7

When the CAD-CTC system has been applied to datasets
with synthetic polyps, the overall sensitivities for FNNN
and PNN classifiers were 84.85% and the false positives per
dataset were 2.6, 3.0 respectively. Sensitivity for polyps
larger than 5mm was 100% and sensitivity for polyps
smaller than 5mm was 33.33% for both classifiers.

Table 2. Performance analysis for synthetic
data

Type Number FNNN PNN
TP Sen. TP Sen.

≥ 10mm 9 9 100% 9 100%
[5− 10)mm 17 17 100% 17 100%
< 5mm 6 2 33.33% 2 33.33%

Flat 1 0 00.00% 0 0%
Total 33 28 84.85% 28 84.85%
FP 2.6 3

For phantom data overall sensitivities were 89.36%,
85.10% when the FNNN and PNN classifiers were em-



ployed (see Table 3). Sensitivities for polyps < 5mm, 5
to 10mm, >= 10mm and flat polyps were 100%, 100%,
100% and 44.44% for FNNN classifier. For PNN classifier
the sensitivities in polyp detection were 92.85%, 92.74%,
100% and 44.44%.

To determine whether a polyp was correctly detected by
the proposed CAD-CTC system, we cross-validated the de-
tected polyps’ location with the CTC reports prepared by
the radiologists. Also we compared the results returned
by the CAD-CTC system with the colonoscopy reports for
supine and prone views. The average size of a typical in-
terpolated CT dataset is 300MB and the processing time re-
quired by the algorithm to evaluate a dataset is 3.72 minutes
when executed on a Pentium-IV 1.6GB PC with 1 GB mem-
ory.

Table 3. Performance analysis for phantom
data

Type Number FNNN PNN
TP Sen. TP Sen.

≥ 10mm 14 14 100% 13 92.86%
[5− 10)mm 19 19 100% 18 94.73%
< 5mm 5 5 100% 5 100%

Flat 9 4 44.44% 4 44.44%
Total 47 42 89.36% 40 85.10%
FP 4 0

6. Discussion and Conclusions

In this paper we propose four novel features that were
successfully included in the development of an automated
CAD-CTC system. The experimental data indicates that
these features were efficient in discriminating polyps from
folds as the algorithm demonstrated high sensitivity in
polyp detection while maintaining a low level of false posi-
tive per dataset. Also in our experiments we evaluated two
different classifiers in order to determine the optimal classi-
fication scheme that minimizes the false positive incidence.
Our polyp detection technique was not designed for detec-
tion of flat polyps and small polyps adjacent to folds as their
shapes resemble the characteristics of folds. To solve this
problem we plan to develop a better surface detection tech-
nique in order to improve the segmentation of the polyps
situated on folds. Also, approximately 11% of the false
positives were generated by the residual material attached
to the colonic wall. These false positives can be eliminated
by employing texture analysis as they have a different den-
sity than the tissue that forms the colonic wall. It is useful to
mention that our polyp detection technique outperforms the
existing techniques [5,7] and in particular is very efficient

in detecting medium (>= 5mm) and large (>= 10mm)
polyps as these polyps are the most important clinical fea-
tures. The experimental data indicated that the developed
CAD polyp detection technique presented in this paper is a
useful tool to be used in clinical studies.
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