
 
A PRACTICAL PACKING STRATEGY FOR THE AUTOMATED HANDLING OF IRREGULAR 
SHAPES 
 
 
 
Paul F. Whelan 
 
 
 
 
This paper has two distinguishable, but interwoven themes: (i) maximising the use of the context information 
available from a given task, by the application of a systems engineering approach to the packing problem, and 
(ii) the development of an adaptive packing strategy for random shapes, using morphological and heuristic 
techniques. The packing techniques and applications discussed in previous papers1-3 provide an important 
motivation to the development of automated packing systems. They also indicate the best means of 
progressing the development of flexible packing systems. The characteristics required in a flexible packing 
system are summarised below: 
 

• Adaptive and easily tuned to specific applications. 
• Ability to manipulate all shapes efficiently. 
• Shape ordering and orientation capabilities. 
• Visual feedback to aid operation. 
• Ability to account for systems issues, such as changes in the product, process and the industrial 

environment. 
• Quantitative validation procedure. 
• Easy to use, interactive environment to facilitate experimentation. 
• Limited propagation of errors (especially important for large packing / assembly tasks)4 . 
• High speed operation.  
• Facility to implement non-local packing strategies. 

 
Essentially, such a system will consist of two main components. The first will provide a means of 
manipulating the shape and scene image at a geometric level. The second component will consist of a rule 
based geometric reasoning unit capable of deciding the ordering and orientation of the shapes to be packed. 
The heuristic component must also be capable of dealing with the system issues arising from a specific 
application demand. This task can be simplified by maximising the use of the information available from the 
product, process and the environment for a specific industrial application. By using heuristic methods it is 
hoped that the packing systems generality is improved and that the development of procedures for new 
applications will become less cumbersome. One of the key features in such a system is that it should work 
towards an efficient solution, accepting that we cannot guarantee reaching an optimal solution. Therefore a 
mechanism for quantifying the packing systems performance will be necessary. This will enable a 
quantitative comparison of packing procedures. Burdea and Wolfson4 suggest that the integration of such a 
heuristic approach with a packing verification procedure should ensure convergence to an efficient solution.  
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The packing scheme consists of two major components (see Fig 1): 
 

(a) A geometric packer, based on the principles of mathematical morphology, takes an arbitrary 
shape in a given orientation and puts the shape into place in that orientation1,2.  

(b) A heuristic packer which is concerned with the ordering and alignment of shapes prior to their  
application to the geometric packer. This component also deals with other general considerations, 
such as the conflict in problem constraints and the measurement of packing performance. In 
addition, it deals with practical constraints, such as the effects of the robot gripper on the packing 
strategy, packing in the presence of defective regions, and pattern matching considerations3. A 
more detailed discussion of the system implementation can be found in Whelan and Batchelor1,2. 

 

 

Fig. 1. General industrial packing strategy. 
 

Together, these form a flexible strategy that allows the packing of arbitrary, two-dimensional shapes in a 
previously undefined scene, see Fig 2. The aim of the design was to produce a flexible system capable of 
dealing with the majority of industrial packing problems, and as such, the system was not designed around a 
specific application. As Burdea and Wolfson4 point out, no single strategy, however efficient, will succeed in 
dealing with all shapes equally well. Therefore, when faced with a specific application, the system can be 
tuned to that task.  
 
Performance Measures 

To ensure that we have confidence in the global efficiency of any packing strategy, there must be some way 
of measuring its performance. Traditionally, packing performance has been measured by a single number, 
called the packing density5. This is the ratio of the total area of all the packed shapes to that of the total area 
of the scene. This is referred to as the worst case analysis packing measure.  
 
A number of other performance measures have been developed in the field of operational research, 
particularly for comparing different heuristics for packing rectangular bins by odd-sized boxes6. These 
performance metrics fall into two main categories: Probabilistic and statistical analysis. While these 
performance measurements can be quite useful in well constrained packing problems, they are of little use in 
dealing with the packing of arbitrary shapes. Since it is unlikely that real data will fall neatly into a uniform, 
or any other easily analysable distribution. 
 
The performance measures used in this strategy are based on the traditional worst case analysis. After a 
packing procedure has been applied to a given scene, the result is assessed by a number of  performance 
parameters2.  
 
• Packing density is the ratio of the total area of all the shapes packed, to the area of their (collective) 

convex hull after packing (minus the area of the scene defects). This measure has a maximum value of 1. 



 
• The performance index is a modified version of the packing density. A weighting factor is applied. This is 

referred to as the count ratio and is defined as the ratio of the total number of shapes packed, to the 
number of shapes initially presented to the scene. The performance index is equal to the product of the 
packing density and the count ratio. The performance index also has a maximum value of 1. This measure 
accounts for any shapes that remain unpacked when the procedure terminates. 

 
Systems Issues 

In general, the design of the packing system can be greatly simplified, the more application constraints that 
can be incorporated into the heuristic packer. The design of packing systems for certain industries, such as 
shoe manufacturing, is made easier by the fact that leather, like fabric, wood, marble and many other natural 
materials has a pronounced grain. For example, in certain applications only two orientations of a given shoe 
component may be permissible, a fact which can greatly enhance the speed of the packing procedure. Again, 
the heuristic packer can easily take this type of application constraint into account. Alternatively, some 
practical considerations can increase the complexity of the packing procedure. This section will examine two 
such considerations, see Fig 2.  
 
A. The effect of utilising different robotic end-effectors in automated packing. 

A general purpose packing strategy must be robust enough to cope with a range of different material handling 
systems. For the applications considered in Fig 1(a) and (b), it has been tacitly assumed that some form of 
suction or magnetic gripper could be used to lift and place the objects during packing. In this case, the foot-
print of the gripper is assumed to lie within the outer edge of the shapes being manipulated. 
 
Automated material handling systems frequently make use of robotic grippers which have two or more 
fingers. This complicates the problem of packing, since the gripper requires access to objects within a 
partially packed scene. Therefore any packing strategy must make allowances for the gripper. The grippers 
worse case position usually (but not always) occurs when the gripper is fully open, just after placing an object 
in position. The problem of gripper access can be dealt with very effectively, by the simple expedient of 
overlaying a gripper template on the shape to be packed prior to the application of the geometric packer. The 
gripper foot-print is based on the positions of the fingers in both the open and closed positions.  In fact, the 
convex hull of each of the finger tips in the open and closed positions is formed when computing the 
composite foot-print 2. 
 
In a practical situation care must be taken to ensure that any change in the shape of the objects to be packed, 
due to squeezing by the robot gripper, does not adversely affect the packing strategy. The same is true of 
articulated and other hinged objects, such as scissors or pliers, which can change their shape during handling. 
Again, this type of application constraint could also be dealt with by the introduction of suitable heuristic 
packing rules, and may also be used as a factor when calculating the gripping position.  
 
The strategy outlined above for working with multi-finger grippers does have the advantage of allowing the 
shapes to be unpacked from the scene in any order. One possible modification to this approach results in a 
denser configuration that, in general, can only be automatically unpacked in reverse order. This modification 
consists of packing each shape, taking the robot foot-print into account, but removing the foot-print from the 
scene prior to the application of the next shape. 
 
Of course, many industrial applications do not require that the pieces are unpacked automatically. Certain 
industrial tasks require manual unpacking, and consideration of the means and the environment of the manual 
unpacking operation may influence the automatic packing strategies used. For example, if the application 
requires that items are to be unpacked in a certain order, then this will influence the packing strategy. 
Consideration must also be given to the means in which the shapes are initially acquired by the robot. If the 
objects are presented one at a time, then the system can automatically determine the optimal gripper pickup 



point (robot grasping location) for that object, and proceed to pack it using one of the automated packing 
strategies outlined previously.   
 
Alternatively, if all the objects to be packed are placed in the field of view at the same time then it may not 
always be possible for the multi-fingered robot to access the piece it is required to pack. The vision system 
may have to guide the robot gripper to push the object of interest until it is separated enough from the other 
shapes for the gripper to gain access to the desired pickup points. Also the order in which the shapes are 
packed may be determined by the order in which the robot can access the objects. Once the shapes have been 
packed, the robot end-effector can also be used to nudge the packed shapes such that a more efficient packing 
configuration can be achieved. 
 
B.  Packing scenes with defective regions. 

Any practical automated packing system for use in such industries as leather or timber processing must be 
able to pack objects into a scene which may contain defective regions. The heuristic packer can readily 
accommodate defective regions; by simply defining the initial scene to contain a number of holes. Fig. 2(d) 
illustrates the effect of packing jacket template pieces on to a piece of fabric, prior to cutting. The small blob-
like regions indicate the defective areas in the fabric. These defective regions are not to be included in the 
jacket pieces to be cut. These results illustrate the flexibility of the packing strategies outlined previously. 
 
Conclusion. 

The approach outlined in this work is unique in that it combines the strengths of the heuristic approaches to 
problem solving, with a powerful shape manipulation mechanism, namely mathematical morphology. While it 
is acknowledged that the application of mathematical morphology to the packing of a small number of 
arbitrary planar shapes is not new, researchers in this area have concentrated on the mathematical proof of 
optimal packing configurations, rather than viewing it within the context of the industrial packing problem. 
But since a mathematical proof that is capable of dealing with a large number of arbitrary shapes may not 
exist, the application of a heuristic approach that allows the targeting of an efficient rather than an optimal 
solution, may be a more fruitful line of research.  
 
The second major theme running through this work is the benefits that can be gained by applying a systems 
engineering approach to complex vision applications. As has been found so often in other applications, the 
adoption of such an approach is an invaluable aid in the design of industrial vision systems. A systems 
approach to the design of the packing strategy has been deliberately taken. By taking the systems constraints 
into account, faster, cheaper solutions may be obtained. It is the authors view that automated packing systems 
are best designed with regard to such issues as gripper shape, material grain, material defects, etc. It is 
believed that there is little justification for seeking a unified algorithmic solution that is capable of tackling 
the totality of packing applications, without human intervention. 
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Fig. 2. Automated packing of irregular shapes. (a) A rectangular tray. (b) An irregular scene. (c) Allowing for 

robot gripper considerations. (d) Cutting jacket template pieces from an irregular fabric segment which 
contains defective regions. 




