
Abstract—Common carotid intima-media thickness (IMT) is 
a reliable measure of early atherosclerosis - its accurate 
measurement can be used in the process of evaluating the 
presence and tracking the progression of disease. The aim of 
this study is to introduce a novel unsupervised Computer Aided 
Detection (CAD) algorithm that is able to identify and measure 
the IMT in 2D ultrasound carotid images. The developed 
technique relies on a suite of image processing algorithms that 
embeds a statistical model to identify the two interfaces that 
form the IMT without any user intervention. The proposed 
image segmentation scheme is based on a spatially continuous 
vascular model and consists of several steps including data pre-
processing, edge filtering, model selection, edge reconstruction 
and data refinement. To conduct a quantitative evaluation each 
image was manually segmented by clinical experts and 
performance metrics between the segmentation results obtained 
by the proposed method and the ground truth data were 
calculated. The experimental results show that the proposed 
CAD system is robust in accurately estimating the IMT in 
ultrasound carotid data. 

I. INTRODUCTION 
THEROTHROMBOTIC events, myocardial infarction and 
stroke, are responsible for approximately 35% of total 

mortality in the western world, and are leading causes of 
morbidity burden world-wide. The first indication of 
atherosclerotic vascular disease is a thickening of the intimal 
and medial layers of the arterial wall. This results from 
inflammatory-fibroproliferative responses to various forms 
of insult. It involves lipid accumulation, and the migration 
and proliferation of many cells in the sub-intimal and medial 
layers, so that plaques are formed. It is the rupture of such 
plaques that causes myocardial infarcts (heart attacks), 
cerebrovascular events (strokes), peripheral vascular disease 
(gangrene) and kidney infarcts respectively. Early 
atherosclerosis (increased intima media thickness - IMT), is 
readily visualized in large superficial arterial vessels such as 
the common carotid using B-mode ultrasound and is a well 
established independent predictor of cardiovascular events. 
Hence, accurate acquisition and analysis of common carotid 
ultrasound image has considerable value in the early 
diagnosis of atherosclerosis, prognosis prediction, and in the 
monitoring of responses to lifestyle and pharmacological 
treatments for vascular disease. 
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The goal of this paper is to introduce an efficient 
Computer Aided Detection (CAD) algorithm for the 
segmentation of the IMT in 2D ultrasound carotid images. 
The proposed technique aims to identify the IMT in order to 
detect early abnormalities in the carotid arteries using 
advanced image processing techniques. Because of its 
automatic character, the proposed segmentation algorithm is 
capable of robustly identifying the two interfaces of the IMT 
and overcomes the complications caused by poor quality 
ultrasound data (such as speckle noise, signal attenuation or 
occlusions).  

There are several approaches proposed for the IMT 
segmentation in the computer vision and medical imaging 
community. They include techniques based on edge-
detection [1-3], dynamic programming [4], active contours 
(snakes) [5] and probabilistic approaches [6]. The majority 
of these techniques were built on the assumption that the two 
interfaces bordering the IMT are easily distinguishable and 
in general, they require a certain degree of user interaction. 
As illustrated in Fig. 1, in longitudinal sections of the 
common carotid artery, the IMT can be seen to be bordered 
by two quasi-parallel lines that represent the lumen-intima 
and the media-adventitia interfaces. 

Fig. 1. Detail of an ultrasound image displaying the IMT’s two anatomical 
boundaries (as marked by our medical expert).   

II. IMAGE ACQUISITION 

The experimental data consists of N = 49 longitudinal 
views of the common carotid artery (CCA) that were 
captured by our clinical partners from Beaumont Hospital, 
Dublin, Ireland from a cohort of women with and without 
pregnancy related hypertension. The images were acquired 
using a Philips IU22 ultrasound scanner fitted with VL13-5, 
L17-5 and L9-3 transducers. For evaluation purposes, 
images acquired with a HDI 5000CV scanner were also 
included in this study. 

III. PROPOSED SEGMENTATION ALGORITHM

The developed CAD system relies on a suite of image 
processing algorithms that embeds a statistical model to 
identify the two interfaces that form the IMT complex 
without any user intervention. The proposed imaging 
segmentation scheme is based on a spatially continuous 
vascular model and consists of several steps that will be 
detailed in the following sub-sections of this paper. An 
outline of the proposed technique is illustrated in Fig. 2. 
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Fig. 2 Schematic representation of the proposed IMT segmentation algorithm. 

A. Global Contrast Enhancement 
The low contrast between the anatomical structures is one 

of the main drawbacks associated with the ultrasound 
imaging modality. Due to low echo responses caused by the 
ultrasound acquisition process, certain sections of the IMT 
have a reduced contrast and are not easily distinguishable 
(see Fig. 3a). In order to improve the appearance of the IMT 
and facilitate its detection, a global contrast enhancement 
based on data stretching between two pre-defined thresholds 
cmin and cmax, was applied: 
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where I(x,y) is the intensity value of the pixel situated at 
position (x,y) in the image matrix and Ice(x,y) is the contrast 
enhanced intensity value. Based on experimentation the 
values of cmin and cmax are set to 6 and 150 respectively and 
are kept constant for all images analyzed in this study. We 
would also like to note that the selection of these two 
thresholds proved to be robust irrespective of the ultrasound 
equipment that has been employed to capture the image data.  

B. Automatic Detection of the Region of Interest (ROI) 
The ROI where the search for the IMT will be carried out 

is the area situated above and below the interface that 
separates the blood and the tissue of the vessel’s far wall. To 
avoid any human intervention, we propose to automatically 
detect the blood tissue interface (referred to as the Tracked 
Interface-TI). In order to detect the TI and robustly segment 
the two image classes (blood and tissue), an adaptive 
thresholding algorithm [7] followed by an image refinement 
procedure was applied.  
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In equation (2), ni is the number of pixels with grey-level i, 
N is the total number of pixels in the image, N = 
n0+n1+...+n255 and hi represents the probability that the pixel 
with coordinates (x,y) in the contrast enhanced image takes 
the value i. The threshold k is automatically detected to 
maximize the between class variance as follows, 
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The refinement procedure is applied to the image resulting 
from the thresholding process (see Fig. 3b) with the purpose 
of eliminating the small and spurious regions and obtain a 
more compact image segmentation. The post processing 
process is carried out as follows: for each pixel in the 
thresholded image a histogram hΓ(x,y) is constructed in a Γ 
neighborhood (the value of the mask was chosen so that to 
be large enough to avoid erroneous assignments): 
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In equation (5), Г is the 7×7 neighborhood around the pixel 
with coordinates (x,y), m1 defines the number of white pixels 
in the mask, while m2 represents the number of black pixels. 
If m1>> m2 then the pixel under analysis belongs to the 
vessel tissue and it will be assigned a light grey level value, 
otherwise it corresponds to blood and it be set to 0. In order 
to facilitate the detection of the TI segment, the borders 
between the two classes are marked with a white line (see 
Fig. 3c). The TI interface is generated by the border pixels 
that simultaneously satisfy the following conditions:  

1. Ice (x,y) =255;
2. Ice(x, y+α)=0;
3. Ice(x, y-α)>0.

These conditions evaluate the local distribution of the post-
processed data around each border pixel (Ice(x,y)=255), and 
they state that the border pixel belongs to the TI interface if 
it has black neighbours for α pixels above it and bright 
neighbours for neighbours for α pixels bellow it. (The 
parameter α is adaptively detected and in this study the 
search is carried out in the interval [0, 10]). The resulting 
border segments that satisfy simultaneously the three 
conditions stated above will be filtered out and only a 
reduced number of segments will be retained for further 
analysis. Based on the anatomical structures that compose a 
carotid ultrasound image, the TI is always the longest 
continuous segment in the image area that obeys the three 
conditions discussed above. In Fig. 3d) it is shown the 
tracked interface for the ultrasound image displayed in Fig. 
3a). Once the TI is identified, the ROI is set using the 
minimum (min_y) and maximum (max_y) coordinates of the 
tracked interface on the y-axis and the width of the original 
image. To this end, the ROI height is calculated as follows,  
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In equation (6), smax is a parameter that sets the model 
variation above max_y and below min_y to allow the 
inclusion of additional information in the ROI that will be 
necessary in the process of IMT reconstruction. Experiments 
demonstrated that a smax value of 15 is sufficiently large to 
generate a ROI that covers a large part of the lumen of the 
carotid artery beyond the adventitia irrespective of the 
resolution of the ultrasound images. The contrast enhanced 
image data sampled by the ROI will be further processed for 
the IMT identification. 

   (a)       (b)      (c)   (d) 

(e) 
Fig. 3. Automatic ROI detection (a) Original carotid ultrasound image. (b) 
Thresholded image. (c) Post-processed image. The two main image classes 
are blood (in dark colour) and tissue (in grey colour). The borders between 
them are marked with white. (d) The automatically detected TI of the 
carotid artery. (e) The automatically determined region of interest for the 
image shown in a). 

C. ROI Pre-Filtering 
The purpose of the pre-filtering step is to attenuate the 

speckle noise in a pre-defined neighborhood calculated 
around each pixel in the image. The Vector Median Filtering 
(VMF) [8] is a noise removal scheme that is able to locally 
adapt to the image content while preserving the contextual 
image information (edges). To filter the ROI, we iterate 
through the image with a square mask of size w×w centered 
at every pixel in the ROI. Using VMF, every pixel under 
analysis will be replaced with the pixel from its 
neighborhood w×w that returns the minimum Euclidian 
distance to all other pixels in the neighborhood as follows, 
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In equation (7), (pmin, qmin) are the coordinates of the pixel 
that returns the minimum distance to all pixels located 
within the mask w×w. To attain feature preservation, the 
VMF should be applied in a small neighborhood to prevent 
the edge attenuation that occurs when the VMF filtering 
scheme is applied for large neighborhoods. In our 
implementation the neighborhood w×w is set to 3×3.  

D. Initial Edge-Structure Extraction 
The next step of the algorithm extracts the initial edge 

structure of the plausible IMT segments around the area of 
interest using the Canny edge detector [9]. The reason for 
selecting Canny for edge detection is that it achieves good 

detection, good localization and also satisfies the one 
response criterion by minimizing multiple responses for a 
single edge. The Canny edge detector extracts the gradient of 
the image data that is first convolved with a 2D Gaussian 
filter G, )],,(),([ σyxGyxI ROI∇ , to reduce the occurrence 
of spurious edges caused by image noise. The scale σ is an 
essential parameter that sets the size of the Gaussian filter 
and its value is set in conjunction with the desired level of 
edge detail: fine versus coarse edges. Taking into 
consideration that fine edges are numerous and have an 
irregular (curly) appearance, this generates a difficult 
scenario when the edge segments are analyzed in the process 
of IMT detection. To address this issue, the algorithm 
proposed in this paper adopts a coarse to fine strategy for 
IMT detection. The initial (coarse) edge detection is 
performed when the scale of the Gaussian operator is set to 
σ=1.5. To improve the edge connectivity and remove the 
weak edges, non-maxima suppression and thresholding with 
hysteresis are applied [9]. This value of the scale parameter 
ensures that the irrelevant edges derived from image noise 
and weak textures are removed and only strong edge features 
are evaluated to extract the primary IMT model. This 
procedure will be detailed in the next section of this paper. 

E. Primary Model Selection 
This step of the proposed algorithm filters the initial 

coarse edge information that is extracted as explained in the 
previous section with respect to a spatially continuous 
vascular model. To extract the plausible edge segments 
within the ROI, the slope of the tracked interface (TI) line is 
calculated. This line represents an initial geometrical 
estimation for the two quasi-parallel lines that form the IMT. 
Starting from the initial edge structure shown in Fig. 4a) the 
edges whose slopes are not in agreement to the slope of the 
TI will be discarded. The slope-intercept parameters (aTI,bTI) 
of the TI and of the initial edge segments are estimated using  
least squares fitting, as shown in equation (8).  
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In equation (8), x is the vector that holds the coordinates 
on the x-axis for each pixel of the TI (see Fig. 3d)), while y 
is the vector that hold the coordinates on the y-axis of every 
pixel of the TI. The parameter n is the total number of pixels 
that define the TI. The linear least square fitting algorithm 
provides a robust statistical solution to determine the slope-
intercept parameters and we use this information to construct 
the vascular model that consists of pairs of quasi-parallel 
lines. To achieve this, the edge information is analysed so 
that only the edge segments whose slopes are in agreement 
to the TI’s slope are retained. If (aj, bj) are the slope-
intercept parameters for an edge segment j contained in the 
coarse edge data, then the edges that satisfy the following 
condition, 2.0<− TIj aa are retained. The retained edge 

517



segments (shown in red) are superimposed on the contrast 
enhanced ROI and are depicted in Fig. 4b).  
     We continue the construction of the primary model by 
calculating for each retained edge segment the local mean 
values above and below it to ensure that is part of the lumen-
intima or media-adventitia interface. 
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In equations (9) and (10) p is the index of the edge 
segment under analysis ],1[ esNp ∈ , Nes is the total number 
of edge segments, Nps is the image domain defined by the 
pixels of the edge segment with index p, LMVAp is the local 
mean value above the segment p, LMVBp is the local mean 
value below the segment p and (x,y) are the coordinates of 
the edge segment p. Based on the echogenicity of the main 
anatomical structures, there are two conditions that are 
always valid in images displaying longitudinal views of the 
carotid arteries:   
1. The regions above the intima layer is the lumen and always is
characterised by low intensity pixel values. 
2. The adventitia (located after the media layer) is generally characterised
by high intensity pixel values. 

Building on these two principles that are sampled by 
equations (9) and (10), the primary model selects the upper 
IMT candidate segments as those for which the LMVAp 
value is a local minima and the lower candidate IMT 
segments as those for which the LMVBp value is the local 
maxima. Because the IMT is always composed of pairs of 
quasi-parallel lines, a model consisting of two parallel lines 
is embedded to ensure the continuity of the primary model. 
In this process the spurious edge segments and those that do 
not obey the model are eliminated. The final primary model 
obtained for the IMT of the image shown in Fig. 3a) is 
depicted in Fig. 4c). 

F. Edge Data Reconstruction  
The edges that define the primary model will be further 

propagated using the additional edge information resulting 
after the application of the Canny edge detector (to the 
image previously subjected to contrast enhancement and 
adaptive filtering) where the scale of the Gaussian operator 
is set to a lower value (σ = 0.5). After the Canny edge 
detector is applied, a large number of edges will result, but 
only those that are adjacent or positioned close to the 
primary IMT model will be retained for further analysis. The 
motivation behind the selection of the proposed coarse to 
fine approach is that the edge information generated at a low 
scale is not robust, as the number of edges is very high, and 
it would be extremely difficult to extract the relevant edges 
that can be used in the IMT detection. Conversely, the coarse 
edge segments are more robust and they are used to generate 

the primary IMT model that represents an accurate marker 
that allows the identification of the IMT segments in the 
edge data extracted at a low scale. The low scale edge 
structure is shown in Fig. 4d). To obtain good edge 
estimates, the edge segments are analyzed using the least 
square fitting principle detailed in Section III.E and the 
result is shown in Fig. 4e). The next step of the algorithm 
propagates the information associated with the primary 
model to select the lower scale edge segments that are 
spatially contiguous and consistent with the geometrical 
characteristics associated with the primary IMT model. To 
achieve this, a list of edge terminators for each segment of 
the primary model is extracted. Then, for each edge 
terminator we search for edge pixels in the low scale edge 
data and the reconstruction process is initiated in an iterative 
fashion until the last segment that obeys the primary model 
geometric conditions is reached. This process is applied for 
all edge terminators and the reconstructed structure is added 
to the primary model. The final IMT segmentation for the 
image in Fig. 3a) is shown in Fig. 4f). 

(a) 

(b) 

(c) 

(d) 

(e) 

(f)
Fig. 4. Intermediate steps of the proposed segmentation algorithm. (a) Initial 
edge structure. (b) The filtered edges that are quasi-parallel to the TI are 
superimposed on the contrast-enhanced image. (c) The primary IMT model. 
(d) The lower scale edges. (e) Lower scale edges filtered using least square 
fitting. (f) The final pair of lines of the IMT complex resulting after the 
edge data reconstruction (the maximum IMT value calculated by our 
algorithm is 0.70 mm). 

IV. EVALUATION OF THE PROPOSED ALGORITHM

All 49 images contained in our database have been 
manually annotated by clinical experts from Beaumont 
Hospital. The accuracy of the algorithm is determined by 
computing the minimum Euclidian distance between the 
pixels situated on the border of the lumen-intima interface 
and media-adventitia interface in the ground truth image and 
the pixels from the lumen-intima interface and media 
adventitia interface identified by the proposed algorithm. To 
evaluate the border displacement between the ground truth 
annotated data and the segmented IMT, the mean, standard 
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deviation and Root Mean Square errors were calculated. The 
evaluation was performed separately for both interfaces that 
form the IMT. The overall numerical results (calculated both 
in pixels and in mm) are shown in Table I (lumen-intima 
interface) and in Table II (media-adventitia interface). In 
Table III the overall average errors calculated for maximum 
and minimum displacements between the ground truth 
annotated IMT and the estimated IMT are shown. The 
numerical results indicate that no significant differences 
between the ground truth IMT and the segmented IMT 
occur, and we can conclude that the proposed approach is 
able to accurately detect the IMT. 

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 5. Additional IMT segmentation results using the proposed 
segmentation method. (a), (b), (c), (d) and (e) The segmented IMT 
superimposed on the original ROI data. The maximum IMT values 
calculated by our algorithm are: (a) IMTmax=0.76 mm. (b) IMTmax=0.76 mm. 

(c) IMTmax=0.60 mm. (d) IMTmax=0.67 mm. (e) IMTmax=0.75 mm. For 
visualization purposes, in this figures the IMT was marked with a thick 
white line. 

The developed algorithm requires approximately 2 
seconds to process one ultrasound image. The experiments 
have been conducted using a 2.4 GHz AMD X2 4600 PC 
and running Windows XP. 

V. CONCLUSION 

The major aim of this paper was to introduce a novel 
algorithm for the segmentation of the IMT in longitudinal 
carotid ultrasound images. The main novelty of this 
approach resides in the development of an unsupervised 
algorithm that embeds a statistical IMT model in a coarse to 
fine fashion. The proposed algorithm proved to produce 
accurate segmentation results when applied to various 
carotid ultrasound images that are characterized by low-
resolution and high level of image noise. This research is on-
going and we plan to extend the capabilities of the proposed 
CAD system to automatically measure the IMT in multi-
dimensional (2D+time) ultrasound carotid data in order to 
allow the calculation of dynamical properties of the carotid 
artery. Future additional testing of the algorithm will also 
include images from patients with more advanced disease, 
i.e. with focal thickenings and actual plaques. 
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TABLE II 
THE OVERALL POINT TO CURVE  ERRORS BETWEEN THE  PROPOSED 

SEGMENTATION ALGORITHM AND THE  GROUND TRUTH DATA WHEN 
CALCULATED FOR THE  MEDIA-ADVENTITIA INTERFACE  

μMedia-

Adventitia 

σMedia-Adventitia RMSMedia-

Adventitia

Errors (mm) 0.082 0.060 0.103 
Errors (pixels) 1.045 0.750 1.304 

    TABLE I 
THE OVERALL POINT TO CURVE ERRORS BETWEEN THE  PROPOSED 

SEGMENTATION ALGORITHM AND THE GROUND TRUTH DATA 
WHEN CALCULATED FOR THE  LUMEN-INTIMA INTERFACE 

μLumen-Intima σ Lumen_Intima RMSLumen_Intima 

Errors (mm) 0.079 0.058 0.100 
Errors (pixels) 0.989 0.725 1.248 

TABLE III 
THE OVERALL AVERAGE ERRORS CALCULATED FOR MAXIMUM AND 

MINUMUM DISPLACEMENTS BETWEEN THE GROUND TRUTH 
ANNOTATED IMT AND THE IMT ESTIMATED BY THE PROPOSED 

METHOD. 
Max_IMT Min_IMT

Average Errors (mm) 0.085 0.065 
Average Errors (pixels) 1.061 0.795 
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