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Abstract—Modern medical imaging modalities provide large
amounts of information in both the spatial and temporal domains
and the incorporation of this information in a coherent algo-
rithmic framework is a significant challenge. In this paper, we
present a novel and intuitive approach to combine 3-D spatial and
temporal (3-D + time) magnetic resonance imaging (MRI) data in
an integrated segmentation algorithm to extract the myocardium
of the left ventricle. A novel level-set segmentation process is de-
veloped that simultaneously delineates and tracks the boundaries
of the left ventricle muscle. By encoding prior knowledge about
cardiac temporal evolution in a parametric framework, an expec-
tation-maximization algorithm optimally tracks the myocardial
deformation over the cardiac cycle. The expectation step deforms
the level-set function while the maximization step updates the
prior temporal model parameters to perform the segmentation in
a nonrigid sense.

Index Terms—Cardiac magnetic resonance imaging (MRI),
four-dimensional (4-D), level-set, segmentation, temporal model.

I. INTRODUCTION

RECENT studies indicate [1] that cardiovascular disease
(CVD) claims more lives each year than the next five

leading causes of death combined. The World Health Organ-
ization’s 2002 report [1], states that 29.3% of deaths in 191
countries were as a result of CVDs. The British Heart Foun-
dation [2] shows that CVDs account for 42% of deaths in the
European Union. Quantitative measurement of the left ventricle
of the heart is used as a key indicator of cardiac health. Analysis
of the heart function is achieved through the segmentation of
the left ventricle. From this accurate segmentation, prognostic
measurements used in the diagnosis of CVDs can be obtained.
These features include the ejection fraction (EF) of the left ven-
tricle cavity, the left ventricle mass (LVM) of the myocardium,
wall thickness and wall thickening (WT) of the left ventricle
myocardium. For a full definition of the classical features used
in the evaluation of cardiac health, see Frangi et al. [3].

Cardiac data is increasingly available in 3-D + time, there-
fore, it is believed that the best approach is to apply an appro-

*M. Lynch is with Siemens AG, 91058 Erlangen, Germany. (e-mail:
lynchm@eeng.dcu.ie)

O. Ghita and P. F. Whelan are with Vision Systems Group, Dublin City Uni-
versity, Dublin 9, Ireland.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2007.904681

priate technique to the entire dataset presented from a patient
scan. Many researchers have attempted to address the segmen-
tation problem in 3-D + time data. Often, temporal coherence in
the data is incorporated using sequential approaches, where a ro-
bust initial segmentation (this is often manually assisted) forms
the initialisation for subsequent volumes throughout the cardiac
cycle.

There are a number of challenges in segmenting the my-
ocardial muscle in 4-D (3-D+time) cardiac magnetic resonance
imaging (MRI) data. First, the inherent noise associated with
cine MRI that is caused by factors such as the patient move-
ment, cardiac dynamics, partial voluming effects, and coil
intensity fall off is an important issue that must be addressed.
Second, the vast amount of data presented from a single cardiac
study makes the manual landmarking of features required by
supervised algorithms impractical. Finally, it is preferred to
find appropriate methods to incorporate information of the
cardiac dynamics into the image segmentation. Therefore, it is
the aim of this paper to develop a methodology that fuses the
local image information while incorporating a global temporal
model that reflects the physical dynamics of the cardiac muscle
during the cardiac cycle. The proposed algorithm performs a
contour evolution that incorporates image data and temporal
data in an intuitive manner.

Many boundary based segmentation methods such as active
contours (snakes) [5] have been developed for use in medical
image object extraction. Generally, the aim of boundary based
segmentation methods is to deform a closed curve using both
the intrinsic properties of the curve and image information to
capture the target object [4]. This form of segmentation has
some advantages over statistical intensity based partitioning al-
gorithms as object shape is one of the key factors in the evolu-
tion of the contours. There are a large number of applications
in medical image analysis where anatomical features can be
encapsulated within a closed contour. From their introduction,
snakes have received a large amount of interest from the vision
community and significant research has been performed in ex-
tending the original snake formulation. Such extensions include
controlling the snake’s propagation and this can be achieved by
using parametrically deformable models [6], [7], deformable tri-
angulated meshes [8]–[11], and Gaussian distributed a priori
models that were incorporated in the development of the active
shape and active appearance models [12]–[16]. Lorenzo-Valdés
et al. [17] construct a probabilistic atlas of manually segmented
temporally aligned data. Automatic segmentation is achieved by
registering the atlas on the data and using this as the initial values



for an expectation maximization (EM) algorithm. The EM algo-
rithm is then iterated until convergence and this is followed by
the application of a final classification step where the Markov
random fields (MRF) and largest connected components (LCC)
are employed to refine the initial segmentation.

This paper describes a novel method for the segmentation
of 4-D cardiac MRI data using a priori knowledge about the
temporal deformation of the myocardium that is embedded in
a level-set scheme. By exploiting the Eulerian formulation of
the level-set, the extension to a complete 4-D segmentation is
achieved by calculating a parametric model of the left ventricle
deformation over a cardiac cycle. This model is then itera-
tively refined using an optimization algorithm. Therefore, our
approach infers a loose model to the temporal motion for the
continuous temporal evolution of the boundary surfaces. The
initial temporal model is iteratively updated to better fit the data
in a novel way which can correct initialization errors, increase
the convergence speed, and provide temporal smoothing. This
paper introduces the level-set theory, followed by a description
of two approaches that incorporate the temporal motion of the
heart in the level-set evolution. We show that an approach based
on updating the temporal model using an EM algorithm proved
to be the optimal solution to segment the left ventricle cavity
in the cardiac 4-D data. The proposed method is then extended
by coupling two level-sets to segment and track the inner and
outer walls of the left ventricle myocardium and experimental
results are given.

II. LEVEL-SET METHOD

Level-sets were first introduced by Osher and Sethian [18]
which extended the snake formulation to an Eulerian formal-
isation. Malladi et al. [19], [20] and Caselles et al. [21], [22]
showed how level-set algorithms could be applied for enhance-
ment and shape recovery in medical images using edge-based
stopping terms. An extension of Malladi’s work performed by
Niessen et al. [23] used a more diffusive propagation term to in-
crease the influence of the stopping term. An extensive review
of level-set methods is given by Suri et al. [24] and also by An-
gelini et al. [25]. Boundary based level-set formulation can also
be thought of as transforming the earlier work of Kass et al. [5]
on active contours from a Langrarian to an Eulerian formulation.
Like active contours, the deformation of the level-set is seen as a
gradient flow to a state of minimal energy, providing the object
to be segmented has clearly identifiable boundaries [19]–[22],
[26].

The basic property of the level-set can be described as ex-
tending the dimensionality of the solution to , where
is the initial dimension of the problem. Consequently, some ad-
vantageous properties can be exploited. The evolving curve, or
front , evolves as the zero level-set of a higher dimensional
function where and represents the iteration of
the level-set

(1)

This function deforms with a force that is dependent on
both curvature of the front and external forces in the image.

The force acts in the direction of the normal to the front. The
term “given” refers to an initial boundary surface from which
evolves. defines a position in space as coordinates.

The use of level-sets for segmentation of the cardiac muscle
in MRI is appropriate for the following reasons.

• One can perform numerical computations involving curves
and surfaces on a fixed Cartesian grid without having to
parametrize these objects (Eularian, nonmarker based so-
lution).

• It becomes easier to implicitly track shapes which undergo
topological changes such as situations when a shape splits
in two, develops holes, or the reverse of these operations
(although this scenario is not present when working in
volume data).

• Intrinsic geometric properties of the front, such as the cur-
vature and normals, can be easily calculated.

• The method may be extended to higher dimensions.
The fundamental objective behind level-sets is to track a

closed interface , for which , as
it evolves in the data space. The interface is represented by
a curve in 2-D and a surface in 3-D, which are the set of
points that are on the boundaries of the region of interest .
The theory behind level-set segmentation is largely based on
work in partial differential equations and the propagation of
fronts under intrinsic properties such as curvature [18], [27].
Level-set theory aims to exchange the Lagranian formalization
and replace it with an Eulerian form, where the initial valued
partial differential equations control the front (boundary) evo-
lution. Representing the boundary as the zero level-set instance
of a higher dimensional function , the effects of curvature
can be easily incorporated. is represented by the continuous
Lipschitz function , where is the signed
distance from position to the initial interface [see (2)].
The distance is given a positive sign outside the initial boundary
( ), a negative sign inside the boundary ( ) and
zero on the boundary ( )

(2)

From this definition of , intrinsic properties of the front can
be easily determined, i.e., the normal and the
curvature .

Also by analysing (2) in more detail, can be considered as
a function in two different ways. First, can be considered as
a static function that is evaluated at particular instances or
isovalues. This leads to the formulation of the Eikonal equations
and is discussed in more detail in Section II-A. Alternatively,

can be described as a dynamic function that evolves
through time and the closed contour, or front, is the special case
where the value of equals zero. Using this definition, it
can also be said that at any time , the set of points that define a
curve can be represented as the function . It is also
clear that as the curve evolves through time, the function also
evolves. Consider a point on the contour that is evolving
through time, i.e., . By the chain rule

(3)



The force is defined as and can be interpreted as
a force that moves the point in the normal direction . If
is replaced with , the equation takes the form
of a Hamilton-Jacobi as expressed in (1). If the force term is
rewritten as to include a constant advection term

, analogous to the inflation force used in some deformable
models, the evolution of becomes

(4)

where the parameter is a user defined curvature term.
To speed up the implementation, the update is only performed

within a narrowband [28] surrounding the boundary interface,
which is defined within a constant distance from the front. In
our case, the narrowband was determined experimentally to six
voxels and it is redefined every three iterations. The parameters

and [see (8)] were also determined experimentally and repre-
sent the influence of the curvature and attraction to the gradient
on the evolving boundary, respectively. The mean curvature is
calculated directly from the function .

A. Initialization Using Fast Marching

In order to overcome the “myopic” characteristics of level-set
propagation, Sethian [27] introduced a Fast Marching method.
This is the unique case of the level-set where the force is
always greater than zero and this propagates a monotonically
advancing front. If the 2-D case is considered again, a set
is created that defines the time at which the front crosses the
position . satisfies the equation

(5)

The evolution is iteratively assessed by solving the roots of
the quadratic equation of the Eikonal equation and sorting the
values of with respect to size. The stopping term is based on
the diffusion of the gradient and can be calculated as

(6)

where is a user defined term and is the absolute value
of the gradient. The Fast Marching approach gives an approx-
imate segmentation and is used for the evaluation of the initial
contour for the dynamic level-set method. The results from the
Fast Marching algorithm can be seen in Fig. 2.

III. APPLICATION TO 4-D DATA

Fritscher et al. [29] aimed to apply full 4-D information to
boundary driven and region-competition geodesic contours. In
this initial work, principal components analysis (PCA) was per-
formedonsigneddistancemaps tocreatemodels, where themean
of these models were used to initialize the level-set algorithm. In
the 4-D segmentation work described in Bardinet et al. [30] and
also in McInerney et al. [31], the temporal dimension was con-
sidered in a sequential approach where the segmentation from
the previous time frame was used as the initialization for the cur-
rent time frame. Rueckert and Burger [32] also used this sequen-
tial approach where the shape at time ( ) was a deformation
of the shape at time frame . The deformation is achieved using
energy minimization of the deformable template in a Bayesian

formulation. Sun et al. [33] created a nonlinear dynamic model
learned from a set of training data. A manual tracing of the first
image in the sequence is used to create a posterior density esti-
mate of the left ventricle at each time frame. A curve evolution is
thenperformedwith themaximumposteriorestimate.McEachen
and Duncan [34] performed tracking of the left ventricle by per-
forming point correspondence from time to in which they
assumed a small degree of motion between time frames. Based
on these assumptions, a smooth transition of the parametric con-
tours is achieved using an optimization algorithm.

Paragios [35] introduced an energy constraint into his vari-
ational level-set approach that enforced a intensity consistency
throughout the temporal cycle. A transformation is calculated
between time and based on a bounded error function,
where represents the intensity value at time . In Montagnat
and Delinette [36], the deformable model is influenced by intro-
ducing time-dependent constraints. These consist of prior tem-
poral knowledge through either temporal smoothing or trajec-
tory constraints. Perperidis et al. [37], [38] used a spatial tem-
poral model found by experimentation to perform spatio-tem-
poral registration of cardiac MR images.

Segmentation in 3-D+time should perform a segmentation of
the 3-D volumes and use this information in the time domain.
To this end, a number of approaches are proposed with the ad-
vantages and disadvantages of each discussed.

• Sequential Approach consists of naively using the results
from time sequence as the initialization for time sequence

. This approach assumes no prior knowledge about
the temporal dynamics of the heart. The only assumption
is that the cardiac muscle boundaries do not exhibit large
movements between time sequences. In this approach, er-
rors are propagated throughout the cycle.

• Temporal subtraction can give some indication in re-
gard to the direction of movement of the cardiac bound-
aries. Again, this does not utilize prior knowledge about
the global dynamics of the heart and may be overly sen-
sitive to noise and artifacts. Some optical flow approaches
may eliminate these limitations and were investigated in
[39].

• Temporal Smoothing performs the segmentation of
the 3-D volumes in parallel, while forcing the bound-
aries to move in a physically consistent way using
temporal smoothing. In its simplest form, temporal
smoothing could be achieved using an averaging function,

, where represents the
boundary curve at time .

• Temporal consistency of intensity values across the left
ventricle cavity and the left ventricle myocardium was
employed by Paragios and Deriche [40]. Similar to the
previous approaches, artifacts present in the left ventricle
cavity, due to the dynamics of blood during the cardiac
cycle, may restrict the application of this method. Also,
this method places confidence in the initial contextual
values obtained from a statistical classifier that estimates
tissue membership as a mixture of Gaussian distributions.

• Database of Prior Image Models created from a selection
of images at particular temporal instances may be regis-
tered to the unseen image. Like other a priori models, this



Fig. 1. Volume, in milliliters, of the left ventricle cavity over the cardiac cycle
obtained from manually delineated cardiac boundaries.

Fig. 2. Results show the initialization (marked in white) from a seeded Fast
Marching algorithm. Method was applied to perform a robust initial estimate of
the left ventricle cavity of the heart on four separate datasets displaying a high
variability of the left ventricle shape. Images are courtesy of Dr. D. Pennell and
Dr. J. Murray.

approach relies on building generic models that are appli-
cable to a wide range of heart morphologies. Variations in
cardiac morphology caused by individual anatomical fea-
tures or disease may not be accounted for in such models.

• Prior Temporal Parameterised Model proposes to model
the dynamics of the cardiac cycle and further refine this
model as the parallel segmentation is performed on 3-D
volumes. Unlike database models constructed in the image
space, broader classification of the cardiac boundary’s
movement during the entire cycle can be applied to all
variations of heart morphologies. Exploiting the construct
of the level-set function, the parameterized model can be
determined and incorporated into the level-set update.

In our proposed algorithm, the segmentation of the 4-D MRI
data is approached in a parallel sense using temporal constraints
in an effort to control the boundary deformation away from
erroneous spilling or over segmentation. The control of the
boundary evolution is achieved by means of prior knowledge
about the deformation of the cardiac muscle throughout a
complete cardiac cycle. The general case for the data we have
studied experimentally illustrates that the blood volume of the
left ventricle follows a cyclical filling and emptying process
similar to that illustrated in Fig. 1, which shows an example of a
real patient data where the left ventricle is manually delineated
in the short-axis stack. This temporal model can also be seen
in Perperidis et al. [37] where it has been enforced during
the segmentation process. The volume change over time is
intrinsically linked to the boundary motion. In our method,
we attempt to employ this intrinsic information to generate an
initial weak model of boundary motion, which can evolve to

real data while providing supervision to the evolution of the
boundary surfaces.

A. Modelling the Temporal Movement

Exploiting the formalization of the level-set function, the car-
diac cycle as represented in Fig. 1 can be modelled for each
3-D point over time. Essentially, for each 3-D point in space,
the distance to the contour represents the cardiac boundary in-
creases and decreases. There is an associated constant ( ) which
defines a point’s initial distance to the contour. We model this
movement of the contour using an inverted Gaussian function. A
Gaussian function was shown to produce very good results ex-
perimentally. It can be computed quickly as it has a low number
of parameters and it introduces a temporal smoothing over the
cardiac cycle.

For the general Gaussian function defined in (7), the param-
eters , , , and can be found by fitting a Gaussian curve
to each voxel within the narrow band over the cardiac cycle.
Initial values are obtained from the Fast Marching algorithm.
Gaussian, model fitting is achieved using least squares approx-
imation. In our experiments nonlinear fitting proved to be un-
stable due to the low number of volumes in the temporal res-
olution ( ). Therefore, linear least squares fitting was ap-
plied iteratively to a linearized form of the function until con-
vergence was achieved. However, it is also possible to linearize
a nonlinear function at the outset and still use linear methods
for determining the fit parameters without resorting to iterative
procedures. Equation (7) represents the equation that is fitted to
each position of the function over the cardiac cycle

(7)

This fitted Gaussian represents the model for the dynamics
of the cardiac muscle over the cardiac cycle. The deformation
of the boundary surface of the level-set is constrained by this
Gaussian model. In this way, the evolution of the level-set
boundary can be constrained to contract and expand under
Gaussian motion, where the saddle point is the temporal posi-
tion given by and deformation occurs at a rate of . As each
point on the function is defined as the distance to the zero
level-set boundary, the Gaussian model can be fitted to each
point within the narrowband.

The methodology is illustrated in Fig. 3, where a single point
is selected within the narrowband. In Fig. 3, the boundary con-
tracts and then expands in similar manner as the left ventricle
boundary evolves from end-diastole to end-systole and back
again to end-diastole. As this evolution takes place, the value
at the point’s position grows and shrinks as the distance to the
boundary increases and decreases. This evolution can be mod-
elled using (7) where the parameters , and are determined
from the Fast Marching initialization. The value of represents
the offset of the Gaussian model. Fig. 4 illustrates the model ap-
plied to the long axis view.

B. Level-Set Influenced by an Adaptive Variance Gaussian

In order to use this information in the level-set evolution, an
adaptive Gaussian model is developed. Similar to the general
Gaussian model given in (7), the aim is to improve the models
fit on the data. This results in the deformation of the boundary



Fig. 3. Change of a single point on � as the boundary evolves over the cardiac cycle in the short axis view.

Fig. 4. Change of a single point on � as the boundary evolves over the cardiac cycle in the long axis view.

Fig. 5. Volume, in milliliters, of the left ventricle cavity over the cardiac cycle
with fitted model using an adaptive Gaussian model.

where the temporal dynamics of the initial segmentation that are
obtained using the Fast Marching algorithm are closely main-
tained during the boundary evolution process. In practice, this
model is created by a least squares fitting of a Gaussian model
where the variance ( ) is calculated separately at each temporal
position. In essence this means that the least squares error is
close to zero at each temporal position. This is illustrated in
Fig. 5 where the model curve closely resembles the real data.

The incorporation of this new force into the level-set evolu-
tion is achieved as follows:

(8)

where represents the normalized difference between the ex-
pected value, using the model described previously, and the ac-
tual value determined using the value of at each point within
the narrowband. represents the gradient information
from the data, is an advection force to grow the contour (in
our implementation ), and is the curvature term. and
are user defined control terms and were determined experimen-
tally to be 0.025 and 0.05, respectively.

However, the temporal model created from the initialization
may not represent the final segmentation of the target object,
as too much confidence is placed on the initial model created

using the Fast Marching approach. For example, if the Fast
Marching algorithm fails at one particular time sequence, the
temporal model may incorporate this error. Using the curvature
constraint, the level-set algorithm can overcome this error.
Also, the temporal model that is created may not allow the
level-set to deform greatly from the model created from the ini-
tialization. Therefore, a new approach is proposed that uses the
information obtained from the initialization step but iteratively
updates this model based on the evolution of the level-set at
each iteration. This creates a smoothing effect on the level-set
surfaces over the cardiac cycle but can also cope with poor
initialization.

C. Level-Set Influenced Using EM

In order to address the limitations associated with the adaptive
variance model described in the previous section, a novel ap-
proach is introduced which iteratively updates the initial param-
eters of the model. This essentially acts as a form of EM algo-
rithm. The EM algorithm is a two step approach which aims to fit
a model to data and is particularly useful where there is unknown
or incomplete data. In the case of cardiac boundary segmenta-
tion, the observed data is defined as the value of the level-set
function at a particular position over the entire cardiac cycle.
The unknown or missing data is a final Gaussian model which
is inferred on the deformation over the cardiac cycle. The EM
algorithm takes initial parameters from the temporal model con-
structed using the Fast Marching algorithm. The Gaussian mix-
ture model contains a single Gaussian function. In our experi-
ments, it was found that a single Gaussian was deemed suffi-
cient to handle the slight asymmetry of the cardiac cycle. More
Gaussians could be added but as the temporal model is used as
a loose model of dynamics, the extra computational expense of
generating a close approximation to the initial data is not justi-
fied. Following the initialization, the algorithm performs an ex-
pectation or fit of the data at a particular temporal position to
the overall temporal model, see Fig. 6. The results from this ex-
pectation stage are the differences between the model and the
observed data. The expectation step which is given in (11) cal-
culates the expected log-likelihood function for the complete
temporal data using the estimates for the parameters of the tem-
poral model defined in (7). The classic implementation of the



Fig. 6. Volume, in milliliters, of the left-ventricle cavity over the cardiac cycle
with fitted model using an inverted Gaussian Model.

EM algorithm can work on a mixture of models, but in our case
it is using just one model defined in (7) (see appendix for addi-
tional details on the EM algorithm).

The maximization step in this case is performed by deforming
the level-set function based on the results from the expectation
stage. Hence, the maximization step is defined by the update of
(8) that is controlled by the parameter . From this expectation
calculation, a maximization is performed to correct for the cal-
culated differences. The process is iterative and the parameters
for the model are reevaluated at each iteration.

This approach addresses the problems associated with the
previous method. The results from the Fast Marching algorithm
are used only as initial values for the EM algorithm. However,
these initial parameters are reevaluated at each iteration, so er-
rors from the Fast Marching approach are redressed during the
evolution of the level-set algorithm.

IV. RESULTS

In order to assess the validity of this approach, the results
of the segmentation using the iteratively optimized algorithm
are compared against those obtained from expertly assisted seg-
mentations of the left ventricle. The algorithm is applied to six
unseen datasets from four different institutions with a high vari-
ation between datasets. The manual annotations were validated
by an experienced cardiologist. Fig. 8 displays a linear plot and
a Bland-Altman plot for the areas in 2-D of the manually traced
boundaries. The error is calculated on the 2-D slices as manual
segmentation was performed by tracing 2-D curves on the data
slices. Therefore, all measurements are in .

Point-to-curve errors for the adaptive variance approach and
from the EM algorithm are shown in Table I. The results of the
differences in area between the proposed algorithm and manual
segmentation are displayed in Fig. 8, showing the linear regres-
sion plot and the Bland-Altman plot [41]. When the linear plot
of the blood pool areas was compared against manual segmen-
tation, the Gaussian curve method with adaptive variance pro-
duced a regression value of 0.71 while the optimised EM ap-
proach yielded a regression of 0.76. The Bland-Altman plot in-
dicates good reproducibility of results. Compared to the work
of Lorenzo-Valdés et al. [17], they report a regression value
of 0.95 when evaluating the volume differences between their
method and manual tracings. The main advantage of our method

Fig. 7. Results from a coupled 4-D segmentation of a cardiac sequence for
diastolic, systolic, and midphase for a basal (top row), midslice (middle row),
and apical slice (bottom row).

over that presented by Lorenzo-Valdés et al. is that we do not
model the data in the image space. We create a generic tem-
poral model to loosely fit the data, assuming the sequence is
captured over the entire heartbeat. Lorenzo-Valdés et al. use
presegmented datasets that are temporally resampled to fit the
number of sequences in the new data. Thus, they are bounded by
the differences of the unseen data from their training data. While
accurate in an assessment of volume data in a leave-one-out sce-
nario, we believe that our method is more generic. Fritscher et
al. [29] measure the similarity between manual and automatic
segmentation based on overlap. The evaluation is performed on
two datasets. Rueckert and Burger [42] report a 5% difference
between their technique and the radiologists annotation.

Measuring overlap is achieved using Dice metric [43].
denotes the area of the pixels that are assigned to a class by
both the ground truth and the automatic algorithm. Similarly,
and denote the areas of the pixels assigned to the segmented
blood-pool by the automatic algorithm and the ground truth,
respectively. The overlap between the automatic segmentation
and the ground truth for class is measured by

. Using this method, our algorithm returns a Dice metric
of for all data analyzed. However, this metric can
be influenced by the smaller areas around the apex where the
difference in area is significantly higher when comparing to the
area segmented.

Another advantage of our iteratively optimized algorithm, is
that it guarantees convergence [44]–[46] and also reduces the
error between the observed data and the model at each itera-
tion. This means that convergence is faster than using the static
model. This is characterized in Fig. 9 by measuring the error
decay between the two methods based on synthetically gener-
ated phantom data.

The receiver operating characteristic (ROC) curves are dis-
played in Fig. 10 illustrating that the method using the EM ap-
proach achieves higher sensitivity and specificity than the adap-



Fig. 8. Results of the 4-D segmentation of the left ventricle cavity boundary compared against those obtained from manual segmentation. Error analysis is per-
formed on the 2-D slices and the results are presented in mm .

TABLE I
POINT TO CURVE ERRORS FOR METHOD 1 USING THE GAUSSIAN

CURVE WITH ADAPTIVE VARIANCE AND METHOD 2 USING THE

EXPECTATION-MAXIMIZATION OF THE GAUSSIAN PARAMETERS.
ALL MEASUREMENTS ARE IN MILLIMETERS

Fig. 9. Results show the error decay for both methods based on the 4-D seg-
mentation of synthetically generated phantom data. RMS error is measured in
pixels.

Fig. 10. ROC representing the sensitivity and specificity of the adaptive vari-
ance (Var) and using the EM methods over the deformation of the level-set on
phantom data.

tive variance approach. The areas under the ROC curves are cal-
culated to be 0.613 for the variance method and 0.636 for the EM

Fig. 11. Estimation using prior knowledge of the endo- and epi-cardial defor-
mation throughout the cardiac cycle using inverse Gaussian curves.

Fig. 12. Results from a coupled 4-D segmentation of a cardiac sequence.

method. The level-set approach is a surface growing algorithm
and the slopes of the ROC curves are not as significant as those
published for other classification methods.

A. Coupled Approach

Coupling of two level-sets can also be achieved in a coherent
and intuitive way by using two Gaussian models, as illustrated
in Fig. 11. The outer contour represents the epi-cardial boundary
and is initialized a distance of five pixels from the Fast Marching
result. Similarly, at each point on the grid, the parameters for the
two Gaussian models representing the evolution of the endo-
and epi-cardial boundaries are stored. After optimization, the
evolution of the epi-cardial boundary is less pronounced and the
Gaussian model is shallower. Results from a coupled segmen-
tation are illustrated in Figs. 7 and 12 for different time phases
and slice locations.



V. CONCLUSION

In this paper, deformable contours for feature extraction in
medical imaging were introduced and discussed. An overview
of the current state-of-the-art methods used for the segmentation
of the left ventricle of the heart was given.

In the following sections, a new general solution to left ven-
tricle segmentation from 4-D MRI data was presented. Model-
ling cardiac muscle motion over the cardiac cycle was employed
to loosely guide a contour growing algorithm. Information ob-
tained from a Fast Marching segmentation was used to set the
initial values in a parametric model describing the cardiac mo-
tion. The model is based on nonrigid deformation of the left
ventricle boundaries over time using prior knowledge about car-
diac dynamics. After each evolution of the level-set algorithm,
the model is optimized to the data using an EM algorithm to re-
duce the target to object errors.

The developed segmentation algorithm produces accurate re-
sults when compared to expertly assisted segmentations of the
left ventricle boundaries. The algorithm was tested on data con-
taining high variation, both in anatomical morphology and ac-
quisition parameters. Finally, the results are illustrated for a cou-
pled surface segmentation where the left ventricle inner and
outer boundaries are tracked in a computationally efficient way
using two separate models of temporal motion.

APPENDIX

The EM algorithm satisfies the necessity in our approach to
estimate the parameters of a probability distribution function. In
our case, we are looking to estimate the mean and standard de-
viation of myocardial deformation throughout the cardiac cycle.

The approach consists of two steps, the expectation ( ) step
and a maximization ( ) step. Consider the general case of a

-dimensional random variable and
suppose it follows a -component finite mixture distribution. We
assume it follows a mixture of Gaussian curves. Initial values
for the Gaussian’s mean and variance are estimated using the
variance of the data. Its’ probability density function (pdf) could
be written as

(9)

where is the mixing parameter for each of the Gaussian mix-
ture models (GMM) and are the Gaussian’s
parameters

(10)

The algorithm is built on an iterative scheme and consists of two
steps. The first, the -step, calculates the expected log-likeli-
hood function for the complete data that is defined by using
the estimates for the parameters

(11)

The second, -step, uses the maximized values of this result to
generate the next set of parameters

(12)

The algorithm iterates between (11) and (12) until convergence
is reached. It is important to note that local convergence of the
EM algorithm is assured [44]–[46]. In our case, is set to one
as there is just one underlying motion that concerns us. This
reduces the effects of binning and dropouts to a certain extent
as a single Gaussian is calculated over the full cardiac cycle.
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