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Abstract—In CT colonography, the first major step of colonic 

polyp detection is reliable segmentation of colon from CT data. 

In this paper, we propose a fast and accurate method for 

automatic colon segmentation from CT data using colon 

geometrical features. After removal of the lung and surrounding 

air voxels from CT data, labeling is performed to generate 

candidate regions for Colon segmentation. The centroid of the 

data, derived from the labeled objects is used to analyze the colon 

geometry. Other notable features that are used for colon 

segmentation are volume/length measure and end points. The 

proposed method was validated using a total of 99 patient 

datasets. Collapsed colon surface detection was 99.59% with an 

average of 1.59% extra colonic surface inclusion. The proposed 

technique takes 16.29 second to segment the colon from an 

abdomen CT dataset. 

Keywords-component; CT colonography, colon segmentation, 

colon geometrical features, centroid. 

I.  INTRODUCTION  

Computed Tomography (CT) colonography [1] is an 

alternative approach to colonoscopy for early detection of 

colonic polyp using CT data. Previous scientific studies show 

that the sensitivity of polyp detection for CT colonography 

(CTC) is comparable to colonoscopy [2-7]. The work flow of 

a complete automatic computer aided detection (CAD) system 

for CT colonography can be divided into four major steps: 

colon segmentation, polyp candidate generation, feature 

generation and classification. Hence, the sensitivity of polyp 

detection in CAD-CT colonography heavily relies on robust 

segmentation of colon from CT data. Currently, two types of 

bowel preparation are used in CTC. The first, involves bowel 

cleansing and inflation of colon with CO2 or room air prior to 

CT scan. The second method involves consumption of density 

enhancement fluid (barium contrast material or iodinated 

contrast material) and inflation of colon. Electronic cleansing 

is applied after colon segmentation for oral contrast patient 

data. Review of previous research work shows that automatic 

colonic surface detection techniques are proposed [8-21] for 

both kind of bowel prepared patient datasets. Our proposed 

method can be applied to both high contrast and without 

contrast patient data for colon segmentation.  

Regarding existing techniques, Wyatt et al. [9] employed a 

distance transform of a binary data to extract the seed points. 

Detected seed points were applied for object labelling using 

3D region growing algorithm. Wyatt et al. [9] employed an 

elongation criteria on the labelled objects for colon detection. 

Li et al. [16] applied a 2D region growing algorithm with 

automatic seed placement in each slice of the patient data. 2D 

regions were filtered using shape filters and size filters. In the 

last step, authors [16] employed filtered seed, a 3D region 

growing algorithm and elongation criteria for detection of the 

colon. Masutani et al. [17] proposed a method that 

identifiesthe largest air volume in the patient dataset as the 

colon (after removal of surrounding air voxels and lungs). If a 

collapse appears in the colon, the largest air volume in the 

patient data was assigned as the colon. The other air regions 

having volume 25% (Volume threshold Rfc) of the largest 

volume were considered as parts of the colon. Nappi et al. [18] 

proposed a different segmentation method that detects the 

colon as the intersection of Anatomy Based Extracted (ABE) 

surface with Colon Based Extracted (CBE) surface. ABE uses 

the same volumetric features proposed by Masutani et al.[17]. 

In the CBE method, a 3D region growing is initiated from the 

rectum and this process continues until a stopping rule that 

checks for certain experimentally validated conditions is 

upheld. If the conditions are not met, the region growing 

process is re-started from an automatically selected new seed 

point and the stopping rule is re-evaluated. Finally, the 

intersection surface between ABE and CBE is declared as the 

colon surface. This method reduced the extra-colonic surface 

inclusion from 25.6% to 12.6%. Iordanescu et al. [19] 

proposed an automatic seed placement method using one seed 

point near the rectum for well-distended colon and two seed 

points at rectum and cecum for collapsed colon segmentation. 

Their method shows 83.2% complete colon segmentation and 

9.6% partial colon segmentation. The remaining 7.2% section 

of the colon requires a manual seeded segmentation. Frimmel 

et al. [20] proposed a method that uses the centerline and the 
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colon geometry for automatic segmentation. They [20] 

calculated the bounding box parameters for each centerline 

and used some predefined thresholds to accept or reject the 

centerline section derived from the small intestine. Their 

method shows 96% sensitivity for automatic colon 

segmentation. In our previous method [21] volume/length 

analysis, distance between the labeled objects, and gradient of 

centerline were used as geometrical features for colon 

detection. Our previously developed method showed 96.52% 

sensitivity for colon segmentation with 99% colonic surface 

area detection. The new proposed method uses centroid based 

geometry analysis of the air inflated region inside the CT data 

for colon segmentation. The proposed method is fast and 

robust for detection of colon compare to our previously 

developed method reported in [21]. 

II. AUTOMATED SEGMENTATION OF COLON 

Automatic colon segmentation from abdomen CT data 
starts with surrounding air voxel removal and lung detection. 
The next step identifies and labels all remaining air regions in 
the volumetric data and calculates the centroid of the patient 
data. The colon is declared well distended or collapsed by the 
analysis of centroid based colon geometry. Fig. 1 illustrates the 
four main steps required for colon segmentation from CT data.  

Patients can be scanned head first supine/prone or feet first 
supine/prone in a CT scan. If the patient is scanned in feet first 
supine/prone, data is rotated 180 degrees around the Z-axis to 
make it head first supine/prone. Hence, in all volumetric CT 
data the lungs are always visible in the first slice. 
Consequently, after removal of the surrounding air voxels, 3D 
region growing starting in the first slice of the volumetric data 
will segment the lung regions. To detect the lungs, the 
proposed algorithm checks for the presence of isolated blood 
vessels inside the segmented area. If multiple isolated blood 
vessels / pulmonary vessels are detected, the segmented area is 
defined to be lung; otherwise it is defined to be a candidate 
region for the colon structure [21]. 

 

Figure 1: Overview of colon segmentation in CAD-CTC. 

A. Labelling the Inside Area 

Once the lungs have been segmented, the remaining air 

regions represent colon, small intestine, a few external objects 

and stomach. In the next step, labelling is performed using a 

26-neighbourhood region growing algorithm [22]. The 

threshold for region growing is automatically selected from 

the global histogram [21] and is usually in the range -900HU 

to -800HU. The labelling of the air regions is performed in 

two phases. In the first phase, any air voxels (less than the 

threshold) in the volumetric data initiate the region growing 

and continue to label all the connected air voxels. The region 

growing process stops when no neighbouring voxel with HU 

value less than the threshold is found. The last voxel where the 

region growing stops is considered as the first end point (FEP) 

(see Fig. 2a) of that labelled region. In the second phase, 

region growing starts from the first end point and labels all the 

voxels in the region that are already checked in the first phase 

of labelling. We also store the (X,Y,Z) coordinates of voxels 

that are in 10mm incremental (10mm, 20mm …) distance 

from the first end point. The 2D projection of the stored 

(X,Y,Z) points are also calculated in the X-Z plane (see Fig. 3). 

Let (X10i,Z10i) be the projected coordinates of 10mm distance 

voxels starting from the first end point. Equation 1 is 

employed to calculate the final (X10,Z10) for 10mm points. 

Similarly, all 10mm incremental points (Xi,Zi) are calculated 

using equation 1. Let M be the number of labelled objects 

inside the patient data and let (XMi,ZMi) be the points that are at 

10mm incremental distances for each labeled object. The 

centroid (Xc,Zc) of the dataset is derived from each of the 

labelled objects points (XMi,ZMi) using equation 2. Fig. 4 shows 

the centroid of patient data that is calculated from the labeled 

objects points (XMi,ZMi). At the end of the second phase, the 

last voxel where the region growing stops is considered as the 

second end point (SEP) (see Fig. 2b). During the labelling 

process the following information is also stored for each 

labelled region: total voxel count, labeled volume, and 

Euclidian distance between the two end points. 

                                                    (1) 

where n is number of points at a certain distance. 

                                                                         

                             (2) 

where M is number of labelled objects in the dataset and N is 

number of 10mm incremental points in each labelled object. 

 

 
Figure 2: Labelling the patient CT data using seeded 3D region growing 

algorithm. (a) shows the detection of first end point and (b) shows the 

detection of second end point. 



 
Figure 3: 10mm incremental distance points from the first end point. 

 
Figure 4: Centroid and 2D projected points (XMi,ZMi) of all the labelled objects 

inside a patient dataset. 

B. Colon Detection 

The adult colon and small intestine are approximately 

1.5m and 7-10m long respectively [23]. Anatomy of the colon 

shows that it is shorter and thicker than the small intestine. In 

our previous method [21], we employed volume by length 

(V/L) analysis to differentiate colon from small intestine. In 

our new method, geometry of the colon is measured with 

respect to the centroid of patient data. 

 

The devised algorithm firstly checks whether the colon has 

a collapsed segment or not. Fig. 5a illustrates a well distended 

colon and 5b shows the centroid of the dataset with well 

distended colon in it. The algorithm is initiated with the 

detection of the rectum. In general, the rectum is the only air 

filled area that is located at the lower end of the dataset. If 

multiple objects are selected as candidate rectum points, the 

object with the highest V/L is selected as the rectum. The 

colon will be declared as intact if the selected rectum object 

fulfills four conditions:  

 

i) if length of labelled object > 700mm 

ii) if V/L is greater than 300mm
2
 

iii) loop i = 1,... n [where n is the number of points on a 

labelled object]  

if ZMi is less than centroid Zc [where M is the number of 

labelled objects in the patient data] 

AngleLi = (XMi,ZMi) with X-axis of the centroid 

(Xc,Zc) 

if AngleMi is less than min_angle 

min_angle = AngleMi 

end if 

if AngleLi is greater than max_angle 

max_angle = AngleLi 

end if 

end if 

     end of loop 

     if min_angle is less than 10 degrees and max_angle is 

greater than 170 degrees 

      coverage_area = true; 

     else 

      coverage_area = false; 

     end if 

iv) The proposed algorithm also checks in the cecum area for 

any disconnected region having a V/L value greater than 

500mm
3
. If such a region is found in the ascending 

colon/cecum area, the colon is declared as collapsed. 

    
(a)                                          (b) 

 
(c) 

Figure 5: Well distended colon detection. (a) shows the 3D surface of a well 

distended colon, (b) illustrates the centroid and all the labelled objects inside a 
patient dataset, (c) shows the calculation of coverage area for a candidate 

labelled object. 



It is worth noting that the length of a large intestine is 

above 1400mm. The threshold in the first condition (i) is set 

700mm to justify that the length of detected rectum object 

must be greater than half of the length of a standard colon. The 

second condition (ii) is set empirically after analyzing V/L 

ratios [21] of 35 patients data. The algorithm presented in the 

third condition (iii) is applied to analyze the coverage area of 

the colon with respect to the centroid. For supine/prone view a 

coverage area of 170 degrees means the rectum object 

includes the descending colon, the transverse colon and part of 

the ascending colon (see Fig. 5c). Finally, condition (iv) is 

employed to identify collapsed colon segments in the 

ascending colon/cecum (see Fig. 6). If the detected rectum 

object passes all the above mentioned conditions (i-iv), we 

declare the colon as well distended. 

 

   
(a)                                               (b)                                              

Figure 6: Collapsed colon detection. (a) shows all the labelled objects in the 
patient dataset and (b) detected collapsed segment in the cecum area. 

 

In the case of a colon being flagged as well distended, the 

single region including the rectum point represents the 

complete colon as segmented, and the colon detection 

procedure is complete. Otherwise we proceed as follows. 

Collapsed colon detection also starts from the detected rectum 

point. It detects the closest placed large segments (V/L > 

300mm
2
) using the Euclidean distance between the end points 

(see Fig. 7) and the algorithm checks for condition (iii) 

detailed above. This process is iterated until this condition is 

upheld (see Fig. 7). Fig. 7 shows five colon segments (L1,L2, 

… L5) that are detected during the iterative process of large 

segment detection. The remaining small air filled regions 

(with V/L < 300mm
2
) are either part of the small intestine or 

part of the colon. As their anatomical and geometrical 

properties are quite similar, perfect colon identification is far 

from a trivial task. Our proposed segmentation scheme 

analyses the small segments using their geometrical position 

between the large segments (such as L1,…,L5 in Fig. 7) with 

respect to the centroid (Xc,Zc). The geometrical position of 

small region is verified using length, Euclidian distance and 

orientation. Orientation of a small object is calculated using 

its' angular position with respect to the centroid (Xc,Zc) of the 

patient data. The method of small colon segment detection is 

an iterative process. In the first iteration, the proposed 

algorithm detects the small objects that are found between the 

end points of the rectum (L1) and the next large segment (L2) 

(see Fig. 8a). A detected small object is considered as part of 

the colon if the orientation of the object is similar to the angle 

created by the end points of L1 and L2 (see Fig. 8a). The 

iterative process of small segment detection continues until all 

the large segments are checked (see Fig. 8b). Finally, the Fig. 

8c illustrates the result of our automatic colon segmentation 

method for a patient data. 

   
(a                                b) 

 
(c)  

  
(d                                   e) 

Figure 7: Large colon segment detection. (a) shows all the labeled objects 

inside the patient dataset. Process of large segment detection starts from the 
rectum. (b) - (e) demonstrate the iterative process that are applied for large 

segment detection. 

 



    
(a                                       b) 

 
(c)                                         (d) 

Figure 8: Small colon segments detection. (a)-(c) show the iterative process of 
small segment detection between the end points of L1 and L2, L2 and L3, L3 

and L4 (d) illustrates the 3D surface of the segmented colon. 

III. RESULTS AND DISCUSSION 

The developed algorithm was evaluated on 188 supine and 
prone standard and low-dose patient datasets (99 patients). All 
patients were scanned using the following CT protocol: 
120kVp, 2.5x4mm/1.5x16mm collimation, 3mm slice 
thickness, 1.5mm reconstruction interval, and 0.5s gantry 
rotation. For standard (157 supine and prone) and low dose (31 
supine and prone) data acquisition, patients were scans at 
100mAs and 13-35mAs respectively. The scanning time 
ranged from 10s to 30s and the CT data acquisition was 
performed in a single breath-hold. The procedure was first 
performed with the patient with head first supine position and 
then repeated for the patient head first prone position. The 
number of slices per dataset varies from 200 to 350 depending 
on the height of the patient. 

Our automatic segmentation method reliably detected 63 
well-distended standard dose and 14 well-distended low dose 
colons without inclusion of any Extra Colonic Surface (ECS). 
Thus, the colon surface detection was 100% and the ECS error 
was 0% (Table 1). The method was applied to 94 standard dose 
and 17 low dose patient datasets with collapsed colon 
acquisitions. In the collapsed colons, average surface detection 
for standard dose datasets was 99.59% (Table 1). The largest 
ECS detection was 43.28% with a mean of 2.80%. Detection 
for collapsed colon was considered failed for 3 cases (out of 94 
collapsed colons), as the surface detections were less than 95% 
with ECS surface inclusion higher than 15% (see Fig. 9 and 

Table 1). When the developed method was applied to 17 low-
dose collapsed colons, the average surface detection was higher 
than 99.04%, with mean ECS inclusion of 1.50% (see Table 1). 
The average ECS inclusion for 188 supine and prone datasets 
(99 patients) was 1.59%. 

TABLE 1: RESULTS OF AUTOMATIC COLON SEGMENTATION FOR WELL 

DISTENDED AND COLLAPSED COLONS 

Number of 

patients 

Dose Colon 

surface 

(%) 

Extra 

colonic 

surface 

inclusion 

(%) 

Colon 

surface 

missing 

(%) 

63 Well 

Distended 

Standard 100 0 0 

14 Well 

Distended 

Low-

Dose 

100 0 0 

91 

Collapsed 

Standard 99.59 2.80 0.409 

17 

Collapsed 

Low-

Dose 

99.04 1.50 0.96 

Patients 1 

(failed) 

Standard 82.12 9.64 17.88 

Patients 2 

(failed) 

Standard 88.27 78.01 11.73 

Patients 3 

(failed) 

Standard 97.93 80.01 2.07 

 

     
(a)                                    (b) 

 
(c) 

Figure 9: (a), (b) and (c) are 3D surface rendered views of patient 1, 2 and 3 

(see Table 1) respectively. 

 

To evaluate the performance of our automatic colon surface 
segmentations, two radiologists from Mater Misericordiae 
Hospital performed a manually seeded segmentation and we 
used their segmented data as ground truth data. The 



radiologists segmented the colons manually using seed points 
and 3D region growing. Any area which was detected by the 
automatic colon segmentation algorithm but not found in the 
manually segmented data was declared as ECS (see Fig. 10). 
The performance of our algorithm compares well with the 
performance of other developed techniques (see Table 2). In 
this regard, the proposed methods' success rate (98.04%) is 
better than the method proposed by Frimmel et al. [20] (96%). 
The developed algorithm also outperforms other methods [9, 
16-21] for detection of colonic surface (99.59%) and removal 
of ECS (1.59%). Another advantage of our technique is its low 
computational cost, where the typical processing time for 
overall segmentation is approximately 26.98 seconds (colon 
segmentation - 16.29 seconds, data interpolation - 10.69 
seconds) on a 1.6 GHz Centrino Duo with 2GB RAM. The 
proposed method takes only 16.29 seconds to segment the 
entire colon from a subsampled patient dataset. The 
computation cost of our method (16.29 seconds) is similar to 
the method developed by Frimmel et al. [20] (14.8 seconds 
excluding data interpolation) where as the success rate of our 
method (98.04%) is better than the method developed by 
Frimmel et al. [20] (96%). The computation cost of our method 
also outperforms the methods reported in [9, 16-21]. 

TABLE 2: RESULTS OF DIFFERENT AUTOMATIC COLON SEGMENTATION 

METHOD IN CT COLONOGRAPHY 

Method Number of 

patients 

Time Sensitivity 

(sen.) / 

Surface area 

detection 

(SAD) 

Extra 

colonic 

surface 

inclusion (%) 

Wyatt et al. 

2000 

20 60 

min 

40 to 80% 

sen. 

- 

Li et al. 

2005 

50 6min 87.5%SAD 6.5 

Napii et al. 

2002 

44 10  

min 

98%SAD 10-15 

Frimmel et 

al. 2005 

38 14.8 

sec 

96% sen. 

99% 

specificity 

- 

Iordanescu 

et al. 2005 

292 - 83.2% sen. 9.6 % 

requires 

manual 

intervention 

Chowdhury 

et al. 2005 

115 

supine 

and 

prone 

2-

3min 

96.52% sen. 

99% SAD 

1.07 

Proposed 

method 

99 16.29

sec 

98.04% sen. 

99.59% SAD 

1.59 

 

I. CONCLUSION 

The developed method for automatic segmentation 
successfully identified the colonic lumen from volumetric CT 
data. In 188 supine and prone (99 patient datasets: 157 standard 
and 31 low-dose) datasets containing collapsed colon data, the 
segmentation method detected 99.59% of the colonic wall and 

shown 98.04% sensitivity for collapsed colon detection. The 
overall sensitivity of colon detection was 96.95%. In 63 
datasets the well-distended colons were detected without any 
inclusion of extra-colonic surface. The performance of the 
developed algorithm makes it suitable for 3D visualization of 
the colon surface and for advanced polyp detection. 

  
(a)                        (b)                              (c) 

   
(d)                         (e)                            (f) 

Figure 10: Comparison of automatic colon segmentation with manual 

segmentation by Radiologists. (a), (d) and (b), (e)  illustrate the surfaces 

generated from manual segmentation of colon by Radiologists. (c) and (f) 
show the results of automatic segmentation of colon. 
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