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Abstract

This paper describes a direct, self-contained method for planar image rectification
of stereo pairs. The method is based solely on an examination of the Fundamen-
tal matrix, where an improved method is given for the derivation of two projec-
tive transformations that horizontally align all the epipolar projections. A novel
approach is proposed to uniquely optimise each transform in order to minimise per-
spective distortions. This ensures the rectified images resemble the original images
as closely as possible. Detailed results show that the rectification precision exactly
matches the estimation error of the Fundamental matrix. In tests the remaining
perspective distortion offers on average less than one percent viewpoint distortion.
Both these factors offer superior robustness and performance compared with exist-
ing techniques.
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1 Introduction

Rectification is known to be a necessary step in stereoscopic analysis. The
aligning of epipolar lines allows subsequent algorithms to take advantage of
the epipolar constraint, reducing the search space to one dimension. In the
uncalibrated case the resulting depth reconstruction is determined up to a
projective transformation [1]. Many applications requiring such relative depth
measures exist, including view synthesis [2] and robotic navigation [3].

It is known and easily demonstrated that the rectilinear mechanical alignment
of two cameras is prohibitively difficult. The method developed in this paper
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is to simulate rectilinear images from those of arbitrarily placed cameras. This
involves subjecting the images to a two dimensional projective transformation
or planar homography. The homographies are calculated solely from an analy-
sis of the Fundamental matrix, to re-orientate the epipolar projections parallel
to the horizontal image axis. Undetermined parameters of the homographies
operating on the x coordinate are then specified to maximise viewpoint sim-
ilarities between the original and rectified images, thus reducing distortional
effects of the homographies and improving stereo matching. The rectification
is therefore described by a reprojection onto two planes with relative degrees
of freedom about the vertical axis only.

Projective rectification has many degrees of freedom. The problem is to find
a rectification that minimises distortion of the rectified images. This work fol-
lows on from Hartley [4,1], where a rigid transformation is derived from the
Fundamental matrix. This means that to first order, a points neighborhood
undergos rotation and translation only, hence the original and re-sampled im-
ages look similar. A related technique has been proposed by Al-Shalfan et al.
[5], while Loop and Zhang [6] consider a stratified decomposition of the rec-
tification homographies in order to minimise projective distortions. Pollefeys
et al. [7] describe rectification as a reprojection onto a cylindrical surface in-
stead of a plane, suitable for configurations when the epipole is within or close
to an image. Papadimitriou and Dennis [8] present an approach for conver-
gent stereo geometry, while Isgrò and Trucco [9] consider rectification directly
from point correspondences without explicitly determining the Fundamental
matrix.

The main contribution of this paper is the proposal of a novel technique to
reduce rectification distortions for the maximisation of viewpoint similarities
between the original and rectified images. Previous distortion interpretations
have included orthogonality of image corners and maximising image content
over the view window [3]. Loop and Zhang [6] consider distortion by attempt-
ing to force affine qualities on the homographies. As skew and aspect ratio are
invariant to affine transforms, they make extra constraints upon the homogra-
phies to reduce distortion. Their approach is not optimal considering only one
local region of the image. Our approach in contrast considers all regions of
the image, enforcing first order orthogonal qualities in a natural way through
a Singular Value Decomposition.

The paper also presents an improved method for the computation of robust
matching homographies, from a real Fundamental matrix estimated from noise
affected points. This results in a rectification error equal to that of the Fun-
damental matrix error, significantly improving upon the alignment of epipolar
lines compared to similar methods such as Hartley’s [4,1] and Al-Shalfan et
al. [5].
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2 Background

We work only in two dimensional projective space P2, where points are rep-
resented by bold symbols e.g p. Coordinates of points are represented by 3
dimensional vectors, e.g p = (u, v, w)T . If w 6= 0 then this represents the
points in R2 expressed in Euclidean coordinates as (u/w, v/w)T . When the
scale has been fixed, i.e. p = (u/w, v/w, 1)T , these are known as affine points.
If w = 0, the points are knows as points at ∞ , directions or affine vectors.
Points are scale invariant in that p = αp (α 6= 0). Lines are similarly repre-
sented by 3 dimensional column vectors, e.g. l = (la, lb, lc)

T . Transforms are 3
x 3 matrices of bold uppercase, e.g T, formed of columns T = [t1, t2, t3] with
entries t11,t12,....,t33.

2.1 Epipolar geometry

Given two images of a scene, let m and m′ be the projections of some 3D
point M in images I and I ′ respectively. The intrinsic projective geometry
between the two views is defined as:

m′TFm = 0, (1)

where the Fundamental matrix F [3,1,10] is a 3 x 3 matrix of rank 2. Given
at least 8 point matches is possible to determine the matrix [1] [11]. The
Fundamental matrix maps points in I to lines in I ′, Fm = l′ upon which
corresponding points lie. The image in I of C ′ is termed epipole e = (eu, ev, )T

and similarly for I the image of C is e′ = (e′u, e
′
v, )

T :

Fe = 0 = FTe′.

The epipoles e and e′ can be simply computed from the Singular Value Decom-
position of F = Udiag(0, σ1, σ2)V

T where U = [e′,u1,u2], V = [e,v1,v2], σ1

and σ2 are the typically non-zero singular values. All the epipolar lines in the
respective images pass through the epipoles. In this paper we assume that the
Fundamental matrix has been found, which requires at least 8 point matches
for linear estimation. In addition we consider the transformation axis or point
to be c = (0, 0), generally the top left corner.
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(a) Left view. (b) Right view.

(c) Rectified left. (d) Rectified right.

Fig. 1. Example of the rectification procedure. The original images are shown in
1(a) and 1(b) overlaid with their respective epipolar lines. After rectification these
lines become collinear and parallel with the image x axis, as shown 1(c) and 1(d).

3 Rectification

Image rectification is the process of re-aligning corresponding epipolar lines to
become collinear and parallel with the x axis as illustrated in figure 1. For a
stereo sensor, mechanical adjustments of this calibre are difficult to achieve.
However, given a description of the projective geometry between the two views,
projective transformations can be applied resulting in rectified images. We
choose the projective transformations uniquely to minimise distortions and
maintain as accurately as possible the structure of the original images. This
helps during subsequent stages, such as matching, ensuring local areas are not
unnecessarily warped.

Rectification can be described by a transformation that sends the epipoles to
infinity, hence the epipolar lines become parallel with each other. Additionally,
we ensure that corresponding points have the same y coordinate by mapping
the epipoles in the direction e = (, , )T or equivalently e = (eu, , )

T . The
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Fundamental matrix for such a rectified pair of images is:

F̄ =




0 0 0

0 0 −1

0 1 0




.

The desired homographies give new image coordinates as m̄ = Hm and m̄′ =
H′m′. It follows from equation (1) that m̄′T F̄m̄ = 0 and m′TH′TF̄Hm = 0
resulting in a set of constraints relating H to H′:

H′TF̄H = F. (2)

The homographies satisfying equation (2) are not unique, but similar to Hart-
ley [4] we choose H to transform the epipole e to infinity:

H =




1 0 0

−ev/eu 1 0

−1/eu 0 1




=




1 0 0

h21 1 0

h31 0 1




. (3)

The determinant of the Jacobian, det(H) = 1/(1− x/eu), gives an indication
of the changes or warping of local areas. At the origin the transformation
appears orthogonal (det(H) = 1), while in general eu is large in comparison to
the image size. This ensures H does not cause severe perspective distortion.

3.1 Matching Homography

Considering equation (2), it is clear that for an ideal Fundamental matrix
there are no applicable constraints on the first row of H′. Thus we specify the
matching transformation H′ with the form:

H′ =




1 0 0

h′21 h′22 h′23

h′31 h′32 h′33




.

Evaluating equation (2), we propose to estimate the entities of H′ by the
elementary comparison of entries in equation (4), where α represents the (op-
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tional) arbitrary scale difference. The constraints on H′ are:




(h21h
′
31 − h31h

′
21) h′31 −h′21

(h21h
′
32 − h31h

′
22) h′32 −h′22

(h21h
′
33 − h31h

′
23) h′33 −h′23




= α




f11 f12 f13

f21 f22 f23

f31 f32 f33




. (4)

Assuming an imperfect F matrix, the solution for H′ can be robustly found
in a least squares sense from equation (4) by the SVD of Bp̂ = 0, where
p̂ = (h′21, h

′
22, h

′
23, h

′
31, h

′
32, h

′
33, α)T . Computing H′ in a least square sense using

all the entries of F significantly improves the rectification accuracy in contrast
with Hartley’s [4] solution H′ = H([e]×F + ee′T ), and others (see Section 5).

4 Reducing Rectification Distortions

The application of H and H′ does indeed rectify the images as required. How-
ever, as can be noted above, the first rows of the homographies are undeter-
mined. This results naturally from the Fundamental matrix which does not
encapsulate any information about the position of the x coordinate. Weng
et al. [12] shows that only one component of the image position of a point
is used by the epipolar constraint. The projective transformations in general
introduces distortions in the rectified images, specifically skewness and as-
pect/scale distortions. We are however free to specify the first rows of both
homographies without invalidating the constraints we used to compute them,
AHe = He, and similarly for the primed counterparts giving:

H′TA′TF̄AH = K′TF̄K = F, (5)

where K = AH. A and A′ are transformations of affine form:

A =




a11 a12 a13

0 1 0

0 0 1




.

The creation and loss of pixels as a result of the application of transformation
K, can be quantified in the local area of point p by any norm of the Jacobian:

J(K,p) =




∂x̄
∂x

∂x̄
∂y

∂ȳ
∂x

∂ȳ
∂y


 .
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Let σ1(J) and σ2(J) be the non zero singular values of J in descending order.
Ideally, an orthogonal transform that neither creates or destroys pixels will
have singular values equal to one. In general σ1(J) > 1 for a transformation
that overall creates extra pixels, and σ1(J) < 1 for an overall compression of
pixels within a local region.

The search for the best compromise of the affine pair a11 and a12 to maintain
orthogonality and perspective of the original image can thus be expressed by
searching for the singular values that are closest to one. The Wielandt-Hoffman
theorem [13] for singular values states that if A and E are matrices in Rm×n

with m ≥ n, then:

n∑

k=1

(σk(A + E)− σk(A))2 ≤ ‖E‖2
F ,

where ‖E‖F is the Frobenius norm of E. This indicates that if A is perturbed
by E, the corresponding perturbation in any singular value of A will be less
than that of the Frobenius magnitude of E. This means that the relation-
ship between entries in a matrix and its singular values is a smooth function,
making them very suitable for iterative search techniques.

4.1 Minimisation

The search is conducted by evaluating the singular values of the Jacobian at
various points over the image. These points, pi can be simply specified as a
grid covering the image area or as the corners of the image. The function to
be minimised is then expressed as:

f(â11, â12) =
n∑

i=1

[(σ1(J(K,pi))− 1)2 + (σ2(J(K,pi))− 1)2]. (6)

We minimise this functional using the Nelder and Mead simplex search method.
Finite derivative methods can also be applied as the function inherently has
smooth derivatives. Since a13 is an x direction shift it does not introduce any
distortion. It can be chosen automatically to center the rectified image in the
old image window if desired. The same procedures equally apply to the primed
counterpart image. The rectification is determined solely on the estimate of
the F matrix. This has the advantage that no point correspondences are ex-
plicitly needed. Thus the rectification is invariant to the location or quantity
of the point set, which overall tends towards a more consistent result.
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5 Experiments

A selection of nine real examples are presented. The performance of the pro-
posed rectification is quantified using various metrics, and compared side-by-
side with two popular methods from the literature, Hartley’s [4,1] and Loop
and Zhang’s [6]. The examples feature a range of Fundamental matrix ac-
curacy levels, and requiring various transformation complexity. The images
were taken with a digital camera with 640 × 480 pixel resolution, over ran-
dom unknown baselines. The lens parameters remained unchanged throughout
and lens distortion has been removed. The images are of indoor and out-
door scenes with relatively low and high depth of scene respectively. The
Fundamental matrix was calculated using the linear normalised eight point
method [1] [11] using manually matched points. The examples are available at
http://www.eeng.dcu.ie/~vsl/vsgcode.html including data.

5.1 Error Metrics

The rectification technique is based solely on the estimation of the Fun-
damental matrix. Therefore, and according to equation (5), the rectifica-
tion performance is directly related with the integrity of the Fundamental
matrix. A direct evaluation of the accuracy of the Fundamental matrix is
given by the perpendicular distance from a point to its epipolar line. Con-
sidering the corresponding points m = (u, v, )T and m′ = (u′, v′, )T , the
epipolar line in I is given by l = FTm′ = (la, lb, lc)

T . The perpendicu-
lar line through m is: l⊥ = (lb,−la, (lav − lbu))T and the intersection point:
p⊥ = l ∧ l⊥ = (u⊥, v⊥, )T , where ∧ is the cross product. The Fundamental

matrix error is the distance Ef = ((u⊥ − u)2 + (v⊥ − v)2)
1
2 . The rectification

precision is then evaluated as: Er = ‖(Km)T
2 − (K′m′)T

2 ‖.

In general, it is not possible to avoid all distortions in a perspective transforma-
tion. Distortions in this case are defined as departures from the original image
structure, such as skewness and relative scale changes. These factors can be
quantified by measuring the proportional sizes and orthogonality of the trans-
formed images. Thus a = (w/2, 0, 1)T , b = (w, h/2, 1)T , c = (w/2, h, 1)T and
d = (0, h/2, 1)T are defined as four cross points of the image where w and h
are the image width and height. These points are then transformed, where-
upon the vectors x̄ = b̄ − d̄ and ȳ = c̄ − ā are formed. The orthogonality is
then given as the angle of the upper left corner between the x̄ and ȳ vectors
(ideally 90o). This angle is: Eo = cos−1

(
x̄·ȳ
|x||y|

)
. The aspect ratio can be used

to measure the relative size of the image. Taking the corner to corner length
ratio by redefining the points a = (0, 0, 1)T , b = (w, 0, 1)T , c = (w, h, 1)T and
d = (0, h, 1)T , the vectors x̄ and ȳ are formed as before. The aspect ratio
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(ideally unity) is then defined as: Ea =
(

x̄T x̄
ȳT ȳ

) 1
2 .

Table 1
Presents the error metrics described in section 5.1 for nine different real world
samples. The errors are presented in mean (standard deviation) format where ap-
plicable. Orthogonality is ideally 90o while the ideal aspect ratio is 1. The results
are compared with two alternative techniques of Hartley [4,1] and Loop and Zhang
[6], (nc) = no convergence. A selection of examples (Boxes, Roof, Yard and Drive)
are shown in figures 2 3 4 and 5.

Sample
F Mat. Ef

Method
Orthogonality Eo Aspect Ratio Ea Rectification Er

Mean (std) H′ H H′ H Mean std

Lab 4.861
Proposed 89.87 89.01 0.9960 0.9835 4.45 2.41

(2.732)
Loop (nc) - - - - - -

Hartley 99.07 96.56 1.1635 1.1111 23.02 4.53

Boxes∗ 0.5068
Proposed 88.78 89.33 0.9785 0.9889 0.44 0.33

(0.3630)
Loop 97.77 95.69 1.1279 1.0900 4.35 9.20

Hartley 86.56 94.99 0.9412 1.0846 33.36 8.65

Slates 0.5987
Proposed 89.12 89.13 0.9852 0.9855 0.59 0.56

(0.4593)
Loop 37.29 37.15 0.2698 0.2805 1.14 3.84

Hartley 89.96 88.54 1.0000 0.9769 2.27 5.18

Junk 0.3437
Proposed 90.78 91.62 1.0233 1.0274 0.11 0.32

(0.2832)
Loop (nc) - - - - - -

Hartley 102.67 99.60 1.3074 1.2466 14.38 8.51

Hall 1.9829
Proposed 90.00 90.03 1.0003 1.0006 1.81 1.39

(1.2124)
Loop 91.14 91.58 1.0194 1.0271 4.92 2.40

Hartley 102.56 90.48 1.2353 1.0081 2.59 2.75

Roof∗ 1.6422
Proposed 88.35 88.23 1.1077 0.9700 1.96 2.95

(1.7085)
Loop 69.28 87.70 0.6665 1.0497 0.84 11.01

Hartley 122.77 80.89 1.5256 0.8552 11.89 18.15

Arch 0.3244
Proposed 91.22 90.26 1.0175 1.0045 0.22 0.33

(0.3123)
Loop 95.40 98.94 1.0991 1.1662 131.3 20.63

Hartley 100.74 93.05 1.2077 1.0546 39.21 13.85

Yard∗ 0.6365
Proposed 89.91 90.26 0.9987 1.0045 0.53 0.54

(0.4776)
Loop 133.62 134.27 2.1477 2.4045 8.91 13.19

Hartley 101.95 91.91 1.2303 1.0335 48.19 11.49

Drive∗ 0.5684
Proposed 90.44 90.12 1.0060 1.0021 0.18 0.91

(0.7568)
Loop 98.73 101.42 1.1541 1.2052 10.41 3.24

Hartley 107.66 90.87 1.3491 1.015 3.57 3.43

5.2 Rectification Performance

The rectification performance is concerned with quantifying only the y or row
alignment of corresponding points over the images. Referring to table 1, of in-
terest is the Fundamental matrix error Ef , which is sufficiently characterised
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by its mean and standard deviation. As the rectification is only based on the
Fundamental matrix, its error Ef represents the minimum expected rectifica-
tion error Er. The Fundamental error Ef ranges from 4.8(2.7) to 0.32(0.31)
pixels in the examples. This is matched in every instance by the method pro-
posed here, where Er ranges from 4.5(2.4) to 0.11(0.32).

In comparison Hartley’s [4,1] technique fails to match any of these results,
with Er ranging from 48.2(11.4) to 2.6(2.7) (see table 1). It stems from a lack
of robustness in the method used to match the homographies. In comparison
to Loop and Zhang’s methods [6], for some cases this rectification did not
converge (nc), while convergence is questionable for the Arch example. As
this technique is scale invariant, suitable scaling for each example was chosen
manually. Disregarding the non-convergence cases the rectification error Er

ranges from 10.4(3.2) to 1.4(3.8). The poor alignment for these alternative
techniques can additionally be seen in the figures 2, 3, 4, and 5. It can be
seen that the rectification process described here significantly outperforms the
comparison techniques. Its convergence to the minimum error Ef in every case
demonstrates good robustness.

5.3 Distortion Reduction

The rectification process introduces a necessary distortion to the images that
realigns them horizontally relative to each other. We are free to specify the
x position of pixels with an affine shearing transform that leaves the rectifi-
cation unaffected. To this end we aim to preserve, as much as possible, the
original viewpoint of each camera in order to avoid introducing unnecessary
distortions. The distortion reduction criteria of equation (6) therefore strives
to minimise local pixel warping throughout the image. Table 1 and figures 2,
3, 4, and 5 show the performance on the set of test images. The orthogonality
Eo and aspect ratio Ea are of interest and are calculated for both homogra-
phies. Orthogonality gives a intuitive measure of the distortion level. Taking
the examples in table 1, the average absolute orthogonal angle error for the
proposed method is 0.8o for both H and H′.

In comparison Hartley’s [4,1] method introduces a significant quantity of dis-
tortion. This is expected as distortion is not considered, except to minimise
disparity. As the results show this can introduce serious warping. The average
absolute orthogonal angle error for H and H′ from table 1 is 4.2o and 12o. Loop
and Zhang’s methods [6] explicitly consider distortion, defined in a similar way
to the proposed method, by preserving perpendicularity and aspect ratio. The
results in table 1 show that their method at no point matches our results. The
average absolute orthogonal angle error for this method is 18o and 20o for H
and H′. This is because their criteria is defined only for the midpoint of the
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image. An optimal estimate for one point does not mean it will be optimal for
all image points, and indeed this is the case. In contrast our method considers
the local areas over the entire image to preserve orthogonality giving superior
results.

The rectification detailed above is based on the application of planar 2D pro-
jective transformations. As evident from section 3, these techniques are not
applicable for configurations where the epipole is within an image. In this
case it is possible to cause severe image distortions, even splitting connected
regions by their application. In general, the geometry that results in such un-
desirable situations, such as forward translation, is not generally encountered
in a stereo-like setup.

6 Conclusion

This paper describes a robust method for uncalibrated planar rectification for a
pair of stereo images taken from distinct viewpoints. It is simple to implement
and based solely on the estimated Fundamental matrix. A much improved
method is given for the computation of matching perspective transformations,
with experimental results showing that the rectification accuracy, or epipolar
alignment, is equal to the error in the Fundamental matrix estimation. A novel
technique is described to reduce the inevitable perspective distortions. This
ensures that the rectified images resemble the originals as closely as possible,
virtually eliminating unnatural skews and scaling. This has clear advantages
for subsequent processing steps. The distortion minimisation is carried out
by searching through a SVD for the best first order approximation of an
orthogonal-like transform throughout the image window. Detailed comparison
results clearly indicate much improved performance for both the rectification
process and the distortion reduction techniques.
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[9] F. Isgrò, E. Trucco, On projective rectification, in: Proceedings IEE Conference
on Image Processing and Analysis, 1999, pp. 42–46.
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(a) Originals for Boxes example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang [6] Method

(d) Hartley [4] Method

Fig. 2. Boxes example including epipolar lines, see table 1 for more details.
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(a) Originals for Roof example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang [6] Method

(d) Hartley [4] Method

Fig. 3. Roof example including epipolar lines, see table 1 for more details.
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(a) Originals for Yard example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang [6] Method

(d) Hartley [4] Method

Fig. 4. Yard example including epipolar lines, see table 1 for more details.
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(a) Originals for Drive example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang [6] Method

(d) Hartley [4] Method

Fig. 5. Drive example including epipolar lines, see table 1 for more details.
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