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Active depth from defocus (DFD) eliminates the main limitation faced by passive DFD,

namely its inability to recover depth when dealing with scenes defined by weakly textured

(or textureless) objects. This is achieved by projecting a dense illumination pattern onto

the scene and depth can be recovered by measuring the local blurring of the projected pat-

tern. Since the illumination pattern forces a strong dominant texture on imaged surfaces,

the level of blurring is determined by applying a local operator (tuned on the frequency

derived from the illumination pattern) as opposed to the case of window-based passive

DFD where a large range of band-pass operators are required. The choice of the local

operator is a key issue in achieving precise and dense depth estimation. Consequently,

in this paper we introduce a new focus operator and we propose refinements to compen-

sate for the problems associated with a sub-optimal local operator and a non-optimised

illumination pattern. The developed range sensor has been tested on real images and the

results demonstrate that the performance of our range sensor compares well with those

achieved by other implementations, where precise and computationally expensive optimi-

sation techniques are employed.
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1. Introduction

Pentland [17] pointed out that the range information is not lost during the process of

image formation as the objects are imaged according to their position in space. In this

way, the objects situated along the surface where the image is in focus are accurately

imaged, while others, not placed close to this surface are blurred. It is important to note

that the level of blurring is in direct relation to the distance between the surface where the

image is in focus and the actual spatial position of the object under investigation. Thus,

by comparing several images captured with different focal levels (obtained by changing

either the aperture of the lens or the internal parameters of the camera) we can estimate

the depth for each point in the scene by analysing the local blurring.

As opposed to depth from focus (DFF) [10,13,16,29] where the depth is estimated by

taking a large number of images by incrementing the focal settings in small steps, DFD

requires only two differently focused images to estimate the depth information [1,12,

17,18,24,26]. This is a major advantage when dealing with dynamic scenes where the

scene objects may change their spatial position during the image acquisition process.

Furthermore, instead of searching for the best focused point in the image stack as is the

case with DFF, the depth in DFD can be computed by evaluating the blurring difference

between each point in the defocused images. Also it is worth noting that the ranging

methods based on focus/defocus are less affected by occlusions or missing parts than the

ranging techniques based on triangulation or stereo vision since the images to be analysed

are only differently focused [25].

Historically, DFD methods have evolved as a passive range sensing strategy [18,27,

29,30]. In general, passive DFD attempts to estimate the blurring level by applying a

large range of narrow-band operators [29] since the image blurring varies with texture

frequencies [27]. A different implementation has been proposed by Rajagopalan and

Chaudhuri [23] where they applied a Markov random field (MRF) model to improve

the initial depth estimates obtained from a window-based DFD scheme. More recently

Deschenes et al [5] proposed a new algorithm to extract the blur difference between two

defocused images by fitting the defocused images by Hermite polynomials. In this way

the coefficients of the Hermite polynomial computed from the more blurred image are
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a function of the partial derivatives of the other image and the blur difference. Other

recent contributions to passive DFD include the work of Bhasin and Chaudhuri [2] and

Favaro et al [6]. However the main disadvantage of the passive DFD approaches is the

fact that they are computationally intensive and they return unreliable depth estimates

when dealing with weakly or non-textured image areas.

To address this limitation Pentland et al. [19] suggested projecting a structured light

onto the scene and estimating the depth by analysing the level of blurring associated with

the projected pattern. The results proved to be accurate although obtained at a relatively

coarse spatial resolution. Later, Nayar et al. [21] argued that optimising the illumination

pattern and the focus operator can lead to high density depth maps. They developed a

symmetrical pattern organised as a rectangular grid optimised for a specific camera. Then

they optimised the Laplacian operator in order to obtain a narrow band operator. The

reported results indicate the efficiency of this approach but it is worth noting that in their

implementation the illumination pattern has to be registered with the sensing elements

at a sub-pixel resolution, a fact that makes this approach difficult to apply in practice.

In this paper we describe the implementation of a real-time active DFD range sen-

sor, where special emphasis is placed on the focus operator and the image refinements

employed in order to alleviate the problems caused by arbitrary object textures and a

non-optimised illumination pattern.

2. Active depth from defocus. Related research

A range sensor based on focus error and structured light has been proposed by Pentland

et al. [19] and Girod and Scherock [9]. This approach extends the passive range sensor

developed by Pentland [17] where the large aperture camera was replaced by a structured

light source (for more details see also [4]). Since the camera’s lens has a small aperture,

its depth of field is significantly larger than the depth of field of the structured light.

They employed an illumination pattern consisting of evenly spaced vertical lines. Since

the position of the pattern is known a priori and using the fact that the width of the light

stripe gets larger when defocused, the depth can be easily estimated by measuring the

spread of the defocused line. In spite of simplicity this approach proved to be relatively
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accurate. The major limitation of this approach is the coarse-spaced illumination pattern

and as a direct consequence the resulting depth map is low resolution.
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Figure 1. The image formation process. The depth u is a function of the sensor position

s, lens aperture D, focal length f and the blur patch d [24,21].

In order to address this limitation Nayar et al. [21] developed an active DFD range

sensor consisting of two sensing elements separated by a known distance b used in con-

junction with a dense optimised illumination pattern [22]. In this way, one of the sensing

elements will capture a near focused image while the other will capture the far focused

image (see Figure 1). The illumination pattern was projected onto the scene in order

to force an artificial texture on all imaged areas. The depth is in direct relation to the

relative level of blurring present in both images which is measured by filtering the near

and far focused images with a local operator such as the Laplacian [19,21]. Since our goal

is achieving dense depth maps in our implementation we used the latter approach.

3. The blur function

If the object to be imaged is placed in or very close to the surface of best focus (object

point is in the position P and the sensing element is placed at If , see Figure 1), the image

formed on the sensing element is sharp while each object point is imaged by the lens into

a point on the sensor plane. Conversely, if the object is shifted from the surface where

the image is in focus, the object points are distributed over a patch on the surface of the

sensing element, where the diameter of the patch indicates the level of blurring.
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The blurring effect can be thought of as a convolution between the perfectly focused

image and a blurring function called point spread function (PSF). In vision literature

various models have been proposed to approximate the blurring function [7,14,26] but in

practice the 2-D Gaussian [15,17,24] has been widely employed to approximate the PSF

when paraxial geometric optics are used and diffraction effects are negligible.

The standard deviation (or the spread parameter) of the Gaussian operator is the

parameter of interest as it indicates the level of blurring contained in the defocused images

(the larger the level of blurring the larger the value of the standard deviation). Since the

PSF function approximates a low pass filter, to extract the level of local blurring (i.e.

determine the standard deviation of the PSF) it would be necessary to extract the high

frequency information derived from the scene. This is achieved by convolving the near

and far focused images with a local focus operator, where the output indicates the local

blurring level.

However, the abovementioned approach returns reliable results only if the scene under

investigation is highly textured. To eliminate this restriction a solution is to project a

structured light onto the scene, thus forcing a dominant artificial texture on all visible

surfaces.

The structured light should have a symmetrical or semi-symmetrical arrangement in

order to achieve rotational invariance. We can recall that the near and far focused images

are captured with different focal settings and as a consequence a variation in magnification

between these images will be noticed. As in our implementation the magnification changes

between the defocused images cannot be alleviated on an optical basis (for details refer

to Section 6) this issue introduces a new challenge as we cannot perform a registration

between the illumination pattern and the pixel elements of the CMOS cameras. Perfect

registration between the illumination pattern and camera’s pixels is quite difficult to

achieve in practice as it would require specialised equipment to construct a custom grating

filter, and in addition this solution would be effective only if the magnification were

maintained at a constant level for both near and far focused images.

Fortunately, the depth errors caused by miss-registrations between the illumination

pattern and the camera’s pixels are very small when compared with errors introduced
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by the focus operator, magnification changes and the imperfections of the optical and

sensing equipment (the procedure employed to compensate for the non-linear response

of the CMOS sensors is detailed in Section 6). Thus in our implementation we relaxed

the requirement for an optimised illumination pattern. To achieve high resolution depth

estimation, in our implementation we have used a simple illumination pattern defined

by a sequence of horizontal stripes with a density of 10 lines per mm. Our efforts were

concentrated on the development of a new focus operator that can be easily tuned on the

spatial arrangement of the illumination pattern.

4. Focus operator

The problem of recovering the local blurring is greatly simplified in active DFD since the

scene has a dominant frequency, namely the frequency associated with the illumination

pattern. Thus, the focus operator has to be designed in order to respond strongly to this

frequency. When the illumination pattern is projected onto a blank sheet of white paper

the projected pattern consists of evenly spaced dark and bright horizontal lines, where

the period is 6 pixels (projector elevation 71 cm from the baseline, fitted with a 60mm

lens). Since the illumination pattern has a symmetric arrangement, the focus operator

also has to be symmetric and must be immune to DC components. The most common

focus operator is the Laplacian where the size of the kernel is dependent on the spatial

arrangement of the illumination pattern (5 × 5 for the present illumination pattern).

Although the Laplacian has sharp peaks at the frequency derived from the illumination

pattern, it also enhances the features associated with the scene’s texture which alters

the local blurring measurements. To alleviate this problem Nayar et al. [21] employed a

frequency analysis approach to develop a narrow-band Laplacian with four sharp peaks at

the frequency derived from an optimised illumination pattern. In Figure 2 the kernels of

the 5× 5 Laplacian operator and the 5× 5 four-peak narrow band operator are depicted.

Taking into account that the illumination pattern forced on the scene is organised as a

sequence of evenly spaced light stripes, this motivates us to introduce a new focus operator

to estimate the local blurring, namely the simple cell [11].
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Figure 2. The focus operator. (a) Standard Laplacian. (b) Four peak Laplacian operator.

The relationship that implement the simple cell operator is illustrated in Equations 1

to 3.

s(x, y) = e−
x′2+y′2

2σ2 cos(
2π

T
x′ + ϕ) (1)

x′ = x cos(θ)− y sin(θ) (2)

y′ = x sin(θ) + y cos(θ) (3)

where T represents the period, σ the standard deviation of the Gaussian filter, θ spec-

ifies the orientation of the normal to the illumination pattern and ϕ is the phase offset.

There are various psychophysical experiments which indicate that the simple cell operator

acts as a line or edge detector, by responding to lines or edges with a specific orientation

and spatial-frequency [11,20]. For other texture orientations the simple cell will respond

weakly, and this will result in a decreased sensitivity as compared to the Laplacian oper-

ator when applied to arbitrary object textures.

Therefore, the properties of this operator are very attractive for our application since the

illumination pattern is defined by a periodic arrangement with a well defined orientation.

In our implementation, the following values are used to tune the simple cell operator on the

projected illumination pattern: 2π/T=1.5, σ2=2, θ= π/2 and ϕ= π/2. The resulting filter

implements an antisymmetric oriented derivative operator and the elements of the kernel

are adjusted in order to ensure that their sum is equal to zero (to achieve insensitivity to

DC components).

In order to assess the efficiency of this new focus operator we evaluated its performance

compared to that offered by the Laplacian operator and the narrow-band operator [21].
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5. Image refinements

Since the focus operator has a finite support (defined by 5 × 5 masks) it will generate

windowing errors when it is applied to the near and far focused images. As expected, the

image distortions inserted by the focus operator are more severe around the transitory

regions between the dark and bright light stripes. This is caused by the imperfections in

construction of the filter employed to generate the illumination pattern, i.e. the trans-

parent and opaque regions of the projection filter are not perfectly defined. Given that

the central part of the illumination stripe is less affected by the errors introduced by the

focus operator and the illumination pattern (and has the highest intensity values), we

normalised each stripe by vertically propagating the value of the pixel positioned on the

center of the stripe. It is important to note that this stripe normalisation procedure does

not affect the local blurring level since the illumination pattern is dense and the resulting

stripes are only 3 to 4 pixel wide and the blurring is assumed to be constant in small

neighborhoods.

However, the focus operator and the imperfections of the illumination pattern were

not the only source of errors. Given that the near and far focused images are captured

with different camera settings, a variation in image magnification (which is dependent

on the spatial position of the imaged object) occurs and as a direct consequence the

stripes contained in the near and far focused images do not match perfectly together.

This forced researchers to either implement computationally intensive techniques such as

image registration and warping [3] or to address this problem on an optical basis [28]. In

our implementation we compensate for this issue by employing image interpolation. While

the dark stripes of the illumination pattern do not reveal any useful information and the

spatial shift induced by magnification changes is smaller than half of the period of the

illumination pattern, we propose to map them by vertically interpolating the adjacent

bright illumination stripes. Taking into consideration that the illumination pattern is

very dense, linear interpolation proved to be sufficient. The experiments indicate that

the performance of the sensor significantly improved after the application of these image

refinements.
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6. Sensor implementation

The developed sensor consists of two distinct parts, namely the sensing devices and the

light projector. To capture the near and far focused images at the same time the sensor

uses a beam splitter to separate the original image into two identical images. To capture

the near and far focused images, one sensor is set in contact with the beam splitter while

the second is positioned with a small gap (approximately 0.8mm) from the beam splitter

surface. The registration between the sensing elements is carried out by using a multi-

axis translator which is attached to one of the sensing elements. Figure 3 illustrates the

components of the developed range sensor.


Light projector

Grid pattern

Nikkor lenses

Sensing elements

Axis translator

Beam splitter

Figure 3. The diagram of the developed range sensor.

The structured light is projected onto the scene using a MP-1000 projector fitted with

a MGP-10 Moire gratings (stripes with density of 10 lines per mm). The system uses two

AF MICRO Nikkor 60mm lenses, where one is used to image the scene while the other is

attached to the light projector. The aperture of the lens attached to the light projector

should be very small in order to obtain a lens with a large depth of field. Therefore,

the illumination pattern projected onto the scene will be non-blurred and defocus will

be introduced only by the focal settings of the sensing elements. On the other hand,

a pinhole aperture will contribute to a severe reduction in illumination level arriving at

the sensing elements. To compensate for this issue we need to employ a very powerful

source of light, a solution difficult to apply in practice due to safety considerations. Since

our light projector is fitted with a 50W incandescent bulb, this approach is not feasible.

Thus, we set the aperture of the lens at the minimum value (2.8 setting) that assures a
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sufficient level of light to image the scene objects irrespective of their colour. Nevertheless,

in this situation the illumination pattern was supplementary defocused. To alleviate this

problem we set the surface of best focus of the projected illumination pattern at the same

position with the surface of best focus of the near focused sensing element. Using this

approach, the level of blurring in the near focused image is almost linear with depth. On

the other hand, the level of blurring in the far focused image will be disturbed due to the

attenuation of the illumination pattern. This problem can be observed in Figure 4 where

the intensity output of the near and far focused images after the application of the focus

operator is plotted against depth.
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Figure 4. The effect of the supplementary blur introduced by the lens of the light projector.

The errors are compensated by using a look-up table (LUT) linearisation. Numerical

values are obtained when the simple cell was employed as focus operator.

This generates errors when dealing with far situated objects with respect to the sensor’s

position. To compensate for this problem the blurring profile of the far focused sensor

is linearised in agreement with the blurring profile of the near focused sensor. The lin-

earisation procedure is implemented using a look-up table where the depth is estimated

directly from the intensity outputs of the near and far focused image after the application

of the focus operator.
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7. Experiments and results

In this paper our aim is to evaluate how the focus operator affect the overall perfor-

mance of the range sensor. To achieve this goal, the range sensor was tested initially on

textureless scenes then on scenes defined by arbitrary textured objects.
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Figure 5. Recovered depth for a textureless planar object placed at different elevations

from the baseline of the workspace.
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Figure 6. Recovered depth for a randomly textured planar object placed at different

elevations from the baseline of the workspace.

The relative accuracy was estimated for successive measurements and was defined by

the maximum error between the real and estimated depth values contained in the depth

map. During operation the sensor is placed at a distance of 86cm above the baseline
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of the workspace. Figure 5 illustrates the effect of the focus operator when the sensor

was tested on a simple scene defined by a planar textureless object which is placed at

different elevations from the baseline of the workspace. As expected since there is no

additional texture to disturb the illumination pattern, the depth is estimated almost

similarly irrespective of the choice of the focus operator. However, when the sensor was

tested on textured scenes, the experimental results indicated that the Laplacian operator

cannot reject the influence of the object texture while the four peak focus operator and

the simple cell are more robust to arbitrary texture (see Figure 6).

(a) (b)

(c)

Figure 7. Depth estimation for a scene defined by polyhedral objects. (a) Near focused

image. (b) Far focused image. (c) Recovered depth.

Our results are similar with those reported by Nayar et al. [21] when the four peak
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(c)

Figure 8. Depth estimation for a scene defined by textureless, textured and mildly specular

objects. (a) Near focused image. (b) Far focused image. (c) Recovered depth.

Laplacian was employed as focus operator. Also it can be noticed that the depth estima-

tion is less precise for objects situated at distances close to the calibration point where

the depth values are over determined. Figures 7 and 8 depict additional results when the

sensor was applied to various scenes.

In line with other active techniques, this approach returns unreliable depth estimation

when it is applied to highly specular scenes or scenes defined by objects with very dark

surfaces. Figure 9 illustrates how the accuracy is affected when the sensor was applied to

scenes defined by objects with different surface colors. Figure 10 indicates the performance

of the sensor when the illumination level of the light projector is reduced by changing the
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lens aperture.

Figure 9. Relation between the depth error and the brightness of the object surface.

Figure 10. Relation between the depth estimation and the level of illumination.

8. Conclusions

In order to achieve accurate and dense depth estimation using active DFD, we have

to address a large number of problems including mechanical, optical and computational.

While the physical implementation of this sensor has been previously detailed [8], in this

paper we place the emphasis on the computational components. To robustly extract the

relative blurring between two images captured with different focal settings, we have to
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confront problems such as sensitivity of the focus operator to the object texture and the

variation in image magnification. In order to achieve insensitivity to object texture we

developed a focus operator that responds strongly to the frequency derived from the il-

lumination pattern. The problems associated with the variation in image magnification

were addressed by employing image interpolation. All these components were included in

the implementation of a real-time active DFD range sensor which was successfully applied

in the development of a vision sensor for robotic bin-picking [8].
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