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Statistical partitioning of images into meaningful areas is the goal of all region-based

segmentation algorithms. The clustering or creation of these meaningful partitions can be

achieved in number of ways but in most cases it is achieved through the minimization or

maximization of some function of the image intensity properties. Commonly these

optimization schemes are locally convergent, therefore initialization of the parameters of

the function plays a very important role in the final solution. In this paper we perform an

automatically initialized expectation-maximization algorithm to partition the data in

medical MRI images. We present analysis and illustrate results against manual

initialization and apply the algorithm to some common medical image processing tasks.
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1. Introduction

Segmentation has been a key goal in imaging research for a

number of decades. The applications of robust techniques

for object classification in images are extensive, none more

so than in the rapidly advancing field of medical imaging

[1,2]. With the introduction of faster and more powerful

imaging devices the amount of data produced makes it

impractical for experts to manually segment objects of

interest. The need for more automated methods of

segmentation is evident. Medical scanners, such as MRI,

utilize the metaphysical response of the body’s organs to

create an image. This response is tissue-dependent and

therefore the resultant image is comprised of almost

homogenous regions which are representative of organs,

tissues or fluids in the body.

Region-based methods [2] are used to segment the image,

normally using no a priori information. The most basic

form of region-based segmentation is thresholding. Thresh-

olding techniques create a binary image of pixels above and

below a user-defined threshold value. Thresholding does

not take into account the structure or connectivity of the

points that it segments and the threshold value is seldom

automatically determined. Segmentation results can some-

times be filled with holes or ragged edges, which in a crude

way can be eliminated with a combination of morpholo-

gical operators [3,4]. In medical imaging, thresholding is

not widely used without advanced preprocessing steps due

to its sensitivity to noise. More complex statistical methods,

such as clustering, join pixels of similar intensities to create

a segmentation of structures in the image. All statistical

based classification methods [5 – 9] aim to optimize the

results based on an initialization. This initialization is

commonly chosen randomly, and as a consequence results

are not reproducible, do not take advantage of inherent

patterns in the data or may be initialized on outliers.

Methods for automatic initialization of clusters have been

proposed in the literature [10 – 12]. Al-Daoud and Roberts

[10] proposed two methods, the first of which picks points

randomly in evenly spaced cells across the entire histogram

of the data and reduces the number until the required seeds

are found. The second method tries to optimize the sum of

squares of the distances from the cluster centres. Mitra

et al. [11] describe a rough-set initialization provided by

graph-theoretic methods. Khan and Ahmad [12] assumed a

normal distribution over the data attributes and divided the

normal distribution curve into equal percentile cells. The
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seeds are chosen as the midpoints of the interval of each of

these partitions.

In this paper we present a novel algorithm that

automatically initializes the seeds used in statistical based

classification algorithms. The advantage over previous

implementations is that it is reproducible, robust and easy

to implement. The algorithm firstly selects a large number

of possible partitions, using peaks (local maxima) in the

intensity histogram, which are evenly distributed over the

data. The algorithm then performs an iterative clustering of

these peaks, using their histogram heights and greyscale

difference until the optimal number of seeds is reached. To

verify the results from the initialization, the seeds picked

were used as the initial estimates for a segmentation using

the expectation-maximization (EM) algorithm. The seg-

mentation results are given for both 2D and 3D data and

common applications of segmentation in cardiac, brain and

whole-body MRI are also presented.

2. EM algorithm

The EM algorithm [6,13] attempts to classify data using a

soft membership function as a weighted sum of a number of

Gaussian distributions called a Gaussian Mixture Model

(GMM). The generation of this GMM is achieved through

an expectation-maximization technique, which aims to find

Figure 1. An illustration of the principle of signal intensity

classification using a four-class Gaussian Mixture Model.

(Scaled for illustration purposes.)

Figure 2. Figures show the short axis view of cardiac MRI: (a) shows the original image, (b) indicates the manually selected

areas, (c) represents the results after applying the EM using the manually picked initialization and (d) is the result after

applying the automatic seed picking.



the maximum likelihood estimate for an underlying

distribution from a given dataset when the data is

incomplete. The basic idea of expectation-maximization is

illustrated in figure 1.

The advantage of EM over the k-means clustering

technique [8] is its ability to provide a statistical model of

the data and its capability to handle the associated

uncertainties. Consider the general case of a d-dimensional

random variable x¼ [x1, x2, x3, . . . , xd]
T and suppose it

follows a k-component finite mixture distribution. Its

probability density function (pdf) could be written as:

pðx j yÞ ¼
Xk

m¼1
ampðx j ymÞ; ð1Þ

where am is the mixing parameter for each of the Gaussian

distributions in the GMM and ym¼ {mm, sm} are the

parameters of the Gaussian distributions.

am � 0; and
Xk

m¼1
a ¼ 1 ð2Þ

The algorithm is built on an iterative scheme and consists

of two steps. The first, the E-step, calculates the expected

log-likelihood function for the complete data, defined by Q

using the estimates for the parameters ŷðtÞ.

Qðy;ŷðtÞÞ � E½log pðX;Y j yÞjX;ŷðtÞ� ð3Þ

The second step, the M-step, uses the maximized values of

this result to generate the next set of parameters.

ŷðtþ 1Þ ¼ argmax
y

Qðy;ŷðtÞÞ ð4Þ

Figure 3. Figures show a coronal slice from a brain MRI: (a) shows the original image, (b) indicates the manually selected

area, (c) represents the results after applying the EM using the manually picked initialization and (d) is the result after

applying the automatic seed picking.

Table 1. Changes in cluster means in the whole body data. A:
Manual m; B: manual m after EM; C: automatic m; D:

automatic m after EM.

A B C D

m(0) 57.31914 55.2806 57 31.33457

m(1) 125.366 112.0961 137 125.284

m(2) 194.0437 151.1044 167 171.6872

m(3) 19.84193 16.74244 12 17.75531

m(4) 225.1899 112.8278 255 254.2933

m(5) 28.87568 28.43651 92 79.93145



The algorithm iterates between equations (3) and (4) until

convergence is reached. It is important to note that local

convergence of the EM algorithm is assured [6,14,15].

The updates for the parameters for the GMM are the

mixture values am and the parameters of the Gaussian

distributions ym¼ {mm, sm}. These can be calculated from

equations (5), (6) and (7).

anewm ¼ 1

N

Xk

m¼1
pðm j xi;ŷðtÞÞ ð5Þ

mnewm ¼
Pk

m¼1 xi pðm j xi;ŷÞPk
m¼1 pðm j xi;ŷÞ

ð6Þ

snewm ¼
Pk

m¼1 pðm j xi;ŷÞðxi � mnewm Þðxi � mnewm Þ
T

Pk
m¼1 pðm j xi;ŷÞ

ð7Þ

2.1. Seed generation

This paper proposes a novel approach to initialization of

cluster centres based on histogram analysis. A histogram

Figure 4. Figures show a coronal slice from a section of a full body MRI: (a) shows the original image, (b) indicates the

manually selected areas, (c) represents the results after applying the EM using the manually picked initialization and (d) is the

result after applying the automatic seed picking.

Figure 5. Histograms of the data with the associated scaled GMM after the application of our automatically seeded EM

segmentation (results from figures 2(d), 3(d) and 4(d)).



of the image data is constructed, nj, where n is the number

of pixels contained in the bin with value j. This histogram is

then divided intoM evenly distributed bins. This valueM is

manually set, typically to a higher number than the number

of perceived relevant regions in the image. For the images

shown in this paper, the value of M was set experimentally

to 25. From each bin, the highest peak in the histogram is

assigned to a seed centre, Cm.

Cm ¼ argmax
j
ðnjÞ ð8Þ

These M seed centres are then clustered together using

their closeness in the greyscale space and their heights nj
until the desired number of seeds, k, is reached. The

clustering is an iterative process where clusters are joined

together by evaluating the Euclidean distance between the

cluster centres.

3. Results

The described scheme was applied to gated MRI short-axis

images of the heart, MRI coronal brain slices and a section

from a whole body MRI showing the lower abdomen. In

order to illustrate the validity of the automatic seed

selection algorithm, the results are compared against those

Figure 6. 3D space partitioning using EM: images show (a) a single slice of a 3D dataset from the original volume, (b) after

segmentation with the EM algorithm and (c) shows the associated histogram of the data with scaled GMM included.

Table 2. Changes in cluster means in the whole body data. A:
Manual m; B: manual m after EM; C: automatic m; D:

automatic m after EM.

A B C D

m(0) 164.6 123.922 116 117.66

m(1) 131.18 120.03 96 97.8356

m(2) 2.3 2.03 13 2.07

m(3) 66.59 33.01 44 27.48

m(4) 90.1 94.49 73 70.836

m(5) 164.21 194.81 153 140.6223

Table 3. Changes in cluster means in the whole body data. A:
Manual m; B: manual m after EM; C: automatic m; D:

automatic m after EM.

A B C D

m(0) 170.92 169.4365 183 178.41

m(1) 42.29 44.45 52 50.484

m(2) 3.84 4.l77 5 4.27

m(3) 123.61 118.868 151 153.720

m(4) 95.35 82.99 124 121.496

m(5) 57.2 55.897 92 85.687



obtained when the cluster means and variances are

manually extracted from the image. An example of this is

shown in figure 2(b), which shows the areas in the image

that were selected manually for use as the initialization of

the EM algorithm. A visual comparison of the segmenta-

tion after initialization using these manually selected

regions against the results obtained after the automatic

seed selection detailed in x2.1 can be seen in figure 2(c)

and 2(d).

From figure 2 and table 1, it is clear that using the

automatic seed initialization gives a better distribution of

initial seeds across the data. Table 1 presents the manually

selected means of the Gaussian distributions and auto-

matically selected means using the method described above.

Also, the Gaussian means after the EM algorithm has been

applied are presented.

To evaluate the performance of the described algorithm,

the EM segmentation algorithm is applied to each of the

Figure 7. Images show slices 1((a) and (b)) and 4((c) and (d)) from the original volume (left) and with left ventricle blood

cavity segmented (right) and (e) shows the rendered volume of the segmentation.



MRI datasets. As mentioned previously, the algorithm is

locally convergent and therefore initialization of the

algorithm is crucial to the final solution. A comparison is

made between the results obtained using the automatically

seeding process and the results obtained when the initial

seeds for the EM segmentation are chosen manually. To

achieve this, areas are selected in each of the images that

attempt to represent the most significant regions. This is

objective and related to the purpose of the segmentation

but the overriding motivation is to pick regions that are

clinically significant and also have a high degree of

variation between regions. In each of the images given,

six regions were manually selected. In these selected regions

the mean pixel intensity values and the variance of the pixel

intensity values are calculated. These manually selected

values are used as the initial values of ym, where 1�m� 6

in the EM algorithm, and the mixing parameters am were

each set to 1
m.

Figure 2 illustrates the strategy applied to short axis

images from a cardiac MRI study. The areas manually

selected are shown in figure 2(b) and the resultant

segmentation after applying the EM segmentation using

these initial parameters is shown in figure 2(c). Figure 2(d)

shows appropriate results after the automatic parameter

selection; in particular the results show a better distribution

within the greyscale distribution of the analysed image.

Figure 8. Images show slices 1((a) and (b)) and 14((c) and (d)) from the original volume (left) and with segmented white

matter (right) and (e) shows the rendered volume of the segmentation.



Figure 3 shows a coronal slice from a T1-weighted head

MRI. Again the automatic segmentation method performs

well in differentiating the white matter from the grey

matter. Figure 4 shows a coronal slice from an abdominal

section of a full body MRI.

The second measure of performance is given in figure 5,

where the intensity histograms for each of the images

shown in figures 2, 3 and 4 are plotted. Overlaid on these

histograms are the resulting GMMs resulting from the EM

segmentation using the automatic seeds. The Gaussian

distributions are scaled for illustration purposes.

It is clear from tables 1, 2 and 3 that the described

automatic seed picking algorithm demonstrates better

performance when compared to the manual selection

technique. This is evident from the lower differences

between initialized seeds and the final values after

optimization through the EM algorithm.

Most medical images obtained from MRI are 3D and in

some cases 4D, but because the algorithm works on the data

histogram (hence, intensity values) and is not dependent on

spatial position, it can be applied equally successfully to any

dimensioned data. This is illustrated in figure 6, where the

algorithm is successfully applied in 3D MRI images. This

aspect is examined further in x4, where the results are used in

conjunction with a diffusion based filtering [16,17] to extract

some clinically relevant regions from the images.

It is worth noting that statistical classification of pixels is

a more appropriate way to segment medical images, as the

standard region growing technique will fail to produce

appropriate results in images that exhibit a low signal-to-

noise ratio (SNR). Also, such medical images generally

show good separation between significant regions. This is

application-dependent so we will now look at some

common medical applications.

4. Applications in medical imaging

One of the key indicators of cardiac health is left ventricle

ejection fraction, a measure of the volume of blood pumped

from the left ventricle with each heartbeat [18]. Cardiac cine

MRI is a standard procedure where 3D volume images are

acquired at gated temporal positions through the cardiac

pumping cycle. Such images are frequently taken using

gradient echo imaging, which exhibits a relatively high

Figure 9. Images show slices 2((a) and (b)) and 6((c) and (d)) from the original volume (left) and with body fat segmented

(right) and (e) shows the rendered volume of the segmentation.



differentiation between the blood and the myocardium.

Figure 7 shows the end-diastole segmented left ventricle

blood-pool after the application of the EM algorithm

described in this paper to identify the left ventricle cavity.

Figure 7(e) is a rendered volume of the blood pool, inside

the cavity of the left ventricle when the muscle is at its end-

diastole phase.

The classification of brain MRI white matter, grey matter,

cerebrospinal fluid and in some cases lesions is a fundamental

first step for surgical planning, radiotherapy planning and the

identification of brain disease [19]. Illustrated in figure 8 is a

segmentation of white matter of the brain.

The accurate measurement of body fat from whole-body

MRI images is becoming an increasingly important metric,

as high body fat level is recognized to play a significant role

in a variety of serious health problems [20]. MRI is the

modality of choice due to its repeatability and high spatial

resolution. Figure 9 illustrates the results from one section

of a whole-body MRI dataset where the fat tissue has being

segmented out of the volume.

5. Conclusion

In this paper the implementation of an automatic seed

picking algorithm to be used as the initialization of an

expectation-maximization segmentation scheme is detailed.

This segmentation technique is then applied to a variety of

MRI datasets both in 2D and 3D. Statistical based

classification of pixels is especially appropriate to MRI

data, as traditional region growing and edge-based

segmentation algorithms fail to produce accurate segmen-

tation results when applied to medical datasets

characterized by a low SNR. The EM algorithm shows

robust and repeatable performance in the segmentations of

heart, brain and abdominal images. The EM algorithm is

locally convergent [6,14,15] so we have introduced an

automatic seeding method that uses local maxima in the

intensity histogram. The results are compared against a

manual initialization, achieved by first manually selecting a

region and then measuring the mean intensity values and

variance in that region. The results of the manual

initialization and the automatic initialization are shown

after the application of the expectation-maximization

algorithm. The methods shows appropriate results with

respect to the greyscale values. From these results we can

conclude that this approach offers robust, reproducible and

accurate estimation of the initial parameters for the EM

algorithm and the segmentation scheme described is

capable of providing useful clinical measurements when

applied to a large range of medical datasets.
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