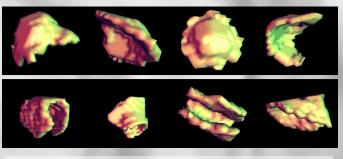
Shape Classification of Colorectal Polyps at CT **Colonography using Support Vector Machines**

Abhilash A. Miranda, Tarik A. Chowdhury, Ovidiu Ghita, Paul F. Whelan


Vision Systems Group, Dublin City University, Ireland

Introduction

- Computer Aided Diagnosis (CAD) at Computed Tomography Colonography (CTC) help detect colorectal polyps before they become fatal.
- Aim of CAD-CTC: Classification of highly complex colorectal shapes with high sensitivity and low False Positives (FP) rate.

Features for Shape Classification

- Features obtained from Shape Distribution Function^[1] (SDF) and Gaussian Distribution of Surface Voxels^[2] of the candidate surfaces.
- Feature set per candidate surface = $\{d_{G}, f_{dB}\}$
- d_G = sum of weighted Gaussian distances of all surface voxels normalized by the surface number
- f_{dB} = -9dB attenuation frequency of the power spectral density of the SDF

Typical Colorectal Polyps (Top Row) & Non-polyps (Row Below)

Feature-space & SVM Classifier

- Feature-space $\{d_G, f_{dB}\}$ is sparse with training set $X = X_n$ comprising of Phantom Polyps ≥ 5 mm
- Introduce artificial populations X_1 , X_2 , and X_3
- There exists no linear classification boundary between polyps and non-polyps in feature-space
- SVM classifier with polynomial kernel of degree k introduces non-linear decision boundaries

Results					
		SVM1	SVM2	SVM3	SVM4
k		3	3	5	5
X		\mathcal{X}_p	$\mathcal{X}_{SVM2} = \mathcal{X}_p + \mathcal{X}_l$	$\mathcal{X}_{SVM3} = \mathcal{X}_{SVM2} + \mathcal{X}_2$	$\mathcal{X}_{SVM3}+\mathcal{X}_{3}$
Sensitivity (%)	≥10 mm	90	90	90	90
	[5,10) mm	72	78	75	81
	< 5mm	60	63	62	60
Total Sensitivity ≥5 mm (%)		76	81	79	83
FP per dataset		2.54	5.78	4.42	6.45

Conclusions

- SVM-based colorectal shape classification achieves very high sensitivity for polyps > 5mm.
- Expansion of feature-set envisaged for further work for increasing sensitivity of flat and small polyps, and masses.

References

- [1] Chowdhury, T A., Ghita O., Whelan, P. F., Miranda, A. A., "A Note on Feature Selection for Polyp Detection in CT Colonography", ICPR (2006)
- Miranda, A. A., Chowdhury, T. A., Ghita, O., Whelan P.F., "Shape Filtering for False Positive Reduction at [2] Computed Tomography Colonography", MICCAI (2006)

Vision Systems Group

